Properties

Label 648.2.v.b.611.9
Level $648$
Weight $2$
Character 648.611
Analytic conductor $5.174$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(35,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.v (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 611.9
Character \(\chi\) \(=\) 648.611
Dual form 648.2.v.b.35.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.860856 - 1.12202i) q^{2} +(-0.517853 + 1.93179i) q^{4} +(-3.00936 + 1.09532i) q^{5} +(-4.58614 + 0.808660i) q^{7} +(2.61331 - 1.08196i) q^{8} +(3.81960 + 2.43365i) q^{10} +(0.303411 - 0.833616i) q^{11} +(1.22056 - 1.45461i) q^{13} +(4.85534 + 4.44959i) q^{14} +(-3.46366 - 2.00077i) q^{16} +(4.03247 + 2.32815i) q^{17} +(-0.171350 - 0.296787i) q^{19} +(-0.557523 - 6.38069i) q^{20} +(-1.19653 + 0.377190i) q^{22} +(1.00156 - 5.68012i) q^{23} +(4.02633 - 3.37849i) q^{25} +(-2.68283 - 0.117284i) q^{26} +(0.812780 - 9.27824i) q^{28} +(4.16935 - 3.49850i) q^{29} +(7.80815 + 1.37679i) q^{31} +(0.736809 + 5.60866i) q^{32} +(-0.859151 - 6.52870i) q^{34} +(12.9156 - 7.45683i) q^{35} +(-2.31812 - 1.33837i) q^{37} +(-0.185493 + 0.447749i) q^{38} +(-6.67930 + 6.11841i) q^{40} +(-0.0346849 + 0.0413359i) q^{41} +(-2.85915 - 1.04064i) q^{43} +(1.45325 + 1.01782i) q^{44} +(-7.23540 + 3.76600i) q^{46} +(1.90179 + 10.7856i) q^{47} +(13.8009 - 5.02311i) q^{49} +(-7.25682 - 1.60922i) q^{50} +(2.17793 + 3.11115i) q^{52} -1.27415 q^{53} +2.84099i q^{55} +(-11.1100 + 7.07528i) q^{56} +(-7.51460 - 1.66638i) q^{58} +(-2.43399 - 6.68734i) q^{59} +(8.19039 - 1.44419i) q^{61} +(-5.17691 - 9.94610i) q^{62} +(5.65874 - 5.65497i) q^{64} +(-2.07985 + 5.71435i) q^{65} +(-6.31205 - 5.29644i) q^{67} +(-6.58572 + 6.58426i) q^{68} +(-19.4852 - 8.07230i) q^{70} +(0.186788 - 0.323526i) q^{71} +(6.29550 + 10.9041i) q^{73} +(0.493895 + 3.75312i) q^{74} +(0.662065 - 0.177321i) q^{76} +(-0.717374 + 4.06843i) q^{77} +(-2.54509 - 3.03312i) q^{79} +(12.6149 + 2.22724i) q^{80} +(0.0762384 + 0.00333288i) q^{82} +(-8.90996 - 10.6185i) q^{83} +(-14.6852 - 2.58940i) q^{85} +(1.29369 + 4.10386i) q^{86} +(-0.109029 - 2.50677i) q^{88} +(6.35012 - 3.66624i) q^{89} +(-4.42138 + 7.65805i) q^{91} +(10.4542 + 4.87627i) q^{92} +(10.4645 - 11.4187i) q^{94} +(0.840731 + 0.705457i) q^{95} +(-0.833364 - 0.303320i) q^{97} +(-17.5166 - 11.1607i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 6 q^{2} - 6 q^{4} + 9 q^{8} - 3 q^{10} + 30 q^{11} - 9 q^{14} - 6 q^{16} + 18 q^{17} - 6 q^{19} + 27 q^{20} - 18 q^{22} - 12 q^{25} - 12 q^{28} + 36 q^{32} + 12 q^{34} + 18 q^{35} + 102 q^{38} + 9 q^{40}+ \cdots - 162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.860856 1.12202i −0.608717 0.793387i
\(3\) 0 0
\(4\) −0.517853 + 1.93179i −0.258926 + 0.965897i
\(5\) −3.00936 + 1.09532i −1.34583 + 0.489842i −0.911643 0.410982i \(-0.865186\pi\)
−0.434185 + 0.900824i \(0.642964\pi\)
\(6\) 0 0
\(7\) −4.58614 + 0.808660i −1.73340 + 0.305645i −0.949155 0.314810i \(-0.898059\pi\)
−0.784242 + 0.620455i \(0.786948\pi\)
\(8\) 2.61331 1.08196i 0.923943 0.382529i
\(9\) 0 0
\(10\) 3.81960 + 2.43365i 1.20786 + 0.769588i
\(11\) 0.303411 0.833616i 0.0914819 0.251345i −0.885510 0.464620i \(-0.846191\pi\)
0.976992 + 0.213275i \(0.0684132\pi\)
\(12\) 0 0
\(13\) 1.22056 1.45461i 0.338523 0.403436i −0.569747 0.821820i \(-0.692959\pi\)
0.908270 + 0.418384i \(0.137403\pi\)
\(14\) 4.85534 + 4.44959i 1.29764 + 1.18920i
\(15\) 0 0
\(16\) −3.46366 2.00077i −0.865914 0.500192i
\(17\) 4.03247 + 2.32815i 0.978017 + 0.564658i 0.901671 0.432423i \(-0.142341\pi\)
0.0763460 + 0.997081i \(0.475675\pi\)
\(18\) 0 0
\(19\) −0.171350 0.296787i −0.0393104 0.0680876i 0.845701 0.533657i \(-0.179183\pi\)
−0.885011 + 0.465570i \(0.845849\pi\)
\(20\) −0.557523 6.38069i −0.124666 1.42676i
\(21\) 0 0
\(22\) −1.19653 + 0.377190i −0.255100 + 0.0804172i
\(23\) 1.00156 5.68012i 0.208839 1.18439i −0.682443 0.730939i \(-0.739082\pi\)
0.891282 0.453449i \(-0.149806\pi\)
\(24\) 0 0
\(25\) 4.02633 3.37849i 0.805265 0.675698i
\(26\) −2.68283 0.117284i −0.526146 0.0230013i
\(27\) 0 0
\(28\) 0.812780 9.27824i 0.153601 1.75342i
\(29\) 4.16935 3.49850i 0.774229 0.649655i −0.167559 0.985862i \(-0.553589\pi\)
0.941788 + 0.336207i \(0.109144\pi\)
\(30\) 0 0
\(31\) 7.80815 + 1.37679i 1.40238 + 0.247278i 0.823123 0.567864i \(-0.192230\pi\)
0.579262 + 0.815142i \(0.303341\pi\)
\(32\) 0.736809 + 5.60866i 0.130251 + 0.991481i
\(33\) 0 0
\(34\) −0.859151 6.52870i −0.147343 1.11966i
\(35\) 12.9156 7.45683i 2.18314 1.26044i
\(36\) 0 0
\(37\) −2.31812 1.33837i −0.381097 0.220026i 0.297199 0.954816i \(-0.403948\pi\)
−0.678295 + 0.734789i \(0.737281\pi\)
\(38\) −0.185493 + 0.447749i −0.0300909 + 0.0726344i
\(39\) 0 0
\(40\) −6.67930 + 6.11841i −1.05609 + 0.967405i
\(41\) −0.0346849 + 0.0413359i −0.00541687 + 0.00645558i −0.768746 0.639554i \(-0.779119\pi\)
0.763329 + 0.646010i \(0.223563\pi\)
\(42\) 0 0
\(43\) −2.85915 1.04064i −0.436016 0.158697i 0.114681 0.993402i \(-0.463416\pi\)
−0.550696 + 0.834706i \(0.685638\pi\)
\(44\) 1.45325 + 1.01782i 0.219086 + 0.153442i
\(45\) 0 0
\(46\) −7.23540 + 3.76600i −1.06680 + 0.555267i
\(47\) 1.90179 + 10.7856i 0.277404 + 1.57324i 0.731219 + 0.682143i \(0.238952\pi\)
−0.453814 + 0.891096i \(0.649937\pi\)
\(48\) 0 0
\(49\) 13.8009 5.02311i 1.97155 0.717587i
\(50\) −7.25682 1.60922i −1.02627 0.227578i
\(51\) 0 0
\(52\) 2.17793 + 3.11115i 0.302025 + 0.431438i
\(53\) −1.27415 −0.175018 −0.0875092 0.996164i \(-0.527891\pi\)
−0.0875092 + 0.996164i \(0.527891\pi\)
\(54\) 0 0
\(55\) 2.84099i 0.383078i
\(56\) −11.1100 + 7.07528i −1.48464 + 0.945474i
\(57\) 0 0
\(58\) −7.51460 1.66638i −0.986715 0.218807i
\(59\) −2.43399 6.68734i −0.316879 0.870618i −0.991223 0.132201i \(-0.957796\pi\)
0.674344 0.738417i \(-0.264427\pi\)
\(60\) 0 0
\(61\) 8.19039 1.44419i 1.04867 0.184909i 0.377347 0.926072i \(-0.376836\pi\)
0.671326 + 0.741163i \(0.265725\pi\)
\(62\) −5.17691 9.94610i −0.657468 1.26316i
\(63\) 0 0
\(64\) 5.65874 5.65497i 0.707343 0.706871i
\(65\) −2.07985 + 5.71435i −0.257974 + 0.708778i
\(66\) 0 0
\(67\) −6.31205 5.29644i −0.771139 0.647063i 0.169861 0.985468i \(-0.445668\pi\)
−0.941000 + 0.338405i \(0.890113\pi\)
\(68\) −6.58572 + 6.58426i −0.798636 + 0.798459i
\(69\) 0 0
\(70\) −19.4852 8.07230i −2.32893 0.964825i
\(71\) 0.186788 0.323526i 0.0221676 0.0383955i −0.854729 0.519075i \(-0.826277\pi\)
0.876896 + 0.480679i \(0.159610\pi\)
\(72\) 0 0
\(73\) 6.29550 + 10.9041i 0.736832 + 1.27623i 0.953915 + 0.300077i \(0.0970125\pi\)
−0.217083 + 0.976153i \(0.569654\pi\)
\(74\) 0.493895 + 3.75312i 0.0574141 + 0.436291i
\(75\) 0 0
\(76\) 0.662065 0.177321i 0.0759441 0.0203401i
\(77\) −0.717374 + 4.06843i −0.0817524 + 0.463641i
\(78\) 0 0
\(79\) −2.54509 3.03312i −0.286345 0.341252i 0.603628 0.797266i \(-0.293721\pi\)
−0.889973 + 0.456014i \(0.849277\pi\)
\(80\) 12.6149 + 2.22724i 1.41039 + 0.249013i
\(81\) 0 0
\(82\) 0.0762384 + 0.00333288i 0.00841912 + 0.000368055i
\(83\) −8.90996 10.6185i −0.977996 1.16553i −0.986199 0.165563i \(-0.947056\pi\)
0.00820363 0.999966i \(-0.497389\pi\)
\(84\) 0 0
\(85\) −14.6852 2.58940i −1.59284 0.280860i
\(86\) 1.29369 + 4.10386i 0.139502 + 0.442531i
\(87\) 0 0
\(88\) −0.109029 2.50677i −0.0116226 0.267223i
\(89\) 6.35012 3.66624i 0.673111 0.388621i −0.124143 0.992264i \(-0.539618\pi\)
0.797254 + 0.603644i \(0.206285\pi\)
\(90\) 0 0
\(91\) −4.42138 + 7.65805i −0.463487 + 0.802782i
\(92\) 10.4542 + 4.87627i 1.08992 + 0.508387i
\(93\) 0 0
\(94\) 10.4645 11.4187i 1.07933 1.17775i
\(95\) 0.840731 + 0.705457i 0.0862572 + 0.0723783i
\(96\) 0 0
\(97\) −0.833364 0.303320i −0.0846153 0.0307975i 0.299366 0.954138i \(-0.403225\pi\)
−0.383981 + 0.923341i \(0.625447\pi\)
\(98\) −17.5166 11.1607i −1.76944 1.12740i
\(99\) 0 0
\(100\) 4.44150 + 9.52759i 0.444150 + 0.952759i
\(101\) −1.09507 6.21046i −0.108964 0.617964i −0.989563 0.144102i \(-0.953971\pi\)
0.880599 0.473862i \(-0.157140\pi\)
\(102\) 0 0
\(103\) −2.99018 8.21544i −0.294631 0.809492i −0.995374 0.0960778i \(-0.969370\pi\)
0.700743 0.713414i \(-0.252852\pi\)
\(104\) 1.61588 5.12193i 0.158450 0.502247i
\(105\) 0 0
\(106\) 1.09686 + 1.42962i 0.106537 + 0.138857i
\(107\) 3.23101i 0.312354i −0.987729 0.156177i \(-0.950083\pi\)
0.987729 0.156177i \(-0.0499170\pi\)
\(108\) 0 0
\(109\) 10.8688i 1.04104i 0.853849 + 0.520521i \(0.174262\pi\)
−0.853849 + 0.520521i \(0.825738\pi\)
\(110\) 3.18764 2.44568i 0.303929 0.233186i
\(111\) 0 0
\(112\) 17.5027 + 6.37489i 1.65385 + 0.602370i
\(113\) −3.71933 10.2188i −0.349885 0.961301i −0.982406 0.186758i \(-0.940202\pi\)
0.632521 0.774543i \(-0.282020\pi\)
\(114\) 0 0
\(115\) 3.20749 + 18.1906i 0.299100 + 1.69628i
\(116\) 4.59927 + 9.86604i 0.427032 + 0.916038i
\(117\) 0 0
\(118\) −5.40801 + 8.48783i −0.497847 + 0.781368i
\(119\) −20.3761 7.41630i −1.86788 0.679851i
\(120\) 0 0
\(121\) 7.82363 + 6.56481i 0.711239 + 0.596801i
\(122\) −8.67116 7.94654i −0.785050 0.719446i
\(123\) 0 0
\(124\) −6.70314 + 14.3708i −0.601960 + 1.29053i
\(125\) −0.409913 + 0.709991i −0.0366638 + 0.0635035i
\(126\) 0 0
\(127\) 12.2372 7.06513i 1.08587 0.626929i 0.153399 0.988164i \(-0.450978\pi\)
0.932475 + 0.361235i \(0.117645\pi\)
\(128\) −11.2163 1.48110i −0.991394 0.130912i
\(129\) 0 0
\(130\) 8.20207 2.58560i 0.719369 0.226772i
\(131\) 3.55599 + 0.627016i 0.310688 + 0.0547827i 0.326818 0.945087i \(-0.394024\pi\)
−0.0161302 + 0.999870i \(0.505135\pi\)
\(132\) 0 0
\(133\) 1.02583 + 1.22254i 0.0889511 + 0.106008i
\(134\) −0.508936 + 11.6417i −0.0439654 + 1.00569i
\(135\) 0 0
\(136\) 13.0570 + 1.72120i 1.11963 + 0.147592i
\(137\) 8.46244 + 10.0851i 0.722995 + 0.861632i 0.994918 0.100687i \(-0.0321041\pi\)
−0.271923 + 0.962319i \(0.587660\pi\)
\(138\) 0 0
\(139\) 2.08259 11.8109i 0.176643 1.00179i −0.759588 0.650405i \(-0.774599\pi\)
0.936230 0.351387i \(-0.114290\pi\)
\(140\) 7.71668 + 28.8119i 0.652179 + 2.43505i
\(141\) 0 0
\(142\) −0.523800 + 0.0689300i −0.0439563 + 0.00578447i
\(143\) −0.842252 1.45882i −0.0704327 0.121993i
\(144\) 0 0
\(145\) −8.71512 + 15.0950i −0.723751 + 1.25357i
\(146\) 6.81511 16.4505i 0.564022 1.36146i
\(147\) 0 0
\(148\) 3.78590 3.78505i 0.311199 0.311129i
\(149\) 6.78333 + 5.69189i 0.555712 + 0.466298i 0.876870 0.480728i \(-0.159628\pi\)
−0.321158 + 0.947026i \(0.604072\pi\)
\(150\) 0 0
\(151\) −1.00187 + 2.75261i −0.0815308 + 0.224004i −0.973759 0.227580i \(-0.926919\pi\)
0.892229 + 0.451584i \(0.149141\pi\)
\(152\) −0.768900 0.590202i −0.0623661 0.0478717i
\(153\) 0 0
\(154\) 5.18241 2.69743i 0.417611 0.217365i
\(155\) −25.0056 + 4.40916i −2.00850 + 0.354152i
\(156\) 0 0
\(157\) 3.73399 + 10.2591i 0.298005 + 0.818762i 0.994833 + 0.101524i \(0.0323717\pi\)
−0.696828 + 0.717238i \(0.745406\pi\)
\(158\) −1.21226 + 5.46671i −0.0964422 + 0.434908i
\(159\) 0 0
\(160\) −8.36060 16.0715i −0.660964 1.27056i
\(161\) 26.8597i 2.11684i
\(162\) 0 0
\(163\) −0.983434 −0.0770285 −0.0385143 0.999258i \(-0.512263\pi\)
−0.0385143 + 0.999258i \(0.512263\pi\)
\(164\) −0.0618907 0.0884100i −0.00483285 0.00690366i
\(165\) 0 0
\(166\) −4.24394 + 19.1381i −0.329393 + 1.48541i
\(167\) 1.50427 0.547510i 0.116404 0.0423676i −0.283161 0.959072i \(-0.591383\pi\)
0.399565 + 0.916705i \(0.369161\pi\)
\(168\) 0 0
\(169\) 1.63131 + 9.25162i 0.125485 + 0.711663i
\(170\) 9.73651 + 18.7062i 0.746756 + 1.43470i
\(171\) 0 0
\(172\) 3.49093 4.98438i 0.266181 0.380056i
\(173\) 13.3229 + 4.84914i 1.01292 + 0.368673i 0.794554 0.607193i \(-0.207705\pi\)
0.218367 + 0.975867i \(0.429927\pi\)
\(174\) 0 0
\(175\) −15.7332 + 18.7501i −1.18932 + 1.41738i
\(176\) −2.71879 + 2.28030i −0.204936 + 0.171884i
\(177\) 0 0
\(178\) −9.58013 3.96884i −0.718061 0.297477i
\(179\) 5.27151 + 3.04351i 0.394011 + 0.227483i 0.683897 0.729579i \(-0.260284\pi\)
−0.289885 + 0.957061i \(0.593617\pi\)
\(180\) 0 0
\(181\) 11.4059 6.58520i 0.847795 0.489474i −0.0121116 0.999927i \(-0.503855\pi\)
0.859906 + 0.510452i \(0.170522\pi\)
\(182\) 12.3987 1.63161i 0.919049 0.120943i
\(183\) 0 0
\(184\) −3.52827 15.9275i −0.260107 1.17419i
\(185\) 8.44201 + 1.48855i 0.620669 + 0.109441i
\(186\) 0 0
\(187\) 3.16427 2.65514i 0.231395 0.194163i
\(188\) −21.8204 1.91148i −1.59141 0.139409i
\(189\) 0 0
\(190\) 0.0677875 1.55061i 0.00491783 0.112493i
\(191\) 16.3786 13.7433i 1.18512 0.994431i 0.185185 0.982704i \(-0.440712\pi\)
0.999931 0.0117270i \(-0.00373289\pi\)
\(192\) 0 0
\(193\) 3.64547 20.6745i 0.262407 1.48818i −0.513912 0.857843i \(-0.671804\pi\)
0.776319 0.630341i \(-0.217085\pi\)
\(194\) 0.377076 + 1.19616i 0.0270725 + 0.0858796i
\(195\) 0 0
\(196\) 2.55679 + 29.2617i 0.182628 + 2.09012i
\(197\) −5.23281 9.06349i −0.372822 0.645747i 0.617176 0.786825i \(-0.288277\pi\)
−0.989999 + 0.141078i \(0.954943\pi\)
\(198\) 0 0
\(199\) −14.3685 8.29565i −1.01855 0.588063i −0.104870 0.994486i \(-0.533443\pi\)
−0.913685 + 0.406423i \(0.866776\pi\)
\(200\) 6.86665 13.1853i 0.485545 0.932344i
\(201\) 0 0
\(202\) −6.02556 + 6.57501i −0.423957 + 0.462616i
\(203\) −16.2921 + 19.4162i −1.14348 + 1.36275i
\(204\) 0 0
\(205\) 0.0591036 0.162386i 0.00412797 0.0113415i
\(206\) −6.64377 + 10.4273i −0.462893 + 0.726508i
\(207\) 0 0
\(208\) −7.13794 + 2.59620i −0.494927 + 0.180014i
\(209\) −0.299396 + 0.0527915i −0.0207096 + 0.00365167i
\(210\) 0 0
\(211\) −8.76523 + 3.19028i −0.603423 + 0.219628i −0.625623 0.780126i \(-0.715155\pi\)
0.0222000 + 0.999754i \(0.492933\pi\)
\(212\) 0.659824 2.46140i 0.0453169 0.169050i
\(213\) 0 0
\(214\) −3.62526 + 2.78144i −0.247817 + 0.190135i
\(215\) 9.74405 0.664539
\(216\) 0 0
\(217\) −36.9226 −2.50647
\(218\) 12.1950 9.35647i 0.825949 0.633700i
\(219\) 0 0
\(220\) −5.48820 1.47121i −0.370014 0.0991891i
\(221\) 8.30841 3.02402i 0.558884 0.203417i
\(222\) 0 0
\(223\) 18.4672 3.25626i 1.23665 0.218055i 0.483172 0.875525i \(-0.339485\pi\)
0.753481 + 0.657470i \(0.228373\pi\)
\(224\) −7.91461 25.1263i −0.528817 1.67882i
\(225\) 0 0
\(226\) −8.26384 + 12.9700i −0.549703 + 0.862755i
\(227\) −1.73323 + 4.76200i −0.115038 + 0.316065i −0.983828 0.179116i \(-0.942676\pi\)
0.868790 + 0.495181i \(0.164898\pi\)
\(228\) 0 0
\(229\) 14.4905 17.2691i 0.957559 1.14117i −0.0323508 0.999477i \(-0.510299\pi\)
0.989910 0.141698i \(-0.0452562\pi\)
\(230\) 17.6490 19.2583i 1.16374 1.26986i
\(231\) 0 0
\(232\) 7.11056 13.6537i 0.466831 0.896410i
\(233\) −4.93700 2.85038i −0.323434 0.186735i 0.329488 0.944160i \(-0.393124\pi\)
−0.652922 + 0.757425i \(0.726457\pi\)
\(234\) 0 0
\(235\) −17.5368 30.3747i −1.14398 1.98143i
\(236\) 14.1790 1.23892i 0.922976 0.0806466i
\(237\) 0 0
\(238\) 9.21968 + 29.2468i 0.597623 + 1.89579i
\(239\) −3.99952 + 22.6824i −0.258707 + 1.46720i 0.527667 + 0.849451i \(0.323067\pi\)
−0.786374 + 0.617750i \(0.788044\pi\)
\(240\) 0 0
\(241\) 16.6164 13.9428i 1.07036 0.898137i 0.0752732 0.997163i \(-0.476017\pi\)
0.995085 + 0.0990259i \(0.0315727\pi\)
\(242\) 0.630814 14.4296i 0.0405503 0.927571i
\(243\) 0 0
\(244\) −1.45155 + 16.5700i −0.0929257 + 1.06079i
\(245\) −36.0300 + 30.2327i −2.30187 + 1.93150i
\(246\) 0 0
\(247\) −0.640852 0.112999i −0.0407764 0.00718999i
\(248\) 21.8947 4.85011i 1.39031 0.307982i
\(249\) 0 0
\(250\) 1.14950 0.151269i 0.0727007 0.00956712i
\(251\) 6.86745 3.96493i 0.433470 0.250264i −0.267354 0.963598i \(-0.586149\pi\)
0.700824 + 0.713334i \(0.252816\pi\)
\(252\) 0 0
\(253\) −4.43115 2.55833i −0.278584 0.160841i
\(254\) −18.4617 7.64827i −1.15839 0.479895i
\(255\) 0 0
\(256\) 7.99384 + 13.8600i 0.499615 + 0.866248i
\(257\) −0.0798480 + 0.0951592i −0.00498078 + 0.00593587i −0.768529 0.639815i \(-0.779011\pi\)
0.763548 + 0.645751i \(0.223455\pi\)
\(258\) 0 0
\(259\) 11.7135 + 4.26337i 0.727842 + 0.264913i
\(260\) −9.96189 6.97704i −0.617810 0.432698i
\(261\) 0 0
\(262\) −2.35767 4.52965i −0.145657 0.279843i
\(263\) 0.961362 + 5.45215i 0.0592801 + 0.336194i 0.999995 0.00300271i \(-0.000955794\pi\)
−0.940715 + 0.339197i \(0.889845\pi\)
\(264\) 0 0
\(265\) 3.83439 1.39560i 0.235545 0.0857313i
\(266\) 0.488619 2.20344i 0.0299591 0.135101i
\(267\) 0 0
\(268\) 13.5003 9.45080i 0.824664 0.577300i
\(269\) 5.59805 0.341319 0.170659 0.985330i \(-0.445410\pi\)
0.170659 + 0.985330i \(0.445410\pi\)
\(270\) 0 0
\(271\) 1.56554i 0.0951000i 0.998869 + 0.0475500i \(0.0151413\pi\)
−0.998869 + 0.0475500i \(0.984859\pi\)
\(272\) −9.30900 16.1319i −0.564441 0.978142i
\(273\) 0 0
\(274\) 4.03078 18.1769i 0.243508 1.09811i
\(275\) −1.59473 4.38148i −0.0961657 0.264213i
\(276\) 0 0
\(277\) −27.6100 + 4.86839i −1.65893 + 0.292513i −0.923072 0.384627i \(-0.874330\pi\)
−0.735854 + 0.677140i \(0.763219\pi\)
\(278\) −15.0449 + 7.83083i −0.902334 + 0.469662i
\(279\) 0 0
\(280\) 25.6845 33.4611i 1.53494 1.99968i
\(281\) −3.07719 + 8.45452i −0.183570 + 0.504354i −0.997008 0.0772972i \(-0.975371\pi\)
0.813438 + 0.581651i \(0.197593\pi\)
\(282\) 0 0
\(283\) −22.1256 18.5656i −1.31523 1.10361i −0.987293 0.158909i \(-0.949202\pi\)
−0.327936 0.944700i \(-0.606353\pi\)
\(284\) 0.528257 + 0.528375i 0.0313463 + 0.0313533i
\(285\) 0 0
\(286\) −0.911770 + 2.20086i −0.0539141 + 0.130140i
\(287\) 0.125643 0.217620i 0.00741648 0.0128457i
\(288\) 0 0
\(289\) 2.34052 + 4.05391i 0.137678 + 0.238465i
\(290\) 24.4394 3.21612i 1.43513 0.188857i
\(291\) 0 0
\(292\) −24.3247 + 6.51487i −1.42349 + 0.381254i
\(293\) 3.10437 17.6058i 0.181359 1.02854i −0.749185 0.662360i \(-0.769555\pi\)
0.930545 0.366179i \(-0.119334\pi\)
\(294\) 0 0
\(295\) 14.6495 + 17.4587i 0.852930 + 1.01648i
\(296\) −7.50601 0.989458i −0.436278 0.0575111i
\(297\) 0 0
\(298\) 0.546935 12.5109i 0.0316831 0.724738i
\(299\) −7.03989 8.38981i −0.407127 0.485196i
\(300\) 0 0
\(301\) 13.9540 + 2.46046i 0.804293 + 0.141819i
\(302\) 3.95094 1.24549i 0.227351 0.0716697i
\(303\) 0 0
\(304\) −0.000304701 1.37080i −1.74758e−5 0.0786208i
\(305\) −23.0660 + 13.3172i −1.32076 + 0.762540i
\(306\) 0 0
\(307\) 2.66885 4.62258i 0.152319 0.263825i −0.779760 0.626078i \(-0.784659\pi\)
0.932080 + 0.362253i \(0.117992\pi\)
\(308\) −7.48788 3.49267i −0.426662 0.199013i
\(309\) 0 0
\(310\) 26.4734 + 24.2611i 1.50359 + 1.37794i
\(311\) −7.48203 6.27817i −0.424267 0.356002i 0.405517 0.914088i \(-0.367092\pi\)
−0.829783 + 0.558086i \(0.811536\pi\)
\(312\) 0 0
\(313\) −20.9377 7.62069i −1.18347 0.430747i −0.326042 0.945355i \(-0.605715\pi\)
−0.857425 + 0.514608i \(0.827937\pi\)
\(314\) 8.29642 13.0212i 0.468194 0.734828i
\(315\) 0 0
\(316\) 7.17733 3.34587i 0.403757 0.188220i
\(317\) −2.75422 15.6200i −0.154692 0.877304i −0.959067 0.283181i \(-0.908610\pi\)
0.804374 0.594123i \(-0.202501\pi\)
\(318\) 0 0
\(319\) −1.65138 4.53712i −0.0924593 0.254030i
\(320\) −10.8352 + 23.2160i −0.605707 + 1.29781i
\(321\) 0 0
\(322\) 30.1371 23.1224i 1.67948 1.28856i
\(323\) 1.59571i 0.0887877i
\(324\) 0 0
\(325\) 9.98038i 0.553612i
\(326\) 0.846596 + 1.10343i 0.0468886 + 0.0611134i
\(327\) 0 0
\(328\) −0.0459187 + 0.145551i −0.00253544 + 0.00803670i
\(329\) −17.4437 47.9263i −0.961704 2.64226i
\(330\) 0 0
\(331\) 4.91331 + 27.8648i 0.270060 + 1.53159i 0.754229 + 0.656611i \(0.228011\pi\)
−0.484169 + 0.874974i \(0.660878\pi\)
\(332\) 25.1268 11.7134i 1.37901 0.642857i
\(333\) 0 0
\(334\) −1.90928 1.21649i −0.104471 0.0665636i
\(335\) 24.7965 + 9.02520i 1.35478 + 0.493099i
\(336\) 0 0
\(337\) −2.65131 2.22472i −0.144426 0.121188i 0.567712 0.823227i \(-0.307829\pi\)
−0.712138 + 0.702039i \(0.752273\pi\)
\(338\) 8.97617 9.79468i 0.488239 0.532760i
\(339\) 0 0
\(340\) 12.6070 27.0279i 0.683709 1.46579i
\(341\) 3.51679 6.09126i 0.190445 0.329860i
\(342\) 0 0
\(343\) −30.9999 + 17.8978i −1.67383 + 0.966389i
\(344\) −8.59776 + 0.373950i −0.463560 + 0.0201620i
\(345\) 0 0
\(346\) −6.02828 19.1230i −0.324082 1.02806i
\(347\) 21.3082 + 3.75721i 1.14388 + 0.201698i 0.713304 0.700854i \(-0.247198\pi\)
0.430581 + 0.902552i \(0.358309\pi\)
\(348\) 0 0
\(349\) −13.6098 16.2195i −0.728514 0.868209i 0.266915 0.963720i \(-0.413996\pi\)
−0.995428 + 0.0955113i \(0.969551\pi\)
\(350\) 34.5821 + 1.51181i 1.84849 + 0.0808097i
\(351\) 0 0
\(352\) 4.89903 + 1.08752i 0.261119 + 0.0579648i
\(353\) 10.0326 + 11.9564i 0.533980 + 0.636373i 0.963827 0.266529i \(-0.0858768\pi\)
−0.429847 + 0.902902i \(0.641432\pi\)
\(354\) 0 0
\(355\) −0.207748 + 1.17820i −0.0110261 + 0.0625324i
\(356\) 3.79400 + 14.1657i 0.201081 + 0.750780i
\(357\) 0 0
\(358\) −1.12314 8.53476i −0.0593598 0.451076i
\(359\) 2.44114 + 4.22817i 0.128838 + 0.223154i 0.923227 0.384256i \(-0.125542\pi\)
−0.794389 + 0.607410i \(0.792209\pi\)
\(360\) 0 0
\(361\) 9.44128 16.3528i 0.496909 0.860672i
\(362\) −17.2076 7.12873i −0.904410 0.374678i
\(363\) 0 0
\(364\) −12.5042 12.5069i −0.655396 0.655542i
\(365\) −30.8889 25.9189i −1.61680 1.35666i
\(366\) 0 0
\(367\) 3.44230 9.45764i 0.179687 0.493685i −0.816849 0.576852i \(-0.804281\pi\)
0.996536 + 0.0831666i \(0.0265033\pi\)
\(368\) −14.8337 + 17.6701i −0.773259 + 0.921118i
\(369\) 0 0
\(370\) −5.59717 10.7535i −0.290983 0.559049i
\(371\) 5.84344 1.03036i 0.303376 0.0534935i
\(372\) 0 0
\(373\) 0.511543 + 1.40545i 0.0264867 + 0.0727717i 0.952231 0.305378i \(-0.0987828\pi\)
−0.925745 + 0.378149i \(0.876561\pi\)
\(374\) −5.70310 1.26468i −0.294901 0.0653951i
\(375\) 0 0
\(376\) 16.6395 + 26.1284i 0.858116 + 1.34747i
\(377\) 10.3349i 0.532275i
\(378\) 0 0
\(379\) 26.4034 1.35625 0.678126 0.734945i \(-0.262792\pi\)
0.678126 + 0.734945i \(0.262792\pi\)
\(380\) −1.79817 + 1.25880i −0.0922443 + 0.0645749i
\(381\) 0 0
\(382\) −29.5199 6.54612i −1.51037 0.334929i
\(383\) −14.7665 + 5.37456i −0.754532 + 0.274627i −0.690511 0.723321i \(-0.742614\pi\)
−0.0640204 + 0.997949i \(0.520392\pi\)
\(384\) 0 0
\(385\) −2.29739 13.0291i −0.117086 0.664027i
\(386\) −26.3354 + 13.7075i −1.34044 + 0.697693i
\(387\) 0 0
\(388\) 1.01751 1.45281i 0.0516563 0.0737554i
\(389\) 19.0208 + 6.92300i 0.964393 + 0.351010i 0.775753 0.631036i \(-0.217370\pi\)
0.188639 + 0.982046i \(0.439592\pi\)
\(390\) 0 0
\(391\) 17.2629 20.5731i 0.873023 1.04043i
\(392\) 30.6311 28.0589i 1.54711 1.41719i
\(393\) 0 0
\(394\) −5.66471 + 13.6737i −0.285384 + 0.688870i
\(395\) 10.9813 + 6.34007i 0.552530 + 0.319003i
\(396\) 0 0
\(397\) −23.8679 + 13.7801i −1.19789 + 0.691604i −0.960085 0.279708i \(-0.909762\pi\)
−0.237808 + 0.971312i \(0.576429\pi\)
\(398\) 3.06133 + 23.2631i 0.153450 + 1.16607i
\(399\) 0 0
\(400\) −20.7054 + 3.64617i −1.03527 + 0.182309i
\(401\) 6.68368 + 1.17851i 0.333767 + 0.0588521i 0.338020 0.941139i \(-0.390243\pi\)
−0.00425323 + 0.999991i \(0.501354\pi\)
\(402\) 0 0
\(403\) 11.5330 9.67734i 0.574500 0.482063i
\(404\) 12.5644 + 1.10065i 0.625103 + 0.0547595i
\(405\) 0 0
\(406\) 35.8105 + 1.56551i 1.77725 + 0.0776952i
\(407\) −1.81903 + 1.52635i −0.0901659 + 0.0756581i
\(408\) 0 0
\(409\) −2.97274 + 16.8592i −0.146992 + 0.833636i 0.818753 + 0.574145i \(0.194666\pi\)
−0.965746 + 0.259490i \(0.916445\pi\)
\(410\) −0.233080 + 0.0734755i −0.0115110 + 0.00362869i
\(411\) 0 0
\(412\) 17.4190 1.52202i 0.858173 0.0749843i
\(413\) 16.5704 + 28.7008i 0.815377 + 1.41227i
\(414\) 0 0
\(415\) 38.4439 + 22.1956i 1.88714 + 1.08954i
\(416\) 9.05773 + 5.77395i 0.444092 + 0.283091i
\(417\) 0 0
\(418\) 0.316970 + 0.290482i 0.0155035 + 0.0142079i
\(419\) −0.999049 + 1.19062i −0.0488067 + 0.0581656i −0.789896 0.613241i \(-0.789865\pi\)
0.741089 + 0.671407i \(0.234310\pi\)
\(420\) 0 0
\(421\) −4.61578 + 12.6818i −0.224959 + 0.618071i −0.999903 0.0139601i \(-0.995556\pi\)
0.774943 + 0.632031i \(0.217778\pi\)
\(422\) 11.1252 + 7.08837i 0.541564 + 0.345057i
\(423\) 0 0
\(424\) −3.32975 + 1.37858i −0.161707 + 0.0669497i
\(425\) 24.1016 4.24977i 1.16910 0.206144i
\(426\) 0 0
\(427\) −36.3944 + 13.2465i −1.76125 + 0.641042i
\(428\) 6.24165 + 1.67319i 0.301702 + 0.0808766i
\(429\) 0 0
\(430\) −8.38823 10.9330i −0.404516 0.527237i
\(431\) −32.6219 −1.57134 −0.785671 0.618644i \(-0.787682\pi\)
−0.785671 + 0.618644i \(0.787682\pi\)
\(432\) 0 0
\(433\) −20.4173 −0.981192 −0.490596 0.871387i \(-0.663221\pi\)
−0.490596 + 0.871387i \(0.663221\pi\)
\(434\) 31.7850 + 41.4278i 1.52573 + 1.98860i
\(435\) 0 0
\(436\) −20.9963 5.62843i −1.00554 0.269553i
\(437\) −1.85740 + 0.676039i −0.0888516 + 0.0323393i
\(438\) 0 0
\(439\) −5.01912 + 0.885007i −0.239550 + 0.0422391i −0.292134 0.956377i \(-0.594365\pi\)
0.0525843 + 0.998616i \(0.483254\pi\)
\(440\) 3.07382 + 7.42436i 0.146539 + 0.353943i
\(441\) 0 0
\(442\) −10.5454 6.71896i −0.501591 0.319588i
\(443\) −6.33577 + 17.4074i −0.301022 + 0.827050i 0.693301 + 0.720648i \(0.256155\pi\)
−0.994323 + 0.106403i \(0.966067\pi\)
\(444\) 0 0
\(445\) −15.0941 + 17.9885i −0.715529 + 0.852735i
\(446\) −19.5512 17.9173i −0.925774 0.848410i
\(447\) 0 0
\(448\) −21.3788 + 30.5105i −1.01005 + 1.44148i
\(449\) −16.4019 9.46962i −0.774052 0.446899i 0.0602665 0.998182i \(-0.480805\pi\)
−0.834318 + 0.551283i \(0.814138\pi\)
\(450\) 0 0
\(451\) 0.0239344 + 0.0414557i 0.00112703 + 0.00195207i
\(452\) 21.6666 1.89316i 1.01911 0.0890466i
\(453\) 0 0
\(454\) 6.83512 2.15469i 0.320788 0.101124i
\(455\) 4.91753 27.8887i 0.230537 1.30744i
\(456\) 0 0
\(457\) −8.02025 + 6.72979i −0.375172 + 0.314806i −0.810803 0.585319i \(-0.800969\pi\)
0.435632 + 0.900125i \(0.356525\pi\)
\(458\) −31.8505 1.39240i −1.48828 0.0650624i
\(459\) 0 0
\(460\) −36.8015 3.22383i −1.71588 0.150312i
\(461\) 18.6832 15.6771i 0.870163 0.730153i −0.0939698 0.995575i \(-0.529956\pi\)
0.964132 + 0.265422i \(0.0855113\pi\)
\(462\) 0 0
\(463\) −15.5149 2.73570i −0.721039 0.127139i −0.198925 0.980015i \(-0.563745\pi\)
−0.522113 + 0.852876i \(0.674856\pi\)
\(464\) −21.4409 + 3.77569i −0.995369 + 0.175282i
\(465\) 0 0
\(466\) 1.05187 + 7.99318i 0.0487269 + 0.370277i
\(467\) 6.64718 3.83775i 0.307595 0.177590i −0.338255 0.941055i \(-0.609837\pi\)
0.645850 + 0.763465i \(0.276503\pi\)
\(468\) 0 0
\(469\) 33.2309 + 19.1859i 1.53446 + 0.885922i
\(470\) −18.9843 + 45.8249i −0.875679 + 2.11374i
\(471\) 0 0
\(472\) −13.5962 14.8426i −0.625815 0.683186i
\(473\) −1.73499 + 2.06769i −0.0797751 + 0.0950723i
\(474\) 0 0
\(475\) −1.69260 0.616057i −0.0776619 0.0282666i
\(476\) 24.8786 35.5219i 1.14031 1.62814i
\(477\) 0 0
\(478\) 28.8931 15.0387i 1.32154 0.687856i
\(479\) −5.41592 30.7152i −0.247460 1.40341i −0.814710 0.579869i \(-0.803104\pi\)
0.567250 0.823545i \(-0.308007\pi\)
\(480\) 0 0
\(481\) −4.77621 + 1.73840i −0.217776 + 0.0792641i
\(482\) −29.9485 6.64116i −1.36412 0.302497i
\(483\) 0 0
\(484\) −16.7333 + 11.7140i −0.760607 + 0.532457i
\(485\) 2.84013 0.128964
\(486\) 0 0
\(487\) 14.2176i 0.644263i −0.946695 0.322131i \(-0.895601\pi\)
0.946695 0.322131i \(-0.104399\pi\)
\(488\) 19.8415 12.6358i 0.898181 0.571994i
\(489\) 0 0
\(490\) 64.9383 + 14.4003i 2.93361 + 0.650537i
\(491\) −0.483056 1.32718i −0.0218000 0.0598950i 0.928315 0.371794i \(-0.121257\pi\)
−0.950115 + 0.311899i \(0.899035\pi\)
\(492\) 0 0
\(493\) 24.9578 4.40073i 1.12404 0.198199i
\(494\) 0.424894 + 0.816324i 0.0191169 + 0.0367282i
\(495\) 0 0
\(496\) −24.2901 20.3910i −1.09066 0.915584i
\(497\) −0.595012 + 1.63478i −0.0266899 + 0.0733300i
\(498\) 0 0
\(499\) 22.9472 + 19.2550i 1.02726 + 0.861971i 0.990522 0.137355i \(-0.0438600\pi\)
0.0367345 + 0.999325i \(0.488304\pi\)
\(500\) −1.15928 1.15954i −0.0518446 0.0518561i
\(501\) 0 0
\(502\) −10.3606 4.29218i −0.462417 0.191569i
\(503\) −4.40212 + 7.62469i −0.196281 + 0.339968i −0.947320 0.320290i \(-0.896220\pi\)
0.751039 + 0.660258i \(0.229553\pi\)
\(504\) 0 0
\(505\) 10.0979 + 17.4901i 0.449351 + 0.778299i
\(506\) 0.944095 + 7.17419i 0.0419701 + 0.318932i
\(507\) 0 0
\(508\) 7.31133 + 27.2984i 0.324388 + 1.21117i
\(509\) −3.62638 + 20.5662i −0.160737 + 0.911582i 0.792616 + 0.609722i \(0.208719\pi\)
−0.953352 + 0.301860i \(0.902392\pi\)
\(510\) 0 0
\(511\) −37.6897 44.9169i −1.66730 1.98701i
\(512\) 8.66959 20.9007i 0.383145 0.923688i
\(513\) 0 0
\(514\) 0.175508 + 0.00767262i 0.00774133 + 0.000338425i
\(515\) 17.9971 + 21.4481i 0.793045 + 0.945114i
\(516\) 0 0
\(517\) 9.56806 + 1.68711i 0.420803 + 0.0741988i
\(518\) −5.30006 16.8129i −0.232871 0.738717i
\(519\) 0 0
\(520\) 0.747385 + 17.1837i 0.0327750 + 0.753553i
\(521\) −18.8404 + 10.8775i −0.825413 + 0.476552i −0.852280 0.523087i \(-0.824780\pi\)
0.0268665 + 0.999639i \(0.491447\pi\)
\(522\) 0 0
\(523\) 2.21522 3.83687i 0.0968647 0.167775i −0.813521 0.581536i \(-0.802452\pi\)
0.910385 + 0.413761i \(0.135785\pi\)
\(524\) −3.05274 + 6.54473i −0.133360 + 0.285908i
\(525\) 0 0
\(526\) 5.28983 5.77219i 0.230647 0.251679i
\(527\) 28.2807 + 23.7303i 1.23193 + 1.03371i
\(528\) 0 0
\(529\) −9.64774 3.51149i −0.419467 0.152673i
\(530\) −4.86676 3.10085i −0.211398 0.134692i
\(531\) 0 0
\(532\) −2.89293 + 1.34860i −0.125424 + 0.0584694i
\(533\) 0.0177924 + 0.100906i 0.000770676 + 0.00437072i
\(534\) 0 0
\(535\) 3.53899 + 9.72329i 0.153004 + 0.420375i
\(536\) −22.2258 7.01185i −0.960009 0.302866i
\(537\) 0 0
\(538\) −4.81911 6.28112i −0.207767 0.270798i
\(539\) 13.0287i 0.561186i
\(540\) 0 0
\(541\) 37.3027i 1.60377i −0.597479 0.801884i \(-0.703831\pi\)
0.597479 0.801884i \(-0.296169\pi\)
\(542\) 1.75657 1.34771i 0.0754511 0.0578890i
\(543\) 0 0
\(544\) −10.0866 + 24.3321i −0.432461 + 1.04323i
\(545\) −11.9048 32.7082i −0.509945 1.40106i
\(546\) 0 0
\(547\) 3.56925 + 20.2422i 0.152610 + 0.865496i 0.960938 + 0.276763i \(0.0892618\pi\)
−0.808328 + 0.588733i \(0.799627\pi\)
\(548\) −23.8647 + 11.1251i −1.01945 + 0.475239i
\(549\) 0 0
\(550\) −3.54327 + 5.56114i −0.151086 + 0.237128i
\(551\) −1.75273 0.637941i −0.0746687 0.0271772i
\(552\) 0 0
\(553\) 14.1249 + 11.8522i 0.600651 + 0.504006i
\(554\) 29.2307 + 26.7880i 1.24189 + 1.13811i
\(555\) 0 0
\(556\) 21.7378 + 10.1395i 0.921890 + 0.430009i
\(557\) −13.7564 + 23.8268i −0.582877 + 1.00957i 0.412259 + 0.911067i \(0.364740\pi\)
−0.995136 + 0.0985064i \(0.968593\pi\)
\(558\) 0 0
\(559\) −5.00349 + 2.88877i −0.211625 + 0.122182i
\(560\) −59.6547 0.0132600i −2.52087 0.000560338i
\(561\) 0 0
\(562\) 12.1351 3.82546i 0.511890 0.161367i
\(563\) 28.2129 + 4.97470i 1.18903 + 0.209658i 0.732952 0.680280i \(-0.238142\pi\)
0.456080 + 0.889939i \(0.349253\pi\)
\(564\) 0 0
\(565\) 22.3856 + 26.6781i 0.941770 + 1.12236i
\(566\) −1.78397 + 40.8076i −0.0749859 + 1.71527i
\(567\) 0 0
\(568\) 0.138093 1.04757i 0.00579424 0.0439550i
\(569\) 4.16772 + 4.96689i 0.174720 + 0.208223i 0.846297 0.532712i \(-0.178827\pi\)
−0.671577 + 0.740935i \(0.734383\pi\)
\(570\) 0 0
\(571\) −4.13866 + 23.4715i −0.173197 + 0.982252i 0.767006 + 0.641639i \(0.221745\pi\)
−0.940204 + 0.340612i \(0.889366\pi\)
\(572\) 3.25431 0.871602i 0.136070 0.0364435i
\(573\) 0 0
\(574\) −0.352335 + 0.0463658i −0.0147062 + 0.00193527i
\(575\) −15.1576 26.2538i −0.632117 1.09486i
\(576\) 0 0
\(577\) 9.82303 17.0140i 0.408938 0.708302i −0.585833 0.810432i \(-0.699232\pi\)
0.994771 + 0.102130i \(0.0325658\pi\)
\(578\) 2.53371 6.11595i 0.105388 0.254390i
\(579\) 0 0
\(580\) −24.6473 24.6528i −1.02343 1.02365i
\(581\) 49.4491 + 41.4927i 2.05149 + 1.72141i
\(582\) 0 0
\(583\) −0.386593 + 1.06215i −0.0160110 + 0.0439899i
\(584\) 28.2498 + 21.6843i 1.16899 + 0.897305i
\(585\) 0 0
\(586\) −22.4264 + 11.6729i −0.926426 + 0.482202i
\(587\) 0.851961 0.150224i 0.0351642 0.00620040i −0.156038 0.987751i \(-0.549872\pi\)
0.191203 + 0.981551i \(0.438761\pi\)
\(588\) 0 0
\(589\) −0.929313 2.55327i −0.0382917 0.105206i
\(590\) 6.97778 31.4665i 0.287271 1.29545i
\(591\) 0 0
\(592\) 5.35141 + 9.27367i 0.219942 + 0.381145i
\(593\) 14.5405i 0.597108i −0.954393 0.298554i \(-0.903496\pi\)
0.954393 0.298554i \(-0.0965044\pi\)
\(594\) 0 0
\(595\) 69.4424 2.84686
\(596\) −14.5083 + 10.1564i −0.594284 + 0.416024i
\(597\) 0 0
\(598\) −3.35320 + 15.1213i −0.137122 + 0.618357i
\(599\) 19.6014 7.13433i 0.800892 0.291501i 0.0910360 0.995848i \(-0.470982\pi\)
0.709856 + 0.704347i \(0.248760\pi\)
\(600\) 0 0
\(601\) −3.10434 17.6056i −0.126629 0.718147i −0.980327 0.197379i \(-0.936757\pi\)
0.853699 0.520768i \(-0.174354\pi\)
\(602\) −9.25168 17.7747i −0.377070 0.724443i
\(603\) 0 0
\(604\) −4.79865 3.36085i −0.195254 0.136751i
\(605\) −30.7347 11.1865i −1.24954 0.454797i
\(606\) 0 0
\(607\) 11.4075 13.5950i 0.463017 0.551803i −0.483126 0.875551i \(-0.660499\pi\)
0.946143 + 0.323748i \(0.104943\pi\)
\(608\) 1.53833 1.17972i 0.0623873 0.0478440i
\(609\) 0 0
\(610\) 34.7987 + 14.4163i 1.40896 + 0.583701i
\(611\) 18.0101 + 10.3981i 0.728609 + 0.420662i
\(612\) 0 0
\(613\) 6.61359 3.81836i 0.267120 0.154222i −0.360458 0.932775i \(-0.617380\pi\)
0.627578 + 0.778554i \(0.284046\pi\)
\(614\) −7.48412 + 0.984880i −0.302035 + 0.0397465i
\(615\) 0 0
\(616\) 2.52715 + 11.4082i 0.101822 + 0.459651i
\(617\) −1.20638 0.212717i −0.0485669 0.00856365i 0.149312 0.988790i \(-0.452294\pi\)
−0.197879 + 0.980226i \(0.563405\pi\)
\(618\) 0 0
\(619\) −4.70712 + 3.94975i −0.189195 + 0.158754i −0.732465 0.680804i \(-0.761630\pi\)
0.543270 + 0.839558i \(0.317186\pi\)
\(620\) 4.43162 50.5889i 0.177978 2.03170i
\(621\) 0 0
\(622\) −0.603271 + 13.7996i −0.0241890 + 0.553313i
\(623\) −26.1578 + 21.9490i −1.04799 + 0.879367i
\(624\) 0 0
\(625\) −4.10756 + 23.2951i −0.164302 + 0.931805i
\(626\) 9.47377 + 30.0528i 0.378648 + 1.20115i
\(627\) 0 0
\(628\) −21.7520 + 1.90062i −0.868001 + 0.0758430i
\(629\) −6.23183 10.7938i −0.248479 0.430379i
\(630\) 0 0
\(631\) −4.14675 2.39413i −0.165080 0.0953088i 0.415184 0.909737i \(-0.363717\pi\)
−0.580264 + 0.814429i \(0.697051\pi\)
\(632\) −9.93279 5.17279i −0.395105 0.205762i
\(633\) 0 0
\(634\) −15.1549 + 16.5368i −0.601878 + 0.656761i
\(635\) −29.0875 + 34.6652i −1.15430 + 1.37565i
\(636\) 0 0
\(637\) 9.53816 26.2059i 0.377916 1.03832i
\(638\) −3.66914 + 5.75868i −0.145263 + 0.227989i
\(639\) 0 0
\(640\) 35.3763 7.82831i 1.39837 0.309441i
\(641\) −7.66053 + 1.35076i −0.302573 + 0.0533517i −0.322873 0.946442i \(-0.604649\pi\)
0.0203006 + 0.999794i \(0.493538\pi\)
\(642\) 0 0
\(643\) 22.0412 8.02234i 0.869220 0.316370i 0.131369 0.991334i \(-0.458063\pi\)
0.737851 + 0.674964i \(0.235841\pi\)
\(644\) −51.8875 13.9094i −2.04465 0.548107i
\(645\) 0 0
\(646\) −1.79042 + 1.37368i −0.0704430 + 0.0540466i
\(647\) 11.2669 0.442948 0.221474 0.975166i \(-0.428913\pi\)
0.221474 + 0.975166i \(0.428913\pi\)
\(648\) 0 0
\(649\) −6.31318 −0.247814
\(650\) −11.1982 + 8.59168i −0.439229 + 0.336993i
\(651\) 0 0
\(652\) 0.509274 1.89979i 0.0199447 0.0744016i
\(653\) −36.3675 + 13.2367i −1.42317 + 0.517991i −0.934965 0.354739i \(-0.884570\pi\)
−0.488203 + 0.872730i \(0.662347\pi\)
\(654\) 0 0
\(655\) −11.3880 + 2.00802i −0.444968 + 0.0784598i
\(656\) 0.202840 0.0737768i 0.00791958 0.00288050i
\(657\) 0 0
\(658\) −38.7576 + 60.8298i −1.51093 + 2.37139i
\(659\) 11.6740 32.0740i 0.454753 1.24942i −0.474590 0.880207i \(-0.657404\pi\)
0.929343 0.369217i \(-0.120374\pi\)
\(660\) 0 0
\(661\) −32.5831 + 38.8310i −1.26734 + 1.51035i −0.505083 + 0.863071i \(0.668538\pi\)
−0.762252 + 0.647281i \(0.775906\pi\)
\(662\) 27.0351 29.5004i 1.05075 1.14656i
\(663\) 0 0
\(664\) −34.7732 18.1091i −1.34946 0.702771i
\(665\) −4.42618 2.55546i −0.171640 0.0990964i
\(666\) 0 0
\(667\) −15.6961 27.1864i −0.607754 1.05266i
\(668\) 0.278686 + 3.18947i 0.0107827 + 0.123404i
\(669\) 0 0
\(670\) −11.2198 35.5916i −0.433459 1.37502i
\(671\) 1.28116 7.26582i 0.0494587 0.280494i
\(672\) 0 0
\(673\) 17.6716 14.8283i 0.681191 0.571587i −0.235163 0.971956i \(-0.575562\pi\)
0.916354 + 0.400369i \(0.131118\pi\)
\(674\) −0.213774 + 4.88999i −0.00823426 + 0.188355i
\(675\) 0 0
\(676\) −18.7170 1.63962i −0.719885 0.0630624i
\(677\) 32.2459 27.0575i 1.23931 1.03991i 0.241733 0.970343i \(-0.422284\pi\)
0.997578 0.0695623i \(-0.0221603\pi\)
\(678\) 0 0
\(679\) 4.06720 + 0.717158i 0.156085 + 0.0275220i
\(680\) −41.1786 + 9.12187i −1.57913 + 0.349808i
\(681\) 0 0
\(682\) −9.86196 + 1.29779i −0.377634 + 0.0496951i
\(683\) −34.0757 + 19.6736i −1.30387 + 0.752789i −0.981065 0.193676i \(-0.937959\pi\)
−0.322804 + 0.946466i \(0.604625\pi\)
\(684\) 0 0
\(685\) −36.5130 21.0808i −1.39509 0.805456i
\(686\) 46.7681 + 19.3750i 1.78561 + 0.739741i
\(687\) 0 0
\(688\) 7.82101 + 9.32493i 0.298173 + 0.355510i
\(689\) −1.55518 + 1.85340i −0.0592478 + 0.0706087i
\(690\) 0 0
\(691\) 34.6497 + 12.6115i 1.31814 + 0.479762i 0.902861 0.429933i \(-0.141463\pi\)
0.415276 + 0.909696i \(0.363685\pi\)
\(692\) −16.2668 + 23.2260i −0.618372 + 0.882919i
\(693\) 0 0
\(694\) −14.1276 27.1426i −0.536278 1.03032i
\(695\) 6.66949 + 37.8245i 0.252988 + 1.43477i
\(696\) 0 0
\(697\) −0.236102 + 0.0859340i −0.00894299 + 0.00325498i
\(698\) −6.48252 + 29.2331i −0.245367 + 1.10649i
\(699\) 0 0
\(700\) −28.0739 40.1032i −1.06109 1.51576i
\(701\) −6.58502 −0.248713 −0.124356 0.992238i \(-0.539687\pi\)
−0.124356 + 0.992238i \(0.539687\pi\)
\(702\) 0 0
\(703\) 0.917317i 0.0345973i
\(704\) −2.99714 6.43300i −0.112959 0.242453i
\(705\) 0 0
\(706\) 4.77866 21.5495i 0.179847 0.811024i
\(707\) 10.0443 + 27.5965i 0.377755 + 1.03787i
\(708\) 0 0
\(709\) 11.2866 1.99013i 0.423876 0.0747408i 0.0423588 0.999102i \(-0.486513\pi\)
0.381517 + 0.924362i \(0.375402\pi\)
\(710\) 1.50080 0.781163i 0.0563242 0.0293165i
\(711\) 0 0
\(712\) 12.6281 16.4516i 0.473257 0.616548i
\(713\) 15.6406 42.9723i 0.585746 1.60932i
\(714\) 0 0
\(715\) 4.13252 + 3.46760i 0.154548 + 0.129681i
\(716\) −8.60930 + 8.60739i −0.321745 + 0.321673i
\(717\) 0 0
\(718\) 2.64262 6.37885i 0.0986217 0.238057i
\(719\) 14.6250 25.3313i 0.545421 0.944697i −0.453159 0.891430i \(-0.649703\pi\)
0.998580 0.0532673i \(-0.0169635\pi\)
\(720\) 0 0
\(721\) 20.3569 + 35.2591i 0.758129 + 1.31312i
\(722\) −26.4757 + 3.48410i −0.985324 + 0.129665i
\(723\) 0 0
\(724\) 6.81468 + 25.4440i 0.253266 + 0.945620i
\(725\) 4.96752 28.1722i 0.184489 1.04629i
\(726\) 0 0
\(727\) 32.7533 + 39.0339i 1.21475 + 1.44769i 0.858125 + 0.513440i \(0.171629\pi\)
0.356628 + 0.934246i \(0.383926\pi\)
\(728\) −3.26874 + 24.7966i −0.121147 + 0.919022i
\(729\) 0 0
\(730\) −2.49055 + 56.9704i −0.0921795 + 2.10857i
\(731\) −9.10664 10.8529i −0.336821 0.401408i
\(732\) 0 0
\(733\) −2.54100 0.448046i −0.0938538 0.0165490i 0.126524 0.991964i \(-0.459618\pi\)
−0.220378 + 0.975415i \(0.570729\pi\)
\(734\) −13.5750 + 4.27935i −0.501062 + 0.157954i
\(735\) 0 0
\(736\) 32.5959 + 1.43224i 1.20150 + 0.0527931i
\(737\) −6.33034 + 3.65482i −0.233181 + 0.134627i
\(738\) 0 0
\(739\) 3.86165 6.68857i 0.142053 0.246043i −0.786217 0.617951i \(-0.787963\pi\)
0.928270 + 0.371908i \(0.121296\pi\)
\(740\) −7.24730 + 15.5374i −0.266416 + 0.571165i
\(741\) 0 0
\(742\) −6.18645 5.66947i −0.227112 0.208133i
\(743\) −9.80501 8.22738i −0.359711 0.301833i 0.444965 0.895548i \(-0.353216\pi\)
−0.804676 + 0.593715i \(0.797661\pi\)
\(744\) 0 0
\(745\) −26.6479 9.69906i −0.976305 0.355346i
\(746\) 1.13658 1.78386i 0.0416132 0.0653116i
\(747\) 0 0
\(748\) 3.49056 + 7.48770i 0.127627 + 0.273777i
\(749\) 2.61279 + 14.8179i 0.0954693 + 0.541433i
\(750\) 0 0
\(751\) 15.0834 + 41.4413i 0.550401 + 1.51221i 0.833165 + 0.553025i \(0.186527\pi\)
−0.282763 + 0.959190i \(0.591251\pi\)
\(752\) 14.9923 41.1626i 0.546714 1.50105i
\(753\) 0 0
\(754\) −11.5960 + 8.89687i −0.422300 + 0.324005i
\(755\) 9.38096i 0.341408i
\(756\) 0 0
\(757\) 27.9094i 1.01438i 0.861833 + 0.507192i \(0.169316\pi\)
−0.861833 + 0.507192i \(0.830684\pi\)
\(758\) −22.7295 29.6251i −0.825574 1.07603i
\(759\) 0 0
\(760\) 2.96036 + 0.933941i 0.107384 + 0.0338776i
\(761\) 7.20399 + 19.7928i 0.261145 + 0.717489i 0.999091 + 0.0426294i \(0.0135735\pi\)
−0.737946 + 0.674859i \(0.764204\pi\)
\(762\) 0 0
\(763\) −8.78916 49.8458i −0.318189 1.80454i
\(764\) 18.0675 + 38.7572i 0.653660 + 1.40218i
\(765\) 0 0
\(766\) 18.7422 + 11.9415i 0.677182 + 0.431466i
\(767\) −12.6983 4.62181i −0.458509 0.166884i
\(768\) 0 0
\(769\) −9.76794 8.19627i −0.352241 0.295565i 0.449448 0.893306i \(-0.351621\pi\)
−0.801689 + 0.597741i \(0.796065\pi\)
\(770\) −12.6412 + 13.7939i −0.455558 + 0.497099i
\(771\) 0 0
\(772\) 38.0511 + 17.7487i 1.36949 + 0.638788i
\(773\) 24.3894 42.2437i 0.877226 1.51940i 0.0228536 0.999739i \(-0.492725\pi\)
0.854372 0.519661i \(-0.173942\pi\)
\(774\) 0 0
\(775\) 36.0896 20.8363i 1.29638 0.748463i
\(776\) −2.50601 + 0.108996i −0.0899607 + 0.00391274i
\(777\) 0 0
\(778\) −8.60643 27.3014i −0.308556 0.978803i
\(779\) 0.0182112 + 0.00321113i 0.000652484 + 0.000115051i
\(780\) 0 0
\(781\) −0.213023 0.253871i −0.00762256 0.00908421i
\(782\) −37.9443 1.65880i −1.35689 0.0593185i
\(783\) 0 0
\(784\) −57.8516 10.2141i −2.06613 0.364788i
\(785\) −22.4739 26.7833i −0.802127 0.955938i
\(786\) 0 0
\(787\) −4.56672 + 25.8991i −0.162786 + 0.923205i 0.788532 + 0.614994i \(0.210841\pi\)
−0.951318 + 0.308211i \(0.900270\pi\)
\(788\) 20.2186 5.41516i 0.720259 0.192907i
\(789\) 0 0
\(790\) −2.33966 17.7791i −0.0832414 0.632553i
\(791\) 25.3209 + 43.8570i 0.900306 + 1.55938i
\(792\) 0 0
\(793\) 7.89615 13.6765i 0.280401 0.485668i
\(794\) 36.0084 + 14.9175i 1.27789 + 0.529402i
\(795\) 0 0
\(796\) 23.4662 23.4610i 0.831739 0.831554i
\(797\) −27.3124 22.9179i −0.967456 0.811792i 0.0146935 0.999892i \(-0.495323\pi\)
−0.982150 + 0.188100i \(0.939767\pi\)
\(798\) 0 0
\(799\) −17.4415 + 47.9201i −0.617036 + 1.69529i
\(800\) 21.9154 + 20.0930i 0.774828 + 0.710395i
\(801\) 0 0
\(802\) −4.43137 8.51375i −0.156477 0.300631i
\(803\) 11.0000 1.93959i 0.388180 0.0684467i
\(804\) 0 0
\(805\) −29.4200 80.8307i −1.03692 2.84891i
\(806\) −20.7864 4.60945i −0.732171 0.162361i
\(807\) 0 0
\(808\) −9.58121 15.0450i −0.337066 0.529282i
\(809\) 41.4917i 1.45877i −0.684103 0.729385i \(-0.739806\pi\)
0.684103 0.729385i \(-0.260194\pi\)
\(810\) 0 0
\(811\) 29.0442 1.01988 0.509940 0.860210i \(-0.329667\pi\)
0.509940 + 0.860210i \(0.329667\pi\)
\(812\) −29.0712 41.5277i −1.02020 1.45734i
\(813\) 0 0
\(814\) 3.27851 + 0.727019i 0.114912 + 0.0254820i
\(815\) 2.95951 1.07717i 0.103667 0.0377318i
\(816\) 0 0
\(817\) 0.181065 + 1.02687i 0.00633467 + 0.0359257i
\(818\) 21.4755 11.1779i 0.750873 0.390827i
\(819\) 0 0
\(820\) 0.283089 + 0.198268i 0.00988589 + 0.00692381i
\(821\) −47.7187 17.3682i −1.66539 0.606153i −0.674196 0.738552i \(-0.735510\pi\)
−0.991197 + 0.132399i \(0.957732\pi\)
\(822\) 0 0
\(823\) 10.2372 12.2002i 0.356847 0.425274i −0.557518 0.830165i \(-0.688246\pi\)
0.914365 + 0.404891i \(0.132691\pi\)
\(824\) −16.7030 18.2342i −0.581877 0.635219i
\(825\) 0 0
\(826\) 17.9381 43.2996i 0.624146 1.50659i
\(827\) −26.8166 15.4826i −0.932504 0.538381i −0.0449012 0.998991i \(-0.514297\pi\)
−0.887603 + 0.460610i \(0.847631\pi\)
\(828\) 0 0
\(829\) 5.02207 2.89949i 0.174424 0.100704i −0.410246 0.911975i \(-0.634557\pi\)
0.584670 + 0.811271i \(0.301224\pi\)
\(830\) −8.19081 62.2421i −0.284307 2.16045i
\(831\) 0 0
\(832\) −1.31892 15.1335i −0.0457255 0.524659i
\(833\) 67.3461 + 11.8749i 2.33340 + 0.411442i
\(834\) 0 0
\(835\) −3.92720 + 3.29531i −0.135906 + 0.114039i
\(836\) 0.0530605 0.605709i 0.00183514 0.0209489i
\(837\) 0 0
\(838\) 2.19594 + 0.0959989i 0.0758573 + 0.00331623i
\(839\) −11.9037 + 9.98841i −0.410962 + 0.344838i −0.824712 0.565552i \(-0.808663\pi\)
0.413750 + 0.910390i \(0.364219\pi\)
\(840\) 0 0
\(841\) 0.108181 0.613526i 0.00373038 0.0211561i
\(842\) 18.2027 5.73817i 0.627306 0.197751i
\(843\) 0 0
\(844\) −1.62387 18.5847i −0.0558959 0.639712i
\(845\) −15.0427 26.0547i −0.517484 0.896309i
\(846\) 0 0
\(847\) −41.1889 23.7804i −1.41527 0.817106i
\(848\) 4.41323 + 2.54929i 0.151551 + 0.0875429i
\(849\) 0 0
\(850\) −25.5164 23.3841i −0.875204 0.802067i
\(851\) −9.92382 + 11.8268i −0.340184 + 0.405416i
\(852\) 0 0
\(853\) −5.27000 + 14.4792i −0.180441 + 0.495758i −0.996630 0.0820269i \(-0.973861\pi\)
0.816189 + 0.577785i \(0.196083\pi\)
\(854\) 46.1932 + 29.4319i 1.58070 + 1.00714i
\(855\) 0 0
\(856\) −3.49582 8.44363i −0.119485 0.288597i
\(857\) 43.4090 7.65418i 1.48282 0.261462i 0.627118 0.778924i \(-0.284234\pi\)
0.855706 + 0.517463i \(0.173123\pi\)
\(858\) 0 0
\(859\) 49.6251 18.0621i 1.69319 0.616270i 0.698166 0.715936i \(-0.254000\pi\)
0.995021 + 0.0996665i \(0.0317776\pi\)
\(860\) −5.04598 + 18.8235i −0.172067 + 0.641876i
\(861\) 0 0
\(862\) 28.0828 + 36.6024i 0.956504 + 1.24668i
\(863\) 51.1622 1.74158 0.870791 0.491653i \(-0.163607\pi\)
0.870791 + 0.491653i \(0.163607\pi\)
\(864\) 0 0
\(865\) −45.4048 −1.54381
\(866\) 17.5764 + 22.9086i 0.597269 + 0.778465i
\(867\) 0 0
\(868\) 19.1205 71.3268i 0.648991 2.42099i
\(869\) −3.30066 + 1.20134i −0.111967 + 0.0407527i
\(870\) 0 0
\(871\) −15.4085 + 2.71693i −0.522097 + 0.0920597i
\(872\) 11.7596 + 28.4035i 0.398229 + 0.961863i
\(873\) 0 0
\(874\) 2.35749 + 1.50207i 0.0797431 + 0.0508082i
\(875\) 1.30578 3.58759i 0.0441433 0.121283i
\(876\) 0 0
\(877\) 21.3535 25.4481i 0.721055 0.859320i −0.273678 0.961822i \(-0.588240\pi\)
0.994733 + 0.102501i \(0.0326845\pi\)
\(878\) 5.31374 + 4.86969i 0.179330 + 0.164344i
\(879\) 0 0
\(880\) 5.68416 9.84020i 0.191613 0.331713i
\(881\) 24.0135 + 13.8642i 0.809034 + 0.467096i 0.846620 0.532197i \(-0.178634\pi\)
−0.0375862 + 0.999293i \(0.511967\pi\)
\(882\) 0 0
\(883\) 7.38127 + 12.7847i 0.248400 + 0.430241i 0.963082 0.269208i \(-0.0867621\pi\)
−0.714682 + 0.699449i \(0.753429\pi\)
\(884\) 1.53924 + 17.6161i 0.0517702 + 0.592495i
\(885\) 0 0
\(886\) 24.9856 7.87641i 0.839408 0.264613i
\(887\) −3.08832 + 17.5147i −0.103695 + 0.588086i 0.888038 + 0.459770i \(0.152068\pi\)
−0.991733 + 0.128316i \(0.959043\pi\)
\(888\) 0 0
\(889\) −50.4081 + 42.2974i −1.69063 + 1.41861i
\(890\) 33.1772 + 1.45040i 1.11210 + 0.0486174i
\(891\) 0 0
\(892\) −3.27285 + 37.3610i −0.109583 + 1.25094i
\(893\) 2.87515 2.41254i 0.0962132 0.0807324i
\(894\) 0 0
\(895\) −19.1975 3.38504i −0.641702 0.113149i
\(896\) 52.6374 2.27768i 1.75849 0.0760921i
\(897\) 0 0
\(898\) 3.49455 + 26.5552i 0.116615 + 0.886158i
\(899\) 37.3716 21.5765i 1.24641 0.719616i
\(900\) 0 0
\(901\) −5.13798 2.96642i −0.171171 0.0988256i
\(902\) 0.0259099 0.0625423i 0.000862706 0.00208243i
\(903\) 0 0
\(904\) −20.7760 22.6806i −0.691000 0.754346i
\(905\) −27.1116 + 32.3104i −0.901221 + 1.07403i
\(906\) 0 0
\(907\) −33.8368 12.3156i −1.12353 0.408932i −0.287591 0.957753i \(-0.592854\pi\)
−0.835940 + 0.548821i \(0.815077\pi\)
\(908\) −8.30165 5.81426i −0.275500 0.192953i
\(909\) 0 0
\(910\) −35.5249 + 18.4906i −1.17764 + 0.612957i
\(911\) 0.0484884 + 0.274992i 0.00160649 + 0.00911088i 0.985600 0.169091i \(-0.0540831\pi\)
−0.983994 + 0.178202i \(0.942972\pi\)
\(912\) 0 0
\(913\) −11.5551 + 4.20572i −0.382418 + 0.139189i
\(914\) 14.4552 + 3.20549i 0.478137 + 0.106028i
\(915\) 0 0
\(916\) 25.8564 + 36.9355i 0.854320 + 1.22038i
\(917\) −16.8153 −0.555290
\(918\) 0 0
\(919\) 19.5234i 0.644017i −0.946737 0.322008i \(-0.895642\pi\)
0.946737 0.322008i \(-0.104358\pi\)
\(920\) 28.0636 + 44.0672i 0.925229 + 1.45285i
\(921\) 0 0
\(922\) −33.6735 7.46719i −1.10898 0.245919i
\(923\) −0.242618 0.666587i −0.00798586 0.0219410i
\(924\) 0 0
\(925\) −13.8552 + 2.44304i −0.455555 + 0.0803267i
\(926\) 10.2866 + 19.7631i 0.338039 + 0.649454i
\(927\) 0 0
\(928\) 22.6939 + 20.8068i 0.744965 + 0.683015i
\(929\) 12.7507 35.0323i 0.418338 1.14937i −0.534308 0.845290i \(-0.679428\pi\)
0.952645 0.304083i \(-0.0983502\pi\)
\(930\) 0 0
\(931\) −3.85557 3.23521i −0.126361 0.106030i
\(932\) 8.06299 8.06120i 0.264112 0.264053i
\(933\) 0 0
\(934\) −10.0283 4.15451i −0.328136 0.135940i
\(935\) −6.61423 + 11.4562i −0.216308 + 0.374657i
\(936\) 0 0
\(937\) −1.65449 2.86566i −0.0540499 0.0936171i 0.837735 0.546078i \(-0.183880\pi\)
−0.891784 + 0.452461i \(0.850546\pi\)
\(938\) −7.08013 53.8020i −0.231174 1.75670i
\(939\) 0 0
\(940\) 67.7591 18.1479i 2.21006 0.591920i
\(941\) −8.25196 + 46.7992i −0.269006 + 1.52561i 0.488373 + 0.872635i \(0.337591\pi\)
−0.757379 + 0.652975i \(0.773521\pi\)
\(942\) 0 0
\(943\) 0.200054 + 0.238415i 0.00651465 + 0.00776386i
\(944\) −4.94932 + 28.0325i −0.161087 + 0.912381i
\(945\) 0 0
\(946\) 3.81356 + 0.166716i 0.123990 + 0.00542041i
\(947\) −15.7887 18.8162i −0.513063 0.611444i 0.445863 0.895101i \(-0.352897\pi\)
−0.958926 + 0.283657i \(0.908452\pi\)
\(948\) 0 0
\(949\) 23.5453 + 4.15167i 0.764312 + 0.134769i
\(950\) 0.765860 + 2.42947i 0.0248478 + 0.0788224i
\(951\) 0 0
\(952\) −61.2732 + 2.66501i −1.98587 + 0.0863735i
\(953\) 5.53399 3.19505i 0.179264 0.103498i −0.407683 0.913124i \(-0.633663\pi\)
0.586947 + 0.809626i \(0.300330\pi\)
\(954\) 0 0
\(955\) −34.2360 + 59.2984i −1.10785 + 1.91885i
\(956\) −41.7465 19.4724i −1.35018 0.629782i
\(957\) 0 0
\(958\) −29.8007 + 32.5182i −0.962818 + 1.05061i
\(959\) −46.9654 39.4086i −1.51659 1.27257i
\(960\) 0 0
\(961\) 29.9411 + 10.8977i 0.965843 + 0.351538i
\(962\) 6.06214 + 3.86249i 0.195451 + 0.124532i
\(963\) 0 0
\(964\) 18.3298 + 39.3199i 0.590364 + 1.26641i
\(965\) 11.6746 + 66.2101i 0.375819 + 2.13138i
\(966\) 0 0
\(967\) 7.29798 + 20.0510i 0.234687 + 0.644798i 0.999999 + 0.00113855i \(0.000362411\pi\)
−0.765312 + 0.643659i \(0.777415\pi\)
\(968\) 27.5484 + 8.69102i 0.885439 + 0.279340i
\(969\) 0 0
\(970\) −2.44494 3.18668i −0.0785024 0.102318i
\(971\) 18.8858i 0.606074i 0.952979 + 0.303037i \(0.0980006\pi\)
−0.952979 + 0.303037i \(0.901999\pi\)
\(972\) 0 0
\(973\) 55.8507i 1.79049i
\(974\) −15.9525 + 12.2393i −0.511150 + 0.392174i
\(975\) 0 0
\(976\) −31.2582 11.3849i −1.00055 0.364423i
\(977\) 12.8528 + 35.3129i 0.411199 + 1.12976i 0.956554 + 0.291555i \(0.0941726\pi\)
−0.545355 + 0.838205i \(0.683605\pi\)
\(978\) 0 0
\(979\) −1.12954 6.40593i −0.0361002 0.204735i
\(980\) −39.7452 85.2586i −1.26961 2.72348i
\(981\) 0 0
\(982\) −1.07328 + 1.68451i −0.0342499 + 0.0537549i
\(983\) −0.0615360 0.0223973i −0.00196269 0.000714362i 0.341039 0.940049i \(-0.389221\pi\)
−0.343001 + 0.939335i \(0.611444\pi\)
\(984\) 0 0
\(985\) 25.6749 + 21.5438i 0.818069 + 0.686441i
\(986\) −26.4228 24.2147i −0.841472 0.771153i
\(987\) 0 0
\(988\) 0.550159 1.17948i 0.0175029 0.0375242i
\(989\) −8.77459 + 15.1980i −0.279016 + 0.483269i
\(990\) 0 0
\(991\) −2.32285 + 1.34110i −0.0737876 + 0.0426013i −0.536440 0.843939i \(-0.680231\pi\)
0.462652 + 0.886540i \(0.346898\pi\)
\(992\) −1.96882 + 44.8077i −0.0625101 + 1.42265i
\(993\) 0 0
\(994\) 2.34648 0.739698i 0.0744257 0.0234618i
\(995\) 52.3264 + 9.22655i 1.65886 + 0.292501i
\(996\) 0 0
\(997\) −6.81445 8.12114i −0.215816 0.257199i 0.647265 0.762265i \(-0.275913\pi\)
−0.863081 + 0.505066i \(0.831468\pi\)
\(998\) 1.85021 42.3229i 0.0585675 1.33971i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.v.b.611.9 192
3.2 odd 2 216.2.v.b.59.24 yes 192
8.3 odd 2 inner 648.2.v.b.611.8 192
12.11 even 2 864.2.bh.b.815.4 192
24.5 odd 2 864.2.bh.b.815.3 192
24.11 even 2 216.2.v.b.59.25 yes 192
27.11 odd 18 inner 648.2.v.b.35.8 192
27.16 even 9 216.2.v.b.11.25 yes 192
108.43 odd 18 864.2.bh.b.335.3 192
216.11 even 18 inner 648.2.v.b.35.9 192
216.43 odd 18 216.2.v.b.11.24 192
216.205 even 18 864.2.bh.b.335.4 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.24 192 216.43 odd 18
216.2.v.b.11.25 yes 192 27.16 even 9
216.2.v.b.59.24 yes 192 3.2 odd 2
216.2.v.b.59.25 yes 192 24.11 even 2
648.2.v.b.35.8 192 27.11 odd 18 inner
648.2.v.b.35.9 192 216.11 even 18 inner
648.2.v.b.611.8 192 8.3 odd 2 inner
648.2.v.b.611.9 192 1.1 even 1 trivial
864.2.bh.b.335.3 192 108.43 odd 18
864.2.bh.b.335.4 192 216.205 even 18
864.2.bh.b.815.3 192 24.5 odd 2
864.2.bh.b.815.4 192 12.11 even 2