Properties

Label 648.2.v.b.611.28
Level $648$
Weight $2$
Character 648.611
Analytic conductor $5.174$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(35,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.v (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 611.28
Character \(\chi\) \(=\) 648.611
Dual form 648.2.v.b.35.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.27615 - 0.609466i) q^{2} +(1.25710 - 1.55554i) q^{4} +(0.426624 - 0.155279i) q^{5} +(1.28150 - 0.225962i) q^{7} +(0.656202 - 2.75125i) q^{8} +(0.449799 - 0.458171i) q^{10} +(-0.00602720 + 0.0165596i) q^{11} +(1.43581 - 1.71113i) q^{13} +(1.49766 - 1.06939i) q^{14} +(-0.839384 - 3.91094i) q^{16} +(-1.27216 - 0.734483i) q^{17} +(0.677841 + 1.17406i) q^{19} +(0.294769 - 0.858831i) q^{20} +(0.00240091 + 0.0248058i) q^{22} +(-0.369486 + 2.09546i) q^{23} +(-3.67233 + 3.08145i) q^{25} +(0.789428 - 3.05873i) q^{26} +(1.25948 - 2.27747i) q^{28} +(5.56933 - 4.67322i) q^{29} +(8.87753 + 1.56535i) q^{31} +(-3.45476 - 4.47936i) q^{32} +(-2.07111 - 0.161969i) q^{34} +(0.511630 - 0.295390i) q^{35} +(-4.58718 - 2.64841i) q^{37} +(1.58057 + 1.08515i) q^{38} +(-0.147259 - 1.27565i) q^{40} +(-1.56527 + 1.86542i) q^{41} +(-10.1956 - 3.71089i) q^{43} +(0.0181822 + 0.0301926i) q^{44} +(0.805592 + 2.89930i) q^{46} +(0.791397 + 4.48824i) q^{47} +(-4.98668 + 1.81500i) q^{49} +(-2.80839 + 6.17054i) q^{50} +(-0.856765 - 4.38452i) q^{52} +10.4085 q^{53} +0.00800062i q^{55} +(0.219241 - 3.67400i) q^{56} +(4.25911 - 9.35804i) q^{58} +(3.75319 + 10.3118i) q^{59} +(-8.87057 + 1.56412i) q^{61} +(12.2831 - 3.41294i) q^{62} +(-7.13880 - 3.61076i) q^{64} +(0.346849 - 0.952961i) q^{65} +(3.70041 + 3.10502i) q^{67} +(-2.74175 + 1.05557i) q^{68} +(0.472885 - 0.688782i) q^{70} +(-5.03714 + 8.72458i) q^{71} +(-0.339460 - 0.587962i) q^{73} +(-7.46803 - 0.584031i) q^{74} +(2.67840 + 0.421502i) q^{76} +(-0.00398198 + 0.0225829i) q^{77} +(5.19665 + 6.19313i) q^{79} +(-0.965387 - 1.53816i) q^{80} +(-0.860607 + 3.33452i) q^{82} +(-1.29122 - 1.53881i) q^{83} +(-0.656785 - 0.115809i) q^{85} +(-15.2727 + 1.47822i) q^{86} +(0.0416046 + 0.0274488i) q^{88} +(0.103744 - 0.0598964i) q^{89} +(1.45333 - 2.51724i) q^{91} +(2.79508 + 3.20896i) q^{92} +(3.74536 + 5.24532i) q^{94} +(0.471489 + 0.395626i) q^{95} +(-10.4801 - 3.81446i) q^{97} +(-5.25755 + 5.35542i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 6 q^{2} - 6 q^{4} + 9 q^{8} - 3 q^{10} + 30 q^{11} - 9 q^{14} - 6 q^{16} + 18 q^{17} - 6 q^{19} + 27 q^{20} - 18 q^{22} - 12 q^{25} - 12 q^{28} + 36 q^{32} + 12 q^{34} + 18 q^{35} + 102 q^{38} + 9 q^{40}+ \cdots - 162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27615 0.609466i 0.902372 0.430957i
\(3\) 0 0
\(4\) 1.25710 1.55554i 0.628551 0.777768i
\(5\) 0.426624 0.155279i 0.190792 0.0694427i −0.244857 0.969559i \(-0.578741\pi\)
0.435649 + 0.900116i \(0.356519\pi\)
\(6\) 0 0
\(7\) 1.28150 0.225962i 0.484360 0.0854057i 0.0738642 0.997268i \(-0.476467\pi\)
0.410495 + 0.911863i \(0.365356\pi\)
\(8\) 0.656202 2.75125i 0.232003 0.972715i
\(9\) 0 0
\(10\) 0.449799 0.458171i 0.142239 0.144887i
\(11\) −0.00602720 + 0.0165596i −0.00181727 + 0.00499290i −0.940598 0.339522i \(-0.889735\pi\)
0.938781 + 0.344515i \(0.111957\pi\)
\(12\) 0 0
\(13\) 1.43581 1.71113i 0.398222 0.474582i −0.529255 0.848463i \(-0.677529\pi\)
0.927477 + 0.373881i \(0.121973\pi\)
\(14\) 1.49766 1.06939i 0.400267 0.285806i
\(15\) 0 0
\(16\) −0.839384 3.91094i −0.209846 0.977734i
\(17\) −1.27216 0.734483i −0.308545 0.178138i 0.337730 0.941243i \(-0.390341\pi\)
−0.646275 + 0.763105i \(0.723674\pi\)
\(18\) 0 0
\(19\) 0.677841 + 1.17406i 0.155507 + 0.269347i 0.933244 0.359244i \(-0.116965\pi\)
−0.777736 + 0.628591i \(0.783632\pi\)
\(20\) 0.294769 0.858831i 0.0659124 0.192040i
\(21\) 0 0
\(22\) 0.00240091 + 0.0248058i 0.000511876 + 0.00528862i
\(23\) −0.369486 + 2.09546i −0.0770432 + 0.436933i 0.921748 + 0.387788i \(0.126761\pi\)
−0.998792 + 0.0491452i \(0.984350\pi\)
\(24\) 0 0
\(25\) −3.67233 + 3.08145i −0.734465 + 0.616289i
\(26\) 0.789428 3.05873i 0.154820 0.599866i
\(27\) 0 0
\(28\) 1.25948 2.27747i 0.238019 0.430401i
\(29\) 5.56933 4.67322i 1.03420 0.867796i 0.0428540 0.999081i \(-0.486355\pi\)
0.991345 + 0.131286i \(0.0419105\pi\)
\(30\) 0 0
\(31\) 8.87753 + 1.56535i 1.59445 + 0.281145i 0.899172 0.437595i \(-0.144170\pi\)
0.695279 + 0.718740i \(0.255281\pi\)
\(32\) −3.45476 4.47936i −0.610721 0.791846i
\(33\) 0 0
\(34\) −2.07111 0.161969i −0.355192 0.0277775i
\(35\) 0.511630 0.295390i 0.0864813 0.0499300i
\(36\) 0 0
\(37\) −4.58718 2.64841i −0.754128 0.435396i 0.0730557 0.997328i \(-0.476725\pi\)
−0.827183 + 0.561932i \(0.810058\pi\)
\(38\) 1.58057 + 1.08515i 0.256403 + 0.176034i
\(39\) 0 0
\(40\) −0.147259 1.27565i −0.0232837 0.201697i
\(41\) −1.56527 + 1.86542i −0.244454 + 0.291329i −0.874295 0.485395i \(-0.838676\pi\)
0.629841 + 0.776724i \(0.283120\pi\)
\(42\) 0 0
\(43\) −10.1956 3.71089i −1.55481 0.565906i −0.585273 0.810836i \(-0.699013\pi\)
−0.969541 + 0.244930i \(0.921235\pi\)
\(44\) 0.0181822 + 0.0301926i 0.00274107 + 0.00455171i
\(45\) 0 0
\(46\) 0.805592 + 2.89930i 0.118778 + 0.427479i
\(47\) 0.791397 + 4.48824i 0.115437 + 0.654676i 0.986533 + 0.163563i \(0.0522988\pi\)
−0.871096 + 0.491113i \(0.836590\pi\)
\(48\) 0 0
\(49\) −4.98668 + 1.81500i −0.712382 + 0.259286i
\(50\) −2.80839 + 6.17054i −0.397166 + 0.872646i
\(51\) 0 0
\(52\) −0.856765 4.38452i −0.118812 0.608023i
\(53\) 10.4085 1.42972 0.714860 0.699267i \(-0.246490\pi\)
0.714860 + 0.699267i \(0.246490\pi\)
\(54\) 0 0
\(55\) 0.00800062i 0.00107880i
\(56\) 0.219241 3.67400i 0.0292973 0.490958i
\(57\) 0 0
\(58\) 4.25911 9.35804i 0.559249 1.22877i
\(59\) 3.75319 + 10.3118i 0.488624 + 1.34248i 0.901926 + 0.431890i \(0.142153\pi\)
−0.413302 + 0.910594i \(0.635625\pi\)
\(60\) 0 0
\(61\) −8.87057 + 1.56412i −1.13576 + 0.200265i −0.709750 0.704453i \(-0.751192\pi\)
−0.426010 + 0.904718i \(0.640081\pi\)
\(62\) 12.2831 3.41294i 1.55995 0.433443i
\(63\) 0 0
\(64\) −7.13880 3.61076i −0.892350 0.451345i
\(65\) 0.346849 0.952961i 0.0430214 0.118200i
\(66\) 0 0
\(67\) 3.70041 + 3.10502i 0.452078 + 0.379338i 0.840206 0.542267i \(-0.182434\pi\)
−0.388129 + 0.921605i \(0.626878\pi\)
\(68\) −2.74175 + 1.05557i −0.332486 + 0.128007i
\(69\) 0 0
\(70\) 0.472885 0.688782i 0.0565206 0.0823252i
\(71\) −5.03714 + 8.72458i −0.597799 + 1.03542i 0.395347 + 0.918532i \(0.370624\pi\)
−0.993145 + 0.116886i \(0.962709\pi\)
\(72\) 0 0
\(73\) −0.339460 0.587962i −0.0397308 0.0688158i 0.845476 0.534013i \(-0.179317\pi\)
−0.885207 + 0.465197i \(0.845983\pi\)
\(74\) −7.46803 0.584031i −0.868141 0.0678922i
\(75\) 0 0
\(76\) 2.67840 + 0.421502i 0.307234 + 0.0483496i
\(77\) −0.00398198 + 0.0225829i −0.000453789 + 0.00257357i
\(78\) 0 0
\(79\) 5.19665 + 6.19313i 0.584669 + 0.696782i 0.974572 0.224074i \(-0.0719358\pi\)
−0.389903 + 0.920856i \(0.627491\pi\)
\(80\) −0.965387 1.53816i −0.107934 0.171972i
\(81\) 0 0
\(82\) −0.860607 + 3.33452i −0.0950382 + 0.368237i
\(83\) −1.29122 1.53881i −0.141729 0.168907i 0.690510 0.723323i \(-0.257386\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(84\) 0 0
\(85\) −0.656785 0.115809i −0.0712383 0.0125612i
\(86\) −15.2727 + 1.47822i −1.64690 + 0.159401i
\(87\) 0 0
\(88\) 0.0416046 + 0.0274488i 0.00443506 + 0.00292605i
\(89\) 0.103744 0.0598964i 0.0109968 0.00634901i −0.494492 0.869182i \(-0.664646\pi\)
0.505488 + 0.862833i \(0.331312\pi\)
\(90\) 0 0
\(91\) 1.45333 2.51724i 0.152351 0.263879i
\(92\) 2.79508 + 3.20896i 0.291407 + 0.334557i
\(93\) 0 0
\(94\) 3.74536 + 5.24532i 0.386305 + 0.541013i
\(95\) 0.471489 + 0.395626i 0.0483738 + 0.0405904i
\(96\) 0 0
\(97\) −10.4801 3.81446i −1.06410 0.387299i −0.250130 0.968212i \(-0.580474\pi\)
−0.813966 + 0.580913i \(0.802696\pi\)
\(98\) −5.25755 + 5.35542i −0.531093 + 0.540979i
\(99\) 0 0
\(100\) 0.176811 + 9.58613i 0.0176811 + 0.958613i
\(101\) −2.89743 16.4321i −0.288305 1.63506i −0.693237 0.720710i \(-0.743816\pi\)
0.404932 0.914347i \(-0.367295\pi\)
\(102\) 0 0
\(103\) 5.45676 + 14.9923i 0.537670 + 1.47724i 0.849753 + 0.527182i \(0.176751\pi\)
−0.312082 + 0.950055i \(0.601026\pi\)
\(104\) −3.76557 5.07312i −0.369245 0.497461i
\(105\) 0 0
\(106\) 13.2828 6.34364i 1.29014 0.616149i
\(107\) 6.73607i 0.651200i 0.945508 + 0.325600i \(0.105566\pi\)
−0.945508 + 0.325600i \(0.894434\pi\)
\(108\) 0 0
\(109\) 2.91699i 0.279397i 0.990194 + 0.139699i \(0.0446134\pi\)
−0.990194 + 0.139699i \(0.955387\pi\)
\(110\) 0.00487610 + 0.0102100i 0.000464918 + 0.000973482i
\(111\) 0 0
\(112\) −1.95939 4.82218i −0.185145 0.455653i
\(113\) 6.67148 + 18.3297i 0.627600 + 1.72432i 0.687572 + 0.726116i \(0.258677\pi\)
−0.0599724 + 0.998200i \(0.519101\pi\)
\(114\) 0 0
\(115\) 0.167748 + 0.951347i 0.0156426 + 0.0887136i
\(116\) −0.268145 14.5380i −0.0248967 1.34982i
\(117\) 0 0
\(118\) 11.0743 + 10.8719i 1.01947 + 1.00084i
\(119\) −1.79623 0.653776i −0.164661 0.0599315i
\(120\) 0 0
\(121\) 8.42625 + 7.07046i 0.766023 + 0.642769i
\(122\) −10.3669 + 7.40236i −0.938573 + 0.670178i
\(123\) 0 0
\(124\) 13.5949 11.8415i 1.22086 1.06340i
\(125\) −2.22323 + 3.85075i −0.198852 + 0.344422i
\(126\) 0 0
\(127\) −14.9938 + 8.65666i −1.33048 + 0.768154i −0.985373 0.170409i \(-0.945491\pi\)
−0.345108 + 0.938563i \(0.612158\pi\)
\(128\) −11.3108 0.257006i −0.999742 0.0227164i
\(129\) 0 0
\(130\) −0.138166 1.42751i −0.0121180 0.125201i
\(131\) 3.03491 + 0.535137i 0.265162 + 0.0467552i 0.304648 0.952465i \(-0.401461\pi\)
−0.0394865 + 0.999220i \(0.512572\pi\)
\(132\) 0 0
\(133\) 1.13394 + 1.35138i 0.0983252 + 0.117179i
\(134\) 6.61467 + 1.70718i 0.571421 + 0.147478i
\(135\) 0 0
\(136\) −2.85554 + 3.01807i −0.244861 + 0.258797i
\(137\) −7.57425 9.02665i −0.647112 0.771198i 0.338363 0.941016i \(-0.390127\pi\)
−0.985476 + 0.169817i \(0.945682\pi\)
\(138\) 0 0
\(139\) −0.930383 + 5.27646i −0.0789140 + 0.447544i 0.919591 + 0.392878i \(0.128520\pi\)
−0.998505 + 0.0546659i \(0.982591\pi\)
\(140\) 0.183682 1.16719i 0.0155240 0.0986459i
\(141\) 0 0
\(142\) −1.11080 + 14.2038i −0.0932160 + 1.19196i
\(143\) 0.0196817 + 0.0340897i 0.00164587 + 0.00285073i
\(144\) 0 0
\(145\) 1.65036 2.85851i 0.137055 0.237386i
\(146\) −0.791544 0.543437i −0.0655086 0.0449752i
\(147\) 0 0
\(148\) −9.88625 + 3.80620i −0.812645 + 0.312868i
\(149\) −10.9918 9.22325i −0.900486 0.755598i 0.0697991 0.997561i \(-0.477764\pi\)
−0.970285 + 0.241963i \(0.922209\pi\)
\(150\) 0 0
\(151\) 4.06790 11.1765i 0.331041 0.909528i −0.656800 0.754065i \(-0.728091\pi\)
0.987842 0.155464i \(-0.0496872\pi\)
\(152\) 3.67492 1.09450i 0.298076 0.0887753i
\(153\) 0 0
\(154\) 0.00868194 + 0.0312460i 0.000699610 + 0.00251788i
\(155\) 4.03044 0.710675i 0.323733 0.0570828i
\(156\) 0 0
\(157\) −5.75062 15.7997i −0.458950 1.26095i −0.926268 0.376865i \(-0.877002\pi\)
0.467319 0.884089i \(-0.345220\pi\)
\(158\) 10.4062 + 4.73616i 0.827873 + 0.376789i
\(159\) 0 0
\(160\) −2.16943 1.37455i −0.171509 0.108668i
\(161\) 2.76881i 0.218213i
\(162\) 0 0
\(163\) 10.1776 0.797169 0.398585 0.917132i \(-0.369502\pi\)
0.398585 + 0.917132i \(0.369502\pi\)
\(164\) 0.934016 + 4.77985i 0.0729344 + 0.373244i
\(165\) 0 0
\(166\) −2.58564 1.17680i −0.200684 0.0913372i
\(167\) 15.0723 5.48587i 1.16633 0.424509i 0.314975 0.949100i \(-0.398004\pi\)
0.851355 + 0.524591i \(0.175782\pi\)
\(168\) 0 0
\(169\) 1.39101 + 7.88879i 0.107000 + 0.606830i
\(170\) −0.908736 + 0.252499i −0.0696968 + 0.0193658i
\(171\) 0 0
\(172\) −18.5893 + 11.1946i −1.41742 + 0.853584i
\(173\) −12.7203 4.62982i −0.967109 0.351999i −0.190293 0.981727i \(-0.560944\pi\)
−0.776815 + 0.629729i \(0.783166\pi\)
\(174\) 0 0
\(175\) −4.00978 + 4.77867i −0.303111 + 0.361233i
\(176\) 0.0698226 + 0.00967213i 0.00526308 + 0.000729064i
\(177\) 0 0
\(178\) 0.0958874 0.139665i 0.00718706 0.0104683i
\(179\) −9.84897 5.68630i −0.736146 0.425014i 0.0845201 0.996422i \(-0.473064\pi\)
−0.820667 + 0.571407i \(0.806398\pi\)
\(180\) 0 0
\(181\) 12.8369 7.41138i 0.954159 0.550884i 0.0597883 0.998211i \(-0.480957\pi\)
0.894370 + 0.447327i \(0.147624\pi\)
\(182\) 0.320491 4.09813i 0.0237564 0.303774i
\(183\) 0 0
\(184\) 5.52268 + 2.39159i 0.407138 + 0.176311i
\(185\) −2.36824 0.417585i −0.174117 0.0307015i
\(186\) 0 0
\(187\) 0.0198303 0.0166396i 0.00145014 0.00121681i
\(188\) 7.97648 + 4.41113i 0.581745 + 0.321715i
\(189\) 0 0
\(190\) 0.842810 + 0.217521i 0.0611439 + 0.0157806i
\(191\) −14.4389 + 12.1157i −1.04476 + 0.876659i −0.992533 0.121976i \(-0.961077\pi\)
−0.0522283 + 0.998635i \(0.516632\pi\)
\(192\) 0 0
\(193\) −0.366460 + 2.07830i −0.0263783 + 0.149599i −0.995152 0.0983471i \(-0.968644\pi\)
0.968774 + 0.247946i \(0.0797556\pi\)
\(194\) −15.6990 + 1.51947i −1.12712 + 0.109092i
\(195\) 0 0
\(196\) −3.44547 + 10.0386i −0.246105 + 0.717043i
\(197\) 5.72884 + 9.92264i 0.408163 + 0.706959i 0.994684 0.102975i \(-0.0328362\pi\)
−0.586521 + 0.809934i \(0.699503\pi\)
\(198\) 0 0
\(199\) −4.92181 2.84161i −0.348898 0.201436i 0.315302 0.948991i \(-0.397894\pi\)
−0.664200 + 0.747555i \(0.731228\pi\)
\(200\) 6.06805 + 12.1256i 0.429076 + 0.857406i
\(201\) 0 0
\(202\) −13.7124 19.2039i −0.964798 1.35118i
\(203\) 6.08110 7.24717i 0.426809 0.508652i
\(204\) 0 0
\(205\) −0.378123 + 1.03889i −0.0264093 + 0.0725589i
\(206\) 16.1009 + 15.8067i 1.12180 + 1.10130i
\(207\) 0 0
\(208\) −7.89732 4.17906i −0.547581 0.289766i
\(209\) −0.0235273 + 0.00414851i −0.00162742 + 0.000286958i
\(210\) 0 0
\(211\) 15.6412 5.69295i 1.07679 0.391919i 0.258077 0.966124i \(-0.416911\pi\)
0.818711 + 0.574206i \(0.194689\pi\)
\(212\) 13.0846 16.1908i 0.898653 1.11199i
\(213\) 0 0
\(214\) 4.10540 + 8.59621i 0.280640 + 0.587625i
\(215\) −4.92591 −0.335945
\(216\) 0 0
\(217\) 11.7302 0.796300
\(218\) 1.77781 + 3.72251i 0.120408 + 0.252120i
\(219\) 0 0
\(220\) 0.0124453 + 0.0100576i 0.000839059 + 0.000678083i
\(221\) −3.08338 + 1.12226i −0.207410 + 0.0754912i
\(222\) 0 0
\(223\) 2.73564 0.482367i 0.183192 0.0323017i −0.0812995 0.996690i \(-0.525907\pi\)
0.264491 + 0.964388i \(0.414796\pi\)
\(224\) −5.43942 4.95963i −0.363437 0.331379i
\(225\) 0 0
\(226\) 19.6851 + 19.3254i 1.30944 + 1.28551i
\(227\) 8.45693 23.2352i 0.561306 1.54218i −0.256418 0.966566i \(-0.582542\pi\)
0.817724 0.575611i \(-0.195236\pi\)
\(228\) 0 0
\(229\) 10.0744 12.0062i 0.665736 0.793393i −0.322461 0.946583i \(-0.604510\pi\)
0.988197 + 0.153190i \(0.0489546\pi\)
\(230\) 0.793885 + 1.11182i 0.0523472 + 0.0733114i
\(231\) 0 0
\(232\) −9.20261 18.3892i −0.604181 1.20731i
\(233\) −17.5198 10.1151i −1.14776 0.662659i −0.199419 0.979914i \(-0.563906\pi\)
−0.948340 + 0.317255i \(0.897239\pi\)
\(234\) 0 0
\(235\) 1.03456 + 1.79190i 0.0674870 + 0.116891i
\(236\) 20.7585 + 7.12478i 1.35127 + 0.463784i
\(237\) 0 0
\(238\) −2.69071 + 0.260429i −0.174413 + 0.0168811i
\(239\) 1.48780 8.43773i 0.0962378 0.545791i −0.898123 0.439744i \(-0.855069\pi\)
0.994361 0.106048i \(-0.0338196\pi\)
\(240\) 0 0
\(241\) 11.0727 9.29110i 0.713255 0.598492i −0.212255 0.977214i \(-0.568081\pi\)
0.925510 + 0.378722i \(0.123636\pi\)
\(242\) 15.0623 + 3.88744i 0.968244 + 0.249894i
\(243\) 0 0
\(244\) −8.71818 + 15.7648i −0.558124 + 1.00924i
\(245\) −1.84561 + 1.54865i −0.117912 + 0.0989395i
\(246\) 0 0
\(247\) 2.98221 + 0.525844i 0.189754 + 0.0334587i
\(248\) 10.1321 23.3972i 0.643391 1.48572i
\(249\) 0 0
\(250\) −0.490270 + 6.26911i −0.0310074 + 0.396493i
\(251\) −12.7128 + 7.33976i −0.802427 + 0.463281i −0.844319 0.535841i \(-0.819995\pi\)
0.0418921 + 0.999122i \(0.486661\pi\)
\(252\) 0 0
\(253\) −0.0324730 0.0187483i −0.00204156 0.00117869i
\(254\) −13.8583 + 20.1854i −0.869548 + 1.26654i
\(255\) 0 0
\(256\) −14.5909 + 6.56556i −0.911929 + 0.410348i
\(257\) 14.4703 17.2450i 0.902633 1.07572i −0.0941497 0.995558i \(-0.530013\pi\)
0.996782 0.0801575i \(-0.0255423\pi\)
\(258\) 0 0
\(259\) −6.47689 2.35739i −0.402454 0.146481i
\(260\) −1.04634 1.73751i −0.0648912 0.107756i
\(261\) 0 0
\(262\) 4.19914 1.16676i 0.259424 0.0720828i
\(263\) 3.07511 + 17.4398i 0.189620 + 1.07539i 0.919875 + 0.392212i \(0.128290\pi\)
−0.730255 + 0.683175i \(0.760599\pi\)
\(264\) 0 0
\(265\) 4.44053 1.61622i 0.272780 0.0992836i
\(266\) 2.27070 + 1.03346i 0.139225 + 0.0633655i
\(267\) 0 0
\(268\) 9.48177 1.85280i 0.579191 0.113178i
\(269\) 10.2475 0.624803 0.312402 0.949950i \(-0.398867\pi\)
0.312402 + 0.949950i \(0.398867\pi\)
\(270\) 0 0
\(271\) 18.7315i 1.13786i −0.822386 0.568929i \(-0.807358\pi\)
0.822386 0.568929i \(-0.192642\pi\)
\(272\) −1.80468 + 5.59186i −0.109425 + 0.339056i
\(273\) 0 0
\(274\) −15.1673 6.90308i −0.916290 0.417030i
\(275\) −0.0288937 0.0793847i −0.00174235 0.00478708i
\(276\) 0 0
\(277\) −21.4560 + 3.78327i −1.28917 + 0.227315i −0.775868 0.630895i \(-0.782688\pi\)
−0.513299 + 0.858210i \(0.671577\pi\)
\(278\) 2.02852 + 7.30058i 0.121662 + 0.437860i
\(279\) 0 0
\(280\) −0.476959 1.60146i −0.0285038 0.0957055i
\(281\) 3.95262 10.8597i 0.235793 0.647837i −0.764203 0.644976i \(-0.776867\pi\)
0.999996 0.00286067i \(-0.000910580\pi\)
\(282\) 0 0
\(283\) −3.28791 2.75888i −0.195446 0.163998i 0.539813 0.841785i \(-0.318495\pi\)
−0.735259 + 0.677786i \(0.762939\pi\)
\(284\) 7.23920 + 18.8032i 0.429567 + 1.11576i
\(285\) 0 0
\(286\) 0.0458933 + 0.0315082i 0.00271373 + 0.00186312i
\(287\) −1.58437 + 2.74421i −0.0935226 + 0.161986i
\(288\) 0 0
\(289\) −7.42107 12.8537i −0.436533 0.756098i
\(290\) 0.363940 4.65372i 0.0213713 0.273276i
\(291\) 0 0
\(292\) −1.34133 0.211087i −0.0784956 0.0123529i
\(293\) −2.18285 + 12.3796i −0.127523 + 0.723221i 0.852254 + 0.523129i \(0.175235\pi\)
−0.979777 + 0.200092i \(0.935876\pi\)
\(294\) 0 0
\(295\) 3.20241 + 3.81648i 0.186451 + 0.222204i
\(296\) −10.2966 + 10.8826i −0.598476 + 0.632538i
\(297\) 0 0
\(298\) −19.6485 5.07107i −1.13820 0.293759i
\(299\) 3.05509 + 3.64092i 0.176681 + 0.210560i
\(300\) 0 0
\(301\) −13.9041 2.45167i −0.801421 0.141312i
\(302\) −1.62043 16.7421i −0.0932455 0.963398i
\(303\) 0 0
\(304\) 4.02269 3.63648i 0.230717 0.208566i
\(305\) −3.54153 + 2.04470i −0.202787 + 0.117079i
\(306\) 0 0
\(307\) 7.46768 12.9344i 0.426203 0.738205i −0.570329 0.821416i \(-0.693184\pi\)
0.996532 + 0.0832113i \(0.0265176\pi\)
\(308\) 0.0301228 + 0.0345832i 0.00171641 + 0.00197056i
\(309\) 0 0
\(310\) 4.71030 3.36334i 0.267527 0.191025i
\(311\) 0.935160 + 0.784692i 0.0530280 + 0.0444958i 0.668916 0.743338i \(-0.266758\pi\)
−0.615888 + 0.787833i \(0.711203\pi\)
\(312\) 0 0
\(313\) −3.74180 1.36190i −0.211499 0.0769794i 0.234098 0.972213i \(-0.424786\pi\)
−0.445597 + 0.895234i \(0.647009\pi\)
\(314\) −16.9680 16.6579i −0.957561 0.940062i
\(315\) 0 0
\(316\) 16.1664 0.298179i 0.909429 0.0167739i
\(317\) −1.28552 7.29053i −0.0722018 0.409477i −0.999391 0.0348844i \(-0.988894\pi\)
0.927190 0.374593i \(-0.122217\pi\)
\(318\) 0 0
\(319\) 0.0438192 + 0.120392i 0.00245340 + 0.00674067i
\(320\) −3.60626 0.431935i −0.201596 0.0241459i
\(321\) 0 0
\(322\) 1.68750 + 3.53341i 0.0940404 + 0.196909i
\(323\) 1.99145i 0.110807i
\(324\) 0 0
\(325\) 10.7082i 0.593984i
\(326\) 12.9881 6.20288i 0.719343 0.343546i
\(327\) 0 0
\(328\) 4.10510 + 5.53055i 0.226666 + 0.305373i
\(329\) 2.02834 + 5.57283i 0.111826 + 0.307240i
\(330\) 0 0
\(331\) 0.520452 + 2.95163i 0.0286066 + 0.162236i 0.995765 0.0919400i \(-0.0293068\pi\)
−0.967158 + 0.254176i \(0.918196\pi\)
\(332\) −4.01687 + 0.0740888i −0.220454 + 0.00406615i
\(333\) 0 0
\(334\) 15.8910 16.1868i 0.869518 0.885704i
\(335\) 2.06083 + 0.750081i 0.112595 + 0.0409813i
\(336\) 0 0
\(337\) −10.0788 8.45709i −0.549025 0.460687i 0.325586 0.945513i \(-0.394439\pi\)
−0.874611 + 0.484826i \(0.838883\pi\)
\(338\) 6.58307 + 9.21948i 0.358072 + 0.501474i
\(339\) 0 0
\(340\) −1.00579 + 0.876069i −0.0545467 + 0.0475115i
\(341\) −0.0794281 + 0.137574i −0.00430127 + 0.00745003i
\(342\) 0 0
\(343\) −13.8688 + 8.00714i −0.748844 + 0.432345i
\(344\) −16.9000 + 25.6156i −0.911186 + 1.38110i
\(345\) 0 0
\(346\) −19.0547 + 1.84427i −1.02439 + 0.0991487i
\(347\) −28.8369 5.08472i −1.54804 0.272962i −0.666660 0.745362i \(-0.732277\pi\)
−0.881385 + 0.472400i \(0.843388\pi\)
\(348\) 0 0
\(349\) 13.4766 + 16.0608i 0.721385 + 0.859713i 0.994765 0.102193i \(-0.0325859\pi\)
−0.273380 + 0.961906i \(0.588141\pi\)
\(350\) −2.20463 + 8.54210i −0.117843 + 0.456595i
\(351\) 0 0
\(352\) 0.0949988 0.0302114i 0.00506345 0.00161028i
\(353\) −2.02760 2.41640i −0.107918 0.128612i 0.709381 0.704825i \(-0.248974\pi\)
−0.817300 + 0.576213i \(0.804530\pi\)
\(354\) 0 0
\(355\) −0.794226 + 4.50428i −0.0421532 + 0.239062i
\(356\) 0.0372454 0.236673i 0.00197400 0.0125436i
\(357\) 0 0
\(358\) −16.0343 1.25395i −0.847441 0.0662734i
\(359\) −15.2950 26.4917i −0.807240 1.39818i −0.914768 0.403979i \(-0.867627\pi\)
0.107529 0.994202i \(-0.465706\pi\)
\(360\) 0 0
\(361\) 8.58106 14.8628i 0.451635 0.782255i
\(362\) 11.8648 17.2817i 0.623599 0.908304i
\(363\) 0 0
\(364\) −2.08868 5.42514i −0.109476 0.284355i
\(365\) −0.236120 0.198128i −0.0123591 0.0103705i
\(366\) 0 0
\(367\) 7.65245 21.0249i 0.399455 1.09749i −0.563096 0.826391i \(-0.690390\pi\)
0.962551 0.271101i \(-0.0873878\pi\)
\(368\) 8.50535 0.313859i 0.443372 0.0163610i
\(369\) 0 0
\(370\) −3.27673 + 0.910464i −0.170349 + 0.0473327i
\(371\) 13.3385 2.35193i 0.692499 0.122106i
\(372\) 0 0
\(373\) −3.91132 10.7463i −0.202521 0.556421i 0.796304 0.604897i \(-0.206786\pi\)
−0.998824 + 0.0484764i \(0.984563\pi\)
\(374\) 0.0151651 0.0333205i 0.000784170 0.00172296i
\(375\) 0 0
\(376\) 12.8676 + 0.767856i 0.663595 + 0.0395992i
\(377\) 16.2397i 0.836387i
\(378\) 0 0
\(379\) −21.7004 −1.11468 −0.557338 0.830286i \(-0.688177\pi\)
−0.557338 + 0.830286i \(0.688177\pi\)
\(380\) 1.20812 0.236075i 0.0619753 0.0121104i
\(381\) 0 0
\(382\) −11.0421 + 24.2614i −0.564961 + 1.24132i
\(383\) 31.1726 11.3459i 1.59285 0.579749i 0.614900 0.788605i \(-0.289196\pi\)
0.977946 + 0.208856i \(0.0669740\pi\)
\(384\) 0 0
\(385\) 0.00180784 + 0.0102528i 9.21359e−5 + 0.000522529i
\(386\) 0.798994 + 2.87556i 0.0406677 + 0.146362i
\(387\) 0 0
\(388\) −19.1081 + 11.5071i −0.970068 + 0.584182i
\(389\) 6.54404 + 2.38183i 0.331796 + 0.120764i 0.502546 0.864551i \(-0.332397\pi\)
−0.170750 + 0.985314i \(0.554619\pi\)
\(390\) 0 0
\(391\) 2.00913 2.39438i 0.101606 0.121089i
\(392\) 1.72126 + 14.9106i 0.0869369 + 0.753100i
\(393\) 0 0
\(394\) 13.3584 + 9.17122i 0.672984 + 0.462039i
\(395\) 3.17868 + 1.83521i 0.159937 + 0.0923395i
\(396\) 0 0
\(397\) 31.8597 18.3942i 1.59899 0.923178i 0.607308 0.794466i \(-0.292249\pi\)
0.991682 0.128712i \(-0.0410841\pi\)
\(398\) −8.01281 0.626635i −0.401646 0.0314104i
\(399\) 0 0
\(400\) 15.1338 + 11.7757i 0.756692 + 0.588786i
\(401\) −3.00611 0.530059i −0.150118 0.0264699i 0.0980840 0.995178i \(-0.468729\pi\)
−0.248202 + 0.968708i \(0.579840\pi\)
\(402\) 0 0
\(403\) 15.4250 12.9431i 0.768372 0.644740i
\(404\) −29.2031 16.1498i −1.45291 0.803483i
\(405\) 0 0
\(406\) 3.34347 12.9547i 0.165934 0.642930i
\(407\) 0.0715044 0.0599993i 0.00354434 0.00297406i
\(408\) 0 0
\(409\) −4.18256 + 23.7205i −0.206814 + 1.17290i 0.687745 + 0.725952i \(0.258601\pi\)
−0.894559 + 0.446949i \(0.852511\pi\)
\(410\) 0.150624 + 1.55622i 0.00743879 + 0.0768564i
\(411\) 0 0
\(412\) 30.1808 + 10.3587i 1.48690 + 0.510337i
\(413\) 7.13978 + 12.3665i 0.351326 + 0.608514i
\(414\) 0 0
\(415\) −0.789809 0.455997i −0.0387702 0.0223840i
\(416\) −12.6251 0.519953i −0.618998 0.0254928i
\(417\) 0 0
\(418\) −0.0274960 + 0.0196332i −0.00134487 + 0.000960292i
\(419\) 19.0854 22.7451i 0.932383 1.11117i −0.0612068 0.998125i \(-0.519495\pi\)
0.993590 0.113046i \(-0.0360607\pi\)
\(420\) 0 0
\(421\) −9.82045 + 26.9815i −0.478619 + 1.31500i 0.432046 + 0.901851i \(0.357792\pi\)
−0.910666 + 0.413144i \(0.864430\pi\)
\(422\) 16.4909 16.7978i 0.802763 0.817706i
\(423\) 0 0
\(424\) 6.83010 28.6365i 0.331699 1.39071i
\(425\) 6.93506 1.22284i 0.336400 0.0593164i
\(426\) 0 0
\(427\) −11.0142 + 4.00883i −0.533013 + 0.194001i
\(428\) 10.4782 + 8.46793i 0.506483 + 0.409313i
\(429\) 0 0
\(430\) −6.28619 + 3.00218i −0.303147 + 0.144778i
\(431\) −26.5585 −1.27928 −0.639639 0.768675i \(-0.720916\pi\)
−0.639639 + 0.768675i \(0.720916\pi\)
\(432\) 0 0
\(433\) −1.55270 −0.0746180 −0.0373090 0.999304i \(-0.511879\pi\)
−0.0373090 + 0.999304i \(0.511879\pi\)
\(434\) 14.9695 7.14917i 0.718559 0.343171i
\(435\) 0 0
\(436\) 4.53749 + 3.66696i 0.217306 + 0.175616i
\(437\) −2.71064 + 0.986591i −0.129667 + 0.0471951i
\(438\) 0 0
\(439\) −1.13120 + 0.199460i −0.0539891 + 0.00951973i −0.200577 0.979678i \(-0.564282\pi\)
0.146588 + 0.989198i \(0.453171\pi\)
\(440\) 0.0220117 + 0.00525002i 0.00104937 + 0.000250285i
\(441\) 0 0
\(442\) −3.25087 + 3.31138i −0.154628 + 0.157506i
\(443\) −5.79518 + 15.9221i −0.275337 + 0.756483i 0.722538 + 0.691331i \(0.242975\pi\)
−0.997875 + 0.0651518i \(0.979247\pi\)
\(444\) 0 0
\(445\) 0.0349590 0.0416625i 0.00165721 0.00197499i
\(446\) 3.19709 2.28285i 0.151387 0.108096i
\(447\) 0 0
\(448\) −9.96423 3.01407i −0.470766 0.142401i
\(449\) 26.5725 + 15.3416i 1.25403 + 0.724017i 0.971908 0.235361i \(-0.0756272\pi\)
0.282126 + 0.959377i \(0.408961\pi\)
\(450\) 0 0
\(451\) −0.0214563 0.0371634i −0.00101034 0.00174996i
\(452\) 36.8993 + 12.6646i 1.73560 + 0.595694i
\(453\) 0 0
\(454\) −3.36879 34.8058i −0.158105 1.63352i
\(455\) 0.229153 1.29959i 0.0107428 0.0609257i
\(456\) 0 0
\(457\) 5.48725 4.60435i 0.256683 0.215382i −0.505361 0.862908i \(-0.668641\pi\)
0.762044 + 0.647526i \(0.224196\pi\)
\(458\) 5.53905 21.4617i 0.258823 1.00284i
\(459\) 0 0
\(460\) 1.69073 + 0.935003i 0.0788308 + 0.0435948i
\(461\) 6.34887 5.32733i 0.295696 0.248119i −0.482854 0.875701i \(-0.660400\pi\)
0.778550 + 0.627582i \(0.215955\pi\)
\(462\) 0 0
\(463\) −0.381159 0.0672086i −0.0177140 0.00312345i 0.164784 0.986330i \(-0.447307\pi\)
−0.182498 + 0.983206i \(0.558418\pi\)
\(464\) −22.9515 17.8587i −1.06550 0.829068i
\(465\) 0 0
\(466\) −28.5226 2.23059i −1.32128 0.103330i
\(467\) 5.76908 3.33078i 0.266961 0.154130i −0.360545 0.932742i \(-0.617409\pi\)
0.627506 + 0.778612i \(0.284076\pi\)
\(468\) 0 0
\(469\) 5.44368 + 3.14291i 0.251366 + 0.145126i
\(470\) 2.41235 + 1.65621i 0.111273 + 0.0763951i
\(471\) 0 0
\(472\) 30.8333 3.55935i 1.41922 0.163832i
\(473\) 0.122902 0.146469i 0.00565103 0.00673463i
\(474\) 0 0
\(475\) −6.10704 2.22278i −0.280210 0.101988i
\(476\) −3.27502 + 1.97224i −0.150110 + 0.0903977i
\(477\) 0 0
\(478\) −3.24386 11.6745i −0.148371 0.533981i
\(479\) −0.196814 1.11619i −0.00899268 0.0510000i 0.979981 0.199090i \(-0.0637986\pi\)
−0.988974 + 0.148090i \(0.952687\pi\)
\(480\) 0 0
\(481\) −11.1181 + 4.04665i −0.506941 + 0.184511i
\(482\) 8.46779 18.6052i 0.385697 0.847446i
\(483\) 0 0
\(484\) 21.5910 4.21904i 0.981410 0.191774i
\(485\) −5.06338 −0.229916
\(486\) 0 0
\(487\) 41.9634i 1.90154i −0.309896 0.950771i \(-0.600294\pi\)
0.309896 0.950771i \(-0.399706\pi\)
\(488\) −1.51760 + 25.4316i −0.0686983 + 1.15123i
\(489\) 0 0
\(490\) −1.41142 + 3.10114i −0.0637614 + 0.140095i
\(491\) 7.04382 + 19.3527i 0.317883 + 0.873377i 0.991003 + 0.133843i \(0.0427317\pi\)
−0.673119 + 0.739534i \(0.735046\pi\)
\(492\) 0 0
\(493\) −10.5175 + 1.85452i −0.473684 + 0.0835233i
\(494\) 4.12622 1.14650i 0.185648 0.0515835i
\(495\) 0 0
\(496\) −1.32968 36.0334i −0.0597045 1.61795i
\(497\) −4.48365 + 12.3187i −0.201119 + 0.552570i
\(498\) 0 0
\(499\) 7.68110 + 6.44521i 0.343853 + 0.288527i 0.798316 0.602239i \(-0.205724\pi\)
−0.454463 + 0.890766i \(0.650169\pi\)
\(500\) 3.19515 + 8.29911i 0.142891 + 0.371147i
\(501\) 0 0
\(502\) −11.7501 + 17.1146i −0.524433 + 0.763864i
\(503\) 12.3849 21.4513i 0.552216 0.956466i −0.445898 0.895084i \(-0.647116\pi\)
0.998114 0.0613824i \(-0.0195509\pi\)
\(504\) 0 0
\(505\) −3.78767 6.56044i −0.168549 0.291936i
\(506\) −0.0528667 0.00413440i −0.00235021 0.000183796i
\(507\) 0 0
\(508\) −5.38297 + 34.2057i −0.238831 + 1.51763i
\(509\) −5.29018 + 30.0021i −0.234483 + 1.32982i 0.609217 + 0.793004i \(0.291484\pi\)
−0.843700 + 0.536816i \(0.819627\pi\)
\(510\) 0 0
\(511\) −0.567874 0.676766i −0.0251213 0.0299383i
\(512\) −14.6186 + 17.2713i −0.646057 + 0.763289i
\(513\) 0 0
\(514\) 7.95597 30.8264i 0.350923 1.35969i
\(515\) 4.65597 + 5.54877i 0.205167 + 0.244508i
\(516\) 0 0
\(517\) −0.0790932 0.0139463i −0.00347852 0.000613356i
\(518\) −9.70221 + 0.939060i −0.426291 + 0.0412599i
\(519\) 0 0
\(520\) −2.39423 1.57961i −0.104994 0.0692703i
\(521\) 2.67309 1.54331i 0.117110 0.0676136i −0.440301 0.897850i \(-0.645128\pi\)
0.557411 + 0.830237i \(0.311795\pi\)
\(522\) 0 0
\(523\) −6.24198 + 10.8114i −0.272943 + 0.472750i −0.969614 0.244640i \(-0.921330\pi\)
0.696671 + 0.717390i \(0.254664\pi\)
\(524\) 4.64762 4.04820i 0.203032 0.176846i
\(525\) 0 0
\(526\) 14.5533 + 20.3816i 0.634553 + 0.888681i
\(527\) −10.1439 8.51177i −0.441877 0.370779i
\(528\) 0 0
\(529\) 17.3585 + 6.31798i 0.754717 + 0.274695i
\(530\) 4.68174 4.76889i 0.203362 0.207147i
\(531\) 0 0
\(532\) 3.52760 0.0650645i 0.152941 0.00282091i
\(533\) 0.944542 + 5.35676i 0.0409126 + 0.232027i
\(534\) 0 0
\(535\) 1.04597 + 2.87377i 0.0452211 + 0.124244i
\(536\) 10.9709 8.14326i 0.473871 0.351735i
\(537\) 0 0
\(538\) 13.0774 6.24552i 0.563805 0.269264i
\(539\) 0.0935167i 0.00402805i
\(540\) 0 0
\(541\) 35.0866i 1.50849i 0.656592 + 0.754246i \(0.271997\pi\)
−0.656592 + 0.754246i \(0.728003\pi\)
\(542\) −11.4162 23.9042i −0.490368 1.02677i
\(543\) 0 0
\(544\) 1.10500 + 8.23593i 0.0473767 + 0.353113i
\(545\) 0.452947 + 1.24446i 0.0194021 + 0.0533069i
\(546\) 0 0
\(547\) −0.423952 2.40435i −0.0181269 0.102803i 0.974402 0.224813i \(-0.0721771\pi\)
−0.992529 + 0.122010i \(0.961066\pi\)
\(548\) −23.5629 + 0.434604i −1.00656 + 0.0185654i
\(549\) 0 0
\(550\) −0.0852548 0.0836968i −0.00363528 0.00356884i
\(551\) 9.26174 + 3.37100i 0.394563 + 0.143609i
\(552\) 0 0
\(553\) 8.05890 + 6.76222i 0.342699 + 0.287559i
\(554\) −25.0752 + 17.9047i −1.06535 + 0.760699i
\(555\) 0 0
\(556\) 7.03814 + 8.08030i 0.298484 + 0.342681i
\(557\) 3.41195 5.90968i 0.144569 0.250401i −0.784643 0.619948i \(-0.787154\pi\)
0.929212 + 0.369547i \(0.120487\pi\)
\(558\) 0 0
\(559\) −20.9888 + 12.1179i −0.887730 + 0.512531i
\(560\) −1.58471 1.75301i −0.0669660 0.0740781i
\(561\) 0 0
\(562\) −1.57451 16.2676i −0.0664167 0.686207i
\(563\) −20.6520 3.64150i −0.870377 0.153471i −0.279415 0.960170i \(-0.590141\pi\)
−0.590962 + 0.806699i \(0.701252\pi\)
\(564\) 0 0
\(565\) 5.69243 + 6.78397i 0.239482 + 0.285404i
\(566\) −5.87730 1.51687i −0.247041 0.0637589i
\(567\) 0 0
\(568\) 20.6982 + 19.5835i 0.868476 + 0.821707i
\(569\) 20.8313 + 24.8258i 0.873295 + 1.04075i 0.998815 + 0.0486610i \(0.0154954\pi\)
−0.125521 + 0.992091i \(0.540060\pi\)
\(570\) 0 0
\(571\) −0.396543 + 2.24891i −0.0165948 + 0.0941139i −0.991980 0.126393i \(-0.959660\pi\)
0.975385 + 0.220507i \(0.0707711\pi\)
\(572\) 0.0777697 + 0.0122387i 0.00325172 + 0.000511725i
\(573\) 0 0
\(574\) −0.349388 + 4.46764i −0.0145832 + 0.186476i
\(575\) −5.10017 8.83376i −0.212692 0.368393i
\(576\) 0 0
\(577\) −10.7395 + 18.6014i −0.447092 + 0.774387i −0.998195 0.0600507i \(-0.980874\pi\)
0.551103 + 0.834437i \(0.314207\pi\)
\(578\) −17.3042 11.8803i −0.719762 0.494155i
\(579\) 0 0
\(580\) −2.37184 6.16064i −0.0984853 0.255806i
\(581\) −2.00240 1.68021i −0.0830736 0.0697070i
\(582\) 0 0
\(583\) −0.0627342 + 0.172361i −0.00259818 + 0.00713845i
\(584\) −1.84039 + 0.548119i −0.0761558 + 0.0226813i
\(585\) 0 0
\(586\) 4.75928 + 17.1285i 0.196604 + 0.707572i
\(587\) −18.6609 + 3.29041i −0.770216 + 0.135810i −0.544928 0.838483i \(-0.683443\pi\)
−0.225287 + 0.974292i \(0.572332\pi\)
\(588\) 0 0
\(589\) 4.17975 + 11.4838i 0.172224 + 0.473180i
\(590\) 6.41276 + 2.91863i 0.264009 + 0.120158i
\(591\) 0 0
\(592\) −6.50736 + 20.1632i −0.267451 + 0.828703i
\(593\) 23.6650i 0.971804i 0.874013 + 0.485902i \(0.161509\pi\)
−0.874013 + 0.485902i \(0.838491\pi\)
\(594\) 0 0
\(595\) −0.867835 −0.0355778
\(596\) −28.1650 + 5.50363i −1.15368 + 0.225437i
\(597\) 0 0
\(598\) 6.11776 + 2.78437i 0.250174 + 0.113861i
\(599\) 8.37844 3.04950i 0.342334 0.124599i −0.165131 0.986272i \(-0.552805\pi\)
0.507465 + 0.861672i \(0.330583\pi\)
\(600\) 0 0
\(601\) 4.44934 + 25.2334i 0.181492 + 1.02929i 0.930380 + 0.366597i \(0.119477\pi\)
−0.748888 + 0.662697i \(0.769412\pi\)
\(602\) −19.2379 + 5.34540i −0.784080 + 0.217862i
\(603\) 0 0
\(604\) −12.2716 20.3777i −0.499326 0.829159i
\(605\) 4.69274 + 1.70802i 0.190787 + 0.0694407i
\(606\) 0 0
\(607\) −8.91382 + 10.6231i −0.361801 + 0.431177i −0.915982 0.401218i \(-0.868587\pi\)
0.554182 + 0.832396i \(0.313031\pi\)
\(608\) 2.91723 7.09237i 0.118309 0.287634i
\(609\) 0 0
\(610\) −3.27334 + 4.76778i −0.132533 + 0.193042i
\(611\) 8.81625 + 5.09007i 0.356667 + 0.205922i
\(612\) 0 0
\(613\) 17.7329 10.2381i 0.716224 0.413512i −0.0971374 0.995271i \(-0.530969\pi\)
0.813361 + 0.581759i \(0.197635\pi\)
\(614\) 1.64678 21.0575i 0.0664587 0.849811i
\(615\) 0 0
\(616\) 0.0595184 + 0.0257744i 0.00239807 + 0.00103848i
\(617\) −45.9610 8.10416i −1.85032 0.326261i −0.865644 0.500660i \(-0.833091\pi\)
−0.984675 + 0.174399i \(0.944202\pi\)
\(618\) 0 0
\(619\) −20.3900 + 17.1092i −0.819542 + 0.687678i −0.952865 0.303395i \(-0.901880\pi\)
0.133323 + 0.991073i \(0.457435\pi\)
\(620\) 3.96119 7.16288i 0.159085 0.287668i
\(621\) 0 0
\(622\) 1.67164 + 0.431435i 0.0670268 + 0.0172990i
\(623\) 0.119413 0.100199i 0.00478417 0.00401439i
\(624\) 0 0
\(625\) 3.81170 21.6172i 0.152468 0.864688i
\(626\) −5.60513 + 0.542510i −0.224026 + 0.0216831i
\(627\) 0 0
\(628\) −31.8061 10.9166i −1.26920 0.435618i
\(629\) 3.89042 + 6.73841i 0.155121 + 0.268678i
\(630\) 0 0
\(631\) 24.6191 + 14.2138i 0.980071 + 0.565844i 0.902292 0.431126i \(-0.141884\pi\)
0.0777793 + 0.996971i \(0.475217\pi\)
\(632\) 20.4489 10.2334i 0.813415 0.407062i
\(633\) 0 0
\(634\) −6.08384 8.52031i −0.241620 0.338385i
\(635\) −5.05252 + 6.02135i −0.200503 + 0.238950i
\(636\) 0 0
\(637\) −4.05421 + 11.1389i −0.160634 + 0.441337i
\(638\) 0.129295 + 0.126932i 0.00511882 + 0.00502528i
\(639\) 0 0
\(640\) −4.86537 + 1.64668i −0.192321 + 0.0650907i
\(641\) −19.2764 + 3.39896i −0.761373 + 0.134251i −0.540836 0.841128i \(-0.681892\pi\)
−0.220537 + 0.975379i \(0.570781\pi\)
\(642\) 0 0
\(643\) −10.2317 + 3.72402i −0.403497 + 0.146861i −0.535793 0.844349i \(-0.679987\pi\)
0.132296 + 0.991210i \(0.457765\pi\)
\(644\) 4.30698 + 3.48068i 0.169719 + 0.137158i
\(645\) 0 0
\(646\) −1.21372 2.54138i −0.0477532 0.0999894i
\(647\) −19.0202 −0.747763 −0.373881 0.927477i \(-0.621973\pi\)
−0.373881 + 0.927477i \(0.621973\pi\)
\(648\) 0 0
\(649\) −0.193381 −0.00759085
\(650\) 6.52628 + 13.6652i 0.255982 + 0.535995i
\(651\) 0 0
\(652\) 12.7943 15.8316i 0.501062 0.620013i
\(653\) −11.7763 + 4.28623i −0.460843 + 0.167733i −0.562000 0.827137i \(-0.689968\pi\)
0.101157 + 0.994871i \(0.467746\pi\)
\(654\) 0 0
\(655\) 1.37786 0.242955i 0.0538376 0.00949302i
\(656\) 8.60939 + 4.55587i 0.336140 + 0.177877i
\(657\) 0 0
\(658\) 5.98491 + 5.87554i 0.233316 + 0.229052i
\(659\) −9.65592 + 26.5294i −0.376141 + 1.03344i 0.596801 + 0.802389i \(0.296438\pi\)
−0.972942 + 0.231050i \(0.925784\pi\)
\(660\) 0 0
\(661\) −10.6735 + 12.7202i −0.415150 + 0.494757i −0.932577 0.360971i \(-0.882445\pi\)
0.517427 + 0.855727i \(0.326890\pi\)
\(662\) 2.46309 + 3.44952i 0.0957307 + 0.134069i
\(663\) 0 0
\(664\) −5.08096 + 2.54269i −0.197180 + 0.0986756i
\(665\) 0.693608 + 0.400455i 0.0268970 + 0.0155290i
\(666\) 0 0
\(667\) 7.73476 + 13.3970i 0.299491 + 0.518734i
\(668\) 10.4140 30.3418i 0.402929 1.17396i
\(669\) 0 0
\(670\) 3.08707 0.298792i 0.119264 0.0115433i
\(671\) 0.0275635 0.156320i 0.00106408 0.00603468i
\(672\) 0 0
\(673\) 4.64214 3.89522i 0.178941 0.150150i −0.548918 0.835876i \(-0.684960\pi\)
0.727859 + 0.685727i \(0.240516\pi\)
\(674\) −18.0163 4.64982i −0.693962 0.179105i
\(675\) 0 0
\(676\) 14.0199 + 7.75326i 0.539228 + 0.298202i
\(677\) −5.34485 + 4.48486i −0.205419 + 0.172367i −0.739693 0.672944i \(-0.765029\pi\)
0.534274 + 0.845311i \(0.320585\pi\)
\(678\) 0 0
\(679\) −14.2922 2.52009i −0.548483 0.0967123i
\(680\) −0.749603 + 1.73099i −0.0287460 + 0.0663804i
\(681\) 0 0
\(682\) −0.0175156 + 0.223973i −0.000670707 + 0.00857636i
\(683\) −25.8624 + 14.9317i −0.989597 + 0.571344i −0.905154 0.425084i \(-0.860244\pi\)
−0.0844432 + 0.996428i \(0.526911\pi\)
\(684\) 0 0
\(685\) −4.63301 2.67487i −0.177018 0.102201i
\(686\) −12.8185 + 18.6708i −0.489413 + 0.712856i
\(687\) 0 0
\(688\) −5.95505 + 42.9892i −0.227034 + 1.63895i
\(689\) 14.9446 17.8103i 0.569346 0.678520i
\(690\) 0 0
\(691\) 31.1175 + 11.3259i 1.18377 + 0.430856i 0.857531 0.514432i \(-0.171997\pi\)
0.326236 + 0.945288i \(0.394220\pi\)
\(692\) −23.1926 + 13.9668i −0.881651 + 0.530937i
\(693\) 0 0
\(694\) −39.8991 + 11.0862i −1.51455 + 0.420828i
\(695\) 0.422398 + 2.39554i 0.0160225 + 0.0908679i
\(696\) 0 0
\(697\) 3.36139 1.22345i 0.127322 0.0463414i
\(698\) 26.9866 + 12.2824i 1.02146 + 0.464895i
\(699\) 0 0
\(700\) 2.39268 + 12.2446i 0.0904350 + 0.462803i
\(701\) −9.68894 −0.365946 −0.182973 0.983118i \(-0.558572\pi\)
−0.182973 + 0.983118i \(0.558572\pi\)
\(702\) 0 0
\(703\) 7.18080i 0.270829i
\(704\) 0.102820 0.0964528i 0.00387516 0.00363520i
\(705\) 0 0
\(706\) −4.06024 1.84793i −0.152809 0.0695478i
\(707\) −7.42607 20.4030i −0.279286 0.767333i
\(708\) 0 0
\(709\) 24.6853 4.35269i 0.927077 0.163469i 0.310329 0.950629i \(-0.399561\pi\)
0.616748 + 0.787161i \(0.288450\pi\)
\(710\) 1.73166 + 6.23218i 0.0649879 + 0.233890i
\(711\) 0 0
\(712\) −0.0967135 0.324729i −0.00362449 0.0121697i
\(713\) −6.56025 + 18.0241i −0.245683 + 0.675009i
\(714\) 0 0
\(715\) 0.0136901 + 0.0114874i 0.000511981 + 0.000429603i
\(716\) −21.2264 + 8.17215i −0.793268 + 0.305408i
\(717\) 0 0
\(718\) −35.6645 24.4856i −1.33099 0.913793i
\(719\) 16.4482 28.4892i 0.613415 1.06247i −0.377245 0.926113i \(-0.623129\pi\)
0.990660 0.136353i \(-0.0435381\pi\)
\(720\) 0 0
\(721\) 10.3805 + 17.9796i 0.386590 + 0.669594i
\(722\) 1.89231 24.1970i 0.0704244 0.900520i
\(723\) 0 0
\(724\) 4.60862 29.2851i 0.171278 1.08837i
\(725\) −6.05210 + 34.3232i −0.224769 + 1.27473i
\(726\) 0 0
\(727\) −20.0843 23.9355i −0.744884 0.887719i 0.251908 0.967751i \(-0.418942\pi\)
−0.996792 + 0.0800327i \(0.974498\pi\)
\(728\) −5.97190 5.65031i −0.221333 0.209414i
\(729\) 0 0
\(730\) −0.422076 0.108934i −0.0156217 0.00403182i
\(731\) 10.2449 + 12.2094i 0.378920 + 0.451579i
\(732\) 0 0
\(733\) 16.2456 + 2.86454i 0.600046 + 0.105804i 0.465417 0.885092i \(-0.345904\pi\)
0.134630 + 0.990896i \(0.457016\pi\)
\(734\) −3.04832 31.4948i −0.112516 1.16249i
\(735\) 0 0
\(736\) 10.6628 5.58425i 0.393036 0.205838i
\(737\) −0.0737209 + 0.0425628i −0.00271554 + 0.00156782i
\(738\) 0 0
\(739\) −11.5876 + 20.0704i −0.426258 + 0.738301i −0.996537 0.0831501i \(-0.973502\pi\)
0.570279 + 0.821451i \(0.306835\pi\)
\(740\) −3.62670 + 3.15894i −0.133320 + 0.116125i
\(741\) 0 0
\(742\) 15.5884 11.1308i 0.572269 0.408623i
\(743\) 2.55778 + 2.14623i 0.0938358 + 0.0787376i 0.688499 0.725238i \(-0.258270\pi\)
−0.594663 + 0.803975i \(0.702714\pi\)
\(744\) 0 0
\(745\) −6.12156 2.22807i −0.224277 0.0816300i
\(746\) −11.5409 11.3300i −0.422542 0.414821i
\(747\) 0 0
\(748\) −0.000954765 0.0517644i −3.49097e−5 0.00189270i
\(749\) 1.52210 + 8.63224i 0.0556162 + 0.315415i
\(750\) 0 0
\(751\) −0.701648 1.92776i −0.0256035 0.0703450i 0.926232 0.376953i \(-0.123028\pi\)
−0.951836 + 0.306608i \(0.900806\pi\)
\(752\) 16.8889 6.86246i 0.615876 0.250248i
\(753\) 0 0
\(754\) −9.89754 20.7243i −0.360447 0.754733i
\(755\) 5.39982i 0.196519i
\(756\) 0 0
\(757\) 41.6394i 1.51341i 0.653756 + 0.756705i \(0.273192\pi\)
−0.653756 + 0.756705i \(0.726808\pi\)
\(758\) −27.6929 + 13.2257i −1.00585 + 0.480377i
\(759\) 0 0
\(760\) 1.39786 1.03758i 0.0507057 0.0376368i
\(761\) 14.1101 + 38.7671i 0.511490 + 1.40531i 0.879684 + 0.475558i \(0.157754\pi\)
−0.368195 + 0.929749i \(0.620024\pi\)
\(762\) 0 0
\(763\) 0.659130 + 3.73811i 0.0238621 + 0.135329i
\(764\) 0.695186 + 37.6909i 0.0251509 + 1.36361i
\(765\) 0 0
\(766\) 32.8659 33.4777i 1.18749 1.20960i
\(767\) 23.0337 + 8.38359i 0.831700 + 0.302714i
\(768\) 0 0
\(769\) −33.4132 28.0370i −1.20491 1.01104i −0.999476 0.0323712i \(-0.989694\pi\)
−0.205437 0.978670i \(-0.565861\pi\)
\(770\) 0.00855577 + 0.0119822i 0.000308329 + 0.000431809i
\(771\) 0 0
\(772\) 2.77219 + 3.18267i 0.0997732 + 0.114547i
\(773\) −3.52468 + 6.10492i −0.126774 + 0.219579i −0.922425 0.386176i \(-0.873796\pi\)
0.795651 + 0.605755i \(0.207129\pi\)
\(774\) 0 0
\(775\) −37.4247 + 21.6072i −1.34434 + 0.776153i
\(776\) −17.3716 + 26.3305i −0.623605 + 0.945208i
\(777\) 0 0
\(778\) 9.80280 0.948795i 0.351447 0.0340160i
\(779\) −3.25111 0.573258i −0.116483 0.0205391i
\(780\) 0 0
\(781\) −0.114116 0.135998i −0.00408338 0.00486638i
\(782\) 1.10465 4.28008i 0.0395020 0.153055i
\(783\) 0 0
\(784\) 11.2841 + 17.9791i 0.403004 + 0.642111i
\(785\) −4.90671 5.84759i −0.175128 0.208709i
\(786\) 0 0
\(787\) 8.03739 45.5823i 0.286502 1.62483i −0.413369 0.910564i \(-0.635648\pi\)
0.699871 0.714270i \(-0.253241\pi\)
\(788\) 22.6368 + 3.56237i 0.806402 + 0.126904i
\(789\) 0 0
\(790\) 5.17496 + 0.404704i 0.184117 + 0.0143987i
\(791\) 12.6913 + 21.9820i 0.451250 + 0.781589i
\(792\) 0 0
\(793\) −10.0600 + 17.4245i −0.357242 + 0.618762i
\(794\) 29.4470 42.8911i 1.04503 1.52215i
\(795\) 0 0
\(796\) −10.6074 + 4.08386i −0.375971 + 0.144748i
\(797\) −10.7323 9.00550i −0.380159 0.318991i 0.432606 0.901583i \(-0.357594\pi\)
−0.812765 + 0.582592i \(0.802039\pi\)
\(798\) 0 0
\(799\) 2.28975 6.29103i 0.0810054 0.222561i
\(800\) 26.4899 + 5.80399i 0.936559 + 0.205202i
\(801\) 0 0
\(802\) −4.15930 + 1.15569i −0.146870 + 0.0408088i
\(803\) 0.0117824 0.00207756i 0.000415792 7.33153e-5i
\(804\) 0 0
\(805\) 0.429937 + 1.18124i 0.0151533 + 0.0416333i
\(806\) 11.7962 25.9182i 0.415502 0.912931i
\(807\) 0 0
\(808\) −47.1102 2.81124i −1.65733 0.0988991i
\(809\) 25.2574i 0.888002i −0.896026 0.444001i \(-0.853559\pi\)
0.896026 0.444001i \(-0.146441\pi\)
\(810\) 0 0
\(811\) −36.9593 −1.29782 −0.648908 0.760867i \(-0.724774\pi\)
−0.648908 + 0.760867i \(0.724774\pi\)
\(812\) −3.62867 18.5698i −0.127341 0.651672i
\(813\) 0 0
\(814\) 0.0546826 0.120147i 0.00191662 0.00421116i
\(815\) 4.34200 1.58036i 0.152094 0.0553576i
\(816\) 0 0
\(817\) −2.55420 14.4856i −0.0893602 0.506787i
\(818\) 9.11925 + 32.8199i 0.318847 + 1.14752i
\(819\) 0 0
\(820\) 1.14068 + 1.89417i 0.0398344 + 0.0661473i
\(821\) −5.42437 1.97431i −0.189312 0.0689038i 0.245625 0.969365i \(-0.421007\pi\)
−0.434936 + 0.900461i \(0.643229\pi\)
\(822\) 0 0
\(823\) −12.2571 + 14.6074i −0.427254 + 0.509182i −0.936128 0.351659i \(-0.885618\pi\)
0.508874 + 0.860841i \(0.330062\pi\)
\(824\) 44.8284 5.17493i 1.56167 0.180277i
\(825\) 0 0
\(826\) 16.6483 + 11.4300i 0.579270 + 0.397700i
\(827\) 23.7503 + 13.7122i 0.825878 + 0.476821i 0.852439 0.522826i \(-0.175122\pi\)
−0.0265613 + 0.999647i \(0.508456\pi\)
\(828\) 0 0
\(829\) 23.8710 13.7819i 0.829073 0.478666i −0.0244622 0.999701i \(-0.507787\pi\)
0.853535 + 0.521035i \(0.174454\pi\)
\(830\) −1.28583 0.100557i −0.0446317 0.00349038i
\(831\) 0 0
\(832\) −16.4284 + 7.03105i −0.569553 + 0.243758i
\(833\) 7.67695 + 1.35365i 0.265991 + 0.0469013i
\(834\) 0 0
\(835\) 5.57837 4.68081i 0.193048 0.161986i
\(836\) −0.0231231 + 0.0418127i −0.000799731 + 0.00144612i
\(837\) 0 0
\(838\) 10.4934 40.6580i 0.362489 1.40451i
\(839\) 22.7744 19.1100i 0.786259 0.659750i −0.158558 0.987350i \(-0.550684\pi\)
0.944816 + 0.327600i \(0.106240\pi\)
\(840\) 0 0
\(841\) 4.14263 23.4940i 0.142849 0.810138i
\(842\) 3.91194 + 40.4175i 0.134814 + 1.39288i
\(843\) 0 0
\(844\) 10.8071 31.4871i 0.371995 1.08383i
\(845\) 1.81840 + 3.14956i 0.0625548 + 0.108348i
\(846\) 0 0
\(847\) 12.3959 + 7.15675i 0.425927 + 0.245909i
\(848\) −8.73675 40.7071i −0.300021 1.39789i
\(849\) 0 0
\(850\) 8.10488 5.78721i 0.277995 0.198500i
\(851\) 7.24453 8.63370i 0.248339 0.295959i
\(852\) 0 0
\(853\) 14.9845 41.1697i 0.513061 1.40962i −0.364970 0.931019i \(-0.618921\pi\)
0.878031 0.478604i \(-0.158857\pi\)
\(854\) −11.6124 + 11.8286i −0.397370 + 0.404767i
\(855\) 0 0
\(856\) 18.5326 + 4.42022i 0.633432 + 0.151080i
\(857\) 12.6966 2.23875i 0.433708 0.0764744i 0.0474680 0.998873i \(-0.484885\pi\)
0.386240 + 0.922398i \(0.373774\pi\)
\(858\) 0 0
\(859\) −26.7551 + 9.73806i −0.912872 + 0.332258i −0.755399 0.655265i \(-0.772557\pi\)
−0.157473 + 0.987523i \(0.550335\pi\)
\(860\) −6.19238 + 7.66244i −0.211158 + 0.261287i
\(861\) 0 0
\(862\) −33.8926 + 16.1865i −1.15439 + 0.551315i
\(863\) 46.6170 1.58686 0.793431 0.608660i \(-0.208293\pi\)
0.793431 + 0.608660i \(0.208293\pi\)
\(864\) 0 0
\(865\) −6.14571 −0.208961
\(866\) −1.98147 + 0.946317i −0.0673332 + 0.0321572i
\(867\) 0 0
\(868\) 14.7461 18.2468i 0.500515 0.619336i
\(869\) −0.133877 + 0.0487272i −0.00454146 + 0.00165296i
\(870\) 0 0
\(871\) 10.6262 1.87368i 0.360054 0.0634873i
\(872\) 8.02539 + 1.91414i 0.271774 + 0.0648209i
\(873\) 0 0
\(874\) −2.85788 + 2.91108i −0.0966692 + 0.0984686i
\(875\) −1.97894 + 5.43708i −0.0669003 + 0.183807i
\(876\) 0 0
\(877\) 3.98303 4.74679i 0.134497 0.160288i −0.694592 0.719404i \(-0.744415\pi\)
0.829089 + 0.559116i \(0.188859\pi\)
\(878\) −1.32201 + 0.943966i −0.0446156 + 0.0318573i
\(879\) 0 0
\(880\) 0.0312899 0.00671560i 0.00105478 0.000226383i
\(881\) 21.9173 + 12.6539i 0.738412 + 0.426322i 0.821492 0.570221i \(-0.193142\pi\)
−0.0830799 + 0.996543i \(0.526476\pi\)
\(882\) 0 0
\(883\) 15.7424 + 27.2667i 0.529775 + 0.917597i 0.999397 + 0.0347290i \(0.0110568\pi\)
−0.469622 + 0.882868i \(0.655610\pi\)
\(884\) −2.13041 + 6.20710i −0.0716535 + 0.208767i
\(885\) 0 0
\(886\) 2.30849 + 23.8509i 0.0775552 + 0.801288i
\(887\) 0.0310073 0.175851i 0.00104112 0.00590451i −0.984283 0.176600i \(-0.943490\pi\)
0.985324 + 0.170695i \(0.0546013\pi\)
\(888\) 0 0
\(889\) −17.2584 + 14.4815i −0.578827 + 0.485694i
\(890\) 0.0192209 0.0744737i 0.000644287 0.00249636i
\(891\) 0 0
\(892\) 2.68864 4.86177i 0.0900223 0.162784i
\(893\) −4.73299 + 3.97145i −0.158384 + 0.132900i
\(894\) 0 0
\(895\) −5.08477 0.896582i −0.169965 0.0299694i
\(896\) −14.5528 + 2.22646i −0.486175 + 0.0743807i
\(897\) 0 0
\(898\) 43.2606 + 3.38316i 1.44363 + 0.112898i
\(899\) 56.7571 32.7687i 1.89296 1.09290i
\(900\) 0 0
\(901\) −13.2413 7.64488i −0.441132 0.254688i
\(902\) −0.0500313 0.0343491i −0.00166586 0.00114370i
\(903\) 0 0
\(904\) 54.8076 6.32691i 1.82287 0.210430i
\(905\) 4.32570 5.15517i 0.143791 0.171364i
\(906\) 0 0
\(907\) −18.2575 6.64519i −0.606231 0.220650i 0.0206225 0.999787i \(-0.493435\pi\)
−0.626853 + 0.779137i \(0.715657\pi\)
\(908\) −25.5120 42.3641i −0.846646 1.40590i
\(909\) 0 0
\(910\) −0.499623 1.79813i −0.0165623 0.0596074i
\(911\) −0.423720 2.40304i −0.0140385 0.0796161i 0.976984 0.213314i \(-0.0684258\pi\)
−0.991022 + 0.133698i \(0.957315\pi\)
\(912\) 0 0
\(913\) 0.0332645 0.0121073i 0.00110089 0.000400693i
\(914\) 4.19634 9.22011i 0.138803 0.304974i
\(915\) 0 0
\(916\) −6.01153 30.7641i −0.198626 1.01648i
\(917\) 4.01015 0.132427
\(918\) 0 0
\(919\) 2.20402i 0.0727038i −0.999339 0.0363519i \(-0.988426\pi\)
0.999339 0.0363519i \(-0.0115737\pi\)
\(920\) 2.72748 + 0.162758i 0.0899222 + 0.00536599i
\(921\) 0 0
\(922\) 4.85526 10.6679i 0.159900 0.351328i
\(923\) 7.69653 + 21.1460i 0.253334 + 0.696030i
\(924\) 0 0
\(925\) 25.0065 4.40933i 0.822210 0.144978i
\(926\) −0.527376 + 0.146535i −0.0173307 + 0.00481545i
\(927\) 0 0
\(928\) −40.1737 8.80214i −1.31877 0.288944i
\(929\) −3.30889 + 9.09111i −0.108561 + 0.298270i −0.982063 0.188551i \(-0.939621\pi\)
0.873502 + 0.486820i \(0.161843\pi\)
\(930\) 0 0
\(931\) −5.51109 4.62435i −0.180619 0.151557i
\(932\) −37.7585 + 14.5370i −1.23682 + 0.476175i
\(933\) 0 0
\(934\) 5.33220 7.76662i 0.174475 0.254131i
\(935\) 0.00587632 0.0101781i 0.000192176 0.000332859i
\(936\) 0 0
\(937\) −22.2202 38.4864i −0.725901 1.25730i −0.958602 0.284749i \(-0.908090\pi\)
0.232701 0.972548i \(-0.425243\pi\)
\(938\) 8.86243 + 0.693079i 0.289369 + 0.0226298i
\(939\) 0 0
\(940\) 4.08792 + 0.643318i 0.133333 + 0.0209827i
\(941\) 7.38960 41.9085i 0.240894 1.36618i −0.588944 0.808174i \(-0.700456\pi\)
0.829838 0.558004i \(-0.188433\pi\)
\(942\) 0 0
\(943\) −3.33056 3.96920i −0.108458 0.129255i
\(944\) 37.1785 23.3341i 1.21006 0.759460i
\(945\) 0 0
\(946\) 0.0675731 0.261820i 0.00219699 0.00851250i
\(947\) −30.3650 36.1877i −0.986731 1.17594i −0.984400 0.175943i \(-0.943702\pi\)
−0.00233119 0.999997i \(-0.500742\pi\)
\(948\) 0 0
\(949\) −1.49348 0.263341i −0.0484804 0.00854841i
\(950\) −9.14819 + 0.885437i −0.296807 + 0.0287274i
\(951\) 0 0
\(952\) −2.97740 + 4.51289i −0.0964980 + 0.146264i
\(953\) 23.8540 13.7721i 0.772707 0.446123i −0.0611321 0.998130i \(-0.519471\pi\)
0.833840 + 0.552007i \(0.186138\pi\)
\(954\) 0 0
\(955\) −4.27868 + 7.41089i −0.138455 + 0.239811i
\(956\) −11.2549 12.9214i −0.364009 0.417909i
\(957\) 0 0
\(958\) −0.931443 1.30447i −0.0300936 0.0421455i
\(959\) −11.7461 9.85611i −0.379300 0.318270i
\(960\) 0 0
\(961\) 47.2298 + 17.1902i 1.52354 + 0.554524i
\(962\) −11.7220 + 11.9402i −0.377933 + 0.384968i
\(963\) 0 0
\(964\) −0.533115 28.9039i −0.0171705 0.930930i
\(965\) 0.166374 + 0.943555i 0.00535578 + 0.0303741i
\(966\) 0 0
\(967\) 0.543982 + 1.49458i 0.0174933 + 0.0480624i 0.948132 0.317877i \(-0.102970\pi\)
−0.930639 + 0.365939i \(0.880748\pi\)
\(968\) 24.9820 18.5431i 0.802951 0.595998i
\(969\) 0 0
\(970\) −6.46162 + 3.08596i −0.207470 + 0.0990842i
\(971\) 9.93969i 0.318980i 0.987200 + 0.159490i \(0.0509849\pi\)
−0.987200 + 0.159490i \(0.949015\pi\)
\(972\) 0 0
\(973\) 6.97199i 0.223512i
\(974\) −25.5752 53.5514i −0.819483 1.71590i
\(975\) 0 0
\(976\) 13.5630 + 33.3794i 0.434141 + 1.06845i
\(977\) −13.5121 37.1242i −0.432290 1.18771i −0.944403 0.328789i \(-0.893359\pi\)
0.512113 0.858918i \(-0.328863\pi\)
\(978\) 0 0
\(979\) 0.000366577 0.00207896i 1.17158e−5 6.64438e-5i
\(980\) 0.0888600 + 4.81772i 0.00283853 + 0.153896i
\(981\) 0 0
\(982\) 20.7838 + 20.4040i 0.663237 + 0.651117i
\(983\) −30.2880 11.0239i −0.966036 0.351608i −0.189640 0.981854i \(-0.560732\pi\)
−0.776396 + 0.630245i \(0.782954\pi\)
\(984\) 0 0
\(985\) 3.98484 + 3.34368i 0.126967 + 0.106538i
\(986\) −12.2916 + 8.77669i −0.391444 + 0.279507i
\(987\) 0 0
\(988\) 4.56692 3.97790i 0.145293 0.126554i
\(989\) 11.5432 19.9933i 0.367051 0.635751i
\(990\) 0 0
\(991\) −2.66599 + 1.53921i −0.0846881 + 0.0488947i −0.541746 0.840542i \(-0.682237\pi\)
0.457058 + 0.889437i \(0.348903\pi\)
\(992\) −23.6580 45.1735i −0.751142 1.43426i
\(993\) 0 0
\(994\) 1.78604 + 18.4531i 0.0566499 + 0.585297i
\(995\) −2.54100 0.448048i −0.0805553 0.0142041i
\(996\) 0 0
\(997\) −27.9424 33.3004i −0.884944 1.05464i −0.998134 0.0610619i \(-0.980551\pi\)
0.113190 0.993573i \(-0.463893\pi\)
\(998\) 13.7303 + 3.54367i 0.434626 + 0.112173i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.v.b.611.28 192
3.2 odd 2 216.2.v.b.59.5 yes 192
8.3 odd 2 inner 648.2.v.b.611.11 192
12.11 even 2 864.2.bh.b.815.1 192
24.5 odd 2 864.2.bh.b.815.2 192
24.11 even 2 216.2.v.b.59.22 yes 192
27.11 odd 18 inner 648.2.v.b.35.11 192
27.16 even 9 216.2.v.b.11.22 yes 192
108.43 odd 18 864.2.bh.b.335.2 192
216.11 even 18 inner 648.2.v.b.35.28 192
216.43 odd 18 216.2.v.b.11.5 192
216.205 even 18 864.2.bh.b.335.1 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.5 192 216.43 odd 18
216.2.v.b.11.22 yes 192 27.16 even 9
216.2.v.b.59.5 yes 192 3.2 odd 2
216.2.v.b.59.22 yes 192 24.11 even 2
648.2.v.b.35.11 192 27.11 odd 18 inner
648.2.v.b.35.28 192 216.11 even 18 inner
648.2.v.b.611.11 192 8.3 odd 2 inner
648.2.v.b.611.28 192 1.1 even 1 trivial
864.2.bh.b.335.1 192 216.205 even 18
864.2.bh.b.335.2 192 108.43 odd 18
864.2.bh.b.815.1 192 12.11 even 2
864.2.bh.b.815.2 192 24.5 odd 2