Properties

Label 648.4.i.b
Level $648$
Weight $4$
Character orbit 648.i
Analytic conductor $38.233$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 648.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(38.2332376837\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -14 \zeta_{6} q^{5} + ( 24 - 24 \zeta_{6} ) q^{7} +O(q^{10})\) \( q -14 \zeta_{6} q^{5} + ( 24 - 24 \zeta_{6} ) q^{7} + ( 28 - 28 \zeta_{6} ) q^{11} + 74 \zeta_{6} q^{13} + 82 q^{17} + 92 q^{19} -8 \zeta_{6} q^{23} + ( -71 + 71 \zeta_{6} ) q^{25} + ( 138 - 138 \zeta_{6} ) q^{29} -80 \zeta_{6} q^{31} -336 q^{35} + 30 q^{37} -282 \zeta_{6} q^{41} + ( -4 + 4 \zeta_{6} ) q^{43} + ( -240 + 240 \zeta_{6} ) q^{47} -233 \zeta_{6} q^{49} -130 q^{53} -392 q^{55} -596 \zeta_{6} q^{59} + ( 218 - 218 \zeta_{6} ) q^{61} + ( 1036 - 1036 \zeta_{6} ) q^{65} + 436 \zeta_{6} q^{67} + 856 q^{71} -998 q^{73} -672 \zeta_{6} q^{77} + ( 32 - 32 \zeta_{6} ) q^{79} + ( 1508 - 1508 \zeta_{6} ) q^{83} -1148 \zeta_{6} q^{85} -246 q^{89} + 1776 q^{91} -1288 \zeta_{6} q^{95} + ( -866 + 866 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 14q^{5} + 24q^{7} + O(q^{10}) \) \( 2q - 14q^{5} + 24q^{7} + 28q^{11} + 74q^{13} + 164q^{17} + 184q^{19} - 8q^{23} - 71q^{25} + 138q^{29} - 80q^{31} - 672q^{35} + 60q^{37} - 282q^{41} - 4q^{43} - 240q^{47} - 233q^{49} - 260q^{53} - 784q^{55} - 596q^{59} + 218q^{61} + 1036q^{65} + 436q^{67} + 1712q^{71} - 1996q^{73} - 672q^{77} + 32q^{79} + 1508q^{83} - 1148q^{85} - 492q^{89} + 3552q^{91} - 1288q^{95} - 866q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
217.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −7.00000 12.1244i 0 12.0000 20.7846i 0 0 0
433.1 0 0 0 −7.00000 + 12.1244i 0 12.0000 + 20.7846i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 648.4.i.b 2
3.b odd 2 1 648.4.i.k 2
9.c even 3 1 24.4.a.a 1
9.c even 3 1 inner 648.4.i.b 2
9.d odd 6 1 72.4.a.b 1
9.d odd 6 1 648.4.i.k 2
36.f odd 6 1 48.4.a.b 1
36.h even 6 1 144.4.a.b 1
45.h odd 6 1 1800.4.a.bg 1
45.j even 6 1 600.4.a.h 1
45.k odd 12 2 600.4.f.b 2
45.l even 12 2 1800.4.f.q 2
63.l odd 6 1 1176.4.a.a 1
72.j odd 6 1 576.4.a.u 1
72.l even 6 1 576.4.a.v 1
72.n even 6 1 192.4.a.a 1
72.p odd 6 1 192.4.a.g 1
144.v odd 12 2 768.4.d.b 2
144.x even 12 2 768.4.d.o 2
180.p odd 6 1 1200.4.a.u 1
180.x even 12 2 1200.4.f.p 2
252.bi even 6 1 2352.4.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.4.a.a 1 9.c even 3 1
48.4.a.b 1 36.f odd 6 1
72.4.a.b 1 9.d odd 6 1
144.4.a.b 1 36.h even 6 1
192.4.a.a 1 72.n even 6 1
192.4.a.g 1 72.p odd 6 1
576.4.a.u 1 72.j odd 6 1
576.4.a.v 1 72.l even 6 1
600.4.a.h 1 45.j even 6 1
600.4.f.b 2 45.k odd 12 2
648.4.i.b 2 1.a even 1 1 trivial
648.4.i.b 2 9.c even 3 1 inner
648.4.i.k 2 3.b odd 2 1
648.4.i.k 2 9.d odd 6 1
768.4.d.b 2 144.v odd 12 2
768.4.d.o 2 144.x even 12 2
1176.4.a.a 1 63.l odd 6 1
1200.4.a.u 1 180.p odd 6 1
1200.4.f.p 2 180.x even 12 2
1800.4.a.bg 1 45.h odd 6 1
1800.4.f.q 2 45.l even 12 2
2352.4.a.w 1 252.bi even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 14 T_{5} + 196 \) acting on \(S_{4}^{\mathrm{new}}(648, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( 196 + 14 T + T^{2} \)
$7$ \( 576 - 24 T + T^{2} \)
$11$ \( 784 - 28 T + T^{2} \)
$13$ \( 5476 - 74 T + T^{2} \)
$17$ \( ( -82 + T )^{2} \)
$19$ \( ( -92 + T )^{2} \)
$23$ \( 64 + 8 T + T^{2} \)
$29$ \( 19044 - 138 T + T^{2} \)
$31$ \( 6400 + 80 T + T^{2} \)
$37$ \( ( -30 + T )^{2} \)
$41$ \( 79524 + 282 T + T^{2} \)
$43$ \( 16 + 4 T + T^{2} \)
$47$ \( 57600 + 240 T + T^{2} \)
$53$ \( ( 130 + T )^{2} \)
$59$ \( 355216 + 596 T + T^{2} \)
$61$ \( 47524 - 218 T + T^{2} \)
$67$ \( 190096 - 436 T + T^{2} \)
$71$ \( ( -856 + T )^{2} \)
$73$ \( ( 998 + T )^{2} \)
$79$ \( 1024 - 32 T + T^{2} \)
$83$ \( 2274064 - 1508 T + T^{2} \)
$89$ \( ( 246 + T )^{2} \)
$97$ \( 749956 + 866 T + T^{2} \)
show more
show less