Properties

Label 648.2.v.b.611.31
Level $648$
Weight $2$
Character 648.611
Analytic conductor $5.174$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(35,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.v (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 611.31
Character \(\chi\) \(=\) 648.611
Dual form 648.2.v.b.35.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40972 + 0.112665i) q^{2} +(1.97461 + 0.317652i) q^{4} +(-2.47648 + 0.901367i) q^{5} +(2.55949 - 0.451307i) q^{7} +(2.74786 + 0.670270i) q^{8} +(-3.59270 + 0.991660i) q^{10} +(-0.556608 + 1.52927i) q^{11} +(1.88389 - 2.24514i) q^{13} +(3.65901 - 0.347851i) q^{14} +(3.79819 + 1.25448i) q^{16} +(3.28845 + 1.89859i) q^{17} +(4.30904 + 7.46347i) q^{19} +(-5.17642 + 0.993190i) q^{20} +(-0.956956 + 2.09313i) q^{22} +(1.07009 - 6.06879i) q^{23} +(1.49029 - 1.25050i) q^{25} +(2.90871 - 2.95276i) q^{26} +(5.19736 - 0.0781292i) q^{28} +(-3.88174 + 3.25716i) q^{29} +(-3.57300 - 0.630016i) q^{31} +(5.21305 + 2.19639i) q^{32} +(4.42189 + 3.04697i) q^{34} +(-5.93174 + 3.42469i) q^{35} +(-6.40179 - 3.69607i) q^{37} +(5.23366 + 11.0069i) q^{38} +(-7.40919 + 0.816916i) q^{40} +(4.43232 - 5.28224i) q^{41} +(-3.77811 - 1.37512i) q^{43} +(-1.58486 + 2.84290i) q^{44} +(2.19227 - 8.43472i) q^{46} +(-0.253807 - 1.43941i) q^{47} +(-0.230541 + 0.0839100i) q^{49} +(2.24178 - 1.59495i) q^{50} +(4.43313 - 3.83485i) q^{52} -0.180986 q^{53} -4.28892i q^{55} +(7.33562 + 0.475421i) q^{56} +(-5.83912 + 4.15435i) q^{58} +(-0.253090 - 0.695359i) q^{59} +(11.1190 - 1.96057i) q^{61} +(-4.96594 - 1.29070i) q^{62} +(7.10148 + 3.68362i) q^{64} +(-2.64174 + 7.25812i) q^{65} +(-10.5159 - 8.82387i) q^{67} +(5.89033 + 4.79357i) q^{68} +(-8.74793 + 4.15955i) q^{70} +(-2.57253 + 4.45576i) q^{71} +(-2.62831 - 4.55236i) q^{73} +(-8.60830 - 5.93168i) q^{74} +(6.13789 + 16.1062i) q^{76} +(-0.734463 + 4.16534i) q^{77} +(-6.72831 - 8.01849i) q^{79} +(-10.5369 + 0.316864i) q^{80} +(6.84345 - 6.94710i) q^{82} +(-7.39656 - 8.81488i) q^{83} +(-9.85513 - 1.73773i) q^{85} +(-5.17114 - 2.36419i) q^{86} +(-2.55450 + 3.82914i) q^{88} +(0.211259 - 0.121971i) q^{89} +(3.80856 - 6.59662i) q^{91} +(4.04078 - 11.6436i) q^{92} +(-0.195625 - 2.05776i) q^{94} +(-17.3986 - 14.5992i) q^{95} +(1.95441 + 0.711348i) q^{97} +(-0.334451 + 0.0923156i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 6 q^{2} - 6 q^{4} + 9 q^{8} - 3 q^{10} + 30 q^{11} - 9 q^{14} - 6 q^{16} + 18 q^{17} - 6 q^{19} + 27 q^{20} - 18 q^{22} - 12 q^{25} - 12 q^{28} + 36 q^{32} + 12 q^{34} + 18 q^{35} + 102 q^{38} + 9 q^{40}+ \cdots - 162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40972 + 0.112665i 0.996822 + 0.0796663i
\(3\) 0 0
\(4\) 1.97461 + 0.317652i 0.987307 + 0.158826i
\(5\) −2.47648 + 0.901367i −1.10752 + 0.403103i −0.830082 0.557641i \(-0.811707\pi\)
−0.277435 + 0.960744i \(0.589484\pi\)
\(6\) 0 0
\(7\) 2.55949 0.451307i 0.967396 0.170578i 0.332438 0.943125i \(-0.392129\pi\)
0.634958 + 0.772547i \(0.281018\pi\)
\(8\) 2.74786 + 0.670270i 0.971515 + 0.236976i
\(9\) 0 0
\(10\) −3.59270 + 0.991660i −1.13611 + 0.313590i
\(11\) −0.556608 + 1.52927i −0.167824 + 0.461091i −0.994884 0.101021i \(-0.967789\pi\)
0.827061 + 0.562113i \(0.190011\pi\)
\(12\) 0 0
\(13\) 1.88389 2.24514i 0.522498 0.622689i −0.438672 0.898647i \(-0.644551\pi\)
0.961169 + 0.275959i \(0.0889953\pi\)
\(14\) 3.65901 0.347851i 0.977911 0.0929670i
\(15\) 0 0
\(16\) 3.79819 + 1.25448i 0.949549 + 0.313620i
\(17\) 3.28845 + 1.89859i 0.797567 + 0.460476i 0.842620 0.538509i \(-0.181012\pi\)
−0.0450525 + 0.998985i \(0.514346\pi\)
\(18\) 0 0
\(19\) 4.30904 + 7.46347i 0.988561 + 1.71224i 0.624895 + 0.780708i \(0.285142\pi\)
0.363666 + 0.931530i \(0.381525\pi\)
\(20\) −5.17642 + 0.993190i −1.15748 + 0.222084i
\(21\) 0 0
\(22\) −0.956956 + 2.09313i −0.204024 + 0.446256i
\(23\) 1.07009 6.06879i 0.223129 1.26543i −0.643100 0.765783i \(-0.722352\pi\)
0.866229 0.499647i \(-0.166537\pi\)
\(24\) 0 0
\(25\) 1.49029 1.25050i 0.298059 0.250101i
\(26\) 2.90871 2.95276i 0.570444 0.579084i
\(27\) 0 0
\(28\) 5.19736 0.0781292i 0.982209 0.0147650i
\(29\) −3.88174 + 3.25716i −0.720820 + 0.604840i −0.927612 0.373545i \(-0.878142\pi\)
0.206792 + 0.978385i \(0.433698\pi\)
\(30\) 0 0
\(31\) −3.57300 0.630016i −0.641729 0.113154i −0.156692 0.987648i \(-0.550083\pi\)
−0.485037 + 0.874493i \(0.661194\pi\)
\(32\) 5.21305 + 2.19639i 0.921546 + 0.388270i
\(33\) 0 0
\(34\) 4.42189 + 3.04697i 0.758348 + 0.522551i
\(35\) −5.93174 + 3.42469i −1.00265 + 0.578879i
\(36\) 0 0
\(37\) −6.40179 3.69607i −1.05245 0.607631i −0.129114 0.991630i \(-0.541213\pi\)
−0.923333 + 0.383999i \(0.874547\pi\)
\(38\) 5.23366 + 11.0069i 0.849011 + 1.78555i
\(39\) 0 0
\(40\) −7.40919 + 0.816916i −1.17150 + 0.129166i
\(41\) 4.43232 5.28224i 0.692212 0.824947i −0.299409 0.954125i \(-0.596789\pi\)
0.991621 + 0.129178i \(0.0412339\pi\)
\(42\) 0 0
\(43\) −3.77811 1.37512i −0.576156 0.209704i 0.0374734 0.999298i \(-0.488069\pi\)
−0.613630 + 0.789594i \(0.710291\pi\)
\(44\) −1.58486 + 2.84290i −0.238927 + 0.428584i
\(45\) 0 0
\(46\) 2.19227 8.43472i 0.323232 1.24363i
\(47\) −0.253807 1.43941i −0.0370215 0.209960i 0.960686 0.277639i \(-0.0895517\pi\)
−0.997707 + 0.0676790i \(0.978441\pi\)
\(48\) 0 0
\(49\) −0.230541 + 0.0839100i −0.0329344 + 0.0119871i
\(50\) 2.24178 1.59495i 0.317036 0.225561i
\(51\) 0 0
\(52\) 4.43313 3.83485i 0.614765 0.531798i
\(53\) −0.180986 −0.0248604 −0.0124302 0.999923i \(-0.503957\pi\)
−0.0124302 + 0.999923i \(0.503957\pi\)
\(54\) 0 0
\(55\) 4.28892i 0.578317i
\(56\) 7.33562 + 0.475421i 0.980263 + 0.0635308i
\(57\) 0 0
\(58\) −5.83912 + 4.15435i −0.766714 + 0.545492i
\(59\) −0.253090 0.695359i −0.0329495 0.0905280i 0.922127 0.386887i \(-0.126450\pi\)
−0.955077 + 0.296359i \(0.904227\pi\)
\(60\) 0 0
\(61\) 11.1190 1.96057i 1.42364 0.251026i 0.591817 0.806072i \(-0.298411\pi\)
0.831819 + 0.555047i \(0.187300\pi\)
\(62\) −4.96594 1.29070i −0.630675 0.163919i
\(63\) 0 0
\(64\) 7.10148 + 3.68362i 0.887684 + 0.460452i
\(65\) −2.64174 + 7.25812i −0.327668 + 0.900259i
\(66\) 0 0
\(67\) −10.5159 8.82387i −1.28472 1.07801i −0.992575 0.121633i \(-0.961187\pi\)
−0.292144 0.956374i \(-0.594369\pi\)
\(68\) 5.89033 + 4.79357i 0.714308 + 0.581305i
\(69\) 0 0
\(70\) −8.74793 + 4.15955i −1.04558 + 0.497162i
\(71\) −2.57253 + 4.45576i −0.305303 + 0.528801i −0.977329 0.211727i \(-0.932091\pi\)
0.672025 + 0.740528i \(0.265425\pi\)
\(72\) 0 0
\(73\) −2.62831 4.55236i −0.307620 0.532814i 0.670221 0.742161i \(-0.266199\pi\)
−0.977841 + 0.209348i \(0.932866\pi\)
\(74\) −8.60830 5.93168i −1.00069 0.689544i
\(75\) 0 0
\(76\) 6.13789 + 16.1062i 0.704065 + 1.84751i
\(77\) −0.734463 + 4.16534i −0.0836998 + 0.474685i
\(78\) 0 0
\(79\) −6.72831 8.01849i −0.756994 0.902151i 0.240660 0.970610i \(-0.422636\pi\)
−0.997654 + 0.0684588i \(0.978192\pi\)
\(80\) −10.5369 + 0.316864i −1.17806 + 0.0354264i
\(81\) 0 0
\(82\) 6.84345 6.94710i 0.755733 0.767179i
\(83\) −7.39656 8.81488i −0.811878 0.967559i 0.188015 0.982166i \(-0.439795\pi\)
−0.999893 + 0.0146072i \(0.995350\pi\)
\(84\) 0 0
\(85\) −9.85513 1.73773i −1.06894 0.188483i
\(86\) −5.17114 2.36419i −0.557619 0.254938i
\(87\) 0 0
\(88\) −2.55450 + 3.82914i −0.272311 + 0.408187i
\(89\) 0.211259 0.121971i 0.0223934 0.0129289i −0.488761 0.872417i \(-0.662551\pi\)
0.511155 + 0.859489i \(0.329218\pi\)
\(90\) 0 0
\(91\) 3.80856 6.59662i 0.399245 0.691513i
\(92\) 4.04078 11.6436i 0.421280 1.21393i
\(93\) 0 0
\(94\) −0.195625 2.05776i −0.0201772 0.212242i
\(95\) −17.3986 14.5992i −1.78506 1.49784i
\(96\) 0 0
\(97\) 1.95441 + 0.711348i 0.198441 + 0.0722264i 0.439329 0.898326i \(-0.355216\pi\)
−0.240888 + 0.970553i \(0.577439\pi\)
\(98\) −0.334451 + 0.0923156i −0.0337847 + 0.00932528i
\(99\) 0 0
\(100\) 3.33998 1.99587i 0.333998 0.199587i
\(101\) 3.09813 + 17.5704i 0.308276 + 1.74832i 0.607670 + 0.794190i \(0.292104\pi\)
−0.299394 + 0.954130i \(0.596784\pi\)
\(102\) 0 0
\(103\) −4.29301 11.7949i −0.423003 1.16219i −0.949980 0.312311i \(-0.898897\pi\)
0.526977 0.849879i \(-0.323325\pi\)
\(104\) 6.68152 4.90660i 0.655177 0.481132i
\(105\) 0 0
\(106\) −0.255140 0.0203908i −0.0247814 0.00198053i
\(107\) 10.9395i 1.05757i −0.848757 0.528783i \(-0.822649\pi\)
0.848757 0.528783i \(-0.177351\pi\)
\(108\) 0 0
\(109\) 6.35577i 0.608772i 0.952549 + 0.304386i \(0.0984513\pi\)
−0.952549 + 0.304386i \(0.901549\pi\)
\(110\) 0.483211 6.04616i 0.0460724 0.576479i
\(111\) 0 0
\(112\) 10.2876 + 1.49668i 0.972086 + 0.141423i
\(113\) 1.20684 + 3.31577i 0.113530 + 0.311921i 0.983425 0.181316i \(-0.0580356\pi\)
−0.869895 + 0.493237i \(0.835813\pi\)
\(114\) 0 0
\(115\) 2.82014 + 15.9938i 0.262979 + 1.49143i
\(116\) −8.69957 + 5.19859i −0.807735 + 0.482677i
\(117\) 0 0
\(118\) −0.278443 1.00877i −0.0256327 0.0928652i
\(119\) 9.27361 + 3.37532i 0.850110 + 0.309415i
\(120\) 0 0
\(121\) 6.39764 + 5.36826i 0.581604 + 0.488024i
\(122\) 15.8955 1.51114i 1.43911 0.136812i
\(123\) 0 0
\(124\) −6.85516 2.37901i −0.615612 0.213641i
\(125\) 4.02503 6.97155i 0.360009 0.623554i
\(126\) 0 0
\(127\) −15.7942 + 9.11876i −1.40150 + 0.809159i −0.994547 0.104288i \(-0.966744\pi\)
−0.406958 + 0.913447i \(0.633410\pi\)
\(128\) 9.59607 + 5.99295i 0.848180 + 0.529707i
\(129\) 0 0
\(130\) −4.54185 + 9.93428i −0.398347 + 0.871294i
\(131\) −4.10519 0.723856i −0.358672 0.0632436i −0.00859153 0.999963i \(-0.502735\pi\)
−0.350081 + 0.936719i \(0.613846\pi\)
\(132\) 0 0
\(133\) 14.3973 + 17.1580i 1.24840 + 1.48779i
\(134\) −13.8303 13.6239i −1.19475 1.17693i
\(135\) 0 0
\(136\) 7.76365 + 7.42121i 0.665727 + 0.636364i
\(137\) 10.2458 + 12.2105i 0.875360 + 1.04321i 0.998706 + 0.0508494i \(0.0161928\pi\)
−0.123347 + 0.992364i \(0.539363\pi\)
\(138\) 0 0
\(139\) −0.411616 + 2.33439i −0.0349128 + 0.198000i −0.997275 0.0737683i \(-0.976497\pi\)
0.962363 + 0.271769i \(0.0876086\pi\)
\(140\) −12.8008 + 4.87821i −1.08186 + 0.412284i
\(141\) 0 0
\(142\) −4.12856 + 5.99153i −0.346461 + 0.502798i
\(143\) 2.38482 + 4.13064i 0.199429 + 0.345421i
\(144\) 0 0
\(145\) 6.67716 11.5652i 0.554508 0.960436i
\(146\) −3.19228 6.71367i −0.264195 0.555627i
\(147\) 0 0
\(148\) −11.4670 9.33186i −0.942580 0.767074i
\(149\) −12.2426 10.2728i −1.00295 0.841578i −0.0155632 0.999879i \(-0.504954\pi\)
−0.987391 + 0.158300i \(0.949399\pi\)
\(150\) 0 0
\(151\) 0.806403 2.21557i 0.0656242 0.180301i −0.902546 0.430593i \(-0.858304\pi\)
0.968170 + 0.250292i \(0.0805267\pi\)
\(152\) 6.83809 + 23.3968i 0.554642 + 1.89773i
\(153\) 0 0
\(154\) −1.50467 + 5.78922i −0.121250 + 0.466508i
\(155\) 9.41635 1.66036i 0.756339 0.133363i
\(156\) 0 0
\(157\) 0.284046 + 0.780410i 0.0226693 + 0.0622835i 0.950511 0.310691i \(-0.100560\pi\)
−0.927842 + 0.372974i \(0.878338\pi\)
\(158\) −8.58162 12.0619i −0.682717 0.959590i
\(159\) 0 0
\(160\) −14.8898 0.740454i −1.17714 0.0585381i
\(161\) 16.0159i 1.26223i
\(162\) 0 0
\(163\) −11.2657 −0.882401 −0.441200 0.897409i \(-0.645447\pi\)
−0.441200 + 0.897409i \(0.645447\pi\)
\(164\) 10.4300 9.02244i 0.814449 0.704534i
\(165\) 0 0
\(166\) −9.43394 13.2598i −0.732216 1.02916i
\(167\) 16.4192 5.97611i 1.27056 0.462445i 0.383260 0.923641i \(-0.374801\pi\)
0.887299 + 0.461195i \(0.152579\pi\)
\(168\) 0 0
\(169\) 0.765842 + 4.34331i 0.0589110 + 0.334101i
\(170\) −13.6972 3.56003i −1.05053 0.273042i
\(171\) 0 0
\(172\) −7.02350 3.91545i −0.535537 0.298551i
\(173\) −17.4791 6.36186i −1.32891 0.483683i −0.422606 0.906313i \(-0.638885\pi\)
−0.906302 + 0.422630i \(0.861107\pi\)
\(174\) 0 0
\(175\) 3.25003 3.87323i 0.245679 0.292789i
\(176\) −4.03254 + 5.11020i −0.303964 + 0.385196i
\(177\) 0 0
\(178\) 0.311558 0.148143i 0.0233523 0.0111038i
\(179\) 6.13650 + 3.54291i 0.458663 + 0.264809i 0.711482 0.702704i \(-0.248024\pi\)
−0.252819 + 0.967514i \(0.581358\pi\)
\(180\) 0 0
\(181\) −0.129860 + 0.0749748i −0.00965242 + 0.00557283i −0.504818 0.863226i \(-0.668441\pi\)
0.495166 + 0.868798i \(0.335107\pi\)
\(182\) 6.11220 8.87028i 0.453067 0.657509i
\(183\) 0 0
\(184\) 7.00819 15.9589i 0.516651 1.17651i
\(185\) 19.1854 + 3.38291i 1.41054 + 0.248717i
\(186\) 0 0
\(187\) −4.73383 + 3.97216i −0.346172 + 0.290473i
\(188\) −0.0439385 2.92290i −0.00320454 0.213174i
\(189\) 0 0
\(190\) −22.8823 22.5409i −1.66006 1.63529i
\(191\) −8.37441 + 7.02696i −0.605951 + 0.508453i −0.893352 0.449357i \(-0.851653\pi\)
0.287401 + 0.957810i \(0.407209\pi\)
\(192\) 0 0
\(193\) 0.508999 2.88668i 0.0366385 0.207788i −0.960993 0.276573i \(-0.910801\pi\)
0.997631 + 0.0687854i \(0.0219124\pi\)
\(194\) 2.67503 + 1.22299i 0.192056 + 0.0878059i
\(195\) 0 0
\(196\) −0.481883 + 0.0924580i −0.0344202 + 0.00660414i
\(197\) 1.40635 + 2.43587i 0.100198 + 0.173548i 0.911766 0.410710i \(-0.134719\pi\)
−0.811568 + 0.584258i \(0.801386\pi\)
\(198\) 0 0
\(199\) −0.874354 0.504808i −0.0619813 0.0357849i 0.468689 0.883363i \(-0.344726\pi\)
−0.530670 + 0.847578i \(0.678060\pi\)
\(200\) 4.93329 2.43731i 0.348836 0.172344i
\(201\) 0 0
\(202\) 2.38793 + 25.1184i 0.168014 + 1.76732i
\(203\) −8.46528 + 10.0885i −0.594146 + 0.708076i
\(204\) 0 0
\(205\) −6.21535 + 17.0765i −0.434099 + 1.19268i
\(206\) −4.72306 17.1112i −0.329071 1.19220i
\(207\) 0 0
\(208\) 9.97187 6.16416i 0.691425 0.427407i
\(209\) −13.8121 + 2.43544i −0.955402 + 0.168463i
\(210\) 0 0
\(211\) −3.98399 + 1.45005i −0.274269 + 0.0998257i −0.475493 0.879720i \(-0.657730\pi\)
0.201224 + 0.979545i \(0.435508\pi\)
\(212\) −0.357378 0.0574907i −0.0245448 0.00394848i
\(213\) 0 0
\(214\) 1.23250 15.4217i 0.0842523 1.05420i
\(215\) 10.5959 0.722636
\(216\) 0 0
\(217\) −9.42938 −0.640108
\(218\) −0.716074 + 8.95985i −0.0484986 + 0.606837i
\(219\) 0 0
\(220\) 1.36238 8.46895i 0.0918519 0.570976i
\(221\) 10.4577 3.80629i 0.703460 0.256039i
\(222\) 0 0
\(223\) 15.7442 2.77613i 1.05431 0.185903i 0.380480 0.924789i \(-0.375759\pi\)
0.673831 + 0.738886i \(0.264648\pi\)
\(224\) 14.3340 + 3.26895i 0.957730 + 0.218416i
\(225\) 0 0
\(226\) 1.32774 + 4.81027i 0.0883197 + 0.319975i
\(227\) −0.588042 + 1.61563i −0.0390297 + 0.107233i −0.957677 0.287846i \(-0.907061\pi\)
0.918647 + 0.395080i \(0.129283\pi\)
\(228\) 0 0
\(229\) −5.91992 + 7.05508i −0.391199 + 0.466213i −0.925316 0.379198i \(-0.876200\pi\)
0.534116 + 0.845411i \(0.320644\pi\)
\(230\) 2.17366 + 22.8645i 0.143327 + 1.50764i
\(231\) 0 0
\(232\) −12.8496 + 6.34842i −0.843621 + 0.416794i
\(233\) −16.7671 9.68050i −1.09845 0.634191i −0.162637 0.986686i \(-0.552000\pi\)
−0.935814 + 0.352495i \(0.885333\pi\)
\(234\) 0 0
\(235\) 1.92599 + 3.33590i 0.125637 + 0.217610i
\(236\) −0.278872 1.45346i −0.0181530 0.0946121i
\(237\) 0 0
\(238\) 12.6929 + 5.80306i 0.822759 + 0.376157i
\(239\) −0.803749 + 4.55829i −0.0519902 + 0.294851i −0.999706 0.0242659i \(-0.992275\pi\)
0.947715 + 0.319117i \(0.103386\pi\)
\(240\) 0 0
\(241\) 21.1035 17.7079i 1.35939 1.14067i 0.383226 0.923655i \(-0.374813\pi\)
0.976169 0.217012i \(-0.0696312\pi\)
\(242\) 8.41406 + 8.28853i 0.540876 + 0.532807i
\(243\) 0 0
\(244\) 22.5784 0.339410i 1.44544 0.0217285i
\(245\) 0.495297 0.415604i 0.0316434 0.0265519i
\(246\) 0 0
\(247\) 24.8743 + 4.38601i 1.58271 + 0.279075i
\(248\) −9.39582 4.12607i −0.596635 0.262006i
\(249\) 0 0
\(250\) 6.45960 9.37444i 0.408541 0.592892i
\(251\) 12.0234 6.94172i 0.758911 0.438158i −0.0699933 0.997547i \(-0.522298\pi\)
0.828905 + 0.559390i \(0.188964\pi\)
\(252\) 0 0
\(253\) 8.68518 + 5.01439i 0.546033 + 0.315252i
\(254\) −23.2927 + 11.0754i −1.46151 + 0.694935i
\(255\) 0 0
\(256\) 12.8526 + 9.52952i 0.803285 + 0.595595i
\(257\) 1.09064 1.29978i 0.0680325 0.0810779i −0.730955 0.682426i \(-0.760925\pi\)
0.798987 + 0.601348i \(0.205369\pi\)
\(258\) 0 0
\(259\) −18.0534 6.57089i −1.12178 0.408295i
\(260\) −7.52198 + 13.4928i −0.466493 + 0.836790i
\(261\) 0 0
\(262\) −5.70561 1.48295i −0.352494 0.0916167i
\(263\) 0.720517 + 4.08625i 0.0444290 + 0.251969i 0.998931 0.0462368i \(-0.0147229\pi\)
−0.954502 + 0.298206i \(0.903612\pi\)
\(264\) 0 0
\(265\) 0.448210 0.163135i 0.0275333 0.0100213i
\(266\) 18.3630 + 25.8100i 1.12591 + 1.58251i
\(267\) 0 0
\(268\) −17.9619 20.7641i −1.09720 1.26837i
\(269\) 31.4461 1.91730 0.958650 0.284588i \(-0.0918567\pi\)
0.958650 + 0.284588i \(0.0918567\pi\)
\(270\) 0 0
\(271\) 28.1714i 1.71129i 0.517564 + 0.855644i \(0.326839\pi\)
−0.517564 + 0.855644i \(0.673161\pi\)
\(272\) 10.1084 + 11.3365i 0.612914 + 0.687377i
\(273\) 0 0
\(274\) 13.0680 + 18.3677i 0.789469 + 1.10963i
\(275\) 1.08285 + 2.97510i 0.0652981 + 0.179405i
\(276\) 0 0
\(277\) 24.3185 4.28801i 1.46116 0.257641i 0.614136 0.789201i \(-0.289505\pi\)
0.847021 + 0.531559i \(0.178394\pi\)
\(278\) −0.843267 + 3.24446i −0.0505758 + 0.194590i
\(279\) 0 0
\(280\) −18.5951 + 5.43471i −1.11127 + 0.324786i
\(281\) 6.58678 18.0970i 0.392935 1.07958i −0.572720 0.819751i \(-0.694112\pi\)
0.965655 0.259828i \(-0.0836659\pi\)
\(282\) 0 0
\(283\) 6.85978 + 5.75604i 0.407772 + 0.342161i 0.823488 0.567333i \(-0.192025\pi\)
−0.415717 + 0.909494i \(0.636469\pi\)
\(284\) −6.49514 + 7.98123i −0.385416 + 0.473599i
\(285\) 0 0
\(286\) 2.89655 + 6.09172i 0.171277 + 0.360211i
\(287\) 8.96057 15.5202i 0.528926 0.916126i
\(288\) 0 0
\(289\) −1.29071 2.23558i −0.0759243 0.131505i
\(290\) 10.7159 15.5514i 0.629260 0.913208i
\(291\) 0 0
\(292\) −3.74382 9.82404i −0.219091 0.574909i
\(293\) −3.69497 + 20.9552i −0.215863 + 1.22422i 0.663540 + 0.748140i \(0.269053\pi\)
−0.879403 + 0.476078i \(0.842058\pi\)
\(294\) 0 0
\(295\) 1.25355 + 1.49392i 0.0729843 + 0.0869793i
\(296\) −15.1138 14.4472i −0.878475 0.839728i
\(297\) 0 0
\(298\) −16.1013 15.8610i −0.932721 0.918805i
\(299\) −11.6093 13.8354i −0.671384 0.800125i
\(300\) 0 0
\(301\) −10.2906 1.81452i −0.593142 0.104587i
\(302\) 1.38642 3.03248i 0.0797795 0.174500i
\(303\) 0 0
\(304\) 7.00378 + 33.7533i 0.401694 + 1.93589i
\(305\) −25.7687 + 14.8776i −1.47551 + 0.851888i
\(306\) 0 0
\(307\) 4.48896 7.77511i 0.256199 0.443749i −0.709022 0.705187i \(-0.750863\pi\)
0.965220 + 0.261438i \(0.0841966\pi\)
\(308\) −2.77341 + 7.99164i −0.158030 + 0.455366i
\(309\) 0 0
\(310\) 13.4615 1.27974i 0.764560 0.0726844i
\(311\) −13.0417 10.9433i −0.739525 0.620535i 0.193185 0.981162i \(-0.438118\pi\)
−0.932710 + 0.360627i \(0.882563\pi\)
\(312\) 0 0
\(313\) −9.04413 3.29179i −0.511204 0.186063i 0.0735224 0.997294i \(-0.476576\pi\)
−0.584727 + 0.811230i \(0.698798\pi\)
\(314\) 0.312500 + 1.13216i 0.0176354 + 0.0638915i
\(315\) 0 0
\(316\) −10.7387 17.9707i −0.604100 1.01093i
\(317\) −1.05306 5.97220i −0.0591457 0.335432i 0.940849 0.338827i \(-0.110030\pi\)
−0.999994 + 0.00339548i \(0.998919\pi\)
\(318\) 0 0
\(319\) −2.82047 7.74917i −0.157916 0.433870i
\(320\) −20.9070 2.72139i −1.16874 0.152130i
\(321\) 0 0
\(322\) 1.80444 22.5780i 0.100557 1.25822i
\(323\) 32.7244i 1.82083i
\(324\) 0 0
\(325\) 5.70173i 0.316275i
\(326\) −15.8815 1.26926i −0.879596 0.0702976i
\(327\) 0 0
\(328\) 15.7199 11.5440i 0.867988 0.637410i
\(329\) −1.29923 3.56961i −0.0716290 0.196799i
\(330\) 0 0
\(331\) 0.638218 + 3.61951i 0.0350796 + 0.198946i 0.997311 0.0732869i \(-0.0233489\pi\)
−0.962231 + 0.272233i \(0.912238\pi\)
\(332\) −11.8053 19.7555i −0.647899 1.08422i
\(333\) 0 0
\(334\) 23.8198 6.57476i 1.30336 0.359755i
\(335\) 33.9960 + 12.3735i 1.85740 + 0.676037i
\(336\) 0 0
\(337\) 14.8826 + 12.4880i 0.810707 + 0.680264i 0.950776 0.309878i \(-0.100288\pi\)
−0.140070 + 0.990142i \(0.544733\pi\)
\(338\) 0.590283 + 6.20913i 0.0321072 + 0.337732i
\(339\) 0 0
\(340\) −18.9081 6.56184i −1.02543 0.355866i
\(341\) 2.95222 5.11340i 0.159872 0.276906i
\(342\) 0 0
\(343\) −16.3076 + 9.41522i −0.880530 + 0.508374i
\(344\) −9.46002 6.31099i −0.510050 0.340266i
\(345\) 0 0
\(346\) −23.9238 10.9377i −1.28615 0.588015i
\(347\) −14.8923 2.62591i −0.799458 0.140966i −0.241029 0.970518i \(-0.577485\pi\)
−0.558430 + 0.829552i \(0.688596\pi\)
\(348\) 0 0
\(349\) −14.4505 17.2214i −0.773518 0.921843i 0.225104 0.974335i \(-0.427728\pi\)
−0.998621 + 0.0524923i \(0.983284\pi\)
\(350\) 5.01800 5.09400i 0.268223 0.272286i
\(351\) 0 0
\(352\) −6.26049 + 6.74962i −0.333685 + 0.359756i
\(353\) 13.4020 + 15.9719i 0.713316 + 0.850096i 0.993963 0.109715i \(-0.0349937\pi\)
−0.280648 + 0.959811i \(0.590549\pi\)
\(354\) 0 0
\(355\) 2.35457 13.3534i 0.124967 0.708725i
\(356\) 0.455900 0.173738i 0.0241626 0.00920808i
\(357\) 0 0
\(358\) 8.25157 + 5.68587i 0.436109 + 0.300508i
\(359\) 5.43854 + 9.41983i 0.287035 + 0.497159i 0.973101 0.230380i \(-0.0739970\pi\)
−0.686066 + 0.727540i \(0.740664\pi\)
\(360\) 0 0
\(361\) −27.6356 + 47.8663i −1.45451 + 2.51928i
\(362\) −0.191513 + 0.0910626i −0.0100657 + 0.00478614i
\(363\) 0 0
\(364\) 9.61586 11.8160i 0.504008 0.619325i
\(365\) 10.6123 + 8.90479i 0.555474 + 0.466098i
\(366\) 0 0
\(367\) −3.96735 + 10.9002i −0.207094 + 0.568985i −0.999139 0.0414764i \(-0.986794\pi\)
0.792046 + 0.610462i \(0.209016\pi\)
\(368\) 11.6776 21.7080i 0.608736 1.13161i
\(369\) 0 0
\(370\) 26.6649 + 6.93048i 1.38624 + 0.360299i
\(371\) −0.463232 + 0.0816804i −0.0240498 + 0.00424063i
\(372\) 0 0
\(373\) −1.65913 4.55843i −0.0859066 0.236027i 0.889299 0.457326i \(-0.151193\pi\)
−0.975206 + 0.221299i \(0.928970\pi\)
\(374\) −7.12089 + 5.06628i −0.368213 + 0.261971i
\(375\) 0 0
\(376\) 0.267368 4.12542i 0.0137885 0.212752i
\(377\) 14.8512i 0.764874i
\(378\) 0 0
\(379\) 31.5863 1.62248 0.811238 0.584715i \(-0.198794\pi\)
0.811238 + 0.584715i \(0.198794\pi\)
\(380\) −29.7180 34.3544i −1.52450 1.76234i
\(381\) 0 0
\(382\) −12.5973 + 8.96253i −0.644531 + 0.458563i
\(383\) −5.33286 + 1.94100i −0.272496 + 0.0991805i −0.474654 0.880172i \(-0.657427\pi\)
0.202158 + 0.979353i \(0.435205\pi\)
\(384\) 0 0
\(385\) −1.93562 10.9774i −0.0986482 0.559462i
\(386\) 1.04277 4.01206i 0.0530758 0.204208i
\(387\) 0 0
\(388\) 3.63325 + 2.02546i 0.184450 + 0.102827i
\(389\) −7.70166 2.80317i −0.390490 0.142127i 0.139311 0.990249i \(-0.455511\pi\)
−0.529801 + 0.848122i \(0.677733\pi\)
\(390\) 0 0
\(391\) 15.0411 17.9253i 0.760660 0.906520i
\(392\) −0.689737 + 0.0760483i −0.0348370 + 0.00384102i
\(393\) 0 0
\(394\) 1.70812 + 3.59233i 0.0860537 + 0.180979i
\(395\) 23.8902 + 13.7930i 1.20204 + 0.694001i
\(396\) 0 0
\(397\) 25.2112 14.5557i 1.26532 0.730531i 0.291218 0.956657i \(-0.405939\pi\)
0.974098 + 0.226126i \(0.0726061\pi\)
\(398\) −1.17572 0.810147i −0.0589334 0.0406090i
\(399\) 0 0
\(400\) 7.22915 2.88011i 0.361458 0.144006i
\(401\) −13.6729 2.41090i −0.682792 0.120395i −0.178516 0.983937i \(-0.557130\pi\)
−0.504276 + 0.863542i \(0.668241\pi\)
\(402\) 0 0
\(403\) −8.14562 + 6.83498i −0.405762 + 0.340475i
\(404\) 0.536342 + 35.6789i 0.0266840 + 1.77509i
\(405\) 0 0
\(406\) −13.0703 + 13.2682i −0.648667 + 0.658492i
\(407\) 9.21557 7.73278i 0.456799 0.383300i
\(408\) 0 0
\(409\) −2.85854 + 16.2116i −0.141346 + 0.801613i 0.828883 + 0.559422i \(0.188977\pi\)
−0.970229 + 0.242190i \(0.922134\pi\)
\(410\) −10.6858 + 23.3728i −0.527735 + 1.15430i
\(411\) 0 0
\(412\) −4.73034 24.6541i −0.233047 1.21462i
\(413\) −0.961601 1.66554i −0.0473173 0.0819559i
\(414\) 0 0
\(415\) 26.2629 + 15.1629i 1.28920 + 0.744318i
\(416\) 14.7520 7.56624i 0.723277 0.370966i
\(417\) 0 0
\(418\) −19.7455 + 1.87715i −0.965786 + 0.0918144i
\(419\) −10.4296 + 12.4295i −0.509520 + 0.607223i −0.958070 0.286535i \(-0.907496\pi\)
0.448549 + 0.893758i \(0.351941\pi\)
\(420\) 0 0
\(421\) −0.181389 + 0.498362i −0.00884036 + 0.0242887i −0.944034 0.329847i \(-0.893003\pi\)
0.935194 + 0.354136i \(0.115225\pi\)
\(422\) −5.77967 + 1.59531i −0.281350 + 0.0776585i
\(423\) 0 0
\(424\) −0.497325 0.121310i −0.0241522 0.00589132i
\(425\) 7.27495 1.28277i 0.352887 0.0622235i
\(426\) 0 0
\(427\) 27.5740 10.0361i 1.33440 0.485682i
\(428\) 3.47497 21.6014i 0.167969 1.04414i
\(429\) 0 0
\(430\) 14.9373 + 1.19379i 0.720339 + 0.0575697i
\(431\) −12.2920 −0.592084 −0.296042 0.955175i \(-0.595667\pi\)
−0.296042 + 0.955175i \(0.595667\pi\)
\(432\) 0 0
\(433\) 14.6907 0.705991 0.352996 0.935625i \(-0.385163\pi\)
0.352996 + 0.935625i \(0.385163\pi\)
\(434\) −13.2928 1.06236i −0.638073 0.0509950i
\(435\) 0 0
\(436\) −2.01892 + 12.5502i −0.0966889 + 0.601045i
\(437\) 49.9053 18.1640i 2.38729 0.868904i
\(438\) 0 0
\(439\) −28.8488 + 5.08682i −1.37688 + 0.242781i −0.812609 0.582810i \(-0.801953\pi\)
−0.564270 + 0.825591i \(0.690842\pi\)
\(440\) 2.87473 11.7853i 0.137048 0.561844i
\(441\) 0 0
\(442\) 15.1712 4.18758i 0.721622 0.199183i
\(443\) 11.6096 31.8970i 0.551588 1.51547i −0.279955 0.960013i \(-0.590320\pi\)
0.831543 0.555461i \(-0.187458\pi\)
\(444\) 0 0
\(445\) −0.413240 + 0.492480i −0.0195895 + 0.0233458i
\(446\) 22.5077 2.13974i 1.06577 0.101319i
\(447\) 0 0
\(448\) 19.8386 + 6.22324i 0.937285 + 0.294020i
\(449\) 15.4011 + 8.89184i 0.726823 + 0.419632i 0.817259 0.576271i \(-0.195493\pi\)
−0.0904355 + 0.995902i \(0.528826\pi\)
\(450\) 0 0
\(451\) 5.61089 + 9.71834i 0.264206 + 0.457619i
\(452\) 1.32978 + 6.93072i 0.0625478 + 0.325994i
\(453\) 0 0
\(454\) −1.01100 + 2.21133i −0.0474485 + 0.103783i
\(455\) −3.48587 + 19.7693i −0.163420 + 0.926800i
\(456\) 0 0
\(457\) 9.21939 7.73598i 0.431265 0.361874i −0.401164 0.916006i \(-0.631394\pi\)
0.832429 + 0.554132i \(0.186950\pi\)
\(458\) −9.14028 + 9.27871i −0.427097 + 0.433566i
\(459\) 0 0
\(460\) 0.488216 + 32.4774i 0.0227632 + 1.51427i
\(461\) −12.6139 + 10.5843i −0.587487 + 0.492960i −0.887396 0.461008i \(-0.847488\pi\)
0.299909 + 0.953968i \(0.403044\pi\)
\(462\) 0 0
\(463\) −3.83957 0.677019i −0.178440 0.0314638i 0.0837142 0.996490i \(-0.473322\pi\)
−0.262154 + 0.965026i \(0.584433\pi\)
\(464\) −18.8296 + 7.50177i −0.874144 + 0.348261i
\(465\) 0 0
\(466\) −22.5463 15.5359i −1.04444 0.719685i
\(467\) 8.38005 4.83822i 0.387782 0.223886i −0.293416 0.955985i \(-0.594792\pi\)
0.681199 + 0.732098i \(0.261459\pi\)
\(468\) 0 0
\(469\) −30.8975 17.8387i −1.42672 0.823715i
\(470\) 2.33926 + 4.91968i 0.107902 + 0.226928i
\(471\) 0 0
\(472\) −0.229377 2.08039i −0.0105579 0.0957576i
\(473\) 4.20585 5.01234i 0.193385 0.230468i
\(474\) 0 0
\(475\) 15.7548 + 5.73429i 0.722881 + 0.263107i
\(476\) 17.2396 + 9.61073i 0.790176 + 0.440507i
\(477\) 0 0
\(478\) −1.64662 + 6.33535i −0.0753146 + 0.289772i
\(479\) 0.352574 + 1.99955i 0.0161095 + 0.0913616i 0.991802 0.127780i \(-0.0407853\pi\)
−0.975693 + 0.219142i \(0.929674\pi\)
\(480\) 0 0
\(481\) −20.3585 + 7.40988i −0.928266 + 0.337861i
\(482\) 31.7450 22.5856i 1.44595 1.02874i
\(483\) 0 0
\(484\) 10.9276 + 12.6325i 0.496710 + 0.574203i
\(485\) −5.48126 −0.248891
\(486\) 0 0
\(487\) 7.67766i 0.347908i −0.984754 0.173954i \(-0.944346\pi\)
0.984754 0.173954i \(-0.0556544\pi\)
\(488\) 31.8675 + 2.06533i 1.44257 + 0.0934930i
\(489\) 0 0
\(490\) 0.745054 0.530082i 0.0336581 0.0239466i
\(491\) −6.23136 17.1205i −0.281217 0.772638i −0.997218 0.0745389i \(-0.976251\pi\)
0.716001 0.698100i \(-0.245971\pi\)
\(492\) 0 0
\(493\) −18.9489 + 3.34121i −0.853417 + 0.150480i
\(494\) 34.5716 + 8.98550i 1.55545 + 0.404277i
\(495\) 0 0
\(496\) −12.7806 6.87518i −0.573866 0.308705i
\(497\) −4.57346 + 12.5655i −0.205148 + 0.563638i
\(498\) 0 0
\(499\) −0.594620 0.498945i −0.0266189 0.0223359i 0.629381 0.777097i \(-0.283308\pi\)
−0.656000 + 0.754761i \(0.727753\pi\)
\(500\) 10.1624 12.4876i 0.454476 0.558460i
\(501\) 0 0
\(502\) 17.7317 8.43126i 0.791406 0.376305i
\(503\) −16.6264 + 28.7978i −0.741335 + 1.28403i 0.210552 + 0.977583i \(0.432474\pi\)
−0.951887 + 0.306448i \(0.900859\pi\)
\(504\) 0 0
\(505\) −23.5098 40.7203i −1.04617 1.81203i
\(506\) 11.6787 + 8.04740i 0.519182 + 0.357750i
\(507\) 0 0
\(508\) −34.0839 + 12.9890i −1.51223 + 0.576293i
\(509\) −5.59821 + 31.7490i −0.248136 + 1.40725i 0.564958 + 0.825119i \(0.308892\pi\)
−0.813095 + 0.582132i \(0.802219\pi\)
\(510\) 0 0
\(511\) −8.78164 10.4655i −0.388477 0.462969i
\(512\) 17.0448 + 14.8820i 0.753283 + 0.657697i
\(513\) 0 0
\(514\) 1.68394 1.70944i 0.0742754 0.0754003i
\(515\) 21.2631 + 25.3404i 0.936966 + 1.11663i
\(516\) 0 0
\(517\) 2.34251 + 0.413048i 0.103024 + 0.0181658i
\(518\) −24.7099 11.2971i −1.08569 0.496366i
\(519\) 0 0
\(520\) −12.1240 + 18.1736i −0.531674 + 0.796966i
\(521\) 27.9816 16.1552i 1.22590 0.707773i 0.259729 0.965682i \(-0.416367\pi\)
0.966169 + 0.257909i \(0.0830335\pi\)
\(522\) 0 0
\(523\) −1.25831 + 2.17946i −0.0550222 + 0.0953012i −0.892225 0.451592i \(-0.850856\pi\)
0.837202 + 0.546893i \(0.184190\pi\)
\(524\) −7.87623 2.73336i −0.344075 0.119407i
\(525\) 0 0
\(526\) 0.555348 + 5.84165i 0.0242143 + 0.254708i
\(527\) −10.5535 8.85544i −0.459718 0.385749i
\(528\) 0 0
\(529\) −14.0722 5.12185i −0.611833 0.222689i
\(530\) 0.650229 0.179477i 0.0282442 0.00779598i
\(531\) 0 0
\(532\) 22.9787 + 38.4537i 0.996255 + 1.66718i
\(533\) −3.50932 19.9023i −0.152005 0.862066i
\(534\) 0 0
\(535\) 9.86054 + 27.0916i 0.426308 + 1.17127i
\(536\) −22.9818 31.2952i −0.992662 1.35175i
\(537\) 0 0
\(538\) 44.3301 + 3.54287i 1.91121 + 0.152744i
\(539\) 0.399264i 0.0171975i
\(540\) 0 0
\(541\) 20.7984i 0.894192i 0.894486 + 0.447096i \(0.147542\pi\)
−0.894486 + 0.447096i \(0.852458\pi\)
\(542\) −3.17393 + 39.7137i −0.136332 + 1.70585i
\(543\) 0 0
\(544\) 12.9728 + 17.1202i 0.556206 + 0.734021i
\(545\) −5.72888 15.7400i −0.245398 0.674226i
\(546\) 0 0
\(547\) −3.11764 17.6810i −0.133301 0.755985i −0.976028 0.217645i \(-0.930163\pi\)
0.842727 0.538341i \(-0.180949\pi\)
\(548\) 16.3528 + 27.3656i 0.698559 + 1.16900i
\(549\) 0 0
\(550\) 1.19132 + 4.31605i 0.0507980 + 0.184037i
\(551\) −41.0363 14.9360i −1.74820 0.636294i
\(552\) 0 0
\(553\) −20.8398 17.4867i −0.886200 0.743610i
\(554\) 34.7653 3.30504i 1.47704 0.140418i
\(555\) 0 0
\(556\) −1.55431 + 4.47877i −0.0659173 + 0.189942i
\(557\) 15.8779 27.5013i 0.672766 1.16527i −0.304350 0.952560i \(-0.598439\pi\)
0.977116 0.212705i \(-0.0682274\pi\)
\(558\) 0 0
\(559\) −10.2049 + 5.89179i −0.431621 + 0.249196i
\(560\) −26.8261 + 5.56639i −1.13361 + 0.235223i
\(561\) 0 0
\(562\) 11.3244 24.7696i 0.477692 1.04484i
\(563\) −21.2510 3.74712i −0.895621 0.157922i −0.293153 0.956065i \(-0.594705\pi\)
−0.602468 + 0.798143i \(0.705816\pi\)
\(564\) 0 0
\(565\) −5.97745 7.12365i −0.251473 0.299694i
\(566\) 9.02186 + 8.88726i 0.379217 + 0.373559i
\(567\) 0 0
\(568\) −10.0555 + 10.5195i −0.421920 + 0.441389i
\(569\) −28.0024 33.3720i −1.17392 1.39903i −0.899221 0.437495i \(-0.855866\pi\)
−0.274701 0.961530i \(-0.588579\pi\)
\(570\) 0 0
\(571\) 5.33260 30.2427i 0.223162 1.26562i −0.643005 0.765862i \(-0.722313\pi\)
0.866167 0.499754i \(-0.166576\pi\)
\(572\) 3.39700 + 8.91395i 0.142036 + 0.372711i
\(573\) 0 0
\(574\) 14.3805 20.8695i 0.600229 0.871077i
\(575\) −5.99429 10.3824i −0.249979 0.432977i
\(576\) 0 0
\(577\) −18.5251 + 32.0864i −0.771210 + 1.33578i 0.165690 + 0.986178i \(0.447015\pi\)
−0.936900 + 0.349597i \(0.886318\pi\)
\(578\) −1.56767 3.29696i −0.0652065 0.137135i
\(579\) 0 0
\(580\) 16.8585 20.7157i 0.700012 0.860174i
\(581\) −22.9096 19.2235i −0.950452 0.797524i
\(582\) 0 0
\(583\) 0.100738 0.276776i 0.00417216 0.0114629i
\(584\) −4.17091 14.2709i −0.172593 0.590535i
\(585\) 0 0
\(586\) −7.56980 + 29.1247i −0.312706 + 1.20313i
\(587\) −2.18563 + 0.385385i −0.0902104 + 0.0159065i −0.218571 0.975821i \(-0.570140\pi\)
0.128361 + 0.991728i \(0.459028\pi\)
\(588\) 0 0
\(589\) −10.6941 29.3817i −0.440642 1.21065i
\(590\) 1.59883 + 2.24724i 0.0658230 + 0.0925172i
\(591\) 0 0
\(592\) −19.6786 22.0693i −0.808784 0.907043i
\(593\) 7.72015i 0.317028i −0.987357 0.158514i \(-0.949330\pi\)
0.987357 0.158514i \(-0.0506704\pi\)
\(594\) 0 0
\(595\) −26.0084 −1.06624
\(596\) −20.9113 24.1736i −0.856559 0.990191i
\(597\) 0 0
\(598\) −14.8071 20.8121i −0.605507 0.851068i
\(599\) 5.13051 1.86735i 0.209627 0.0762980i −0.235072 0.971978i \(-0.575533\pi\)
0.444699 + 0.895680i \(0.353311\pi\)
\(600\) 0 0
\(601\) 2.68385 + 15.2209i 0.109477 + 0.620872i 0.989337 + 0.145641i \(0.0465245\pi\)
−0.879861 + 0.475231i \(0.842364\pi\)
\(602\) −14.3025 3.71735i −0.582925 0.151508i
\(603\) 0 0
\(604\) 2.29612 4.11875i 0.0934277 0.167589i
\(605\) −20.6824 7.52779i −0.840860 0.306048i
\(606\) 0 0
\(607\) −0.0926471 + 0.110413i −0.00376043 + 0.00448151i −0.767921 0.640544i \(-0.778709\pi\)
0.764161 + 0.645026i \(0.223153\pi\)
\(608\) 6.07054 + 48.3718i 0.246193 + 1.96173i
\(609\) 0 0
\(610\) −38.0028 + 18.0700i −1.53869 + 0.731632i
\(611\) −3.70982 2.14186i −0.150083 0.0866505i
\(612\) 0 0
\(613\) 30.3578 17.5271i 1.22614 0.707913i 0.259921 0.965630i \(-0.416304\pi\)
0.966220 + 0.257717i \(0.0829702\pi\)
\(614\) 7.20416 10.4550i 0.290736 0.421928i
\(615\) 0 0
\(616\) −4.81011 + 10.9535i −0.193805 + 0.441329i
\(617\) −1.95314 0.344391i −0.0786304 0.0138647i 0.134195 0.990955i \(-0.457155\pi\)
−0.212825 + 0.977090i \(0.568266\pi\)
\(618\) 0 0
\(619\) 30.9839 25.9986i 1.24535 1.04497i 0.248262 0.968693i \(-0.420141\pi\)
0.997087 0.0762782i \(-0.0243037\pi\)
\(620\) 19.1211 0.287437i 0.767920 0.0115438i
\(621\) 0 0
\(622\) −17.1522 16.8962i −0.687739 0.677478i
\(623\) 0.485670 0.407525i 0.0194579 0.0163272i
\(624\) 0 0
\(625\) −5.37310 + 30.4724i −0.214924 + 1.21890i
\(626\) −12.3788 5.65946i −0.494756 0.226197i
\(627\) 0 0
\(628\) 0.312982 + 1.63124i 0.0124893 + 0.0650934i
\(629\) −14.0347 24.3087i −0.559598 0.969253i
\(630\) 0 0
\(631\) 28.0718 + 16.2073i 1.11752 + 0.645202i 0.940767 0.339053i \(-0.110107\pi\)
0.176755 + 0.984255i \(0.443440\pi\)
\(632\) −13.1139 26.5435i −0.521643 1.05584i
\(633\) 0 0
\(634\) −0.811659 8.53776i −0.0322351 0.339078i
\(635\) 30.8946 36.8188i 1.22602 1.46111i
\(636\) 0 0
\(637\) −0.245925 + 0.675673i −0.00974390 + 0.0267711i
\(638\) −3.10301 11.2419i −0.122849 0.445072i
\(639\) 0 0
\(640\) −29.1664 6.19189i −1.15290 0.244756i
\(641\) −16.3026 + 2.87458i −0.643912 + 0.113539i −0.486063 0.873924i \(-0.661567\pi\)
−0.157850 + 0.987463i \(0.550456\pi\)
\(642\) 0 0
\(643\) −25.2314 + 9.18349i −0.995030 + 0.362161i −0.787666 0.616102i \(-0.788711\pi\)
−0.207364 + 0.978264i \(0.566489\pi\)
\(644\) 5.08750 31.6253i 0.200476 1.24621i
\(645\) 0 0
\(646\) −3.68690 + 46.1322i −0.145059 + 1.81505i
\(647\) −29.0527 −1.14218 −0.571090 0.820887i \(-0.693479\pi\)
−0.571090 + 0.820887i \(0.693479\pi\)
\(648\) 0 0
\(649\) 1.20426 0.0472714
\(650\) 0.642386 8.03783i 0.0251964 0.315270i
\(651\) 0 0
\(652\) −22.2455 3.57859i −0.871200 0.140148i
\(653\) −32.5052 + 11.8309i −1.27203 + 0.462980i −0.887788 0.460253i \(-0.847759\pi\)
−0.384240 + 0.923233i \(0.625537\pi\)
\(654\) 0 0
\(655\) 10.8189 1.90767i 0.422730 0.0745387i
\(656\) 23.4613 14.5027i 0.916009 0.566235i
\(657\) 0 0
\(658\) −1.42938 5.17852i −0.0557231 0.201880i
\(659\) −7.44079 + 20.4434i −0.289852 + 0.796362i 0.706234 + 0.707978i \(0.250393\pi\)
−0.996086 + 0.0883842i \(0.971830\pi\)
\(660\) 0 0
\(661\) −16.3906 + 19.5335i −0.637519 + 0.759766i −0.983976 0.178300i \(-0.942940\pi\)
0.346457 + 0.938066i \(0.387385\pi\)
\(662\) 0.491915 + 5.17440i 0.0191188 + 0.201109i
\(663\) 0 0
\(664\) −14.4164 29.1798i −0.559464 1.13239i
\(665\) −51.1202 29.5143i −1.98236 1.14451i
\(666\) 0 0
\(667\) 15.6132 + 27.0429i 0.604546 + 1.04710i
\(668\) 34.3200 6.58490i 1.32788 0.254778i
\(669\) 0 0
\(670\) 46.5307 + 21.2733i 1.79764 + 0.821860i
\(671\) −3.19066 + 18.0951i −0.123174 + 0.698555i
\(672\) 0 0
\(673\) −6.18349 + 5.18857i −0.238356 + 0.200005i −0.754139 0.656715i \(-0.771946\pi\)
0.515783 + 0.856719i \(0.327501\pi\)
\(674\) 19.5733 + 19.2813i 0.753936 + 0.742687i
\(675\) 0 0
\(676\) 0.132581 + 8.81963i 0.00509927 + 0.339216i
\(677\) 11.8370 9.93243i 0.454933 0.381734i −0.386330 0.922361i \(-0.626257\pi\)
0.841263 + 0.540627i \(0.181813\pi\)
\(678\) 0 0
\(679\) 5.32333 + 0.938647i 0.204291 + 0.0360220i
\(680\) −25.9158 11.3806i −0.993825 0.436427i
\(681\) 0 0
\(682\) 4.73790 6.87584i 0.181424 0.263289i
\(683\) 1.82111 1.05142i 0.0696830 0.0402315i −0.464754 0.885440i \(-0.653857\pi\)
0.534437 + 0.845209i \(0.320524\pi\)
\(684\) 0 0
\(685\) −36.3798 21.0039i −1.39000 0.802516i
\(686\) −24.0499 + 11.4355i −0.918231 + 0.436610i
\(687\) 0 0
\(688\) −12.6249 9.96254i −0.481321 0.379818i
\(689\) −0.340959 + 0.406339i −0.0129895 + 0.0154803i
\(690\) 0 0
\(691\) −21.9905 8.00388i −0.836557 0.304482i −0.112010 0.993707i \(-0.535729\pi\)
−0.724547 + 0.689225i \(0.757951\pi\)
\(692\) −32.4935 18.1145i −1.23522 0.688609i
\(693\) 0 0
\(694\) −20.6981 5.37963i −0.785687 0.204208i
\(695\) −1.08478 6.15210i −0.0411481 0.233362i
\(696\) 0 0
\(697\) 24.6043 8.95523i 0.931954 0.339203i
\(698\) −18.4309 25.9055i −0.697619 0.980536i
\(699\) 0 0
\(700\) 7.64789 6.61575i 0.289063 0.250052i
\(701\) −40.5028 −1.52977 −0.764884 0.644168i \(-0.777204\pi\)
−0.764884 + 0.644168i \(0.777204\pi\)
\(702\) 0 0
\(703\) 63.7061i 2.40272i
\(704\) −9.58598 + 8.80972i −0.361285 + 0.332029i
\(705\) 0 0
\(706\) 17.0936 + 24.0258i 0.643324 + 0.904222i
\(707\) 15.8593 + 43.5730i 0.596450 + 1.63873i
\(708\) 0 0
\(709\) −12.4782 + 2.20024i −0.468628 + 0.0826317i −0.402975 0.915211i \(-0.632024\pi\)
−0.0656523 + 0.997843i \(0.520913\pi\)
\(710\) 4.82374 18.5593i 0.181032 0.696517i
\(711\) 0 0
\(712\) 0.662264 0.193557i 0.0248194 0.00725387i
\(713\) −7.64687 + 21.0096i −0.286377 + 0.786815i
\(714\) 0 0
\(715\) −9.62920 8.07986i −0.360112 0.302170i
\(716\) 10.9918 + 8.94514i 0.410783 + 0.334296i
\(717\) 0 0
\(718\) 6.60552 + 13.8920i 0.246516 + 0.518446i
\(719\) −23.2178 + 40.2145i −0.865879 + 1.49975i 0.000291815 1.00000i \(0.499907\pi\)
−0.866171 + 0.499747i \(0.833426\pi\)
\(720\) 0 0
\(721\) −16.3111 28.2516i −0.607455 1.05214i
\(722\) −44.3513 + 64.3644i −1.65058 + 2.39540i
\(723\) 0 0
\(724\) −0.280239 + 0.106796i −0.0104150 + 0.00396903i
\(725\) −1.71183 + 9.70825i −0.0635756 + 0.360555i
\(726\) 0 0
\(727\) −7.82850 9.32964i −0.290343 0.346017i 0.601081 0.799188i \(-0.294737\pi\)
−0.891424 + 0.453171i \(0.850293\pi\)
\(728\) 14.8869 15.5738i 0.551745 0.577204i
\(729\) 0 0
\(730\) 13.9571 + 13.7489i 0.516576 + 0.508869i
\(731\) −9.81335 11.6951i −0.362960 0.432559i
\(732\) 0 0
\(733\) 9.85329 + 1.73740i 0.363939 + 0.0641723i 0.352628 0.935764i \(-0.385288\pi\)
0.0113117 + 0.999936i \(0.496399\pi\)
\(734\) −6.82091 + 14.9192i −0.251764 + 0.550679i
\(735\) 0 0
\(736\) 18.9079 29.2866i 0.696953 1.07952i
\(737\) 19.3473 11.1702i 0.712666 0.411458i
\(738\) 0 0
\(739\) 22.0318 38.1602i 0.810454 1.40375i −0.102093 0.994775i \(-0.532554\pi\)
0.912547 0.408972i \(-0.134113\pi\)
\(740\) 36.8092 + 12.7742i 1.35313 + 0.469590i
\(741\) 0 0
\(742\) −0.662230 + 0.0629562i −0.0243112 + 0.00231119i
\(743\) −6.42946 5.39496i −0.235874 0.197922i 0.517187 0.855872i \(-0.326979\pi\)
−0.753061 + 0.657950i \(0.771424\pi\)
\(744\) 0 0
\(745\) 39.5782 + 14.4053i 1.45003 + 0.527769i
\(746\) −1.82533 6.61303i −0.0668302 0.242120i
\(747\) 0 0
\(748\) −10.6092 + 6.33976i −0.387913 + 0.231805i
\(749\) −4.93709 27.9996i −0.180397 1.02308i
\(750\) 0 0
\(751\) 7.74342 + 21.2749i 0.282561 + 0.776331i 0.997055 + 0.0766890i \(0.0244348\pi\)
−0.714494 + 0.699642i \(0.753343\pi\)
\(752\) 0.841704 5.78556i 0.0306938 0.210977i
\(753\) 0 0
\(754\) −1.67321 + 20.9360i −0.0609347 + 0.762443i
\(755\) 6.21370i 0.226140i
\(756\) 0 0
\(757\) 19.5088i 0.709058i −0.935045 0.354529i \(-0.884641\pi\)
0.935045 0.354529i \(-0.115359\pi\)
\(758\) 44.5277 + 3.55867i 1.61732 + 0.129257i
\(759\) 0 0
\(760\) −38.0235 51.7782i −1.37926 1.87819i
\(761\) 9.62500 + 26.4445i 0.348906 + 0.958612i 0.982715 + 0.185122i \(0.0592682\pi\)
−0.633809 + 0.773489i \(0.718510\pi\)
\(762\) 0 0
\(763\) 2.86840 + 16.2675i 0.103843 + 0.588924i
\(764\) −18.7683 + 11.2154i −0.679015 + 0.405758i
\(765\) 0 0
\(766\) −7.73651 + 2.13544i −0.279532 + 0.0771565i
\(767\) −2.03797 0.741760i −0.0735868 0.0267834i
\(768\) 0 0
\(769\) 12.3157 + 10.3341i 0.444117 + 0.372658i 0.837247 0.546824i \(-0.184163\pi\)
−0.393130 + 0.919483i \(0.628608\pi\)
\(770\) −1.49190 15.6932i −0.0537644 0.565543i
\(771\) 0 0
\(772\) 1.92204 5.53839i 0.0691756 0.199331i
\(773\) −6.27436 + 10.8675i −0.225673 + 0.390877i −0.956521 0.291663i \(-0.905791\pi\)
0.730848 + 0.682540i \(0.239125\pi\)
\(774\) 0 0
\(775\) −6.11265 + 3.52914i −0.219573 + 0.126770i
\(776\) 4.89366 + 3.26467i 0.175672 + 0.117195i
\(777\) 0 0
\(778\) −10.5413 4.81939i −0.377926 0.172784i
\(779\) 58.5229 + 10.3192i 2.09680 + 0.369722i
\(780\) 0 0
\(781\) −5.38215 6.41420i −0.192589 0.229518i
\(782\) 23.2232 23.5750i 0.830462 0.843039i
\(783\) 0 0
\(784\) −0.980902 + 0.0294975i −0.0350322 + 0.00105348i
\(785\) −1.40687 1.67664i −0.0502134 0.0598420i
\(786\) 0 0
\(787\) −3.64035 + 20.6454i −0.129764 + 0.735930i 0.848599 + 0.529037i \(0.177447\pi\)
−0.978363 + 0.206894i \(0.933665\pi\)
\(788\) 2.00323 + 5.25662i 0.0713623 + 0.187259i
\(789\) 0 0
\(790\) 32.1244 + 22.1358i 1.14294 + 0.787557i
\(791\) 4.58533 + 7.94202i 0.163036 + 0.282386i
\(792\) 0 0
\(793\) 16.5452 28.6571i 0.587536 1.01764i
\(794\) 37.1807 17.6790i 1.31949 0.627406i
\(795\) 0 0
\(796\) −1.56616 1.27454i −0.0555109 0.0451749i
\(797\) 21.2235 + 17.8086i 0.751775 + 0.630814i 0.935972 0.352075i \(-0.114524\pi\)
−0.184197 + 0.982889i \(0.558968\pi\)
\(798\) 0 0
\(799\) 1.89822 5.21531i 0.0671541 0.184504i
\(800\) 10.5156 3.24568i 0.371781 0.114752i
\(801\) 0 0
\(802\) −19.0033 4.93915i −0.671030 0.174407i
\(803\) 8.42472 1.48550i 0.297302 0.0524223i
\(804\) 0 0
\(805\) 14.4362 + 39.6632i 0.508810 + 1.39794i
\(806\) −12.2531 + 8.71768i −0.431597 + 0.307067i
\(807\) 0 0
\(808\) −3.26367 + 50.3576i −0.114816 + 1.77157i
\(809\) 21.9542i 0.771867i 0.922527 + 0.385933i \(0.126121\pi\)
−0.922527 + 0.385933i \(0.873879\pi\)
\(810\) 0 0
\(811\) −17.4685 −0.613401 −0.306700 0.951806i \(-0.599225\pi\)
−0.306700 + 0.951806i \(0.599225\pi\)
\(812\) −19.9203 + 17.2319i −0.699065 + 0.604722i
\(813\) 0 0
\(814\) 13.8626 9.86277i 0.485883 0.345690i
\(815\) 27.8994 10.1546i 0.977274 0.355699i
\(816\) 0 0
\(817\) −6.01685 34.1233i −0.210503 1.19382i
\(818\) −5.85623 + 22.5318i −0.204758 + 0.787804i
\(819\) 0 0
\(820\) −17.6973 + 31.7452i −0.618017 + 1.10859i
\(821\) 40.3394 + 14.6823i 1.40786 + 0.512417i 0.930500 0.366293i \(-0.119373\pi\)
0.477355 + 0.878710i \(0.341595\pi\)
\(822\) 0 0
\(823\) −17.8062 + 21.2206i −0.620686 + 0.739705i −0.981188 0.193053i \(-0.938161\pi\)
0.360502 + 0.932758i \(0.382605\pi\)
\(824\) −3.89079 35.2883i −0.135542 1.22933i
\(825\) 0 0
\(826\) −1.16794 2.45628i −0.0406378 0.0854650i
\(827\) −23.1043 13.3392i −0.803414 0.463851i 0.0412497 0.999149i \(-0.486866\pi\)
−0.844663 + 0.535298i \(0.820199\pi\)
\(828\) 0 0
\(829\) −2.23315 + 1.28931i −0.0775606 + 0.0447796i −0.538279 0.842767i \(-0.680925\pi\)
0.460718 + 0.887547i \(0.347592\pi\)
\(830\) 35.3150 + 24.3343i 1.22580 + 0.844657i
\(831\) 0 0
\(832\) 21.6486 9.00424i 0.750532 0.312166i
\(833\) −0.917434 0.161768i −0.0317872 0.00560494i
\(834\) 0 0
\(835\) −35.2753 + 29.5995i −1.22075 + 1.02433i
\(836\) −28.0472 + 0.421619i −0.970031 + 0.0145820i
\(837\) 0 0
\(838\) −16.1032 + 16.3471i −0.556276 + 0.564701i
\(839\) 27.0517 22.6991i 0.933928 0.783659i −0.0425905 0.999093i \(-0.513561\pi\)
0.976518 + 0.215434i \(0.0691166\pi\)
\(840\) 0 0
\(841\) −0.577037 + 3.27254i −0.0198978 + 0.112846i
\(842\) −0.311855 + 0.682114i −0.0107472 + 0.0235072i
\(843\) 0 0
\(844\) −8.32744 + 1.59777i −0.286642 + 0.0549975i
\(845\) −5.81151 10.0658i −0.199922 0.346275i
\(846\) 0 0
\(847\) 18.7974 + 10.8527i 0.645887 + 0.372903i
\(848\) −0.687421 0.227044i −0.0236061 0.00779671i
\(849\) 0 0
\(850\) 10.4002 0.988712i 0.356723 0.0339125i
\(851\) −29.2812 + 34.8959i −1.00375 + 1.19622i
\(852\) 0 0
\(853\) 11.8972 32.6874i 0.407354 1.11919i −0.551222 0.834358i \(-0.685838\pi\)
0.958576 0.284837i \(-0.0919393\pi\)
\(854\) 40.0023 11.0415i 1.36885 0.377832i
\(855\) 0 0
\(856\) 7.33245 30.0603i 0.250618 1.02744i
\(857\) 14.7995 2.60955i 0.505541 0.0891405i 0.0849397 0.996386i \(-0.472930\pi\)
0.420601 + 0.907246i \(0.361819\pi\)
\(858\) 0 0
\(859\) −11.2421 + 4.09177i −0.383574 + 0.139610i −0.526608 0.850108i \(-0.676536\pi\)
0.143034 + 0.989718i \(0.454314\pi\)
\(860\) 20.9228 + 3.36582i 0.713463 + 0.114773i
\(861\) 0 0
\(862\) −17.3282 1.38488i −0.590203 0.0471692i
\(863\) 4.99128 0.169905 0.0849526 0.996385i \(-0.472926\pi\)
0.0849526 + 0.996385i \(0.472926\pi\)
\(864\) 0 0
\(865\) 49.0210 1.66676
\(866\) 20.7098 + 1.65513i 0.703747 + 0.0562437i
\(867\) 0 0
\(868\) −18.6194 2.99526i −0.631983 0.101666i
\(869\) 16.0074 5.82624i 0.543016 0.197641i
\(870\) 0 0
\(871\) −39.6216 + 6.98635i −1.34253 + 0.236724i
\(872\) −4.26008 + 17.4648i −0.144265 + 0.591432i
\(873\) 0 0
\(874\) 72.3989 19.9836i 2.44893 0.675955i
\(875\) 7.15570 19.6601i 0.241907 0.664634i
\(876\) 0 0
\(877\) 13.3228 15.8774i 0.449878 0.536143i −0.492670 0.870217i \(-0.663979\pi\)
0.942547 + 0.334073i \(0.108423\pi\)
\(878\) −41.2418 + 3.92073i −1.39184 + 0.132318i
\(879\) 0 0
\(880\) 5.38036 16.2901i 0.181372 0.549140i
\(881\) −7.33774 4.23645i −0.247215 0.142729i 0.371274 0.928524i \(-0.378921\pi\)
−0.618488 + 0.785794i \(0.712255\pi\)
\(882\) 0 0
\(883\) 9.03674 + 15.6521i 0.304111 + 0.526735i 0.977063 0.212951i \(-0.0683074\pi\)
−0.672952 + 0.739686i \(0.734974\pi\)
\(884\) 21.8590 4.19404i 0.735197 0.141061i
\(885\) 0 0
\(886\) 19.9599 43.6579i 0.670567 1.46671i
\(887\) −3.87890 + 21.9983i −0.130241 + 0.738632i 0.847816 + 0.530291i \(0.177917\pi\)
−0.978056 + 0.208341i \(0.933194\pi\)
\(888\) 0 0
\(889\) −36.3096 + 30.4674i −1.21779 + 1.02184i
\(890\) −0.638038 + 0.647701i −0.0213871 + 0.0217110i
\(891\) 0 0
\(892\) 31.9706 0.480597i 1.07045 0.0160916i
\(893\) 9.64933 8.09675i 0.322903 0.270948i
\(894\) 0 0
\(895\) −18.3904 3.24272i −0.614723 0.108392i
\(896\) 27.2657 + 11.0081i 0.910883 + 0.367756i
\(897\) 0 0
\(898\) 20.7094 + 14.2702i 0.691083 + 0.476201i
\(899\) 15.9215 9.19228i 0.531012 0.306580i
\(900\) 0 0
\(901\) −0.595165 0.343619i −0.0198278 0.0114476i
\(902\) 6.81485 + 14.3323i 0.226910 + 0.477213i
\(903\) 0 0
\(904\) 1.09377 + 9.92019i 0.0363783 + 0.329940i
\(905\) 0.254017 0.302725i 0.00844380 0.0100629i
\(906\) 0 0
\(907\) 37.7812 + 13.7512i 1.25450 + 0.456602i 0.881921 0.471397i \(-0.156250\pi\)
0.372583 + 0.927999i \(0.378472\pi\)
\(908\) −1.67436 + 3.00345i −0.0555657 + 0.0996731i
\(909\) 0 0
\(910\) −7.14140 + 27.4765i −0.236735 + 0.910836i
\(911\) 1.26349 + 7.16560i 0.0418613 + 0.237407i 0.998558 0.0536786i \(-0.0170946\pi\)
−0.956697 + 0.291086i \(0.905984\pi\)
\(912\) 0 0
\(913\) 17.5973 6.40489i 0.582386 0.211971i
\(914\) 13.8683 9.86686i 0.458723 0.326367i
\(915\) 0 0
\(916\) −13.9306 + 12.0506i −0.460280 + 0.398162i
\(917\) −10.8339 −0.357766
\(918\) 0 0
\(919\) 24.9111i 0.821741i −0.911694 0.410870i \(-0.865225\pi\)
0.911694 0.410870i \(-0.134775\pi\)
\(920\) −2.97082 + 45.8390i −0.0979451 + 1.51127i
\(921\) 0 0
\(922\) −18.9745 + 13.4997i −0.624892 + 0.444591i
\(923\) 5.15741 + 14.1699i 0.169758 + 0.466406i
\(924\) 0 0
\(925\) −14.1625 + 2.49723i −0.465660 + 0.0821084i
\(926\) −5.33643 1.38699i −0.175366 0.0455794i
\(927\) 0 0
\(928\) −27.3897 + 8.45395i −0.899110 + 0.277514i
\(929\) −12.8203 + 35.2236i −0.420621 + 1.15565i 0.530730 + 0.847541i \(0.321918\pi\)
−0.951352 + 0.308107i \(0.900305\pi\)
\(930\) 0 0
\(931\) −1.61967 1.35906i −0.0530825 0.0445415i
\(932\) −30.0336 24.4414i −0.983782 0.800604i
\(933\) 0 0
\(934\) 12.3586 5.87639i 0.404386 0.192281i
\(935\) 8.14289 14.1039i 0.266301 0.461247i
\(936\) 0 0
\(937\) 4.91136 + 8.50673i 0.160447 + 0.277903i 0.935029 0.354571i \(-0.115373\pi\)
−0.774582 + 0.632474i \(0.782040\pi\)
\(938\) −41.5470 28.6286i −1.35656 0.934758i
\(939\) 0 0
\(940\) 2.74342 + 7.19891i 0.0894804 + 0.234803i
\(941\) 1.11021 6.29630i 0.0361918 0.205254i −0.961350 0.275330i \(-0.911213\pi\)
0.997542 + 0.0700759i \(0.0223242\pi\)
\(942\) 0 0
\(943\) −27.3138 32.5513i −0.889459 1.06002i
\(944\) −0.0889704 2.95860i −0.00289574 0.0962943i
\(945\) 0 0
\(946\) 6.49378 6.59213i 0.211131 0.214329i
\(947\) −2.56959 3.06232i −0.0835006 0.0995121i 0.722677 0.691186i \(-0.242912\pi\)
−0.806177 + 0.591674i \(0.798467\pi\)
\(948\) 0 0
\(949\) −15.1721 2.67525i −0.492508 0.0868424i
\(950\) 21.5638 + 9.85875i 0.699623 + 0.319860i
\(951\) 0 0
\(952\) 23.2202 + 15.4907i 0.752571 + 0.502057i
\(953\) −38.3667 + 22.1510i −1.24282 + 0.717542i −0.969667 0.244428i \(-0.921400\pi\)
−0.273152 + 0.961971i \(0.588066\pi\)
\(954\) 0 0
\(955\) 14.4052 24.9506i 0.466142 0.807382i
\(956\) −3.03504 + 8.74554i −0.0981603 + 0.282851i
\(957\) 0 0
\(958\) 0.271751 + 2.85852i 0.00877987 + 0.0923546i
\(959\) 31.7348 + 26.6286i 1.02477 + 0.859883i
\(960\) 0 0
\(961\) −16.7611 6.10053i −0.540680 0.196791i
\(962\) −29.5345 + 8.15215i −0.952232 + 0.262836i
\(963\) 0 0
\(964\) 47.2962 28.2627i 1.52331 0.910281i
\(965\) 1.34143 + 7.60761i 0.0431820 + 0.244897i
\(966\) 0 0
\(967\) 8.11445 + 22.2943i 0.260943 + 0.716935i 0.999104 + 0.0423110i \(0.0134720\pi\)
−0.738161 + 0.674624i \(0.764306\pi\)
\(968\) 13.9816 + 19.0394i 0.449387 + 0.611949i
\(969\) 0 0
\(970\) −7.72703 0.617547i −0.248100 0.0198282i
\(971\) 23.3729i 0.750071i −0.927010 0.375036i \(-0.877631\pi\)
0.927010 0.375036i \(-0.122369\pi\)
\(972\) 0 0
\(973\) 6.16061i 0.197500i
\(974\) 0.865004 10.8233i 0.0277165 0.346802i
\(975\) 0 0
\(976\) 44.6915 + 6.50188i 1.43054 + 0.208120i
\(977\) −17.9667 49.3632i −0.574807 1.57927i −0.796814 0.604224i \(-0.793483\pi\)
0.222007 0.975045i \(-0.428739\pi\)
\(978\) 0 0
\(979\) 0.0689371 + 0.390962i 0.00220324 + 0.0124952i
\(980\) 1.11004 0.663324i 0.0354589 0.0211891i
\(981\) 0 0
\(982\) −6.85558 24.8372i −0.218770 0.792586i
\(983\) 10.1837 + 3.70656i 0.324809 + 0.118221i 0.499278 0.866442i \(-0.333599\pi\)
−0.174469 + 0.984663i \(0.555821\pi\)
\(984\) 0 0
\(985\) −5.67841 4.76475i −0.180929 0.151817i
\(986\) −27.0891 + 2.57528i −0.862692 + 0.0820136i
\(987\) 0 0
\(988\) 47.7239 + 16.5620i 1.51830 + 0.526909i
\(989\) −12.3882 + 21.4570i −0.393923 + 0.682294i
\(990\) 0 0
\(991\) 37.1953 21.4747i 1.18155 0.682167i 0.225175 0.974318i \(-0.427705\pi\)
0.956372 + 0.292152i \(0.0943712\pi\)
\(992\) −17.2425 11.1320i −0.547448 0.353441i
\(993\) 0 0
\(994\) −7.86297 + 17.1985i −0.249398 + 0.545503i
\(995\) 2.62034 + 0.462037i 0.0830704 + 0.0146475i
\(996\) 0 0
\(997\) 27.5401 + 32.8210i 0.872204 + 1.03945i 0.998871 + 0.0475071i \(0.0151277\pi\)
−0.126667 + 0.991945i \(0.540428\pi\)
\(998\) −0.782033 0.770366i −0.0247548 0.0243855i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.v.b.611.31 192
3.2 odd 2 216.2.v.b.59.2 yes 192
8.3 odd 2 inner 648.2.v.b.611.16 192
12.11 even 2 864.2.bh.b.815.18 192
24.5 odd 2 864.2.bh.b.815.17 192
24.11 even 2 216.2.v.b.59.17 yes 192
27.11 odd 18 inner 648.2.v.b.35.16 192
27.16 even 9 216.2.v.b.11.17 yes 192
108.43 odd 18 864.2.bh.b.335.17 192
216.11 even 18 inner 648.2.v.b.35.31 192
216.43 odd 18 216.2.v.b.11.2 192
216.205 even 18 864.2.bh.b.335.18 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.2 192 216.43 odd 18
216.2.v.b.11.17 yes 192 27.16 even 9
216.2.v.b.59.2 yes 192 3.2 odd 2
216.2.v.b.59.17 yes 192 24.11 even 2
648.2.v.b.35.16 192 27.11 odd 18 inner
648.2.v.b.35.31 192 216.11 even 18 inner
648.2.v.b.611.16 192 8.3 odd 2 inner
648.2.v.b.611.31 192 1.1 even 1 trivial
864.2.bh.b.335.17 192 108.43 odd 18
864.2.bh.b.335.18 192 216.205 even 18
864.2.bh.b.815.17 192 24.5 odd 2
864.2.bh.b.815.18 192 12.11 even 2