Properties

Label 648.4.i.e
Level $648$
Weight $4$
Character orbit 648.i
Analytic conductor $38.233$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,4,Mod(217,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.217");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 648.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.2332376837\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \zeta_{6} q^{5} + (24 \zeta_{6} - 24) q^{7} + (44 \zeta_{6} - 44) q^{11} - 22 \zeta_{6} q^{13} - 50 q^{17} + 44 q^{19} - 56 \zeta_{6} q^{23} + ( - 121 \zeta_{6} + 121) q^{25} + ( - 198 \zeta_{6} + 198) q^{29} + \cdots + ( - 478 \zeta_{6} + 478) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 24 q^{7} - 44 q^{11} - 22 q^{13} - 100 q^{17} + 88 q^{19} - 56 q^{23} + 121 q^{25} + 198 q^{29} + 160 q^{31} + 96 q^{35} - 324 q^{37} - 198 q^{41} - 52 q^{43} + 528 q^{47} - 233 q^{49} + 484 q^{53}+ \cdots + 478 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
217.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −1.00000 1.73205i 0 −12.0000 + 20.7846i 0 0 0
433.1 0 0 0 −1.00000 + 1.73205i 0 −12.0000 20.7846i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 648.4.i.e 2
3.b odd 2 1 648.4.i.h 2
9.c even 3 1 72.4.a.c 1
9.c even 3 1 inner 648.4.i.e 2
9.d odd 6 1 8.4.a.a 1
9.d odd 6 1 648.4.i.h 2
36.f odd 6 1 144.4.a.e 1
36.h even 6 1 16.4.a.a 1
45.h odd 6 1 200.4.a.g 1
45.j even 6 1 1800.4.a.d 1
45.k odd 12 2 1800.4.f.u 2
45.l even 12 2 200.4.c.e 2
63.i even 6 1 392.4.i.b 2
63.j odd 6 1 392.4.i.g 2
63.n odd 6 1 392.4.i.g 2
63.o even 6 1 392.4.a.e 1
63.s even 6 1 392.4.i.b 2
72.j odd 6 1 64.4.a.d 1
72.l even 6 1 64.4.a.b 1
72.n even 6 1 576.4.a.k 1
72.p odd 6 1 576.4.a.j 1
99.g even 6 1 968.4.a.a 1
117.n odd 6 1 1352.4.a.a 1
144.u even 12 2 256.4.b.g 2
144.w odd 12 2 256.4.b.a 2
153.i odd 6 1 2312.4.a.a 1
180.n even 6 1 400.4.a.g 1
180.v odd 12 2 400.4.c.i 2
252.s odd 6 1 784.4.a.e 1
360.bd even 6 1 1600.4.a.bm 1
360.bh odd 6 1 1600.4.a.o 1
396.o odd 6 1 1936.4.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.4.a.a 1 9.d odd 6 1
16.4.a.a 1 36.h even 6 1
64.4.a.b 1 72.l even 6 1
64.4.a.d 1 72.j odd 6 1
72.4.a.c 1 9.c even 3 1
144.4.a.e 1 36.f odd 6 1
200.4.a.g 1 45.h odd 6 1
200.4.c.e 2 45.l even 12 2
256.4.b.a 2 144.w odd 12 2
256.4.b.g 2 144.u even 12 2
392.4.a.e 1 63.o even 6 1
392.4.i.b 2 63.i even 6 1
392.4.i.b 2 63.s even 6 1
392.4.i.g 2 63.j odd 6 1
392.4.i.g 2 63.n odd 6 1
400.4.a.g 1 180.n even 6 1
400.4.c.i 2 180.v odd 12 2
576.4.a.j 1 72.p odd 6 1
576.4.a.k 1 72.n even 6 1
648.4.i.e 2 1.a even 1 1 trivial
648.4.i.e 2 9.c even 3 1 inner
648.4.i.h 2 3.b odd 2 1
648.4.i.h 2 9.d odd 6 1
784.4.a.e 1 252.s odd 6 1
968.4.a.a 1 99.g even 6 1
1352.4.a.a 1 117.n odd 6 1
1600.4.a.o 1 360.bh odd 6 1
1600.4.a.bm 1 360.bd even 6 1
1800.4.a.d 1 45.j even 6 1
1800.4.f.u 2 45.k odd 12 2
1936.4.a.l 1 396.o odd 6 1
2312.4.a.a 1 153.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 2T_{5} + 4 \) acting on \(S_{4}^{\mathrm{new}}(648, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 24T + 576 \) Copy content Toggle raw display
$11$ \( T^{2} + 44T + 1936 \) Copy content Toggle raw display
$13$ \( T^{2} + 22T + 484 \) Copy content Toggle raw display
$17$ \( (T + 50)^{2} \) Copy content Toggle raw display
$19$ \( (T - 44)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 56T + 3136 \) Copy content Toggle raw display
$29$ \( T^{2} - 198T + 39204 \) Copy content Toggle raw display
$31$ \( T^{2} - 160T + 25600 \) Copy content Toggle raw display
$37$ \( (T + 162)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 198T + 39204 \) Copy content Toggle raw display
$43$ \( T^{2} + 52T + 2704 \) Copy content Toggle raw display
$47$ \( T^{2} - 528T + 278784 \) Copy content Toggle raw display
$53$ \( (T - 242)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 668T + 446224 \) Copy content Toggle raw display
$61$ \( T^{2} + 550T + 302500 \) Copy content Toggle raw display
$67$ \( T^{2} + 188T + 35344 \) Copy content Toggle raw display
$71$ \( (T + 728)^{2} \) Copy content Toggle raw display
$73$ \( (T - 154)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 656T + 430336 \) Copy content Toggle raw display
$83$ \( T^{2} - 236T + 55696 \) Copy content Toggle raw display
$89$ \( (T + 714)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 478T + 228484 \) Copy content Toggle raw display
show more
show less