Properties

Label 648.2.v.b.611.8
Level $648$
Weight $2$
Character 648.611
Analytic conductor $5.174$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(35,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.v (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 611.8
Character \(\chi\) \(=\) 648.611
Dual form 648.2.v.b.35.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.955487 - 1.04261i) q^{2} +(-0.174090 + 1.99241i) q^{4} +(3.00936 - 1.09532i) q^{5} +(4.58614 - 0.808660i) q^{7} +(2.24366 - 1.72221i) q^{8} +(-4.01740 - 2.09104i) q^{10} +(0.303411 - 0.833616i) q^{11} +(-1.22056 + 1.45461i) q^{13} +(-5.22511 - 4.00891i) q^{14} +(-3.93939 - 0.693717i) q^{16} +(4.03247 + 2.32815i) q^{17} +(-0.171350 - 0.296787i) q^{19} +(1.65842 + 6.18657i) q^{20} +(-1.15905 + 0.480168i) q^{22} +(-1.00156 + 5.68012i) q^{23} +(4.02633 - 3.37849i) q^{25} +(2.68283 - 0.117284i) q^{26} +(0.812780 + 9.27824i) q^{28} +(-4.16935 + 3.49850i) q^{29} +(-7.80815 - 1.37679i) q^{31} +(3.04075 + 4.77010i) q^{32} +(-1.42561 - 6.42882i) q^{34} +(12.9156 - 7.45683i) q^{35} +(2.31812 + 1.33837i) q^{37} +(-0.145712 + 0.462228i) q^{38} +(4.86560 - 7.64028i) q^{40} +(-0.0346849 + 0.0413359i) q^{41} +(-2.85915 - 1.04064i) q^{43} +(1.60808 + 0.749643i) q^{44} +(6.87915 - 4.38304i) q^{46} +(-1.90179 - 10.7856i) q^{47} +(13.8009 - 5.02311i) q^{49} +(-7.36956 - 0.969805i) q^{50} +(-2.68569 - 2.68509i) q^{52} +1.27415 q^{53} -2.84099i q^{55} +(8.89703 - 9.71265i) q^{56} +(7.63135 + 1.00425i) q^{58} +(-2.43399 - 6.68734i) q^{59} +(-8.19039 + 1.44419i) q^{61} +(6.02512 + 9.45639i) q^{62} +(2.06798 - 7.72810i) q^{64} +(-2.07985 + 5.71435i) q^{65} +(-6.31205 - 5.29644i) q^{67} +(-5.34063 + 7.62901i) q^{68} +(-20.1153 - 6.34110i) q^{70} +(-0.186788 + 0.323526i) q^{71} +(6.29550 + 10.9041i) q^{73} +(-0.819532 - 3.69570i) q^{74} +(0.621151 - 0.289732i) q^{76} +(0.717374 - 4.06843i) q^{77} +(2.54509 + 3.03312i) q^{79} +(-12.6149 + 2.22724i) q^{80} +(0.0762384 - 0.00333288i) q^{82} +(-8.90996 - 10.6185i) q^{83} +(14.6852 + 2.58940i) q^{85} +(1.64689 + 3.97531i) q^{86} +(-0.754912 - 2.39288i) q^{88} +(6.35012 - 3.66624i) q^{89} +(-4.42138 + 7.65805i) q^{91} +(-11.1428 - 2.98437i) q^{92} +(-9.42807 + 12.2883i) q^{94} +(-0.840731 - 0.705457i) q^{95} +(-0.833364 - 0.303320i) q^{97} +(-18.4237 - 9.58948i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 6 q^{2} - 6 q^{4} + 9 q^{8} - 3 q^{10} + 30 q^{11} - 9 q^{14} - 6 q^{16} + 18 q^{17} - 6 q^{19} + 27 q^{20} - 18 q^{22} - 12 q^{25} - 12 q^{28} + 36 q^{32} + 12 q^{34} + 18 q^{35} + 102 q^{38} + 9 q^{40}+ \cdots - 162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.955487 1.04261i −0.675631 0.737240i
\(3\) 0 0
\(4\) −0.174090 + 1.99241i −0.0870450 + 0.996204i
\(5\) 3.00936 1.09532i 1.34583 0.489842i 0.434185 0.900824i \(-0.357036\pi\)
0.911643 + 0.410982i \(0.134814\pi\)
\(6\) 0 0
\(7\) 4.58614 0.808660i 1.73340 0.305645i 0.784242 0.620455i \(-0.213052\pi\)
0.949155 + 0.314810i \(0.101941\pi\)
\(8\) 2.24366 1.72221i 0.793252 0.608894i
\(9\) 0 0
\(10\) −4.01740 2.09104i −1.27041 0.661246i
\(11\) 0.303411 0.833616i 0.0914819 0.251345i −0.885510 0.464620i \(-0.846191\pi\)
0.976992 + 0.213275i \(0.0684132\pi\)
\(12\) 0 0
\(13\) −1.22056 + 1.45461i −0.338523 + 0.403436i −0.908270 0.418384i \(-0.862597\pi\)
0.569747 + 0.821820i \(0.307041\pi\)
\(14\) −5.22511 4.00891i −1.39647 1.07143i
\(15\) 0 0
\(16\) −3.93939 0.693717i −0.984846 0.173429i
\(17\) 4.03247 + 2.32815i 0.978017 + 0.564658i 0.901671 0.432423i \(-0.142341\pi\)
0.0763460 + 0.997081i \(0.475675\pi\)
\(18\) 0 0
\(19\) −0.171350 0.296787i −0.0393104 0.0680876i 0.845701 0.533657i \(-0.179183\pi\)
−0.885011 + 0.465570i \(0.845849\pi\)
\(20\) 1.65842 + 6.18657i 0.370835 + 1.38336i
\(21\) 0 0
\(22\) −1.15905 + 0.480168i −0.247109 + 0.102372i
\(23\) −1.00156 + 5.68012i −0.208839 + 1.18439i 0.682443 + 0.730939i \(0.260918\pi\)
−0.891282 + 0.453449i \(0.850194\pi\)
\(24\) 0 0
\(25\) 4.02633 3.37849i 0.805265 0.675698i
\(26\) 2.68283 0.117284i 0.526146 0.0230013i
\(27\) 0 0
\(28\) 0.812780 + 9.27824i 0.153601 + 1.75342i
\(29\) −4.16935 + 3.49850i −0.774229 + 0.649655i −0.941788 0.336207i \(-0.890856\pi\)
0.167559 + 0.985862i \(0.446411\pi\)
\(30\) 0 0
\(31\) −7.80815 1.37679i −1.40238 0.247278i −0.579262 0.815142i \(-0.696659\pi\)
−0.823123 + 0.567864i \(0.807770\pi\)
\(32\) 3.04075 + 4.77010i 0.537534 + 0.843242i
\(33\) 0 0
\(34\) −1.42561 6.42882i −0.244490 1.10253i
\(35\) 12.9156 7.45683i 2.18314 1.26044i
\(36\) 0 0
\(37\) 2.31812 + 1.33837i 0.381097 + 0.220026i 0.678295 0.734789i \(-0.262719\pi\)
−0.297199 + 0.954816i \(0.596052\pi\)
\(38\) −0.145712 + 0.462228i −0.0236376 + 0.0749833i
\(39\) 0 0
\(40\) 4.86560 7.64028i 0.769320 1.20803i
\(41\) −0.0346849 + 0.0413359i −0.00541687 + 0.00645558i −0.768746 0.639554i \(-0.779119\pi\)
0.763329 + 0.646010i \(0.223563\pi\)
\(42\) 0 0
\(43\) −2.85915 1.04064i −0.436016 0.158697i 0.114681 0.993402i \(-0.463416\pi\)
−0.550696 + 0.834706i \(0.685638\pi\)
\(44\) 1.60808 + 0.749643i 0.242428 + 0.113013i
\(45\) 0 0
\(46\) 6.87915 4.38304i 1.01428 0.646244i
\(47\) −1.90179 10.7856i −0.277404 1.57324i −0.731219 0.682143i \(-0.761048\pi\)
0.453814 0.891096i \(-0.350063\pi\)
\(48\) 0 0
\(49\) 13.8009 5.02311i 1.97155 0.717587i
\(50\) −7.36956 0.969805i −1.04221 0.137151i
\(51\) 0 0
\(52\) −2.68569 2.68509i −0.372438 0.372355i
\(53\) 1.27415 0.175018 0.0875092 0.996164i \(-0.472109\pi\)
0.0875092 + 0.996164i \(0.472109\pi\)
\(54\) 0 0
\(55\) 2.84099i 0.383078i
\(56\) 8.89703 9.71265i 1.18892 1.29791i
\(57\) 0 0
\(58\) 7.63135 + 1.00425i 1.00204 + 0.131865i
\(59\) −2.43399 6.68734i −0.316879 0.870618i −0.991223 0.132201i \(-0.957796\pi\)
0.674344 0.738417i \(-0.264427\pi\)
\(60\) 0 0
\(61\) −8.19039 + 1.44419i −1.04867 + 0.184909i −0.671326 0.741163i \(-0.734275\pi\)
−0.377347 + 0.926072i \(0.623164\pi\)
\(62\) 6.02512 + 9.45639i 0.765191 + 1.20096i
\(63\) 0 0
\(64\) 2.06798 7.72810i 0.258497 0.966012i
\(65\) −2.07985 + 5.71435i −0.257974 + 0.708778i
\(66\) 0 0
\(67\) −6.31205 5.29644i −0.771139 0.647063i 0.169861 0.985468i \(-0.445668\pi\)
−0.941000 + 0.338405i \(0.890113\pi\)
\(68\) −5.34063 + 7.62901i −0.647647 + 0.925154i
\(69\) 0 0
\(70\) −20.1153 6.34110i −2.40424 0.757907i
\(71\) −0.186788 + 0.323526i −0.0221676 + 0.0383955i −0.876896 0.480679i \(-0.840390\pi\)
0.854729 + 0.519075i \(0.173723\pi\)
\(72\) 0 0
\(73\) 6.29550 + 10.9041i 0.736832 + 1.27623i 0.953915 + 0.300077i \(0.0970125\pi\)
−0.217083 + 0.976153i \(0.569654\pi\)
\(74\) −0.819532 3.69570i −0.0952687 0.429616i
\(75\) 0 0
\(76\) 0.621151 0.289732i 0.0712509 0.0332345i
\(77\) 0.717374 4.06843i 0.0817524 0.463641i
\(78\) 0 0
\(79\) 2.54509 + 3.03312i 0.286345 + 0.341252i 0.889973 0.456014i \(-0.150723\pi\)
−0.603628 + 0.797266i \(0.706279\pi\)
\(80\) −12.6149 + 2.22724i −1.41039 + 0.249013i
\(81\) 0 0
\(82\) 0.0762384 0.00333288i 0.00841912 0.000368055i
\(83\) −8.90996 10.6185i −0.977996 1.16553i −0.986199 0.165563i \(-0.947056\pi\)
0.00820363 0.999966i \(-0.497389\pi\)
\(84\) 0 0
\(85\) 14.6852 + 2.58940i 1.59284 + 0.280860i
\(86\) 1.64689 + 3.97531i 0.177588 + 0.428669i
\(87\) 0 0
\(88\) −0.754912 2.39288i −0.0804739 0.255082i
\(89\) 6.35012 3.66624i 0.673111 0.388621i −0.124143 0.992264i \(-0.539618\pi\)
0.797254 + 0.603644i \(0.206285\pi\)
\(90\) 0 0
\(91\) −4.42138 + 7.65805i −0.463487 + 0.802782i
\(92\) −11.1428 2.98437i −1.16171 0.311142i
\(93\) 0 0
\(94\) −9.42807 + 12.2883i −0.972431 + 1.26744i
\(95\) −0.840731 0.705457i −0.0862572 0.0723783i
\(96\) 0 0
\(97\) −0.833364 0.303320i −0.0846153 0.0307975i 0.299366 0.954138i \(-0.403225\pi\)
−0.383981 + 0.923341i \(0.625447\pi\)
\(98\) −18.4237 9.58948i −1.86108 0.968684i
\(99\) 0 0
\(100\) 6.03039 + 8.61025i 0.603039 + 0.861025i
\(101\) 1.09507 + 6.21046i 0.108964 + 0.617964i 0.989563 + 0.144102i \(0.0460294\pi\)
−0.880599 + 0.473862i \(0.842860\pi\)
\(102\) 0 0
\(103\) 2.99018 + 8.21544i 0.294631 + 0.809492i 0.995374 + 0.0960778i \(0.0306297\pi\)
−0.700743 + 0.713414i \(0.747148\pi\)
\(104\) −0.233376 + 5.36571i −0.0228844 + 0.526151i
\(105\) 0 0
\(106\) −1.21744 1.32845i −0.118248 0.129031i
\(107\) 3.23101i 0.312354i −0.987729 0.156177i \(-0.950083\pi\)
0.987729 0.156177i \(-0.0499170\pi\)
\(108\) 0 0
\(109\) 10.8688i 1.04104i −0.853849 0.520521i \(-0.825738\pi\)
0.853849 0.520521i \(-0.174262\pi\)
\(110\) −2.96205 + 2.71452i −0.282421 + 0.258820i
\(111\) 0 0
\(112\) −18.6275 + 0.00414052i −1.76014 + 0.000391242i
\(113\) −3.71933 10.2188i −0.349885 0.961301i −0.982406 0.186758i \(-0.940202\pi\)
0.632521 0.774543i \(-0.282020\pi\)
\(114\) 0 0
\(115\) 3.20749 + 18.1906i 0.299100 + 1.69628i
\(116\) −6.24460 8.91610i −0.579797 0.827840i
\(117\) 0 0
\(118\) −4.64667 + 8.92739i −0.427761 + 0.821833i
\(119\) 20.3761 + 7.41630i 1.86788 + 0.679851i
\(120\) 0 0
\(121\) 7.82363 + 6.56481i 0.711239 + 0.596801i
\(122\) 9.33154 + 7.15952i 0.844838 + 0.648193i
\(123\) 0 0
\(124\) 4.10244 15.3173i 0.368410 1.37554i
\(125\) 0.409913 0.709991i 0.0366638 0.0635035i
\(126\) 0 0
\(127\) −12.2372 + 7.06513i −1.08587 + 0.626929i −0.932475 0.361235i \(-0.882355\pi\)
−0.153399 + 0.988164i \(0.549022\pi\)
\(128\) −10.0333 + 5.22799i −0.886831 + 0.462094i
\(129\) 0 0
\(130\) 7.94514 3.29150i 0.696835 0.288684i
\(131\) 3.55599 + 0.627016i 0.310688 + 0.0547827i 0.326818 0.945087i \(-0.394024\pi\)
−0.0161302 + 0.999870i \(0.505135\pi\)
\(132\) 0 0
\(133\) −1.02583 1.22254i −0.0889511 0.106008i
\(134\) 0.508936 + 11.6417i 0.0439654 + 1.00569i
\(135\) 0 0
\(136\) 13.0570 1.72120i 1.11963 0.147592i
\(137\) 8.46244 + 10.0851i 0.722995 + 0.861632i 0.994918 0.100687i \(-0.0321041\pi\)
−0.271923 + 0.962319i \(0.587660\pi\)
\(138\) 0 0
\(139\) 2.08259 11.8109i 0.176643 1.00179i −0.759588 0.650405i \(-0.774599\pi\)
0.936230 0.351387i \(-0.114290\pi\)
\(140\) 12.6086 + 27.0313i 1.06562 + 2.28457i
\(141\) 0 0
\(142\) 0.515786 0.114377i 0.0432838 0.00959832i
\(143\) 0.842252 + 1.45882i 0.0704327 + 0.121993i
\(144\) 0 0
\(145\) −8.71512 + 15.0950i −0.723751 + 1.25357i
\(146\) 5.35353 16.9825i 0.443061 1.40548i
\(147\) 0 0
\(148\) −3.07014 + 4.38565i −0.252364 + 0.360498i
\(149\) −6.78333 5.69189i −0.555712 0.466298i 0.321158 0.947026i \(-0.395928\pi\)
−0.876870 + 0.480728i \(0.840372\pi\)
\(150\) 0 0
\(151\) 1.00187 2.75261i 0.0815308 0.224004i −0.892229 0.451584i \(-0.850859\pi\)
0.973759 + 0.227580i \(0.0730813\pi\)
\(152\) −0.895580 0.370786i −0.0726411 0.0300748i
\(153\) 0 0
\(154\) −4.92725 + 3.13939i −0.397049 + 0.252979i
\(155\) −25.0056 + 4.40916i −2.00850 + 0.354152i
\(156\) 0 0
\(157\) −3.73399 10.2591i −0.298005 0.818762i −0.994833 0.101524i \(-0.967628\pi\)
0.696828 0.717238i \(-0.254594\pi\)
\(158\) 0.730574 5.55164i 0.0581214 0.441665i
\(159\) 0 0
\(160\) 14.3755 + 11.0244i 1.13648 + 0.871553i
\(161\) 26.8597i 2.11684i
\(162\) 0 0
\(163\) −0.983434 −0.0770285 −0.0385143 0.999258i \(-0.512263\pi\)
−0.0385143 + 0.999258i \(0.512263\pi\)
\(164\) −0.0763197 0.0763027i −0.00595956 0.00595824i
\(165\) 0 0
\(166\) −2.55763 + 19.4355i −0.198511 + 1.50849i
\(167\) −1.50427 + 0.547510i −0.116404 + 0.0423676i −0.399565 0.916705i \(-0.630839\pi\)
0.283161 + 0.959072i \(0.408617\pi\)
\(168\) 0 0
\(169\) 1.63131 + 9.25162i 0.125485 + 0.711663i
\(170\) −11.3318 17.7852i −0.869109 1.36406i
\(171\) 0 0
\(172\) 2.57114 5.51542i 0.196047 0.420547i
\(173\) −13.3229 4.84914i −1.01292 0.368673i −0.218367 0.975867i \(-0.570073\pi\)
−0.794554 + 0.607193i \(0.792295\pi\)
\(174\) 0 0
\(175\) 15.7332 18.7501i 1.18932 1.41738i
\(176\) −1.77355 + 3.07345i −0.133686 + 0.231670i
\(177\) 0 0
\(178\) −9.88993 3.11768i −0.741281 0.233680i
\(179\) 5.27151 + 3.04351i 0.394011 + 0.227483i 0.683897 0.729579i \(-0.260284\pi\)
−0.289885 + 0.957061i \(0.593617\pi\)
\(180\) 0 0
\(181\) −11.4059 + 6.58520i −0.847795 + 0.489474i −0.859906 0.510452i \(-0.829478\pi\)
0.0121116 + 0.999927i \(0.496145\pi\)
\(182\) 12.2090 2.70737i 0.904989 0.200684i
\(183\) 0 0
\(184\) 7.53522 + 14.4691i 0.555504 + 1.06668i
\(185\) 8.44201 + 1.48855i 0.620669 + 0.109441i
\(186\) 0 0
\(187\) 3.16427 2.65514i 0.231395 0.194163i
\(188\) 21.8204 1.91148i 1.59141 0.139409i
\(189\) 0 0
\(190\) 0.0677875 + 1.55061i 0.00491783 + 0.112493i
\(191\) −16.3786 + 13.7433i −1.18512 + 0.994431i −0.185185 + 0.982704i \(0.559288\pi\)
−0.999931 + 0.0117270i \(0.996267\pi\)
\(192\) 0 0
\(193\) 3.64547 20.6745i 0.262407 1.48818i −0.513912 0.857843i \(-0.671804\pi\)
0.776319 0.630341i \(-0.217085\pi\)
\(194\) 0.480023 + 1.15870i 0.0344636 + 0.0831895i
\(195\) 0 0
\(196\) 7.60549 + 28.3715i 0.543249 + 2.02653i
\(197\) 5.23281 + 9.06349i 0.372822 + 0.645747i 0.989999 0.141078i \(-0.0450568\pi\)
−0.617176 + 0.786825i \(0.711723\pi\)
\(198\) 0 0
\(199\) 14.3685 + 8.29565i 1.01855 + 0.588063i 0.913685 0.406423i \(-0.133224\pi\)
0.104870 + 0.994486i \(0.466557\pi\)
\(200\) 3.21522 14.5143i 0.227350 1.02632i
\(201\) 0 0
\(202\) 5.42879 7.07575i 0.381968 0.497848i
\(203\) −16.2921 + 19.4162i −1.14348 + 1.36275i
\(204\) 0 0
\(205\) −0.0591036 + 0.162386i −0.00412797 + 0.0113415i
\(206\) 5.70847 10.9673i 0.397728 0.764131i
\(207\) 0 0
\(208\) 5.81735 4.88354i 0.403361 0.338613i
\(209\) −0.299396 + 0.0527915i −0.0207096 + 0.00365167i
\(210\) 0 0
\(211\) −8.76523 + 3.19028i −0.603423 + 0.219628i −0.625623 0.780126i \(-0.715155\pi\)
0.0222000 + 0.999754i \(0.492933\pi\)
\(212\) −0.221817 + 2.53864i −0.0152345 + 0.174354i
\(213\) 0 0
\(214\) −3.36870 + 3.08719i −0.230280 + 0.211036i
\(215\) −9.74405 −0.664539
\(216\) 0 0
\(217\) −36.9226 −2.50647
\(218\) −11.3320 + 10.3850i −0.767497 + 0.703360i
\(219\) 0 0
\(220\) 5.66040 + 0.494587i 0.381624 + 0.0333451i
\(221\) −8.30841 + 3.02402i −0.558884 + 0.203417i
\(222\) 0 0
\(223\) −18.4672 + 3.25626i −1.23665 + 0.218055i −0.753481 0.657470i \(-0.771627\pi\)
−0.483172 + 0.875525i \(0.660515\pi\)
\(224\) 17.8027 + 19.4174i 1.18949 + 1.29738i
\(225\) 0 0
\(226\) −7.10047 + 13.6417i −0.472316 + 0.907434i
\(227\) −1.73323 + 4.76200i −0.115038 + 0.316065i −0.983828 0.179116i \(-0.942676\pi\)
0.868790 + 0.495181i \(0.164898\pi\)
\(228\) 0 0
\(229\) −14.4905 + 17.2691i −0.957559 + 1.14117i 0.0323508 + 0.999477i \(0.489701\pi\)
−0.989910 + 0.141698i \(0.954744\pi\)
\(230\) 15.9010 20.7250i 1.04848 1.36657i
\(231\) 0 0
\(232\) −3.32943 + 15.0299i −0.218588 + 0.986763i
\(233\) −4.93700 2.85038i −0.323434 0.186735i 0.329488 0.944160i \(-0.393124\pi\)
−0.652922 + 0.757425i \(0.726457\pi\)
\(234\) 0 0
\(235\) −17.5368 30.3747i −1.14398 1.98143i
\(236\) 13.7477 3.68531i 0.894896 0.239893i
\(237\) 0 0
\(238\) −11.7368 28.3306i −0.760782 1.83640i
\(239\) 3.99952 22.6824i 0.258707 1.46720i −0.527667 0.849451i \(-0.676933\pi\)
0.786374 0.617750i \(-0.211956\pi\)
\(240\) 0 0
\(241\) 16.6164 13.9428i 1.07036 0.898137i 0.0752732 0.997163i \(-0.476017\pi\)
0.995085 + 0.0990259i \(0.0315727\pi\)
\(242\) −0.630814 14.4296i −0.0405503 0.927571i
\(243\) 0 0
\(244\) −1.45155 16.5700i −0.0929257 1.06079i
\(245\) 36.0300 30.2327i 2.30187 1.93150i
\(246\) 0 0
\(247\) 0.640852 + 0.112999i 0.0407764 + 0.00718999i
\(248\) −19.8899 + 10.3582i −1.26301 + 0.657749i
\(249\) 0 0
\(250\) −1.13191 + 0.251005i −0.0715885 + 0.0158750i
\(251\) 6.86745 3.96493i 0.433470 0.250264i −0.267354 0.963598i \(-0.586149\pi\)
0.700824 + 0.713334i \(0.252816\pi\)
\(252\) 0 0
\(253\) 4.43115 + 2.55833i 0.278584 + 0.160841i
\(254\) 19.0587 + 6.00801i 1.19585 + 0.376976i
\(255\) 0 0
\(256\) 15.0375 + 5.46564i 0.939845 + 0.341602i
\(257\) −0.0798480 + 0.0951592i −0.00498078 + 0.00593587i −0.768529 0.639815i \(-0.779011\pi\)
0.763548 + 0.645751i \(0.223455\pi\)
\(258\) 0 0
\(259\) 11.7135 + 4.26337i 0.727842 + 0.264913i
\(260\) −11.0232 5.13873i −0.683632 0.318691i
\(261\) 0 0
\(262\) −2.74396 4.30663i −0.169523 0.266064i
\(263\) −0.961362 5.45215i −0.0592801 0.336194i 0.940715 0.339197i \(-0.110155\pi\)
−0.999995 + 0.00300271i \(0.999044\pi\)
\(264\) 0 0
\(265\) 3.83439 1.39560i 0.235545 0.0857313i
\(266\) −0.294469 + 2.23767i −0.0180550 + 0.137200i
\(267\) 0 0
\(268\) 11.6515 11.6541i 0.711731 0.711889i
\(269\) −5.59805 −0.341319 −0.170659 0.985330i \(-0.554590\pi\)
−0.170659 + 0.985330i \(0.554590\pi\)
\(270\) 0 0
\(271\) 1.56554i 0.0951000i −0.998869 0.0475500i \(-0.984859\pi\)
0.998869 0.0475500i \(-0.0151413\pi\)
\(272\) −14.2704 11.9689i −0.865268 0.725718i
\(273\) 0 0
\(274\) 2.42917 18.4593i 0.146751 1.11517i
\(275\) −1.59473 4.38148i −0.0961657 0.264213i
\(276\) 0 0
\(277\) 27.6100 4.86839i 1.65893 0.292513i 0.735854 0.677140i \(-0.236781\pi\)
0.923072 + 0.384627i \(0.125670\pi\)
\(278\) −14.3042 + 9.11387i −0.857906 + 0.546613i
\(279\) 0 0
\(280\) 16.1359 38.9740i 0.964307 2.32914i
\(281\) −3.07719 + 8.45452i −0.183570 + 0.504354i −0.997008 0.0772972i \(-0.975371\pi\)
0.813438 + 0.581651i \(0.197593\pi\)
\(282\) 0 0
\(283\) −22.1256 18.5656i −1.31523 1.10361i −0.987293 0.158909i \(-0.949202\pi\)
−0.327936 0.944700i \(-0.606353\pi\)
\(284\) −0.612078 0.428480i −0.0363202 0.0254256i
\(285\) 0 0
\(286\) 0.716230 2.27203i 0.0423516 0.134348i
\(287\) −0.125643 + 0.217620i −0.00741648 + 0.0128457i
\(288\) 0 0
\(289\) 2.34052 + 4.05391i 0.137678 + 0.238465i
\(290\) 24.0655 5.33659i 1.41317 0.313375i
\(291\) 0 0
\(292\) −22.8214 + 10.6449i −1.33552 + 0.622946i
\(293\) −3.10437 + 17.6058i −0.181359 + 1.02854i 0.749185 + 0.662360i \(0.230445\pi\)
−0.930545 + 0.366179i \(0.880666\pi\)
\(294\) 0 0
\(295\) −14.6495 17.4587i −0.852930 1.01648i
\(296\) 7.50601 0.989458i 0.436278 0.0575111i
\(297\) 0 0
\(298\) 0.546935 + 12.5109i 0.0316831 + 0.724738i
\(299\) −7.03989 8.38981i −0.407127 0.485196i
\(300\) 0 0
\(301\) −13.9540 2.46046i −0.804293 0.141819i
\(302\) −3.82718 + 1.58552i −0.220229 + 0.0912364i
\(303\) 0 0
\(304\) 0.469127 + 1.28803i 0.0269063 + 0.0738734i
\(305\) −23.0660 + 13.3172i −1.32076 + 0.762540i
\(306\) 0 0
\(307\) 2.66885 4.62258i 0.152319 0.263825i −0.779760 0.626078i \(-0.784659\pi\)
0.932080 + 0.362253i \(0.117992\pi\)
\(308\) 7.98109 + 2.13758i 0.454765 + 0.121800i
\(309\) 0 0
\(310\) 28.4895 + 21.8583i 1.61810 + 1.24147i
\(311\) 7.48203 + 6.27817i 0.424267 + 0.356002i 0.829783 0.558086i \(-0.188464\pi\)
−0.405517 + 0.914088i \(0.632908\pi\)
\(312\) 0 0
\(313\) −20.9377 7.62069i −1.18347 0.430747i −0.326042 0.945355i \(-0.605715\pi\)
−0.857425 + 0.514608i \(0.827937\pi\)
\(314\) −7.12846 + 13.6955i −0.402282 + 0.772882i
\(315\) 0 0
\(316\) −6.48628 + 4.54282i −0.364882 + 0.255553i
\(317\) 2.75422 + 15.6200i 0.154692 + 0.877304i 0.959067 + 0.283181i \(0.0913897\pi\)
−0.804374 + 0.594123i \(0.797499\pi\)
\(318\) 0 0
\(319\) 1.65138 + 4.53712i 0.0924593 + 0.254030i
\(320\) −2.24144 25.5217i −0.125300 1.42671i
\(321\) 0 0
\(322\) 28.0044 25.6641i 1.56062 1.43021i
\(323\) 1.59571i 0.0887877i
\(324\) 0 0
\(325\) 9.98038i 0.553612i
\(326\) 0.939658 + 1.02534i 0.0520429 + 0.0567885i
\(327\) 0 0
\(328\) −0.00663187 + 0.152478i −0.000366184 + 0.00841920i
\(329\) −17.4437 47.9263i −0.961704 2.64226i
\(330\) 0 0
\(331\) 4.91331 + 27.8648i 0.270060 + 1.53159i 0.754229 + 0.656611i \(0.228011\pi\)
−0.484169 + 0.874974i \(0.660878\pi\)
\(332\) 22.7075 15.9037i 1.24624 0.872830i
\(333\) 0 0
\(334\) 2.00815 + 1.04524i 0.109881 + 0.0571928i
\(335\) −24.7965 9.02520i −1.35478 0.493099i
\(336\) 0 0
\(337\) −2.65131 2.22472i −0.144426 0.121188i 0.567712 0.823227i \(-0.307829\pi\)
−0.712138 + 0.702039i \(0.752273\pi\)
\(338\) 8.08718 10.5406i 0.439885 0.573335i
\(339\) 0 0
\(340\) −7.71570 + 28.8082i −0.418442 + 1.56234i
\(341\) −3.51679 + 6.09126i −0.190445 + 0.329860i
\(342\) 0 0
\(343\) 30.9999 17.8978i 1.67383 0.966389i
\(344\) −8.20715 + 2.58921i −0.442500 + 0.139601i
\(345\) 0 0
\(346\) 7.67407 + 18.5239i 0.412561 + 0.995853i
\(347\) 21.3082 + 3.75721i 1.14388 + 0.201698i 0.713304 0.700854i \(-0.247198\pi\)
0.430581 + 0.902552i \(0.358309\pi\)
\(348\) 0 0
\(349\) 13.6098 + 16.2195i 0.728514 + 0.868209i 0.995428 0.0955113i \(-0.0304486\pi\)
−0.266915 + 0.963720i \(0.586004\pi\)
\(350\) −34.5821 + 1.51181i −1.84849 + 0.0808097i
\(351\) 0 0
\(352\) 4.89903 1.08752i 0.261119 0.0579648i
\(353\) 10.0326 + 11.9564i 0.533980 + 0.636373i 0.963827 0.266529i \(-0.0858768\pi\)
−0.429847 + 0.902902i \(0.641432\pi\)
\(354\) 0 0
\(355\) −0.207748 + 1.17820i −0.0110261 + 0.0625324i
\(356\) 6.19916 + 13.2903i 0.328555 + 0.704384i
\(357\) 0 0
\(358\) −1.86365 8.40419i −0.0984971 0.444175i
\(359\) −2.44114 4.22817i −0.128838 0.223154i 0.794389 0.607410i \(-0.207791\pi\)
−0.923227 + 0.384256i \(0.874458\pi\)
\(360\) 0 0
\(361\) 9.44128 16.3528i 0.496909 0.860672i
\(362\) 17.7640 + 5.59989i 0.933656 + 0.294324i
\(363\) 0 0
\(364\) −14.4883 10.1424i −0.759391 0.531605i
\(365\) 30.8889 + 25.9189i 1.61680 + 1.35666i
\(366\) 0 0
\(367\) −3.44230 + 9.45764i −0.179687 + 0.493685i −0.996536 0.0831666i \(-0.973497\pi\)
0.816849 + 0.576852i \(0.195719\pi\)
\(368\) 7.88592 21.6814i 0.411082 1.13022i
\(369\) 0 0
\(370\) −6.51424 10.2241i −0.338659 0.531523i
\(371\) 5.84344 1.03036i 0.303376 0.0534935i
\(372\) 0 0
\(373\) −0.511543 1.40545i −0.0264867 0.0727717i 0.925745 0.378149i \(-0.123439\pi\)
−0.952231 + 0.305378i \(0.901217\pi\)
\(374\) −5.79171 0.762166i −0.299482 0.0394107i
\(375\) 0 0
\(376\) −22.8420 20.9238i −1.17799 1.07906i
\(377\) 10.3349i 0.532275i
\(378\) 0 0
\(379\) 26.4034 1.35625 0.678126 0.734945i \(-0.262792\pi\)
0.678126 + 0.734945i \(0.262792\pi\)
\(380\) 1.55192 1.55227i 0.0796119 0.0796296i
\(381\) 0 0
\(382\) 29.9785 + 3.94505i 1.53384 + 0.201847i
\(383\) 14.7665 5.37456i 0.754532 0.274627i 0.0640204 0.997949i \(-0.479608\pi\)
0.690511 + 0.723321i \(0.257386\pi\)
\(384\) 0 0
\(385\) −2.29739 13.0291i −0.117086 0.664027i
\(386\) −25.0387 + 15.9534i −1.27444 + 0.812006i
\(387\) 0 0
\(388\) 0.749417 1.60760i 0.0380459 0.0816134i
\(389\) −19.0208 6.92300i −0.964393 0.351010i −0.188639 0.982046i \(-0.560408\pi\)
−0.775753 + 0.631036i \(0.782630\pi\)
\(390\) 0 0
\(391\) −17.2629 + 20.5731i −0.873023 + 1.04043i
\(392\) 22.3136 35.0381i 1.12700 1.76969i
\(393\) 0 0
\(394\) 4.44985 14.1159i 0.224180 0.711146i
\(395\) 10.9813 + 6.34007i 0.552530 + 0.319003i
\(396\) 0 0
\(397\) 23.8679 13.7801i 1.19789 0.691604i 0.237808 0.971312i \(-0.423571\pi\)
0.960085 + 0.279708i \(0.0902376\pi\)
\(398\) −5.07973 22.9072i −0.254624 1.14823i
\(399\) 0 0
\(400\) −18.2050 + 10.5160i −0.910248 + 0.525802i
\(401\) 6.68368 + 1.17851i 0.333767 + 0.0588521i 0.338020 0.941139i \(-0.390243\pi\)
−0.00425323 + 0.999991i \(0.501354\pi\)
\(402\) 0 0
\(403\) 11.5330 9.67734i 0.574500 0.482063i
\(404\) −12.5644 + 1.10065i −0.625103 + 0.0547595i
\(405\) 0 0
\(406\) 35.8105 1.56551i 1.77725 0.0776952i
\(407\) 1.81903 1.52635i 0.0901659 0.0756581i
\(408\) 0 0
\(409\) −2.97274 + 16.8592i −0.146992 + 0.833636i 0.818753 + 0.574145i \(0.194666\pi\)
−0.965746 + 0.259490i \(0.916445\pi\)
\(410\) 0.225778 0.0935352i 0.0111504 0.00461937i
\(411\) 0 0
\(412\) −16.8891 + 4.52743i −0.832065 + 0.223050i
\(413\) −16.5704 28.7008i −0.815377 1.41227i
\(414\) 0 0
\(415\) −38.4439 22.1956i −1.88714 1.08954i
\(416\) −10.6500 1.39910i −0.522162 0.0685963i
\(417\) 0 0
\(418\) 0.341110 + 0.261713i 0.0166842 + 0.0128008i
\(419\) −0.999049 + 1.19062i −0.0488067 + 0.0581656i −0.789896 0.613241i \(-0.789865\pi\)
0.741089 + 0.671407i \(0.234310\pi\)
\(420\) 0 0
\(421\) 4.61578 12.6818i 0.224959 0.618071i −0.774943 0.632031i \(-0.782222\pi\)
0.999903 + 0.0139601i \(0.00444380\pi\)
\(422\) 11.7013 + 6.09048i 0.569610 + 0.296480i
\(423\) 0 0
\(424\) 2.85876 2.19436i 0.138834 0.106568i
\(425\) 24.1016 4.24977i 1.16910 0.206144i
\(426\) 0 0
\(427\) −36.3944 + 13.2465i −1.76125 + 0.641042i
\(428\) 6.43750 + 0.562487i 0.311168 + 0.0271888i
\(429\) 0 0
\(430\) 9.31031 + 10.1593i 0.448983 + 0.489924i
\(431\) 32.6219 1.57134 0.785671 0.618644i \(-0.212318\pi\)
0.785671 + 0.618644i \(0.212318\pi\)
\(432\) 0 0
\(433\) −20.4173 −0.981192 −0.490596 0.871387i \(-0.663221\pi\)
−0.490596 + 0.871387i \(0.663221\pi\)
\(434\) 35.2790 + 38.4960i 1.69345 + 1.84787i
\(435\) 0 0
\(436\) 21.6551 + 1.89215i 1.03709 + 0.0906175i
\(437\) 1.85740 0.676039i 0.0888516 0.0323393i
\(438\) 0 0
\(439\) 5.01912 0.885007i 0.239550 0.0422391i −0.0525843 0.998616i \(-0.516746\pi\)
0.292134 + 0.956377i \(0.405635\pi\)
\(440\) −4.89278 6.37419i −0.233254 0.303878i
\(441\) 0 0
\(442\) 11.0915 + 5.77307i 0.527567 + 0.274597i
\(443\) −6.33577 + 17.4074i −0.301022 + 0.827050i 0.693301 + 0.720648i \(0.256155\pi\)
−0.994323 + 0.106403i \(0.966067\pi\)
\(444\) 0 0
\(445\) 15.0941 17.9885i 0.715529 0.852735i
\(446\) 21.0402 + 16.1428i 0.996280 + 0.764385i
\(447\) 0 0
\(448\) 3.23462 37.1144i 0.152821 1.75349i
\(449\) −16.4019 9.46962i −0.774052 0.446899i 0.0602665 0.998182i \(-0.480805\pi\)
−0.834318 + 0.551283i \(0.814138\pi\)
\(450\) 0 0
\(451\) 0.0239344 + 0.0414557i 0.00112703 + 0.00195207i
\(452\) 21.0075 5.63143i 0.988108 0.264880i
\(453\) 0 0
\(454\) 6.62101 2.74294i 0.310739 0.128733i
\(455\) −4.91753 + 27.8887i −0.230537 + 1.30744i
\(456\) 0 0
\(457\) −8.02025 + 6.72979i −0.375172 + 0.314806i −0.810803 0.585319i \(-0.800969\pi\)
0.435632 + 0.900125i \(0.356525\pi\)
\(458\) 31.8505 1.39240i 1.48828 0.0650624i
\(459\) 0 0
\(460\) −36.8015 + 3.22383i −1.71588 + 0.150312i
\(461\) −18.6832 + 15.6771i −0.870163 + 0.730153i −0.964132 0.265422i \(-0.914489\pi\)
0.0939698 + 0.995575i \(0.470044\pi\)
\(462\) 0 0
\(463\) 15.5149 + 2.73570i 0.721039 + 0.127139i 0.522113 0.852876i \(-0.325144\pi\)
0.198925 + 0.980015i \(0.436255\pi\)
\(464\) 18.8516 10.8896i 0.875166 0.505537i
\(465\) 0 0
\(466\) 1.74539 + 7.87089i 0.0808538 + 0.364612i
\(467\) 6.64718 3.83775i 0.307595 0.177590i −0.338255 0.941055i \(-0.609837\pi\)
0.645850 + 0.763465i \(0.276503\pi\)
\(468\) 0 0
\(469\) −33.2309 19.1859i −1.53446 0.885922i
\(470\) −14.9129 + 47.3068i −0.687880 + 2.18210i
\(471\) 0 0
\(472\) −16.9781 10.8122i −0.781479 0.497674i
\(473\) −1.73499 + 2.06769i −0.0797751 + 0.0950723i
\(474\) 0 0
\(475\) −1.69260 0.616057i −0.0776619 0.0282666i
\(476\) −18.3236 + 39.3065i −0.839860 + 1.80161i
\(477\) 0 0
\(478\) −27.4705 + 17.5028i −1.25647 + 0.800558i
\(479\) 5.41592 + 30.7152i 0.247460 + 1.40341i 0.814710 + 0.579869i \(0.196896\pi\)
−0.567250 + 0.823545i \(0.691993\pi\)
\(480\) 0 0
\(481\) −4.77621 + 1.73840i −0.217776 + 0.0792641i
\(482\) −30.4138 4.00233i −1.38531 0.182301i
\(483\) 0 0
\(484\) −14.4418 + 14.4450i −0.656445 + 0.656591i
\(485\) −2.84013 −0.128964
\(486\) 0 0
\(487\) 14.2176i 0.644263i 0.946695 + 0.322131i \(0.104399\pi\)
−0.946695 + 0.322131i \(0.895601\pi\)
\(488\) −15.8892 + 17.3459i −0.719271 + 0.785210i
\(489\) 0 0
\(490\) −65.9472 8.67839i −2.97919 0.392050i
\(491\) −0.483056 1.32718i −0.0218000 0.0598950i 0.928315 0.371794i \(-0.121257\pi\)
−0.950115 + 0.311899i \(0.899035\pi\)
\(492\) 0 0
\(493\) −24.9578 + 4.40073i −1.12404 + 0.198199i
\(494\) −0.494511 0.776131i −0.0222491 0.0349198i
\(495\) 0 0
\(496\) 29.8042 + 10.8403i 1.33825 + 0.486745i
\(497\) −0.595012 + 1.63478i −0.0266899 + 0.0733300i
\(498\) 0 0
\(499\) 22.9472 + 19.2550i 1.02726 + 0.861971i 0.990522 0.137355i \(-0.0438600\pi\)
0.0367345 + 0.999325i \(0.488304\pi\)
\(500\) 1.34323 + 0.940317i 0.0600711 + 0.0420523i
\(501\) 0 0
\(502\) −10.6957 3.37167i −0.477370 0.150485i
\(503\) 4.40212 7.62469i 0.196281 0.339968i −0.751039 0.660258i \(-0.770447\pi\)
0.947320 + 0.320290i \(0.103780\pi\)
\(504\) 0 0
\(505\) 10.0979 + 17.4901i 0.449351 + 0.778299i
\(506\) −1.56656 7.06443i −0.0696421 0.314052i
\(507\) 0 0
\(508\) −11.9463 25.6114i −0.530030 1.13632i
\(509\) 3.62638 20.5662i 0.160737 0.911582i −0.792616 0.609722i \(-0.791281\pi\)
0.953352 0.301860i \(-0.0976077\pi\)
\(510\) 0 0
\(511\) 37.6897 + 44.9169i 1.66730 + 1.98701i
\(512\) −8.66959 20.9007i −0.383145 0.923688i
\(513\) 0 0
\(514\) 0.175508 0.00767262i 0.00774133 0.000338425i
\(515\) 17.9971 + 21.4481i 0.793045 + 0.945114i
\(516\) 0 0
\(517\) −9.56806 1.68711i −0.420803 0.0741988i
\(518\) −6.74705 16.2863i −0.296448 0.715577i
\(519\) 0 0
\(520\) 5.17485 + 16.4030i 0.226932 + 0.719318i
\(521\) −18.8404 + 10.8775i −0.825413 + 0.476552i −0.852280 0.523087i \(-0.824780\pi\)
0.0268665 + 0.999639i \(0.491447\pi\)
\(522\) 0 0
\(523\) 2.21522 3.83687i 0.0968647 0.167775i −0.813521 0.581536i \(-0.802452\pi\)
0.910385 + 0.413761i \(0.135785\pi\)
\(524\) −1.86833 + 6.97582i −0.0816186 + 0.304740i
\(525\) 0 0
\(526\) −4.76593 + 6.21179i −0.207804 + 0.270847i
\(527\) −28.2807 23.7303i −1.23193 1.03371i
\(528\) 0 0
\(529\) −9.64774 3.51149i −0.419467 0.152673i
\(530\) −5.11879 2.66431i −0.222346 0.115730i
\(531\) 0 0
\(532\) 2.61439 1.83105i 0.113348 0.0793860i
\(533\) −0.0177924 0.100906i −0.000770676 0.00437072i
\(534\) 0 0
\(535\) −3.53899 9.72329i −0.153004 0.420375i
\(536\) −23.2836 1.01270i −1.00570 0.0437418i
\(537\) 0 0
\(538\) 5.34886 + 5.83661i 0.230606 + 0.251634i
\(539\) 13.0287i 0.561186i
\(540\) 0 0
\(541\) 37.3027i 1.60377i 0.597479 + 0.801884i \(0.296169\pi\)
−0.597479 + 0.801884i \(0.703831\pi\)
\(542\) −1.63226 + 1.49586i −0.0701115 + 0.0642525i
\(543\) 0 0
\(544\) 1.15624 + 26.3146i 0.0495736 + 1.12823i
\(545\) −11.9048 32.7082i −0.509945 1.40106i
\(546\) 0 0
\(547\) 3.56925 + 20.2422i 0.152610 + 0.865496i 0.960938 + 0.276763i \(0.0892618\pi\)
−0.808328 + 0.588733i \(0.799627\pi\)
\(548\) −21.5670 + 15.1049i −0.921294 + 0.645250i
\(549\) 0 0
\(550\) −3.04445 + 5.84913i −0.129816 + 0.249408i
\(551\) 1.75273 + 0.637941i 0.0746687 + 0.0271772i
\(552\) 0 0
\(553\) 14.1249 + 11.8522i 0.600651 + 0.504006i
\(554\) −31.4569 24.1349i −1.33647 1.02540i
\(555\) 0 0
\(556\) 23.1697 + 6.20554i 0.982613 + 0.263173i
\(557\) 13.7564 23.8268i 0.582877 1.00957i −0.412259 0.911067i \(-0.635260\pi\)
0.995136 0.0985064i \(-0.0314065\pi\)
\(558\) 0 0
\(559\) 5.00349 2.88877i 0.211625 0.122182i
\(560\) −56.0525 + 20.4156i −2.36865 + 0.862715i
\(561\) 0 0
\(562\) 11.7550 4.86985i 0.495856 0.205422i
\(563\) 28.2129 + 4.97470i 1.18903 + 0.209658i 0.732952 0.680280i \(-0.238142\pi\)
0.456080 + 0.889939i \(0.349253\pi\)
\(564\) 0 0
\(565\) −22.3856 26.6781i −0.941770 1.12236i
\(566\) 1.78397 + 40.8076i 0.0749859 + 1.71527i
\(567\) 0 0
\(568\) 0.138093 + 1.04757i 0.00579424 + 0.0439550i
\(569\) 4.16772 + 4.96689i 0.174720 + 0.208223i 0.846297 0.532712i \(-0.178827\pi\)
−0.671577 + 0.740935i \(0.734383\pi\)
\(570\) 0 0
\(571\) −4.13866 + 23.4715i −0.173197 + 0.982252i 0.767006 + 0.641639i \(0.221745\pi\)
−0.940204 + 0.340612i \(0.889366\pi\)
\(572\) −3.05320 + 1.42414i −0.127661 + 0.0595465i
\(573\) 0 0
\(574\) 0.346944 0.0769360i 0.0144812 0.00321124i
\(575\) 15.1576 + 26.2538i 0.632117 + 1.09486i
\(576\) 0 0
\(577\) 9.82303 17.0140i 0.408938 0.708302i −0.585833 0.810432i \(-0.699232\pi\)
0.994771 + 0.102130i \(0.0325658\pi\)
\(578\) 1.99032 6.31372i 0.0827865 0.262616i
\(579\) 0 0
\(580\) −28.5583 19.9920i −1.18582 0.830122i
\(581\) −49.4491 41.4927i −2.05149 1.72141i
\(582\) 0 0
\(583\) 0.386593 1.06215i 0.0160110 0.0439899i
\(584\) 32.9041 + 13.6229i 1.36158 + 0.563720i
\(585\) 0 0
\(586\) 21.3222 13.5854i 0.880812 0.561208i
\(587\) 0.851961 0.150224i 0.0351642 0.00620040i −0.156038 0.987751i \(-0.549872\pi\)
0.191203 + 0.981551i \(0.438761\pi\)
\(588\) 0 0
\(589\) 0.929313 + 2.55327i 0.0382917 + 0.105206i
\(590\) −4.20519 + 31.9553i −0.173125 + 1.31558i
\(591\) 0 0
\(592\) −8.20352 6.88046i −0.337163 0.282785i
\(593\) 14.5405i 0.597108i −0.954393 0.298554i \(-0.903496\pi\)
0.954393 0.298554i \(-0.0965044\pi\)
\(594\) 0 0
\(595\) 69.4424 2.84686
\(596\) 12.5215 12.5243i 0.512900 0.513014i
\(597\) 0 0
\(598\) −2.02082 + 15.3562i −0.0826375 + 0.627964i
\(599\) −19.6014 + 7.13433i −0.800892 + 0.291501i −0.709856 0.704347i \(-0.751240\pi\)
−0.0910360 + 0.995848i \(0.529018\pi\)
\(600\) 0 0
\(601\) −3.10434 17.6056i −0.126629 0.718147i −0.980327 0.197379i \(-0.936757\pi\)
0.853699 0.520768i \(-0.174354\pi\)
\(602\) 10.7675 + 16.8995i 0.438851 + 0.688774i
\(603\) 0 0
\(604\) 5.30991 + 2.47533i 0.216057 + 0.100720i
\(605\) 30.7347 + 11.1865i 1.24954 + 0.454797i
\(606\) 0 0
\(607\) −11.4075 + 13.5950i −0.463017 + 0.551803i −0.946143 0.323748i \(-0.895057\pi\)
0.483126 + 0.875551i \(0.339501\pi\)
\(608\) 0.894670 1.71981i 0.0362837 0.0697476i
\(609\) 0 0
\(610\) 35.9240 + 11.3246i 1.45452 + 0.458519i
\(611\) 18.0101 + 10.3981i 0.728609 + 0.420662i
\(612\) 0 0
\(613\) −6.61359 + 3.81836i −0.267120 + 0.154222i −0.627578 0.778554i \(-0.715954\pi\)
0.360458 + 0.932775i \(0.382620\pi\)
\(614\) −7.36962 + 1.63424i −0.297414 + 0.0659524i
\(615\) 0 0
\(616\) −5.39716 10.3636i −0.217458 0.417562i
\(617\) −1.20638 0.212717i −0.0485669 0.00856365i 0.149312 0.988790i \(-0.452294\pi\)
−0.197879 + 0.980226i \(0.563405\pi\)
\(618\) 0 0
\(619\) −4.70712 + 3.94975i −0.189195 + 0.158754i −0.732465 0.680804i \(-0.761630\pi\)
0.543270 + 0.839558i \(0.317186\pi\)
\(620\) −4.43162 50.5889i −0.177978 2.03170i
\(621\) 0 0
\(622\) −0.603271 13.7996i −0.0241890 0.553313i
\(623\) 26.1578 21.9490i 1.04799 0.879367i
\(624\) 0 0
\(625\) −4.10756 + 23.2951i −0.164302 + 0.931805i
\(626\) 12.0602 + 29.1114i 0.482024 + 1.16353i
\(627\) 0 0
\(628\) 21.0903 5.65364i 0.841594 0.225605i
\(629\) 6.23183 + 10.7938i 0.248479 + 0.430379i
\(630\) 0 0
\(631\) 4.14675 + 2.39413i 0.165080 + 0.0953088i 0.580264 0.814429i \(-0.302949\pi\)
−0.415184 + 0.909737i \(0.636283\pi\)
\(632\) 10.9340 + 2.42209i 0.434930 + 0.0963455i
\(633\) 0 0
\(634\) 13.6540 17.7962i 0.542268 0.706779i
\(635\) −29.0875 + 34.6652i −1.15430 + 1.37565i
\(636\) 0 0
\(637\) −9.53816 + 26.2059i −0.377916 + 1.03832i
\(638\) 3.15260 6.05691i 0.124813 0.239795i
\(639\) 0 0
\(640\) −24.4677 + 26.7227i −0.967170 + 1.05631i
\(641\) −7.66053 + 1.35076i −0.302573 + 0.0533517i −0.322873 0.946442i \(-0.604649\pi\)
0.0203006 + 0.999794i \(0.493538\pi\)
\(642\) 0 0
\(643\) 22.0412 8.02234i 0.869220 0.316370i 0.131369 0.991334i \(-0.458063\pi\)
0.737851 + 0.674964i \(0.235841\pi\)
\(644\) −53.5156 4.67601i −2.10881 0.184261i
\(645\) 0 0
\(646\) −1.66371 + 1.52468i −0.0654578 + 0.0599878i
\(647\) −11.2669 −0.442948 −0.221474 0.975166i \(-0.571087\pi\)
−0.221474 + 0.975166i \(0.571087\pi\)
\(648\) 0 0
\(649\) −6.31318 −0.247814
\(650\) 10.4057 9.53612i 0.408145 0.374038i
\(651\) 0 0
\(652\) 0.171206 1.95940i 0.00670495 0.0767361i
\(653\) 36.3675 13.2367i 1.42317 0.517991i 0.488203 0.872730i \(-0.337653\pi\)
0.934965 + 0.354739i \(0.115430\pi\)
\(654\) 0 0
\(655\) 11.3880 2.00802i 0.444968 0.0784598i
\(656\) 0.165313 0.138776i 0.00645438 0.00541831i
\(657\) 0 0
\(658\) −33.3014 + 63.9800i −1.29822 + 2.49420i
\(659\) 11.6740 32.0740i 0.454753 1.24942i −0.474590 0.880207i \(-0.657404\pi\)
0.929343 0.369217i \(-0.120374\pi\)
\(660\) 0 0
\(661\) 32.5831 38.8310i 1.26734 1.51035i 0.505083 0.863071i \(-0.331462\pi\)
0.762252 0.647281i \(-0.224094\pi\)
\(662\) 24.3576 31.7471i 0.946685 1.23389i
\(663\) 0 0
\(664\) −38.2782 8.47937i −1.48548 0.329063i
\(665\) −4.42618 2.55546i −0.171640 0.0990964i
\(666\) 0 0
\(667\) −15.6961 27.1864i −0.607754 1.05266i
\(668\) −0.828985 3.09244i −0.0320744 0.119650i
\(669\) 0 0
\(670\) 14.2830 + 34.4767i 0.551799 + 1.33195i
\(671\) −1.28116 + 7.26582i −0.0494587 + 0.280494i
\(672\) 0 0
\(673\) 17.6716 14.8283i 0.681191 0.571587i −0.235163 0.971956i \(-0.575562\pi\)
0.916354 + 0.400369i \(0.131118\pi\)
\(674\) 0.213774 + 4.88999i 0.00823426 + 0.188355i
\(675\) 0 0
\(676\) −18.7170 + 1.63962i −0.719885 + 0.0630624i
\(677\) −32.2459 + 27.0575i −1.23931 + 1.03991i −0.241733 + 0.970343i \(0.577716\pi\)
−0.997578 + 0.0695623i \(0.977840\pi\)
\(678\) 0 0
\(679\) −4.06720 0.717158i −0.156085 0.0275220i
\(680\) 37.4081 19.4813i 1.43453 0.747075i
\(681\) 0 0
\(682\) 9.71108 2.15346i 0.371857 0.0824603i
\(683\) −34.0757 + 19.6736i −1.30387 + 0.752789i −0.981065 0.193676i \(-0.937959\pi\)
−0.322804 + 0.946466i \(0.604625\pi\)
\(684\) 0 0
\(685\) 36.5130 + 21.0808i 1.39509 + 0.805456i
\(686\) −48.2804 15.2198i −1.84336 0.581095i
\(687\) 0 0
\(688\) 10.5414 + 6.08294i 0.401886 + 0.231910i
\(689\) −1.55518 + 1.85340i −0.0592478 + 0.0706087i
\(690\) 0 0
\(691\) 34.6497 + 12.6115i 1.31814 + 0.479762i 0.902861 0.429933i \(-0.141463\pi\)
0.415276 + 0.909696i \(0.363685\pi\)
\(692\) 11.9809 25.7005i 0.455444 0.976986i
\(693\) 0 0
\(694\) −16.4424 25.8062i −0.624145 0.979591i
\(695\) −6.66949 37.8245i −0.252988 1.43477i
\(696\) 0 0
\(697\) −0.236102 + 0.0859340i −0.00894299 + 0.00325498i
\(698\) 3.90672 29.6872i 0.147872 1.12368i
\(699\) 0 0
\(700\) 34.6189 + 34.6113i 1.30847 + 1.30818i
\(701\) 6.58502 0.248713 0.124356 0.992238i \(-0.460313\pi\)
0.124356 + 0.992238i \(0.460313\pi\)
\(702\) 0 0
\(703\) 0.917317i 0.0345973i
\(704\) −5.81481 4.06869i −0.219154 0.153344i
\(705\) 0 0
\(706\) 2.87988 21.8843i 0.108386 0.823625i
\(707\) 10.0443 + 27.5965i 0.377755 + 1.03787i
\(708\) 0 0
\(709\) −11.2866 + 1.99013i −0.423876 + 0.0747408i −0.381517 0.924362i \(-0.624598\pi\)
−0.0423588 + 0.999102i \(0.513487\pi\)
\(710\) 1.42691 0.909153i 0.0535510 0.0341199i
\(711\) 0 0
\(712\) 7.93343 19.1620i 0.297318 0.718127i
\(713\) 15.6406 42.9723i 0.585746 1.60932i
\(714\) 0 0
\(715\) 4.13252 + 3.46760i 0.154548 + 0.129681i
\(716\) −6.98163 + 9.97316i −0.260916 + 0.372715i
\(717\) 0 0
\(718\) −2.07588 + 6.58513i −0.0774712 + 0.245755i
\(719\) −14.6250 + 25.3313i −0.545421 + 0.944697i 0.453159 + 0.891430i \(0.350297\pi\)
−0.998580 + 0.0532673i \(0.983036\pi\)
\(720\) 0 0
\(721\) 20.3569 + 35.2591i 0.758129 + 1.31312i
\(722\) −26.0707 + 5.78125i −0.970249 + 0.215156i
\(723\) 0 0
\(724\) −11.1348 23.8717i −0.413820 0.887183i
\(725\) −4.96752 + 28.1722i −0.184489 + 1.04629i
\(726\) 0 0
\(727\) −32.7533 39.0339i −1.21475 1.44769i −0.858125 0.513440i \(-0.828371\pi\)
−0.356628 0.934246i \(-0.616074\pi\)
\(728\) 3.26874 + 24.7966i 0.121147 + 0.919022i
\(729\) 0 0
\(730\) −2.49055 56.9704i −0.0921795 2.10857i
\(731\) −9.10664 10.8529i −0.336821 0.401408i
\(732\) 0 0
\(733\) 2.54100 + 0.448046i 0.0938538 + 0.0165490i 0.220378 0.975415i \(-0.429271\pi\)
−0.126524 + 0.991964i \(0.540382\pi\)
\(734\) 13.1497 5.44766i 0.485366 0.201077i
\(735\) 0 0
\(736\) −30.1402 + 12.4943i −1.11098 + 0.460546i
\(737\) −6.33034 + 3.65482i −0.233181 + 0.134627i
\(738\) 0 0
\(739\) 3.86165 6.68857i 0.142053 0.246043i −0.786217 0.617951i \(-0.787963\pi\)
0.928270 + 0.371908i \(0.121296\pi\)
\(740\) −4.43548 + 16.5608i −0.163051 + 0.608787i
\(741\) 0 0
\(742\) −6.65760 5.10797i −0.244408 0.187519i
\(743\) 9.80501 + 8.22738i 0.359711 + 0.301833i 0.804676 0.593715i \(-0.202339\pi\)
−0.444965 + 0.895548i \(0.646784\pi\)
\(744\) 0 0
\(745\) −26.6479 9.69906i −0.976305 0.355346i
\(746\) −0.976574 + 1.87624i −0.0357549 + 0.0686939i
\(747\) 0 0
\(748\) 4.73926 + 6.76676i 0.173284 + 0.247417i
\(749\) −2.61279 14.8179i −0.0954693 0.541433i
\(750\) 0 0
\(751\) −15.0834 41.4413i −0.550401 1.51221i −0.833165 0.553025i \(-0.813473\pi\)
0.282763 0.959190i \(-0.408749\pi\)
\(752\) 0.00973759 + 43.8079i 0.000355093 + 1.59751i
\(753\) 0 0
\(754\) −10.7753 + 9.87487i −0.392414 + 0.359622i
\(755\) 9.38096i 0.341408i
\(756\) 0 0
\(757\) 27.9094i 1.01438i −0.861833 0.507192i \(-0.830684\pi\)
0.861833 0.507192i \(-0.169316\pi\)
\(758\) −25.2281 27.5286i −0.916326 0.999883i
\(759\) 0 0
\(760\) −3.10126 0.134886i −0.112494 0.00489282i
\(761\) 7.20399 + 19.7928i 0.261145 + 0.717489i 0.999091 + 0.0426294i \(0.0135735\pi\)
−0.737946 + 0.674859i \(0.764204\pi\)
\(762\) 0 0
\(763\) −8.78916 49.8458i −0.318189 1.80454i
\(764\) −24.5309 35.0255i −0.887498 1.26718i
\(765\) 0 0
\(766\) −19.7128 10.2604i −0.712251 0.370724i
\(767\) 12.6983 + 4.62181i 0.458509 + 0.166884i
\(768\) 0 0
\(769\) −9.76794 8.19627i −0.352241 0.295565i 0.449448 0.893306i \(-0.351621\pi\)
−0.801689 + 0.597741i \(0.796065\pi\)
\(770\) −11.3893 + 14.8445i −0.410440 + 0.534958i
\(771\) 0 0
\(772\) 40.5574 + 10.8625i 1.45969 + 0.390950i
\(773\) −24.3894 + 42.2437i −0.877226 + 1.51940i −0.0228536 + 0.999739i \(0.507275\pi\)
−0.854372 + 0.519661i \(0.826058\pi\)
\(774\) 0 0
\(775\) −36.0896 + 20.8363i −1.29638 + 0.748463i
\(776\) −2.39216 + 0.754684i −0.0858736 + 0.0270916i
\(777\) 0 0
\(778\) 10.9561 + 26.4462i 0.392795 + 0.948142i
\(779\) 0.0182112 + 0.00321113i 0.000652484 + 0.000115051i
\(780\) 0 0
\(781\) 0.213023 + 0.253871i 0.00762256 + 0.00908421i
\(782\) 37.9443 1.65880i 1.35689 0.0593185i
\(783\) 0 0
\(784\) −57.8516 + 10.2141i −2.06613 + 0.364788i
\(785\) −22.4739 26.7833i −0.802127 0.955938i
\(786\) 0 0
\(787\) −4.56672 + 25.8991i −0.162786 + 0.923205i 0.788532 + 0.614994i \(0.210841\pi\)
−0.951318 + 0.308211i \(0.900270\pi\)
\(788\) −18.9692 + 8.84803i −0.675749 + 0.315198i
\(789\) 0 0
\(790\) −3.88226 17.5071i −0.138125 0.622876i
\(791\) −25.3209 43.8570i −0.900306 1.55938i
\(792\) 0 0
\(793\) 7.89615 13.6765i 0.280401 0.485668i
\(794\) −37.1728 11.7183i −1.31921 0.415865i
\(795\) 0 0
\(796\) −19.0297 + 27.1837i −0.674491 + 0.963501i
\(797\) 27.3124 + 22.9179i 0.967456 + 0.811792i 0.982150 0.188100i \(-0.0602328\pi\)
−0.0146935 + 0.999892i \(0.504677\pi\)
\(798\) 0 0
\(799\) 17.4415 47.9201i 0.617036 1.69529i
\(800\) 28.3588 + 8.93283i 1.00263 + 0.315823i
\(801\) 0 0
\(802\) −5.15743 8.09456i −0.182115 0.285829i
\(803\) 11.0000 1.93959i 0.388180 0.0684467i
\(804\) 0 0
\(805\) 29.4200 + 80.8307i 1.03692 + 2.84891i
\(806\) −21.1094 2.77791i −0.743546 0.0978477i
\(807\) 0 0
\(808\) 13.1527 + 12.0482i 0.462710 + 0.423854i
\(809\) 41.4917i 1.45877i −0.684103 0.729385i \(-0.739806\pi\)
0.684103 0.729385i \(-0.260194\pi\)
\(810\) 0 0
\(811\) 29.0442 1.01988 0.509940 0.860210i \(-0.329667\pi\)
0.509940 + 0.860210i \(0.329667\pi\)
\(812\) −35.8487 35.8407i −1.25804 1.25776i
\(813\) 0 0
\(814\) −3.32945 0.438142i −0.116697 0.0153569i
\(815\) −2.95951 + 1.07717i −0.103667 + 0.0377318i
\(816\) 0 0
\(817\) 0.181065 + 1.02687i 0.00633467 + 0.0359257i
\(818\) 20.4181 13.0094i 0.713902 0.454862i
\(819\) 0 0
\(820\) −0.313249 0.146028i −0.0109391 0.00509953i
\(821\) 47.7187 + 17.3682i 1.66539 + 0.606153i 0.991197 0.132399i \(-0.0422679\pi\)
0.674196 + 0.738552i \(0.264490\pi\)
\(822\) 0 0
\(823\) −10.2372 + 12.2002i −0.356847 + 0.425274i −0.914365 0.404891i \(-0.867309\pi\)
0.557518 + 0.830165i \(0.311754\pi\)
\(824\) 20.8577 + 13.2829i 0.726611 + 0.462732i
\(825\) 0 0
\(826\) −14.0911 + 44.6998i −0.490291 + 1.55530i
\(827\) −26.8166 15.4826i −0.932504 0.538381i −0.0449012 0.998991i \(-0.514297\pi\)
−0.887603 + 0.460610i \(0.847631\pi\)
\(828\) 0 0
\(829\) −5.02207 + 2.89949i −0.174424 + 0.100704i −0.584670 0.811271i \(-0.698776\pi\)
0.410246 + 0.911975i \(0.365443\pi\)
\(830\) 13.5912 + 61.2898i 0.471758 + 2.12740i
\(831\) 0 0
\(832\) 8.71726 + 12.4407i 0.302217 + 0.431304i
\(833\) 67.3461 + 11.8749i 2.33340 + 0.411442i
\(834\) 0 0
\(835\) −3.92720 + 3.29531i −0.135906 + 0.114039i
\(836\) −0.0530605 0.605709i −0.00183514 0.0209489i
\(837\) 0 0
\(838\) 2.19594 0.0959989i 0.0758573 0.00331623i
\(839\) 11.9037 9.98841i 0.410962 0.344838i −0.413750 0.910390i \(-0.635781\pi\)
0.824712 + 0.565552i \(0.191337\pi\)
\(840\) 0 0
\(841\) 0.108181 0.613526i 0.00373038 0.0211561i
\(842\) −17.6325 + 7.30477i −0.607656 + 0.251739i
\(843\) 0 0
\(844\) −4.83041 18.0193i −0.166269 0.620250i
\(845\) 15.0427 + 26.0547i 0.517484 + 0.896309i
\(846\) 0 0
\(847\) 41.1889 + 23.7804i 1.41527 + 0.817106i
\(848\) −5.01938 0.883902i −0.172366 0.0303533i
\(849\) 0 0
\(850\) −27.4597 21.0681i −0.941859 0.722631i
\(851\) −9.92382 + 11.8268i −0.340184 + 0.405416i
\(852\) 0 0
\(853\) 5.27000 14.4792i 0.180441 0.495758i −0.816189 0.577785i \(-0.803917\pi\)
0.996630 + 0.0820269i \(0.0261393\pi\)
\(854\) 48.5854 + 25.2885i 1.66256 + 0.865355i
\(855\) 0 0
\(856\) −5.56449 7.24928i −0.190190 0.247775i
\(857\) 43.4090 7.65418i 1.48282 0.261462i 0.627118 0.778924i \(-0.284234\pi\)
0.855706 + 0.517463i \(0.173123\pi\)
\(858\) 0 0
\(859\) 49.6251 18.0621i 1.69319 0.616270i 0.698166 0.715936i \(-0.254000\pi\)
0.995021 + 0.0996665i \(0.0317776\pi\)
\(860\) 1.69634 19.4141i 0.0578448 0.662016i
\(861\) 0 0
\(862\) −31.1698 34.0121i −1.06165 1.15846i
\(863\) −51.1622 −1.74158 −0.870791 0.491653i \(-0.836393\pi\)
−0.870791 + 0.491653i \(0.836393\pi\)
\(864\) 0 0
\(865\) −45.4048 −1.54381
\(866\) 19.5085 + 21.2874i 0.662924 + 0.723374i
\(867\) 0 0
\(868\) 6.42785 73.5649i 0.218176 2.49695i
\(869\) 3.30066 1.20134i 0.111967 0.0407527i
\(870\) 0 0
\(871\) 15.4085 2.71693i 0.522097 0.0920597i
\(872\) −18.7184 24.3858i −0.633884 0.825808i
\(873\) 0 0
\(874\) −2.47957 1.29061i −0.0838728 0.0436555i
\(875\) 1.30578 3.58759i 0.0441433 0.121283i
\(876\) 0 0
\(877\) −21.3535 + 25.4481i −0.721055 + 0.859320i −0.994733 0.102501i \(-0.967315\pi\)
0.273678 + 0.961822i \(0.411760\pi\)
\(878\) −5.71843 4.38740i −0.192988 0.148067i
\(879\) 0 0
\(880\) −1.97084 + 11.1917i −0.0664370 + 0.377273i
\(881\) 24.0135 + 13.8642i 0.809034 + 0.467096i 0.846620 0.532197i \(-0.178634\pi\)
−0.0375862 + 0.999293i \(0.511967\pi\)
\(882\) 0 0
\(883\) 7.38127 + 12.7847i 0.248400 + 0.430241i 0.963082 0.269208i \(-0.0867621\pi\)
−0.714682 + 0.699449i \(0.753429\pi\)
\(884\) −4.57866 17.0802i −0.153997 0.574470i
\(885\) 0 0
\(886\) 24.2029 10.0268i 0.813114 0.336856i
\(887\) 3.08832 17.5147i 0.103695 0.588086i −0.888038 0.459770i \(-0.847932\pi\)
0.991733 0.128316i \(-0.0409572\pi\)
\(888\) 0 0
\(889\) −50.4081 + 42.2974i −1.69063 + 1.41861i
\(890\) −33.1772 + 1.45040i −1.11210 + 0.0486174i
\(891\) 0 0
\(892\) −3.27285 37.3610i −0.109583 1.25094i
\(893\) −2.87515 + 2.41254i −0.0962132 + 0.0807324i
\(894\) 0 0
\(895\) 19.1975 + 3.38504i 0.641702 + 0.113149i
\(896\) −41.7866 + 32.0899i −1.39599 + 1.07205i
\(897\) 0 0
\(898\) 5.79860 + 26.1489i 0.193502 + 0.872600i
\(899\) 37.3716 21.5765i 1.24641 0.719616i
\(900\) 0 0
\(901\) 5.13798 + 2.96642i 0.171171 + 0.0988256i
\(902\) 0.0203532 0.0645647i 0.000677689 0.00214977i
\(903\) 0 0
\(904\) −25.9438 16.5219i −0.862877 0.549511i
\(905\) −27.1116 + 32.3104i −0.901221 + 1.07403i
\(906\) 0 0
\(907\) −33.8368 12.3156i −1.12353 0.408932i −0.287591 0.957753i \(-0.592854\pi\)
−0.835940 + 0.548821i \(0.815077\pi\)
\(908\) −9.18612 4.28232i −0.304852 0.142114i
\(909\) 0 0
\(910\) 33.7758 21.5202i 1.11966 0.713387i
\(911\) −0.0484884 0.274992i −0.00160649 0.00911088i 0.983994 0.178202i \(-0.0570280\pi\)
−0.985600 + 0.169091i \(0.945917\pi\)
\(912\) 0 0
\(913\) −11.5551 + 4.20572i −0.382418 + 0.139189i
\(914\) 14.6798 + 1.93181i 0.485565 + 0.0638985i
\(915\) 0 0
\(916\) −31.8845 31.8774i −1.05349 1.05326i
\(917\) 16.8153 0.555290
\(918\) 0 0
\(919\) 19.5234i 0.644017i 0.946737 + 0.322008i \(0.104358\pi\)
−0.946737 + 0.322008i \(0.895642\pi\)
\(920\) 38.5245 + 35.2894i 1.27012 + 1.16346i
\(921\) 0 0
\(922\) 34.1967 + 4.50014i 1.12621 + 0.148204i
\(923\) −0.242618 0.666587i −0.00798586 0.0219410i
\(924\) 0 0
\(925\) 13.8552 2.44304i 0.455555 0.0803267i
\(926\) −11.9720 18.7900i −0.393425 0.617477i
\(927\) 0 0
\(928\) −29.3661 9.25014i −0.963991 0.303651i
\(929\) 12.7507 35.0323i 0.418338 1.14937i −0.534308 0.845290i \(-0.679428\pi\)
0.952645 0.304083i \(-0.0983502\pi\)
\(930\) 0 0
\(931\) −3.85557 3.23521i −0.126361 0.106030i
\(932\) 6.53860 9.34030i 0.214179 0.305952i
\(933\) 0 0
\(934\) −10.3526 3.26353i −0.338747 0.106786i
\(935\) 6.61423 11.4562i 0.216308 0.374657i
\(936\) 0 0
\(937\) −1.65449 2.86566i −0.0540499 0.0936171i 0.837735 0.546078i \(-0.183880\pi\)
−0.891784 + 0.452461i \(0.850546\pi\)
\(938\) 11.7482 + 52.9789i 0.383593 + 1.72982i
\(939\) 0 0
\(940\) 63.5718 29.6526i 2.07348 0.967161i
\(941\) 8.25196 46.7992i 0.269006 1.52561i −0.488373 0.872635i \(-0.662409\pi\)
0.757379 0.652975i \(-0.226479\pi\)
\(942\) 0 0
\(943\) −0.200054 0.238415i −0.00651465 0.00776386i
\(944\) 4.94932 + 28.0325i 0.161087 + 0.912381i
\(945\) 0 0
\(946\) 3.81356 0.166716i 0.123990 0.00542041i
\(947\) −15.7887 18.8162i −0.513063 0.611444i 0.445863 0.895101i \(-0.352897\pi\)
−0.958926 + 0.283657i \(0.908452\pi\)
\(948\) 0 0
\(949\) −23.5453 4.15167i −0.764312 0.134769i
\(950\) 0.974949 + 2.35337i 0.0316315 + 0.0763533i
\(951\) 0 0
\(952\) 58.4894 18.4524i 1.89565 0.598045i
\(953\) 5.53399 3.19505i 0.179264 0.103498i −0.407683 0.913124i \(-0.633663\pi\)
0.586947 + 0.809626i \(0.300330\pi\)
\(954\) 0 0
\(955\) −34.2360 + 59.2984i −1.10785 + 1.91885i
\(956\) 44.4963 + 11.9174i 1.43911 + 0.385438i
\(957\) 0 0
\(958\) 26.8493 34.9947i 0.867461 1.13063i
\(959\) 46.9654 + 39.4086i 1.51659 + 1.27257i
\(960\) 0 0
\(961\) 29.9411 + 10.8977i 0.965843 + 0.351538i
\(962\) 6.37608 + 3.31873i 0.205573 + 0.107000i
\(963\) 0 0
\(964\) 24.8871 + 35.5340i 0.801559 + 1.14447i
\(965\) −11.6746 66.2101i −0.375819 2.13138i
\(966\) 0 0
\(967\) −7.29798 20.0510i −0.234687 0.644798i −0.999999 0.00113855i \(-0.999638\pi\)
0.765312 0.643659i \(-0.222585\pi\)
\(968\) 28.8595 + 1.25521i 0.927580 + 0.0403441i
\(969\) 0 0
\(970\) 2.71370 + 2.96116i 0.0871318 + 0.0950771i
\(971\) 18.8858i 0.606074i 0.952979 + 0.303037i \(0.0980006\pi\)
−0.952979 + 0.303037i \(0.901999\pi\)
\(972\) 0 0
\(973\) 55.8507i 1.79049i
\(974\) 14.8235 13.5848i 0.474976 0.435284i
\(975\) 0 0
\(976\) 33.2670 0.00739456i 1.06485 0.000236694i
\(977\) 12.8528 + 35.3129i 0.411199 + 1.12976i 0.956554 + 0.291555i \(0.0941726\pi\)
−0.545355 + 0.838205i \(0.683605\pi\)
\(978\) 0 0
\(979\) −1.12954 6.40593i −0.0361002 0.204735i
\(980\) 53.9635 + 77.0496i 1.72380 + 2.46126i
\(981\) 0 0
\(982\) −0.922188 + 1.77175i −0.0294282 + 0.0565387i
\(983\) 0.0615360 + 0.0223973i 0.00196269 + 0.000714362i 0.343001 0.939335i \(-0.388556\pi\)
−0.341039 + 0.940049i \(0.610779\pi\)
\(984\) 0 0
\(985\) 25.6749 + 21.5438i 0.818069 + 0.686441i
\(986\) 28.4351 + 21.8165i 0.905558 + 0.694779i
\(987\) 0 0
\(988\) −0.336707 + 1.25717i −0.0107121 + 0.0399958i
\(989\) 8.77459 15.1980i 0.279016 0.483269i
\(990\) 0 0
\(991\) 2.32285 1.34110i 0.0737876 0.0426013i −0.462652 0.886540i \(-0.653102\pi\)
0.536440 + 0.843939i \(0.319769\pi\)
\(992\) −17.1752 41.4321i −0.545314 1.31547i
\(993\) 0 0
\(994\) 2.27297 0.941645i 0.0720944 0.0298672i
\(995\) 52.3264 + 9.22655i 1.65886 + 0.292501i
\(996\) 0 0
\(997\) 6.81445 + 8.12114i 0.215816 + 0.257199i 0.863081 0.505066i \(-0.168532\pi\)
−0.647265 + 0.762265i \(0.724087\pi\)
\(998\) −1.85021 42.3229i −0.0585675 1.33971i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.v.b.611.8 192
3.2 odd 2 216.2.v.b.59.25 yes 192
8.3 odd 2 inner 648.2.v.b.611.9 192
12.11 even 2 864.2.bh.b.815.3 192
24.5 odd 2 864.2.bh.b.815.4 192
24.11 even 2 216.2.v.b.59.24 yes 192
27.11 odd 18 inner 648.2.v.b.35.9 192
27.16 even 9 216.2.v.b.11.24 192
108.43 odd 18 864.2.bh.b.335.4 192
216.11 even 18 inner 648.2.v.b.35.8 192
216.43 odd 18 216.2.v.b.11.25 yes 192
216.205 even 18 864.2.bh.b.335.3 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.24 192 27.16 even 9
216.2.v.b.11.25 yes 192 216.43 odd 18
216.2.v.b.59.24 yes 192 24.11 even 2
216.2.v.b.59.25 yes 192 3.2 odd 2
648.2.v.b.35.8 192 216.11 even 18 inner
648.2.v.b.35.9 192 27.11 odd 18 inner
648.2.v.b.611.8 192 1.1 even 1 trivial
648.2.v.b.611.9 192 8.3 odd 2 inner
864.2.bh.b.335.3 192 216.205 even 18
864.2.bh.b.335.4 192 108.43 odd 18
864.2.bh.b.815.3 192 12.11 even 2
864.2.bh.b.815.4 192 24.5 odd 2