Defining parameters
| Level: | \( N \) | \(=\) | \( 648 = 2^{3} \cdot 3^{4} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 648.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 12 \) | ||
| Sturm bound: | \(432\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(648))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 348 | 36 | 312 |
| Cusp forms | 300 | 36 | 264 |
| Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(89\) | \(10\) | \(79\) | \(77\) | \(10\) | \(67\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(-\) | \(86\) | \(8\) | \(78\) | \(74\) | \(8\) | \(66\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(-\) | \(85\) | \(9\) | \(76\) | \(73\) | \(9\) | \(64\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(+\) | \(88\) | \(9\) | \(79\) | \(76\) | \(9\) | \(67\) | \(12\) | \(0\) | \(12\) | |||
| Plus space | \(+\) | \(177\) | \(19\) | \(158\) | \(153\) | \(19\) | \(134\) | \(24\) | \(0\) | \(24\) | ||||
| Minus space | \(-\) | \(171\) | \(17\) | \(154\) | \(147\) | \(17\) | \(130\) | \(24\) | \(0\) | \(24\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(648))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(648))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(648)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(324))\)\(^{\oplus 2}\)