Properties

Label 648.4.i.e.217.1
Level $648$
Weight $4$
Character 648.217
Analytic conductor $38.233$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,4,Mod(217,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.217");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 648.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2332376837\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 217.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 648.217
Dual form 648.4.i.e.433.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{5} +(-12.0000 + 20.7846i) q^{7} +O(q^{10})\) \(q+(-1.00000 - 1.73205i) q^{5} +(-12.0000 + 20.7846i) q^{7} +(-22.0000 + 38.1051i) q^{11} +(-11.0000 - 19.0526i) q^{13} -50.0000 q^{17} +44.0000 q^{19} +(-28.0000 - 48.4974i) q^{23} +(60.5000 - 104.789i) q^{25} +(99.0000 - 171.473i) q^{29} +(80.0000 + 138.564i) q^{31} +48.0000 q^{35} -162.000 q^{37} +(-99.0000 - 171.473i) q^{41} +(-26.0000 + 45.0333i) q^{43} +(264.000 - 457.261i) q^{47} +(-116.500 - 201.784i) q^{49} +242.000 q^{53} +88.0000 q^{55} +(-334.000 - 578.505i) q^{59} +(-275.000 + 476.314i) q^{61} +(-22.0000 + 38.1051i) q^{65} +(-94.0000 - 162.813i) q^{67} -728.000 q^{71} +154.000 q^{73} +(-528.000 - 914.523i) q^{77} +(328.000 - 568.113i) q^{79} +(118.000 - 204.382i) q^{83} +(50.0000 + 86.6025i) q^{85} -714.000 q^{89} +528.000 q^{91} +(-44.0000 - 76.2102i) q^{95} +(239.000 - 413.960i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 24 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{5} - 24 q^{7} - 44 q^{11} - 22 q^{13} - 100 q^{17} + 88 q^{19} - 56 q^{23} + 121 q^{25} + 198 q^{29} + 160 q^{31} + 96 q^{35} - 324 q^{37} - 198 q^{41} - 52 q^{43} + 528 q^{47} - 233 q^{49} + 484 q^{53} + 176 q^{55} - 668 q^{59} - 550 q^{61} - 44 q^{65} - 188 q^{67} - 1456 q^{71} + 308 q^{73} - 1056 q^{77} + 656 q^{79} + 236 q^{83} + 100 q^{85} - 1428 q^{89} + 1056 q^{91} - 88 q^{95} + 478 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 1.73205i −0.0894427 0.154919i 0.817833 0.575456i \(-0.195175\pi\)
−0.907276 + 0.420536i \(0.861842\pi\)
\(6\) 0 0
\(7\) −12.0000 + 20.7846i −0.647939 + 1.12226i 0.335675 + 0.941978i \(0.391036\pi\)
−0.983614 + 0.180286i \(0.942298\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −22.0000 + 38.1051i −0.603023 + 1.04447i 0.389338 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123371i \(0.960630\pi\)
\(12\) 0 0
\(13\) −11.0000 19.0526i −0.234681 0.406479i 0.724499 0.689276i \(-0.242071\pi\)
−0.959180 + 0.282797i \(0.908738\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −50.0000 −0.713340 −0.356670 0.934230i \(-0.616088\pi\)
−0.356670 + 0.934230i \(0.616088\pi\)
\(18\) 0 0
\(19\) 44.0000 0.531279 0.265639 0.964072i \(-0.414417\pi\)
0.265639 + 0.964072i \(0.414417\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −28.0000 48.4974i −0.253844 0.439670i 0.710737 0.703458i \(-0.248362\pi\)
−0.964581 + 0.263788i \(0.915028\pi\)
\(24\) 0 0
\(25\) 60.5000 104.789i 0.484000 0.838313i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 99.0000 171.473i 0.633925 1.09799i −0.352816 0.935693i \(-0.614776\pi\)
0.986742 0.162298i \(-0.0518907\pi\)
\(30\) 0 0
\(31\) 80.0000 + 138.564i 0.463498 + 0.802801i 0.999132 0.0416484i \(-0.0132609\pi\)
−0.535635 + 0.844450i \(0.679928\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 48.0000 0.231814
\(36\) 0 0
\(37\) −162.000 −0.719801 −0.359900 0.932991i \(-0.617189\pi\)
−0.359900 + 0.932991i \(0.617189\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −99.0000 171.473i −0.377102 0.653161i 0.613537 0.789666i \(-0.289746\pi\)
−0.990639 + 0.136505i \(0.956413\pi\)
\(42\) 0 0
\(43\) −26.0000 + 45.0333i −0.0922084 + 0.159710i −0.908440 0.418015i \(-0.862726\pi\)
0.816232 + 0.577725i \(0.196059\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 264.000 457.261i 0.819327 1.41912i −0.0868522 0.996221i \(-0.527681\pi\)
0.906179 0.422894i \(-0.138986\pi\)
\(48\) 0 0
\(49\) −116.500 201.784i −0.339650 0.588291i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 242.000 0.627194 0.313597 0.949556i \(-0.398466\pi\)
0.313597 + 0.949556i \(0.398466\pi\)
\(54\) 0 0
\(55\) 88.0000 0.215744
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −334.000 578.505i −0.737002 1.27652i −0.953840 0.300317i \(-0.902908\pi\)
0.216838 0.976208i \(-0.430426\pi\)
\(60\) 0 0
\(61\) −275.000 + 476.314i −0.577215 + 0.999766i 0.418582 + 0.908179i \(0.362527\pi\)
−0.995797 + 0.0915873i \(0.970806\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −22.0000 + 38.1051i −0.0419810 + 0.0727132i
\(66\) 0 0
\(67\) −94.0000 162.813i −0.171402 0.296877i 0.767508 0.641039i \(-0.221496\pi\)
−0.938910 + 0.344162i \(0.888163\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −728.000 −1.21687 −0.608435 0.793604i \(-0.708202\pi\)
−0.608435 + 0.793604i \(0.708202\pi\)
\(72\) 0 0
\(73\) 154.000 0.246909 0.123454 0.992350i \(-0.460603\pi\)
0.123454 + 0.992350i \(0.460603\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −528.000 914.523i −0.781444 1.35350i
\(78\) 0 0
\(79\) 328.000 568.113i 0.467125 0.809084i −0.532170 0.846638i \(-0.678623\pi\)
0.999295 + 0.0375534i \(0.0119564\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 118.000 204.382i 0.156050 0.270287i −0.777391 0.629018i \(-0.783457\pi\)
0.933441 + 0.358731i \(0.116790\pi\)
\(84\) 0 0
\(85\) 50.0000 + 86.6025i 0.0638031 + 0.110510i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −714.000 −0.850380 −0.425190 0.905104i \(-0.639793\pi\)
−0.425190 + 0.905104i \(0.639793\pi\)
\(90\) 0 0
\(91\) 528.000 0.608236
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −44.0000 76.2102i −0.0475190 0.0823053i
\(96\) 0 0
\(97\) 239.000 413.960i 0.250173 0.433312i −0.713400 0.700757i \(-0.752846\pi\)
0.963573 + 0.267444i \(0.0861792\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 783.000 1356.20i 0.771400 1.33610i −0.165396 0.986227i \(-0.552890\pi\)
0.936796 0.349877i \(-0.113777\pi\)
\(102\) 0 0
\(103\) 484.000 + 838.313i 0.463009 + 0.801955i 0.999109 0.0421991i \(-0.0134364\pi\)
−0.536100 + 0.844154i \(0.680103\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 780.000 0.704724 0.352362 0.935864i \(-0.385379\pi\)
0.352362 + 0.935864i \(0.385379\pi\)
\(108\) 0 0
\(109\) −1994.00 −1.75221 −0.876103 0.482123i \(-0.839866\pi\)
−0.876103 + 0.482123i \(0.839866\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −471.000 815.796i −0.392106 0.679147i 0.600621 0.799534i \(-0.294920\pi\)
−0.992727 + 0.120387i \(0.961587\pi\)
\(114\) 0 0
\(115\) −56.0000 + 96.9948i −0.0454089 + 0.0786506i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 600.000 1039.23i 0.462201 0.800555i
\(120\) 0 0
\(121\) −302.500 523.945i −0.227273 0.393648i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −492.000 −0.352047
\(126\) 0 0
\(127\) 1408.00 0.983778 0.491889 0.870658i \(-0.336307\pi\)
0.491889 + 0.870658i \(0.336307\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1346.00 2331.34i −0.897714 1.55489i −0.830409 0.557154i \(-0.811893\pi\)
−0.0673052 0.997732i \(-0.521440\pi\)
\(132\) 0 0
\(133\) −528.000 + 914.523i −0.344236 + 0.596234i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 813.000 1408.16i 0.507002 0.878153i −0.492965 0.870049i \(-0.664087\pi\)
0.999967 0.00810420i \(-0.00257968\pi\)
\(138\) 0 0
\(139\) 342.000 + 592.361i 0.208691 + 0.361464i 0.951302 0.308259i \(-0.0997463\pi\)
−0.742611 + 0.669723i \(0.766413\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 968.000 0.566072
\(144\) 0 0
\(145\) −396.000 −0.226800
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 151.000 + 261.540i 0.0830228 + 0.143800i 0.904547 0.426374i \(-0.140209\pi\)
−0.821524 + 0.570174i \(0.806876\pi\)
\(150\) 0 0
\(151\) −676.000 + 1170.87i −0.364319 + 0.631018i −0.988667 0.150128i \(-0.952031\pi\)
0.624348 + 0.781146i \(0.285365\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 160.000 277.128i 0.0829130 0.143609i
\(156\) 0 0
\(157\) −1571.00 2721.05i −0.798595 1.38321i −0.920531 0.390670i \(-0.872244\pi\)
0.121936 0.992538i \(-0.461090\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1344.00 0.657901
\(162\) 0 0
\(163\) 3036.00 1.45888 0.729441 0.684043i \(-0.239780\pi\)
0.729441 + 0.684043i \(0.239780\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −132.000 228.631i −0.0611645 0.105940i 0.833822 0.552034i \(-0.186148\pi\)
−0.894986 + 0.446094i \(0.852815\pi\)
\(168\) 0 0
\(169\) 856.500 1483.50i 0.389850 0.675240i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1413.00 + 2447.39i −0.620973 + 1.07556i 0.368331 + 0.929695i \(0.379929\pi\)
−0.989305 + 0.145863i \(0.953404\pi\)
\(174\) 0 0
\(175\) 1452.00 + 2514.94i 0.627205 + 1.08635i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3084.00 −1.28776 −0.643880 0.765127i \(-0.722676\pi\)
−0.643880 + 0.765127i \(0.722676\pi\)
\(180\) 0 0
\(181\) −2418.00 −0.992975 −0.496488 0.868044i \(-0.665377\pi\)
−0.496488 + 0.868044i \(0.665377\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 162.000 + 280.592i 0.0643810 + 0.111511i
\(186\) 0 0
\(187\) 1100.00 1905.26i 0.430160 0.745059i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −480.000 + 831.384i −0.181841 + 0.314957i −0.942507 0.334185i \(-0.891539\pi\)
0.760667 + 0.649143i \(0.224872\pi\)
\(192\) 0 0
\(193\) −1441.00 2495.89i −0.537438 0.930869i −0.999041 0.0437828i \(-0.986059\pi\)
0.461604 0.887086i \(-0.347274\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1086.00 −0.392763 −0.196381 0.980528i \(-0.562919\pi\)
−0.196381 + 0.980528i \(0.562919\pi\)
\(198\) 0 0
\(199\) 88.0000 0.0313475 0.0156738 0.999877i \(-0.495011\pi\)
0.0156738 + 0.999877i \(0.495011\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2376.00 + 4115.35i 0.821490 + 1.42286i
\(204\) 0 0
\(205\) −198.000 + 342.946i −0.0674581 + 0.116841i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −968.000 + 1676.63i −0.320373 + 0.554902i
\(210\) 0 0
\(211\) 1738.00 + 3010.30i 0.567056 + 0.982170i 0.996855 + 0.0792455i \(0.0252511\pi\)
−0.429799 + 0.902925i \(0.641416\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 104.000 0.0329895
\(216\) 0 0
\(217\) −3840.00 −1.20127
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 550.000 + 952.628i 0.167407 + 0.289958i
\(222\) 0 0
\(223\) −464.000 + 803.672i −0.139335 + 0.241336i −0.927245 0.374455i \(-0.877830\pi\)
0.787910 + 0.615790i \(0.211163\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 78.0000 135.100i 0.0228064 0.0395018i −0.854397 0.519621i \(-0.826073\pi\)
0.877203 + 0.480119i \(0.159407\pi\)
\(228\) 0 0
\(229\) 817.000 + 1415.09i 0.235759 + 0.408347i 0.959493 0.281732i \(-0.0909090\pi\)
−0.723734 + 0.690079i \(0.757576\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 902.000 0.253614 0.126807 0.991927i \(-0.459527\pi\)
0.126807 + 0.991927i \(0.459527\pi\)
\(234\) 0 0
\(235\) −1056.00 −0.293131
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 808.000 + 1399.50i 0.218683 + 0.378770i 0.954406 0.298513i \(-0.0964907\pi\)
−0.735723 + 0.677283i \(0.763157\pi\)
\(240\) 0 0
\(241\) −2409.00 + 4172.51i −0.643889 + 1.11525i 0.340667 + 0.940184i \(0.389347\pi\)
−0.984557 + 0.175065i \(0.943986\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −233.000 + 403.568i −0.0607585 + 0.105237i
\(246\) 0 0
\(247\) −484.000 838.313i −0.124681 0.215954i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2140.00 0.538150 0.269075 0.963119i \(-0.413282\pi\)
0.269075 + 0.963119i \(0.413282\pi\)
\(252\) 0 0
\(253\) 2464.00 0.612294
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 385.000 + 666.840i 0.0934461 + 0.161853i 0.908959 0.416886i \(-0.136878\pi\)
−0.815513 + 0.578739i \(0.803545\pi\)
\(258\) 0 0
\(259\) 1944.00 3367.11i 0.466387 0.807806i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3700.00 + 6408.59i −0.867497 + 1.50255i −0.00295121 + 0.999996i \(0.500939\pi\)
−0.864546 + 0.502554i \(0.832394\pi\)
\(264\) 0 0
\(265\) −242.000 419.156i −0.0560979 0.0971644i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2794.00 0.633283 0.316642 0.948545i \(-0.397445\pi\)
0.316642 + 0.948545i \(0.397445\pi\)
\(270\) 0 0
\(271\) 8624.00 1.93310 0.966551 0.256474i \(-0.0825608\pi\)
0.966551 + 0.256474i \(0.0825608\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2662.00 + 4610.72i 0.583726 + 1.01104i
\(276\) 0 0
\(277\) 937.000 1622.93i 0.203245 0.352031i −0.746327 0.665579i \(-0.768185\pi\)
0.949572 + 0.313549i \(0.101518\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1669.00 2890.79i 0.354321 0.613702i −0.632681 0.774413i \(-0.718045\pi\)
0.987002 + 0.160711i \(0.0513787\pi\)
\(282\) 0 0
\(283\) −3586.00 6211.13i −0.753235 1.30464i −0.946247 0.323445i \(-0.895159\pi\)
0.193012 0.981196i \(-0.438174\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4752.00 0.977358
\(288\) 0 0
\(289\) −2413.00 −0.491146
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2607.00 + 4515.46i 0.519804 + 0.900327i 0.999735 + 0.0230207i \(0.00732835\pi\)
−0.479931 + 0.877306i \(0.659338\pi\)
\(294\) 0 0
\(295\) −668.000 + 1157.01i −0.131839 + 0.228352i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −616.000 + 1066.94i −0.119144 + 0.206364i
\(300\) 0 0
\(301\) −624.000 1080.80i −0.119491 0.206964i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1100.00 0.206511
\(306\) 0 0
\(307\) 396.000 0.0736186 0.0368093 0.999322i \(-0.488281\pi\)
0.0368093 + 0.999322i \(0.488281\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2028.00 3512.60i −0.369766 0.640454i 0.619762 0.784789i \(-0.287229\pi\)
−0.989529 + 0.144335i \(0.953896\pi\)
\(312\) 0 0
\(313\) −1077.00 + 1865.42i −0.194491 + 0.336868i −0.946733 0.322018i \(-0.895639\pi\)
0.752243 + 0.658886i \(0.228972\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3693.00 + 6396.46i −0.654320 + 1.13332i 0.327743 + 0.944767i \(0.393712\pi\)
−0.982064 + 0.188549i \(0.939621\pi\)
\(318\) 0 0
\(319\) 4356.00 + 7544.81i 0.764543 + 1.32423i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2200.00 −0.378982
\(324\) 0 0
\(325\) −2662.00 −0.454342
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6336.00 + 10974.3i 1.06175 + 1.83900i
\(330\) 0 0
\(331\) 566.000 980.341i 0.0939884 0.162793i −0.815198 0.579183i \(-0.803372\pi\)
0.909186 + 0.416390i \(0.136705\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −188.000 + 325.626i −0.0306613 + 0.0531069i
\(336\) 0 0
\(337\) 1671.00 + 2894.26i 0.270104 + 0.467834i 0.968888 0.247498i \(-0.0796085\pi\)
−0.698784 + 0.715333i \(0.746275\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7040.00 −1.11800
\(342\) 0 0
\(343\) −2640.00 −0.415588
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1122.00 + 1943.36i 0.173580 + 0.300649i 0.939669 0.342086i \(-0.111133\pi\)
−0.766089 + 0.642734i \(0.777800\pi\)
\(348\) 0 0
\(349\) 3261.00 5648.22i 0.500164 0.866310i −0.499836 0.866120i \(-0.666606\pi\)
1.00000 0.000189686i \(-6.03788e-5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5615.00 + 9725.47i −0.846618 + 1.46639i 0.0375899 + 0.999293i \(0.488032\pi\)
−0.884208 + 0.467093i \(0.845301\pi\)
\(354\) 0 0
\(355\) 728.000 + 1260.93i 0.108840 + 0.188517i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1848.00 −0.271682 −0.135841 0.990731i \(-0.543374\pi\)
−0.135841 + 0.990731i \(0.543374\pi\)
\(360\) 0 0
\(361\) −4923.00 −0.717743
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −154.000 266.736i −0.0220842 0.0382509i
\(366\) 0 0
\(367\) −3560.00 + 6166.10i −0.506350 + 0.877024i 0.493623 + 0.869676i \(0.335672\pi\)
−0.999973 + 0.00734805i \(0.997661\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2904.00 + 5029.88i −0.406383 + 0.703876i
\(372\) 0 0
\(373\) −3175.00 5499.26i −0.440738 0.763381i 0.557006 0.830508i \(-0.311950\pi\)
−0.997744 + 0.0671276i \(0.978617\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4356.00 −0.595081
\(378\) 0 0
\(379\) −7900.00 −1.07070 −0.535351 0.844630i \(-0.679821\pi\)
−0.535351 + 0.844630i \(0.679821\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5184.00 + 8978.95i 0.691619 + 1.19792i 0.971307 + 0.237828i \(0.0764355\pi\)
−0.279688 + 0.960091i \(0.590231\pi\)
\(384\) 0 0
\(385\) −1056.00 + 1829.05i −0.139789 + 0.242122i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4415.00 7647.00i 0.575448 0.996706i −0.420544 0.907272i \(-0.638161\pi\)
0.995993 0.0894338i \(-0.0285057\pi\)
\(390\) 0 0
\(391\) 1400.00 + 2424.87i 0.181077 + 0.313634i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1312.00 −0.167124
\(396\) 0 0
\(397\) 9878.00 1.24877 0.624386 0.781116i \(-0.285349\pi\)
0.624386 + 0.781116i \(0.285349\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6567.00 11374.4i −0.817806 1.41648i −0.907295 0.420494i \(-0.861857\pi\)
0.0894889 0.995988i \(-0.471477\pi\)
\(402\) 0 0
\(403\) 1760.00 3048.41i 0.217548 0.376804i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3564.00 6173.03i 0.434056 0.751808i
\(408\) 0 0
\(409\) −453.000 784.619i −0.0547663 0.0948580i 0.837343 0.546679i \(-0.184108\pi\)
−0.892109 + 0.451821i \(0.850775\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16032.0 1.91013
\(414\) 0 0
\(415\) −472.000 −0.0558303
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2706.00 4686.93i −0.315505 0.546471i 0.664039 0.747698i \(-0.268841\pi\)
−0.979545 + 0.201226i \(0.935507\pi\)
\(420\) 0 0
\(421\) 2321.00 4020.09i 0.268690 0.465385i −0.699834 0.714306i \(-0.746743\pi\)
0.968524 + 0.248921i \(0.0800758\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3025.00 + 5239.45i −0.345257 + 0.598002i
\(426\) 0 0
\(427\) −6600.00 11431.5i −0.748001 1.29558i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −656.000 −0.0733142 −0.0366571 0.999328i \(-0.511671\pi\)
−0.0366571 + 0.999328i \(0.511671\pi\)
\(432\) 0 0
\(433\) 9490.00 1.05326 0.526629 0.850096i \(-0.323456\pi\)
0.526629 + 0.850096i \(0.323456\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1232.00 2133.89i −0.134862 0.233587i
\(438\) 0 0
\(439\) −2772.00 + 4801.24i −0.301368 + 0.521984i −0.976446 0.215762i \(-0.930776\pi\)
0.675078 + 0.737746i \(0.264110\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3826.00 6626.83i 0.410336 0.710722i −0.584591 0.811328i \(-0.698745\pi\)
0.994926 + 0.100606i \(0.0320782\pi\)
\(444\) 0 0
\(445\) 714.000 + 1236.68i 0.0760603 + 0.131740i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 446.000 0.0468776 0.0234388 0.999725i \(-0.492539\pi\)
0.0234388 + 0.999725i \(0.492539\pi\)
\(450\) 0 0
\(451\) 8712.00 0.909605
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −528.000 914.523i −0.0544022 0.0942275i
\(456\) 0 0
\(457\) −781.000 + 1352.73i −0.0799423 + 0.138464i −0.903225 0.429168i \(-0.858807\pi\)
0.823283 + 0.567632i \(0.192140\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5291.00 9164.28i 0.534548 0.925864i −0.464638 0.885501i \(-0.653815\pi\)
0.999185 0.0403626i \(-0.0128513\pi\)
\(462\) 0 0
\(463\) 5384.00 + 9325.36i 0.540423 + 0.936040i 0.998880 + 0.0473229i \(0.0150690\pi\)
−0.458457 + 0.888717i \(0.651598\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9876.00 0.978601 0.489301 0.872115i \(-0.337252\pi\)
0.489301 + 0.872115i \(0.337252\pi\)
\(468\) 0 0
\(469\) 4512.00 0.444232
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1144.00 1981.47i −0.111208 0.192617i
\(474\) 0 0
\(475\) 2662.00 4610.72i 0.257139 0.445377i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −176.000 + 304.841i −0.0167884 + 0.0290784i −0.874298 0.485390i \(-0.838677\pi\)
0.857509 + 0.514469i \(0.172011\pi\)
\(480\) 0 0
\(481\) 1782.00 + 3086.51i 0.168924 + 0.292584i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −956.000 −0.0895046
\(486\) 0 0
\(487\) −15176.0 −1.41209 −0.706047 0.708165i \(-0.749523\pi\)
−0.706047 + 0.708165i \(0.749523\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4422.00 7659.13i −0.406440 0.703975i 0.588048 0.808826i \(-0.299897\pi\)
−0.994488 + 0.104851i \(0.966563\pi\)
\(492\) 0 0
\(493\) −4950.00 + 8573.65i −0.452204 + 0.783241i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8736.00 15131.2i 0.788457 1.36565i
\(498\) 0 0
\(499\) −9702.00 16804.4i −0.870383 1.50755i −0.861601 0.507586i \(-0.830538\pi\)
−0.00878220 0.999961i \(-0.502795\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16488.0 −1.46156 −0.730779 0.682614i \(-0.760843\pi\)
−0.730779 + 0.682614i \(0.760843\pi\)
\(504\) 0 0
\(505\) −3132.00 −0.275984
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6477.00 11218.5i −0.564024 0.976917i −0.997140 0.0755793i \(-0.975919\pi\)
0.433116 0.901338i \(-0.357414\pi\)
\(510\) 0 0
\(511\) −1848.00 + 3200.83i −0.159982 + 0.277097i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 968.000 1676.63i 0.0828256 0.143458i
\(516\) 0 0
\(517\) 11616.0 + 20119.5i 0.988145 + 1.71152i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10970.0 −0.922465 −0.461233 0.887279i \(-0.652593\pi\)
−0.461233 + 0.887279i \(0.652593\pi\)
\(522\) 0 0
\(523\) −16940.0 −1.41632 −0.708159 0.706053i \(-0.750474\pi\)
−0.708159 + 0.706053i \(0.750474\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4000.00 6928.20i −0.330631 0.572670i
\(528\) 0 0
\(529\) 4515.50 7821.08i 0.371127 0.642811i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2178.00 + 3772.41i −0.176997 + 0.306569i
\(534\) 0 0
\(535\) −780.000 1351.00i −0.0630324 0.109175i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10252.0 0.819267
\(540\) 0 0
\(541\) 198.000 0.0157351 0.00786755 0.999969i \(-0.497496\pi\)
0.00786755 + 0.999969i \(0.497496\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1994.00 + 3453.71i 0.156722 + 0.271451i
\(546\) 0 0
\(547\) 7634.00 13222.5i 0.596721 1.03355i −0.396581 0.918000i \(-0.629803\pi\)
0.993302 0.115551i \(-0.0368633\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4356.00 7544.81i 0.336791 0.583339i
\(552\) 0 0
\(553\) 7872.00 + 13634.7i 0.605337 + 1.04847i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20854.0 −1.58638 −0.793189 0.608976i \(-0.791581\pi\)
−0.793189 + 0.608976i \(0.791581\pi\)
\(558\) 0 0
\(559\) 1144.00 0.0865582
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9658.00 16728.1i −0.722977 1.25223i −0.959801 0.280681i \(-0.909440\pi\)
0.236824 0.971553i \(-0.423894\pi\)
\(564\) 0 0
\(565\) −942.000 + 1631.59i −0.0701420 + 0.121490i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3509.00 6077.77i 0.258532 0.447791i −0.707317 0.706897i \(-0.750094\pi\)
0.965849 + 0.259106i \(0.0834278\pi\)
\(570\) 0 0
\(571\) −12210.0 21148.3i −0.894873 1.54997i −0.833961 0.551823i \(-0.813933\pi\)
−0.0609117 0.998143i \(-0.519401\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6776.00 −0.491441
\(576\) 0 0
\(577\) 23234.0 1.67633 0.838166 0.545415i \(-0.183628\pi\)
0.838166 + 0.545415i \(0.183628\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2832.00 + 4905.17i 0.202222 + 0.350259i
\(582\) 0 0
\(583\) −5324.00 + 9221.44i −0.378212 + 0.655082i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5302.00 + 9183.33i −0.372806 + 0.645718i −0.989996 0.141095i \(-0.954938\pi\)
0.617190 + 0.786814i \(0.288271\pi\)
\(588\) 0 0
\(589\) 3520.00 + 6096.82i 0.246246 + 0.426511i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13838.0 0.958277 0.479139 0.877739i \(-0.340949\pi\)
0.479139 + 0.877739i \(0.340949\pi\)
\(594\) 0 0
\(595\) −2400.00 −0.165362
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1980.00 3429.46i −0.135059 0.233930i 0.790561 0.612384i \(-0.209789\pi\)
−0.925620 + 0.378454i \(0.876456\pi\)
\(600\) 0 0
\(601\) 2971.00 5145.92i 0.201647 0.349262i −0.747412 0.664360i \(-0.768704\pi\)
0.949059 + 0.315098i \(0.102037\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −605.000 + 1047.89i −0.0406558 + 0.0704179i
\(606\) 0 0
\(607\) 1520.00 + 2632.72i 0.101639 + 0.176044i 0.912360 0.409389i \(-0.134258\pi\)
−0.810721 + 0.585433i \(0.800925\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11616.0 −0.769121
\(612\) 0 0
\(613\) −2530.00 −0.166698 −0.0833489 0.996520i \(-0.526562\pi\)
−0.0833489 + 0.996520i \(0.526562\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9603.00 16632.9i −0.626584 1.08528i −0.988232 0.152960i \(-0.951119\pi\)
0.361648 0.932315i \(-0.382214\pi\)
\(618\) 0 0
\(619\) −5498.00 + 9522.82i −0.357000 + 0.618343i −0.987458 0.157881i \(-0.949534\pi\)
0.630458 + 0.776224i \(0.282867\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8568.00 14840.2i 0.550995 0.954351i
\(624\) 0 0
\(625\) −7070.50 12246.5i −0.452512 0.783774i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8100.00 0.513463
\(630\) 0 0
\(631\) −6680.00 −0.421437 −0.210718 0.977547i \(-0.567580\pi\)
−0.210718 + 0.977547i \(0.567580\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1408.00 2438.73i −0.0879918 0.152406i
\(636\) 0 0
\(637\) −2563.00 + 4439.25i −0.159419 + 0.276121i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3137.00 5433.44i 0.193298 0.334802i −0.753043 0.657971i \(-0.771415\pi\)
0.946341 + 0.323169i \(0.104748\pi\)
\(642\) 0 0
\(643\) −4542.00 7866.97i −0.278568 0.482493i 0.692461 0.721455i \(-0.256526\pi\)
−0.971029 + 0.238962i \(0.923193\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23656.0 1.43742 0.718712 0.695308i \(-0.244732\pi\)
0.718712 + 0.695308i \(0.244732\pi\)
\(648\) 0 0
\(649\) 29392.0 1.77771
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3381.00 5856.06i −0.202617 0.350943i 0.746754 0.665100i \(-0.231611\pi\)
−0.949371 + 0.314158i \(0.898278\pi\)
\(654\) 0 0
\(655\) −2692.00 + 4662.68i −0.160588 + 0.278147i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7638.00 13229.4i 0.451494 0.782010i −0.546986 0.837142i \(-0.684225\pi\)
0.998479 + 0.0551323i \(0.0175581\pi\)
\(660\) 0 0
\(661\) −5527.00 9573.04i −0.325228 0.563311i 0.656331 0.754473i \(-0.272108\pi\)
−0.981558 + 0.191163i \(0.938774\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2112.00 0.123158
\(666\) 0 0
\(667\) −11088.0 −0.643672
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12100.0 20957.8i −0.696148 1.20576i
\(672\) 0 0
\(673\) 10639.0 18427.3i 0.609366 1.05545i −0.381979 0.924171i \(-0.624757\pi\)
0.991345 0.131282i \(-0.0419093\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4463.00 7730.14i 0.253363 0.438838i −0.711086 0.703105i \(-0.751796\pi\)
0.964450 + 0.264266i \(0.0851298\pi\)
\(678\) 0 0
\(679\) 5736.00 + 9935.04i 0.324194 + 0.561520i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8116.00 −0.454685 −0.227343 0.973815i \(-0.573004\pi\)
−0.227343 + 0.973815i \(0.573004\pi\)
\(684\) 0 0
\(685\) −3252.00 −0.181391
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2662.00 4610.72i −0.147190 0.254941i
\(690\) 0 0
\(691\) 5882.00 10187.9i 0.323823 0.560878i −0.657450 0.753498i \(-0.728365\pi\)
0.981273 + 0.192620i \(0.0616984\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 684.000 1184.72i 0.0373318 0.0646606i
\(696\) 0 0
\(697\) 4950.00 + 8573.65i 0.269002 + 0.465926i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4698.00 0.253126 0.126563 0.991959i \(-0.459605\pi\)
0.126563 + 0.991959i \(0.459605\pi\)
\(702\) 0 0
\(703\) −7128.00 −0.382415
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18792.0 + 32548.7i 0.999641 + 1.73143i
\(708\) 0 0
\(709\) −12319.0 + 21337.1i −0.652538 + 1.13023i 0.329966 + 0.943993i \(0.392963\pi\)
−0.982505 + 0.186237i \(0.940371\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4480.00 7759.59i 0.235312 0.407572i
\(714\) 0 0
\(715\) −968.000 1676.63i −0.0506310 0.0876954i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16624.0 −0.862268 −0.431134 0.902288i \(-0.641886\pi\)
−0.431134 + 0.902288i \(0.641886\pi\)
\(720\) 0 0
\(721\) −23232.0 −1.20001
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11979.0 20748.2i −0.613640 1.06286i
\(726\) 0 0
\(727\) −15108.0 + 26167.8i −0.770735 + 1.33495i 0.166425 + 0.986054i \(0.446778\pi\)
−0.937160 + 0.348899i \(0.886556\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1300.00 2251.67i 0.0657760 0.113927i
\(732\) 0 0
\(733\) 1661.00 + 2876.94i 0.0836977 + 0.144969i 0.904836 0.425761i \(-0.139994\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8272.00 0.413437
\(738\) 0 0
\(739\) −14692.0 −0.731331 −0.365666 0.930746i \(-0.619159\pi\)
−0.365666 + 0.930746i \(0.619159\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14300.0 + 24768.3i 0.706078 + 1.22296i 0.966301 + 0.257415i \(0.0828707\pi\)
−0.260223 + 0.965549i \(0.583796\pi\)
\(744\) 0 0
\(745\) 302.000 523.079i 0.0148516 0.0257237i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9360.00 + 16212.0i −0.456618 + 0.790886i
\(750\) 0 0
\(751\) 14808.0 + 25648.2i 0.719509 + 1.24623i 0.961194 + 0.275872i \(0.0889666\pi\)
−0.241685 + 0.970355i \(0.577700\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2704.00 0.130343
\(756\) 0 0
\(757\) 2894.00 0.138949 0.0694744 0.997584i \(-0.477868\pi\)
0.0694744 + 0.997584i \(0.477868\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7381.00 + 12784.3i 0.351591 + 0.608974i 0.986528 0.163590i \(-0.0523073\pi\)
−0.634937 + 0.772564i \(0.718974\pi\)
\(762\) 0 0
\(763\) 23928.0 41444.5i 1.13532 1.96644i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7348.00 + 12727.1i −0.345920 + 0.599152i
\(768\) 0 0
\(769\) 3839.00 + 6649.34i 0.180023 + 0.311809i 0.941888 0.335926i \(-0.109049\pi\)
−0.761865 + 0.647736i \(0.775716\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −27390.0 −1.27445 −0.637225 0.770678i \(-0.719918\pi\)
−0.637225 + 0.770678i \(0.719918\pi\)
\(774\) 0 0
\(775\) 19360.0 0.897331
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4356.00 7544.81i −0.200346 0.347010i
\(780\) 0 0
\(781\) 16016.0 27740.5i 0.733800 1.27098i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3142.00 + 5442.10i −0.142857 + 0.247436i
\(786\) 0 0
\(787\) −9878.00 17109.2i −0.447411 0.774939i 0.550805 0.834634i \(-0.314321\pi\)
−0.998217 + 0.0596946i \(0.980987\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 22608.0 1.01624
\(792\) 0 0
\(793\) 12100.0 0.541846
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19427.0 + 33648.6i 0.863412 + 1.49547i 0.868615 + 0.495488i \(0.165011\pi\)
−0.00520266 + 0.999986i \(0.501656\pi\)
\(798\) 0 0
\(799\) −13200.0 + 22863.1i −0.584459 + 1.01231i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3388.00 + 5868.19i −0.148892 + 0.257888i
\(804\) 0 0
\(805\) −1344.00 2327.88i −0.0588444 0.101922i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14278.0 0.620504 0.310252 0.950654i \(-0.399587\pi\)
0.310252 + 0.950654i \(0.399587\pi\)
\(810\) 0 0
\(811\) −716.000 −0.0310014 −0.0155007 0.999880i \(-0.504934\pi\)
−0.0155007 + 0.999880i \(0.504934\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3036.00 5258.51i −0.130486 0.226009i
\(816\) 0 0
\(817\) −1144.00 + 1981.47i −0.0489884 + 0.0848503i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11769.0 + 20384.5i −0.500293 + 0.866534i 0.499706 + 0.866195i \(0.333441\pi\)
−1.00000 0.000338894i \(0.999892\pi\)
\(822\) 0 0
\(823\) 3308.00 + 5729.62i 0.140109 + 0.242676i 0.927537 0.373730i \(-0.121921\pi\)
−0.787429 + 0.616406i \(0.788588\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −27236.0 −1.14521 −0.572605 0.819831i \(-0.694067\pi\)
−0.572605 + 0.819831i \(0.694067\pi\)
\(828\) 0 0
\(829\) 12070.0 0.505680 0.252840 0.967508i \(-0.418635\pi\)
0.252840 + 0.967508i \(0.418635\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5825.00 + 10089.2i 0.242286 + 0.419652i
\(834\) 0 0
\(835\) −264.000 + 457.261i −0.0109414 + 0.0189511i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21012.0 + 36393.9i −0.864618 + 1.49756i 0.00280727 + 0.999996i \(0.499106\pi\)
−0.867426 + 0.497567i \(0.834227\pi\)
\(840\) 0 0
\(841\) −7407.50 12830.2i −0.303723 0.526064i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3426.00 −0.139477
\(846\) 0 0
\(847\) 14520.0 0.589036
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4536.00 + 7856.58i 0.182717 + 0.316475i
\(852\) 0 0
\(853\) −1207.00 + 2090.59i −0.0484489 + 0.0839159i −0.889233 0.457455i \(-0.848761\pi\)
0.840784 + 0.541371i \(0.182094\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18843.0 + 32637.0i −0.751067 + 1.30089i 0.196239 + 0.980556i \(0.437127\pi\)
−0.947306 + 0.320330i \(0.896206\pi\)
\(858\) 0 0
\(859\) −20322.0 35198.7i −0.807192 1.39810i −0.914801 0.403904i \(-0.867653\pi\)
0.107610 0.994193i \(-0.465680\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18656.0 0.735872 0.367936 0.929851i \(-0.380065\pi\)
0.367936 + 0.929851i \(0.380065\pi\)
\(864\) 0 0
\(865\) 5652.00 0.222166
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 14432.0 + 24997.0i 0.563374 + 0.975793i
\(870\) 0 0
\(871\) −2068.00 + 3581.88i −0.0804495 + 0.139343i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5904.00 10226.0i 0.228105 0.395089i
\(876\) 0 0
\(877\) 6501.00 + 11260.1i 0.250311 + 0.433552i 0.963612 0.267307i \(-0.0861336\pi\)
−0.713300 + 0.700859i \(0.752800\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −49490.0 −1.89258 −0.946289 0.323323i \(-0.895200\pi\)
−0.946289 + 0.323323i \(0.895200\pi\)
\(882\) 0 0
\(883\) 1100.00 0.0419229 0.0209615 0.999780i \(-0.493327\pi\)
0.0209615 + 0.999780i \(0.493327\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7052.00 12214.4i −0.266948 0.462368i 0.701124 0.713039i \(-0.252682\pi\)
−0.968072 + 0.250672i \(0.919349\pi\)
\(888\) 0 0
\(889\) −16896.0 + 29264.7i −0.637428 + 1.10406i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11616.0 20119.5i 0.435291 0.753946i
\(894\) 0 0
\(895\) 3084.00 + 5341.64i 0.115181 + 0.199499i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 31680.0 1.17529
\(900\) 0 0
\(901\) −12100.0 −0.447402
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2418.00 + 4188.10i 0.0888144 + 0.153831i
\(906\) 0 0
\(907\) 6358.00 11012.4i 0.232761 0.403153i −0.725859 0.687844i \(-0.758557\pi\)
0.958620 + 0.284690i \(0.0918908\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −19816.0 + 34322.3i −0.720673 + 1.24824i 0.240057 + 0.970759i \(0.422834\pi\)
−0.960730 + 0.277484i \(0.910499\pi\)
\(912\) 0 0
\(913\) 5192.00 + 8992.81i 0.188204 + 0.325979i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 64608.0 2.32666
\(918\) 0 0
\(919\) 5704.00 0.204742 0.102371 0.994746i \(-0.467357\pi\)
0.102371 + 0.994746i \(0.467357\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8008.00 + 13870.3i 0.285576 + 0.494632i
\(924\) 0 0
\(925\) −9801.00 + 16975.8i −0.348384 + 0.603418i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4081.00 7068.50i 0.144126 0.249634i −0.784920 0.619597i \(-0.787296\pi\)
0.929047 + 0.369963i \(0.120630\pi\)
\(930\) 0 0
\(931\) −5126.00 8878.49i −0.180449 0.312547i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4400.00 −0.153899
\(936\) 0 0
\(937\) −55110.0 −1.92141 −0.960707 0.277564i \(-0.910473\pi\)
−0.960707 + 0.277564i \(0.910473\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8187.00 + 14180.3i 0.283622 + 0.491248i 0.972274 0.233844i \(-0.0751305\pi\)
−0.688652 + 0.725092i \(0.741797\pi\)
\(942\) 0 0
\(943\) −5544.00 + 9602.49i −0.191450 + 0.331601i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4230.00 7326.57i 0.145149 0.251406i −0.784279 0.620408i \(-0.786967\pi\)
0.929429 + 0.369002i \(0.120300\pi\)
\(948\) 0 0
\(949\) −1694.00 2934.09i −0.0579447 0.100363i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20502.0 0.696878 0.348439 0.937331i \(-0.386712\pi\)
0.348439 + 0.937331i \(0.386712\pi\)
\(954\) 0 0
\(955\) 1920.00 0.0650573
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 19512.0 + 33795.8i 0.657013 + 1.13798i
\(960\) 0 0
\(961\) 2095.50 3629.51i 0.0703400 0.121833i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2882.00 + 4991.77i −0.0961398 + 0.166519i
\(966\) 0 0
\(967\) 18260.0 + 31627.2i 0.607241 + 1.05177i 0.991693 + 0.128627i \(0.0410571\pi\)
−0.384452 + 0.923145i \(0.625610\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20244.0 −0.669064 −0.334532 0.942384i \(-0.608578\pi\)
−0.334532 + 0.942384i \(0.608578\pi\)
\(972\) 0 0
\(973\) −16416.0 −0.540876
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25017.0 + 43330.7i 0.819206 + 1.41891i 0.906268 + 0.422704i \(0.138919\pi\)
−0.0870612 + 0.996203i \(0.527748\pi\)
\(978\) 0 0
\(979\) 15708.0 27207.1i 0.512799 0.888193i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18564.0 32153.8i 0.602339 1.04328i −0.390126 0.920761i \(-0.627569\pi\)
0.992466 0.122521i \(-0.0390979\pi\)
\(984\) 0 0
\(985\) 1086.00 + 1881.01i 0.0351298 + 0.0608466i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2912.00 0.0936261
\(990\) 0 0
\(991\) 27808.0 0.891373 0.445686 0.895189i \(-0.352960\pi\)
0.445686 + 0.895189i \(0.352960\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −88.0000 152.420i −0.00280381 0.00485634i
\(996\) 0 0
\(997\) 14257.0 24693.8i 0.452882 0.784415i −0.545681 0.837993i \(-0.683729\pi\)
0.998564 + 0.0535775i \(0.0170624\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.4.i.e.217.1 2
3.2 odd 2 648.4.i.h.217.1 2
9.2 odd 6 8.4.a.a.1.1 1
9.4 even 3 inner 648.4.i.e.433.1 2
9.5 odd 6 648.4.i.h.433.1 2
9.7 even 3 72.4.a.c.1.1 1
36.7 odd 6 144.4.a.e.1.1 1
36.11 even 6 16.4.a.a.1.1 1
45.2 even 12 200.4.c.e.49.2 2
45.7 odd 12 1800.4.f.u.649.2 2
45.29 odd 6 200.4.a.g.1.1 1
45.34 even 6 1800.4.a.d.1.1 1
45.38 even 12 200.4.c.e.49.1 2
45.43 odd 12 1800.4.f.u.649.1 2
63.2 odd 6 392.4.i.g.361.1 2
63.11 odd 6 392.4.i.g.177.1 2
63.20 even 6 392.4.a.e.1.1 1
63.38 even 6 392.4.i.b.177.1 2
63.47 even 6 392.4.i.b.361.1 2
72.11 even 6 64.4.a.b.1.1 1
72.29 odd 6 64.4.a.d.1.1 1
72.43 odd 6 576.4.a.j.1.1 1
72.61 even 6 576.4.a.k.1.1 1
99.65 even 6 968.4.a.a.1.1 1
117.38 odd 6 1352.4.a.a.1.1 1
144.11 even 12 256.4.b.g.129.1 2
144.29 odd 12 256.4.b.a.129.1 2
144.83 even 12 256.4.b.g.129.2 2
144.101 odd 12 256.4.b.a.129.2 2
153.101 odd 6 2312.4.a.a.1.1 1
180.47 odd 12 400.4.c.i.49.1 2
180.83 odd 12 400.4.c.i.49.2 2
180.119 even 6 400.4.a.g.1.1 1
252.83 odd 6 784.4.a.e.1.1 1
360.29 odd 6 1600.4.a.o.1.1 1
360.299 even 6 1600.4.a.bm.1.1 1
396.263 odd 6 1936.4.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.4.a.a.1.1 1 9.2 odd 6
16.4.a.a.1.1 1 36.11 even 6
64.4.a.b.1.1 1 72.11 even 6
64.4.a.d.1.1 1 72.29 odd 6
72.4.a.c.1.1 1 9.7 even 3
144.4.a.e.1.1 1 36.7 odd 6
200.4.a.g.1.1 1 45.29 odd 6
200.4.c.e.49.1 2 45.38 even 12
200.4.c.e.49.2 2 45.2 even 12
256.4.b.a.129.1 2 144.29 odd 12
256.4.b.a.129.2 2 144.101 odd 12
256.4.b.g.129.1 2 144.11 even 12
256.4.b.g.129.2 2 144.83 even 12
392.4.a.e.1.1 1 63.20 even 6
392.4.i.b.177.1 2 63.38 even 6
392.4.i.b.361.1 2 63.47 even 6
392.4.i.g.177.1 2 63.11 odd 6
392.4.i.g.361.1 2 63.2 odd 6
400.4.a.g.1.1 1 180.119 even 6
400.4.c.i.49.1 2 180.47 odd 12
400.4.c.i.49.2 2 180.83 odd 12
576.4.a.j.1.1 1 72.43 odd 6
576.4.a.k.1.1 1 72.61 even 6
648.4.i.e.217.1 2 1.1 even 1 trivial
648.4.i.e.433.1 2 9.4 even 3 inner
648.4.i.h.217.1 2 3.2 odd 2
648.4.i.h.433.1 2 9.5 odd 6
784.4.a.e.1.1 1 252.83 odd 6
968.4.a.a.1.1 1 99.65 even 6
1352.4.a.a.1.1 1 117.38 odd 6
1600.4.a.o.1.1 1 360.29 odd 6
1600.4.a.bm.1.1 1 360.299 even 6
1800.4.a.d.1.1 1 45.34 even 6
1800.4.f.u.649.1 2 45.43 odd 12
1800.4.f.u.649.2 2 45.7 odd 12
1936.4.a.l.1.1 1 396.263 odd 6
2312.4.a.a.1.1 1 153.101 odd 6