Properties

Label 648.2.v.b.611.11
Level $648$
Weight $2$
Character 648.611
Analytic conductor $5.174$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(35,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.v (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 611.11
Character \(\chi\) \(=\) 648.611
Dual form 648.2.v.b.35.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.821807 + 1.15093i) q^{2} +(-0.649266 - 1.89168i) q^{4} +(-0.426624 + 0.155279i) q^{5} +(-1.28150 + 0.225962i) q^{7} +(2.71076 + 0.807339i) q^{8} +(0.171889 - 0.618623i) q^{10} +(-0.00602720 + 0.0165596i) q^{11} +(-1.43581 + 1.71113i) q^{13} +(0.793076 - 1.66060i) q^{14} +(-3.15691 + 2.45641i) q^{16} +(-1.27216 - 0.734483i) q^{17} +(0.677841 + 1.17406i) q^{19} +(0.570730 + 0.706220i) q^{20} +(-0.0141057 - 0.0205456i) q^{22} +(0.369486 - 2.09546i) q^{23} +(-3.67233 + 3.08145i) q^{25} +(-0.789428 - 3.05873i) q^{26} +(1.25948 + 2.27747i) q^{28} +(-5.56933 + 4.67322i) q^{29} +(-8.87753 - 1.56535i) q^{31} +(-0.232774 - 5.65206i) q^{32} +(1.89081 - 0.860562i) q^{34} +(0.511630 - 0.295390i) q^{35} +(4.58718 + 2.64841i) q^{37} +(-1.90831 - 0.184701i) q^{38} +(-1.28184 + 0.0764919i) q^{40} +(-1.56527 + 1.86542i) q^{41} +(-10.1956 - 3.71089i) q^{43} +(0.0352387 + 0.000649957i) q^{44} +(2.10807 + 2.14731i) q^{46} +(-0.791397 - 4.48824i) q^{47} +(-4.98668 + 1.81500i) q^{49} +(-0.528577 - 6.75893i) q^{50} +(4.16913 + 1.60511i) q^{52} -10.4085 q^{53} -0.00800062i q^{55} +(-3.65625 - 0.422073i) q^{56} +(-0.801622 - 10.2504i) q^{58} +(3.75319 + 10.3118i) q^{59} +(8.87057 - 1.56412i) q^{61} +(9.09722 - 8.93098i) q^{62} +(6.69641 + 4.37700i) q^{64} +(0.346849 - 0.952961i) q^{65} +(3.70041 + 3.10502i) q^{67} +(-0.563436 + 2.88340i) q^{68} +(-0.0804893 + 0.831602i) q^{70} +(5.03714 - 8.72458i) q^{71} +(-0.339460 - 0.587962i) q^{73} +(-6.81790 + 3.10303i) q^{74} +(1.78084 - 2.04453i) q^{76} +(0.00398198 - 0.0225829i) q^{77} +(-5.19665 - 6.19313i) q^{79} +(0.965387 - 1.53816i) q^{80} +(-0.860607 - 3.33452i) q^{82} +(-1.29122 - 1.53881i) q^{83} +(0.656785 + 0.115809i) q^{85} +(12.6498 - 8.68475i) q^{86} +(-0.0297075 + 0.0400230i) q^{88} +(0.103744 - 0.0598964i) q^{89} +(1.45333 - 2.51724i) q^{91} +(-4.20383 + 0.661560i) q^{92} +(5.81601 + 2.77762i) q^{94} +(-0.471489 - 0.395626i) q^{95} +(-10.4801 - 3.81446i) q^{97} +(2.00915 - 7.23088i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 6 q^{2} - 6 q^{4} + 9 q^{8} - 3 q^{10} + 30 q^{11} - 9 q^{14} - 6 q^{16} + 18 q^{17} - 6 q^{19} + 27 q^{20} - 18 q^{22} - 12 q^{25} - 12 q^{28} + 36 q^{32} + 12 q^{34} + 18 q^{35} + 102 q^{38} + 9 q^{40}+ \cdots - 162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.821807 + 1.15093i −0.581105 + 0.813828i
\(3\) 0 0
\(4\) −0.649266 1.89168i −0.324633 0.945840i
\(5\) −0.426624 + 0.155279i −0.190792 + 0.0694427i −0.435649 0.900116i \(-0.643481\pi\)
0.244857 + 0.969559i \(0.421259\pi\)
\(6\) 0 0
\(7\) −1.28150 + 0.225962i −0.484360 + 0.0854057i −0.410495 0.911863i \(-0.634644\pi\)
−0.0738642 + 0.997268i \(0.523533\pi\)
\(8\) 2.71076 + 0.807339i 0.958397 + 0.285437i
\(9\) 0 0
\(10\) 0.171889 0.618623i 0.0543560 0.195626i
\(11\) −0.00602720 + 0.0165596i −0.00181727 + 0.00499290i −0.940598 0.339522i \(-0.889735\pi\)
0.938781 + 0.344515i \(0.111957\pi\)
\(12\) 0 0
\(13\) −1.43581 + 1.71113i −0.398222 + 0.474582i −0.927477 0.373881i \(-0.878027\pi\)
0.529255 + 0.848463i \(0.322471\pi\)
\(14\) 0.793076 1.66060i 0.211959 0.443815i
\(15\) 0 0
\(16\) −3.15691 + 2.45641i −0.789227 + 0.614102i
\(17\) −1.27216 0.734483i −0.308545 0.178138i 0.337730 0.941243i \(-0.390341\pi\)
−0.646275 + 0.763105i \(0.723674\pi\)
\(18\) 0 0
\(19\) 0.677841 + 1.17406i 0.155507 + 0.269347i 0.933244 0.359244i \(-0.116965\pi\)
−0.777736 + 0.628591i \(0.783632\pi\)
\(20\) 0.570730 + 0.706220i 0.127619 + 0.157916i
\(21\) 0 0
\(22\) −0.0141057 0.0205456i −0.00300734 0.00438035i
\(23\) 0.369486 2.09546i 0.0770432 0.436933i −0.921748 0.387788i \(-0.873239\pi\)
0.998792 0.0491452i \(-0.0156497\pi\)
\(24\) 0 0
\(25\) −3.67233 + 3.08145i −0.734465 + 0.616289i
\(26\) −0.789428 3.05873i −0.154820 0.599866i
\(27\) 0 0
\(28\) 1.25948 + 2.27747i 0.238019 + 0.430401i
\(29\) −5.56933 + 4.67322i −1.03420 + 0.867796i −0.991345 0.131286i \(-0.958089\pi\)
−0.0428540 + 0.999081i \(0.513645\pi\)
\(30\) 0 0
\(31\) −8.87753 1.56535i −1.59445 0.281145i −0.695279 0.718740i \(-0.744719\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(32\) −0.232774 5.65206i −0.0411490 0.999153i
\(33\) 0 0
\(34\) 1.89081 0.860562i 0.324271 0.147585i
\(35\) 0.511630 0.295390i 0.0864813 0.0499300i
\(36\) 0 0
\(37\) 4.58718 + 2.64841i 0.754128 + 0.435396i 0.827183 0.561932i \(-0.189942\pi\)
−0.0730557 + 0.997328i \(0.523275\pi\)
\(38\) −1.90831 0.184701i −0.309568 0.0299625i
\(39\) 0 0
\(40\) −1.28184 + 0.0764919i −0.202676 + 0.0120944i
\(41\) −1.56527 + 1.86542i −0.244454 + 0.291329i −0.874295 0.485395i \(-0.838676\pi\)
0.629841 + 0.776724i \(0.283120\pi\)
\(42\) 0 0
\(43\) −10.1956 3.71089i −1.55481 0.565906i −0.585273 0.810836i \(-0.699013\pi\)
−0.969541 + 0.244930i \(0.921235\pi\)
\(44\) 0.0352387 0.000649957i 0.00531243 9.79847e-5i
\(45\) 0 0
\(46\) 2.10807 + 2.14731i 0.310819 + 0.316604i
\(47\) −0.791397 4.48824i −0.115437 0.654676i −0.986533 0.163563i \(-0.947701\pi\)
0.871096 0.491113i \(-0.163410\pi\)
\(48\) 0 0
\(49\) −4.98668 + 1.81500i −0.712382 + 0.259286i
\(50\) −0.528577 6.75893i −0.0747520 0.955858i
\(51\) 0 0
\(52\) 4.16913 + 1.60511i 0.578155 + 0.222589i
\(53\) −10.4085 −1.42972 −0.714860 0.699267i \(-0.753510\pi\)
−0.714860 + 0.699267i \(0.753510\pi\)
\(54\) 0 0
\(55\) 0.00800062i 0.00107880i
\(56\) −3.65625 0.422073i −0.488587 0.0564018i
\(57\) 0 0
\(58\) −0.801622 10.2504i −0.105258 1.34594i
\(59\) 3.75319 + 10.3118i 0.488624 + 1.34248i 0.901926 + 0.431890i \(0.142153\pi\)
−0.413302 + 0.910594i \(0.635625\pi\)
\(60\) 0 0
\(61\) 8.87057 1.56412i 1.13576 0.200265i 0.426010 0.904718i \(-0.359919\pi\)
0.709750 + 0.704453i \(0.248808\pi\)
\(62\) 9.09722 8.93098i 1.15535 1.13424i
\(63\) 0 0
\(64\) 6.69641 + 4.37700i 0.837051 + 0.547125i
\(65\) 0.346849 0.952961i 0.0430214 0.118200i
\(66\) 0 0
\(67\) 3.70041 + 3.10502i 0.452078 + 0.379338i 0.840206 0.542267i \(-0.182434\pi\)
−0.388129 + 0.921605i \(0.626878\pi\)
\(68\) −0.563436 + 2.88340i −0.0683266 + 0.349663i
\(69\) 0 0
\(70\) −0.0804893 + 0.831602i −0.00962031 + 0.0993955i
\(71\) 5.03714 8.72458i 0.597799 1.03542i −0.395347 0.918532i \(-0.629376\pi\)
0.993145 0.116886i \(-0.0372911\pi\)
\(72\) 0 0
\(73\) −0.339460 0.587962i −0.0397308 0.0688158i 0.845476 0.534013i \(-0.179317\pi\)
−0.885207 + 0.465197i \(0.845983\pi\)
\(74\) −6.81790 + 3.10303i −0.792565 + 0.360720i
\(75\) 0 0
\(76\) 1.78084 2.04453i 0.204276 0.234524i
\(77\) 0.00398198 0.0225829i 0.000453789 0.00257357i
\(78\) 0 0
\(79\) −5.19665 6.19313i −0.584669 0.696782i 0.389903 0.920856i \(-0.372509\pi\)
−0.974572 + 0.224074i \(0.928064\pi\)
\(80\) 0.965387 1.53816i 0.107934 0.171972i
\(81\) 0 0
\(82\) −0.860607 3.33452i −0.0950382 0.368237i
\(83\) −1.29122 1.53881i −0.141729 0.168907i 0.690510 0.723323i \(-0.257386\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(84\) 0 0
\(85\) 0.656785 + 0.115809i 0.0712383 + 0.0125612i
\(86\) 12.6498 8.68475i 1.36406 0.936501i
\(87\) 0 0
\(88\) −0.0297075 + 0.0400230i −0.00316683 + 0.00426647i
\(89\) 0.103744 0.0598964i 0.0109968 0.00634901i −0.494492 0.869182i \(-0.664646\pi\)
0.505488 + 0.862833i \(0.331312\pi\)
\(90\) 0 0
\(91\) 1.45333 2.51724i 0.152351 0.263879i
\(92\) −4.20383 + 0.661560i −0.438280 + 0.0689724i
\(93\) 0 0
\(94\) 5.81601 + 2.77762i 0.599875 + 0.286490i
\(95\) −0.471489 0.395626i −0.0483738 0.0405904i
\(96\) 0 0
\(97\) −10.4801 3.81446i −1.06410 0.387299i −0.250130 0.968212i \(-0.580474\pi\)
−0.813966 + 0.580913i \(0.802696\pi\)
\(98\) 2.00915 7.23088i 0.202955 0.730429i
\(99\) 0 0
\(100\) 8.21343 + 4.94619i 0.821343 + 0.494619i
\(101\) 2.89743 + 16.4321i 0.288305 + 1.63506i 0.693237 + 0.720710i \(0.256184\pi\)
−0.404932 + 0.914347i \(0.632705\pi\)
\(102\) 0 0
\(103\) −5.45676 14.9923i −0.537670 1.47724i −0.849753 0.527182i \(-0.823249\pi\)
0.312082 0.950055i \(-0.398974\pi\)
\(104\) −5.27359 + 3.47927i −0.517118 + 0.341171i
\(105\) 0 0
\(106\) 8.55380 11.9794i 0.830818 1.16355i
\(107\) 6.73607i 0.651200i 0.945508 + 0.325600i \(0.105566\pi\)
−0.945508 + 0.325600i \(0.894434\pi\)
\(108\) 0 0
\(109\) 2.91699i 0.279397i −0.990194 0.139699i \(-0.955387\pi\)
0.990194 0.139699i \(-0.0446134\pi\)
\(110\) 0.00920813 + 0.00657497i 0.000877961 + 0.000626898i
\(111\) 0 0
\(112\) 3.49051 3.86121i 0.329822 0.364850i
\(113\) 6.67148 + 18.3297i 0.627600 + 1.72432i 0.687572 + 0.726116i \(0.258677\pi\)
−0.0599724 + 0.998200i \(0.519101\pi\)
\(114\) 0 0
\(115\) 0.167748 + 0.951347i 0.0156426 + 0.0887136i
\(116\) 12.4562 + 7.50123i 1.15653 + 0.696471i
\(117\) 0 0
\(118\) −14.9525 4.15467i −1.37649 0.382469i
\(119\) 1.79623 + 0.653776i 0.164661 + 0.0599315i
\(120\) 0 0
\(121\) 8.42625 + 7.07046i 0.766023 + 0.642769i
\(122\) −5.48971 + 11.4948i −0.497015 + 1.04069i
\(123\) 0 0
\(124\) 2.80274 + 17.8098i 0.251693 + 1.59937i
\(125\) 2.22323 3.85075i 0.198852 0.344422i
\(126\) 0 0
\(127\) 14.9938 8.65666i 1.33048 0.768154i 0.345108 0.938563i \(-0.387842\pi\)
0.985373 + 0.170409i \(0.0545088\pi\)
\(128\) −10.5408 + 4.11002i −0.931681 + 0.363278i
\(129\) 0 0
\(130\) 0.811745 + 1.18235i 0.0711947 + 0.103699i
\(131\) 3.03491 + 0.535137i 0.265162 + 0.0467552i 0.304648 0.952465i \(-0.401461\pi\)
−0.0394865 + 0.999220i \(0.512572\pi\)
\(132\) 0 0
\(133\) −1.13394 1.35138i −0.0983252 0.117179i
\(134\) −6.61467 + 1.70718i −0.571421 + 0.147478i
\(135\) 0 0
\(136\) −2.85554 3.01807i −0.244861 0.258797i
\(137\) −7.57425 9.02665i −0.647112 0.771198i 0.338363 0.941016i \(-0.390127\pi\)
−0.985476 + 0.169817i \(0.945682\pi\)
\(138\) 0 0
\(139\) −0.930383 + 5.27646i −0.0789140 + 0.447544i 0.919591 + 0.392878i \(0.128520\pi\)
−0.998505 + 0.0546659i \(0.982591\pi\)
\(140\) −0.890967 0.776054i −0.0753005 0.0655885i
\(141\) 0 0
\(142\) 5.90180 + 12.9673i 0.495268 + 1.08819i
\(143\) −0.0196817 0.0340897i −0.00164587 0.00285073i
\(144\) 0 0
\(145\) 1.65036 2.85851i 0.137055 0.237386i
\(146\) 0.955672 + 0.0924978i 0.0790920 + 0.00765517i
\(147\) 0 0
\(148\) 2.03165 10.3970i 0.167000 0.854628i
\(149\) 10.9918 + 9.22325i 0.900486 + 0.755598i 0.970285 0.241963i \(-0.0777914\pi\)
−0.0697991 + 0.997561i \(0.522236\pi\)
\(150\) 0 0
\(151\) −4.06790 + 11.1765i −0.331041 + 0.909528i 0.656800 + 0.754065i \(0.271909\pi\)
−0.987842 + 0.155464i \(0.950313\pi\)
\(152\) 0.889602 + 3.72983i 0.0721562 + 0.302529i
\(153\) 0 0
\(154\) 0.0227189 + 0.0231418i 0.00183074 + 0.00186482i
\(155\) 4.03044 0.710675i 0.323733 0.0570828i
\(156\) 0 0
\(157\) 5.75062 + 15.7997i 0.458950 + 1.26095i 0.926268 + 0.376865i \(0.122998\pi\)
−0.467319 + 0.884089i \(0.654780\pi\)
\(158\) 11.3985 0.891409i 0.906815 0.0709167i
\(159\) 0 0
\(160\) 0.976952 + 2.37516i 0.0772348 + 0.187773i
\(161\) 2.76881i 0.218213i
\(162\) 0 0
\(163\) 10.1776 0.797169 0.398585 0.917132i \(-0.369502\pi\)
0.398585 + 0.917132i \(0.369502\pi\)
\(164\) 4.54505 + 1.74984i 0.354909 + 0.136640i
\(165\) 0 0
\(166\) 2.83219 0.221489i 0.219821 0.0171909i
\(167\) −15.0723 + 5.48587i −1.16633 + 0.424509i −0.851355 0.524591i \(-0.824218\pi\)
−0.314975 + 0.949100i \(0.601996\pi\)
\(168\) 0 0
\(169\) 1.39101 + 7.88879i 0.107000 + 0.606830i
\(170\) −0.673038 + 0.660739i −0.0516197 + 0.0506764i
\(171\) 0 0
\(172\) −0.400173 + 21.6962i −0.0305129 + 1.65432i
\(173\) 12.7203 + 4.62982i 0.967109 + 0.351999i 0.776815 0.629729i \(-0.216834\pi\)
0.190293 + 0.981727i \(0.439056\pi\)
\(174\) 0 0
\(175\) 4.00978 4.77867i 0.303111 0.361233i
\(176\) −0.0216498 0.0670823i −0.00163191 0.00505652i
\(177\) 0 0
\(178\) −0.0163209 + 0.168625i −0.00122330 + 0.0126390i
\(179\) −9.84897 5.68630i −0.736146 0.425014i 0.0845201 0.996422i \(-0.473064\pi\)
−0.820667 + 0.571407i \(0.806398\pi\)
\(180\) 0 0
\(181\) −12.8369 + 7.41138i −0.954159 + 0.550884i −0.894370 0.447327i \(-0.852376\pi\)
−0.0597883 + 0.998211i \(0.519043\pi\)
\(182\) 1.70281 + 3.74137i 0.126220 + 0.277329i
\(183\) 0 0
\(184\) 2.69333 5.38198i 0.198555 0.396765i
\(185\) −2.36824 0.417585i −0.174117 0.0307015i
\(186\) 0 0
\(187\) 0.0198303 0.0166396i 0.00145014 0.00121681i
\(188\) −7.97648 + 4.41113i −0.581745 + 0.321715i
\(189\) 0 0
\(190\) 0.842810 0.217521i 0.0611439 0.0157806i
\(191\) 14.4389 12.1157i 1.04476 0.876659i 0.0522283 0.998635i \(-0.483368\pi\)
0.992533 + 0.121976i \(0.0389232\pi\)
\(192\) 0 0
\(193\) −0.366460 + 2.07830i −0.0263783 + 0.149599i −0.995152 0.0983471i \(-0.968644\pi\)
0.968774 + 0.247946i \(0.0797556\pi\)
\(194\) 13.0028 8.92712i 0.933547 0.640930i
\(195\) 0 0
\(196\) 6.67108 + 8.25478i 0.476506 + 0.589627i
\(197\) −5.72884 9.92264i −0.408163 0.706959i 0.586521 0.809934i \(-0.300497\pi\)
−0.994684 + 0.102975i \(0.967164\pi\)
\(198\) 0 0
\(199\) 4.92181 + 2.84161i 0.348898 + 0.201436i 0.664200 0.747555i \(-0.268772\pi\)
−0.315302 + 0.948991i \(0.602106\pi\)
\(200\) −12.4426 + 5.38824i −0.879821 + 0.381006i
\(201\) 0 0
\(202\) −21.2933 10.1693i −1.49819 0.715510i
\(203\) 6.08110 7.24717i 0.426809 0.508652i
\(204\) 0 0
\(205\) 0.378123 1.03889i 0.0264093 0.0725589i
\(206\) 21.7395 + 6.04047i 1.51466 + 0.420859i
\(207\) 0 0
\(208\) 0.329486 8.92881i 0.0228457 0.619102i
\(209\) −0.0235273 + 0.00414851i −0.00162742 + 0.000286958i
\(210\) 0 0
\(211\) 15.6412 5.69295i 1.07679 0.391919i 0.258077 0.966124i \(-0.416911\pi\)
0.818711 + 0.574206i \(0.194689\pi\)
\(212\) 6.75790 + 19.6896i 0.464134 + 1.35229i
\(213\) 0 0
\(214\) −7.75272 5.53575i −0.529965 0.378416i
\(215\) 4.92591 0.335945
\(216\) 0 0
\(217\) 11.7302 0.796300
\(218\) 3.35725 + 2.39721i 0.227382 + 0.162359i
\(219\) 0 0
\(220\) −0.0151346 + 0.00519453i −0.00102038 + 0.000350215i
\(221\) 3.08338 1.12226i 0.207410 0.0754912i
\(222\) 0 0
\(223\) −2.73564 + 0.482367i −0.183192 + 0.0323017i −0.264491 0.964388i \(-0.585204\pi\)
0.0812995 + 0.996690i \(0.474093\pi\)
\(224\) 1.57545 + 7.19049i 0.105264 + 0.480435i
\(225\) 0 0
\(226\) −26.5789 7.38512i −1.76800 0.491251i
\(227\) 8.45693 23.2352i 0.561306 1.54218i −0.256418 0.966566i \(-0.582542\pi\)
0.817724 0.575611i \(-0.195236\pi\)
\(228\) 0 0
\(229\) −10.0744 + 12.0062i −0.665736 + 0.793393i −0.988197 0.153190i \(-0.951045\pi\)
0.322461 + 0.946583i \(0.395490\pi\)
\(230\) −1.23279 0.588758i −0.0812876 0.0388216i
\(231\) 0 0
\(232\) −18.8700 + 8.17163i −1.23887 + 0.536494i
\(233\) −17.5198 10.1151i −1.14776 0.662659i −0.199419 0.979914i \(-0.563906\pi\)
−0.948340 + 0.317255i \(0.897239\pi\)
\(234\) 0 0
\(235\) 1.03456 + 1.79190i 0.0674870 + 0.116891i
\(236\) 17.0698 13.7949i 1.11115 0.897975i
\(237\) 0 0
\(238\) −2.22861 + 1.53006i −0.144459 + 0.0991789i
\(239\) −1.48780 + 8.43773i −0.0962378 + 0.545791i 0.898123 + 0.439744i \(0.144931\pi\)
−0.994361 + 0.106048i \(0.966180\pi\)
\(240\) 0 0
\(241\) 11.0727 9.29110i 0.713255 0.598492i −0.212255 0.977214i \(-0.568081\pi\)
0.925510 + 0.378722i \(0.123636\pi\)
\(242\) −15.0623 + 3.88744i −0.968244 + 0.249894i
\(243\) 0 0
\(244\) −8.71818 15.7648i −0.558124 1.00924i
\(245\) 1.84561 1.54865i 0.117912 0.0989395i
\(246\) 0 0
\(247\) −2.98221 0.525844i −0.189754 0.0334587i
\(248\) −22.8011 11.4105i −1.44787 0.724565i
\(249\) 0 0
\(250\) 2.60486 + 5.72335i 0.164746 + 0.361977i
\(251\) −12.7128 + 7.33976i −0.802427 + 0.463281i −0.844319 0.535841i \(-0.819995\pi\)
0.0418921 + 0.999122i \(0.486661\pi\)
\(252\) 0 0
\(253\) 0.0324730 + 0.0187483i 0.00204156 + 0.00117869i
\(254\) −2.35881 + 24.3708i −0.148005 + 1.52916i
\(255\) 0 0
\(256\) 3.93214 15.5093i 0.245759 0.969331i
\(257\) 14.4703 17.2450i 0.902633 1.07572i −0.0941497 0.995558i \(-0.530013\pi\)
0.996782 0.0801575i \(-0.0255423\pi\)
\(258\) 0 0
\(259\) −6.47689 2.35739i −0.402454 0.146481i
\(260\) −2.02789 0.0374033i −0.125765 0.00231966i
\(261\) 0 0
\(262\) −3.11002 + 3.05318i −0.192138 + 0.188626i
\(263\) −3.07511 17.4398i −0.189620 1.07539i −0.919875 0.392212i \(-0.871710\pi\)
0.730255 0.683175i \(-0.239401\pi\)
\(264\) 0 0
\(265\) 4.44053 1.61622i 0.272780 0.0992836i
\(266\) 2.48722 0.194511i 0.152501 0.0119262i
\(267\) 0 0
\(268\) 3.47115 9.01598i 0.212034 0.550739i
\(269\) −10.2475 −0.624803 −0.312402 0.949950i \(-0.601133\pi\)
−0.312402 + 0.949950i \(0.601133\pi\)
\(270\) 0 0
\(271\) 18.7315i 1.13786i 0.822386 + 0.568929i \(0.192642\pi\)
−0.822386 + 0.568929i \(0.807358\pi\)
\(272\) 5.82029 0.806251i 0.352907 0.0488861i
\(273\) 0 0
\(274\) 16.6136 1.29925i 1.00366 0.0784906i
\(275\) −0.0288937 0.0793847i −0.00174235 0.00478708i
\(276\) 0 0
\(277\) 21.4560 3.78327i 1.28917 0.227315i 0.513299 0.858210i \(-0.328423\pi\)
0.775868 + 0.630895i \(0.217312\pi\)
\(278\) −5.30823 5.40704i −0.318366 0.324293i
\(279\) 0 0
\(280\) 1.62538 0.387671i 0.0971353 0.0231678i
\(281\) 3.95262 10.8597i 0.235793 0.647837i −0.764203 0.644976i \(-0.776867\pi\)
0.999996 0.00286067i \(-0.000910580\pi\)
\(282\) 0 0
\(283\) −3.28791 2.75888i −0.195446 0.163998i 0.539813 0.841785i \(-0.318495\pi\)
−0.735259 + 0.677786i \(0.762939\pi\)
\(284\) −19.7746 3.86409i −1.17340 0.229291i
\(285\) 0 0
\(286\) 0.0554093 + 0.00536297i 0.00327642 + 0.000317119i
\(287\) 1.58437 2.74421i 0.0935226 0.161986i
\(288\) 0 0
\(289\) −7.42107 12.8537i −0.436533 0.756098i
\(290\) 1.93366 + 4.24859i 0.113548 + 0.249486i
\(291\) 0 0
\(292\) −0.891837 + 1.02389i −0.0521908 + 0.0599189i
\(293\) 2.18285 12.3796i 0.127523 0.723221i −0.852254 0.523129i \(-0.824765\pi\)
0.979777 0.200092i \(-0.0641242\pi\)
\(294\) 0 0
\(295\) −3.20241 3.81648i −0.186451 0.222204i
\(296\) 10.2966 + 10.8826i 0.598476 + 0.632538i
\(297\) 0 0
\(298\) −19.6485 + 5.07107i −1.13820 + 0.293759i
\(299\) 3.05509 + 3.64092i 0.176681 + 0.210560i
\(300\) 0 0
\(301\) 13.9041 + 2.45167i 0.801421 + 0.141312i
\(302\) −9.52027 13.8668i −0.547830 0.797943i
\(303\) 0 0
\(304\) −5.02384 2.04133i −0.288137 0.117078i
\(305\) −3.54153 + 2.04470i −0.202787 + 0.117079i
\(306\) 0 0
\(307\) 7.46768 12.9344i 0.426203 0.738205i −0.570329 0.821416i \(-0.693184\pi\)
0.996532 + 0.0832113i \(0.0265176\pi\)
\(308\) −0.0453051 + 0.00712969i −0.00258150 + 0.000406252i
\(309\) 0 0
\(310\) −2.49431 + 5.22278i −0.141667 + 0.296634i
\(311\) −0.935160 0.784692i −0.0530280 0.0444958i 0.615888 0.787833i \(-0.288797\pi\)
−0.668916 + 0.743338i \(0.733242\pi\)
\(312\) 0 0
\(313\) −3.74180 1.36190i −0.211499 0.0769794i 0.234098 0.972213i \(-0.424786\pi\)
−0.445597 + 0.895234i \(0.647009\pi\)
\(314\) −22.9102 6.36576i −1.29290 0.359241i
\(315\) 0 0
\(316\) −8.34141 + 13.8514i −0.469241 + 0.779202i
\(317\) 1.28552 + 7.29053i 0.0722018 + 0.409477i 0.999391 + 0.0348844i \(0.0111063\pi\)
−0.927190 + 0.374593i \(0.877783\pi\)
\(318\) 0 0
\(319\) −0.0438192 0.120392i −0.00245340 0.00674067i
\(320\) −3.53651 0.827527i −0.197697 0.0462601i
\(321\) 0 0
\(322\) −3.18670 2.27543i −0.177588 0.126805i
\(323\) 1.99145i 0.110807i
\(324\) 0 0
\(325\) 10.7082i 0.593984i
\(326\) −8.36400 + 11.7136i −0.463239 + 0.648759i
\(327\) 0 0
\(328\) −5.74909 + 3.79299i −0.317440 + 0.209433i
\(329\) 2.02834 + 5.57283i 0.111826 + 0.307240i
\(330\) 0 0
\(331\) 0.520452 + 2.95163i 0.0286066 + 0.162236i 0.995765 0.0919400i \(-0.0293068\pi\)
−0.967158 + 0.254176i \(0.918196\pi\)
\(332\) −2.07260 + 3.44167i −0.113749 + 0.188886i
\(333\) 0 0
\(334\) 6.07269 21.8554i 0.332283 1.19588i
\(335\) −2.06083 0.750081i −0.112595 0.0409813i
\(336\) 0 0
\(337\) −10.0788 8.45709i −0.549025 0.460687i 0.325586 0.945513i \(-0.394439\pi\)
−0.874611 + 0.484826i \(0.838883\pi\)
\(338\) −10.2226 4.88212i −0.556034 0.265552i
\(339\) 0 0
\(340\) −0.207355 1.31762i −0.0112454 0.0714579i
\(341\) 0.0794281 0.137574i 0.00430127 0.00745003i
\(342\) 0 0
\(343\) 13.8688 8.00714i 0.748844 0.432345i
\(344\) −24.6418 18.2906i −1.32860 0.986165i
\(345\) 0 0
\(346\) −15.7822 + 10.8353i −0.848459 + 0.582512i
\(347\) −28.8369 5.08472i −1.54804 0.272962i −0.666660 0.745362i \(-0.732277\pi\)
−0.881385 + 0.472400i \(0.843388\pi\)
\(348\) 0 0
\(349\) −13.4766 16.0608i −0.721385 0.859713i 0.273380 0.961906i \(-0.411859\pi\)
−0.994765 + 0.102193i \(0.967414\pi\)
\(350\) 2.20463 + 8.54210i 0.117843 + 0.456595i
\(351\) 0 0
\(352\) 0.0949988 + 0.0302114i 0.00506345 + 0.00161028i
\(353\) −2.02760 2.41640i −0.107918 0.128612i 0.709381 0.704825i \(-0.248974\pi\)
−0.817300 + 0.576213i \(0.804530\pi\)
\(354\) 0 0
\(355\) −0.794226 + 4.50428i −0.0421532 + 0.239062i
\(356\) −0.180662 0.157361i −0.00957507 0.00834013i
\(357\) 0 0
\(358\) 14.6385 6.66240i 0.773667 0.352119i
\(359\) 15.2950 + 26.4917i 0.807240 + 1.39818i 0.914768 + 0.403979i \(0.132373\pi\)
−0.107529 + 0.994202i \(0.534294\pi\)
\(360\) 0 0
\(361\) 8.58106 14.8628i 0.451635 0.782255i
\(362\) 2.01949 20.8651i 0.106142 1.09664i
\(363\) 0 0
\(364\) −5.70542 1.11488i −0.299045 0.0584355i
\(365\) 0.236120 + 0.198128i 0.0123591 + 0.0103705i
\(366\) 0 0
\(367\) −7.65245 + 21.0249i −0.399455 + 1.09749i 0.563096 + 0.826391i \(0.309610\pi\)
−0.962551 + 0.271101i \(0.912612\pi\)
\(368\) 3.98087 + 7.52278i 0.207517 + 0.392152i
\(369\) 0 0
\(370\) 2.42685 2.38250i 0.126166 0.123860i
\(371\) 13.3385 2.35193i 0.692499 0.122106i
\(372\) 0 0
\(373\) 3.91132 + 10.7463i 0.202521 + 0.556421i 0.998824 0.0484764i \(-0.0154366\pi\)
−0.796304 + 0.604897i \(0.793214\pi\)
\(374\) 0.00285428 + 0.0364978i 0.000147591 + 0.00188725i
\(375\) 0 0
\(376\) 1.47824 12.8054i 0.0762346 0.660390i
\(377\) 16.2397i 0.836387i
\(378\) 0 0
\(379\) −21.7004 −1.11468 −0.557338 0.830286i \(-0.688177\pi\)
−0.557338 + 0.830286i \(0.688177\pi\)
\(380\) −0.442277 + 1.14877i −0.0226883 + 0.0589308i
\(381\) 0 0
\(382\) 2.07826 + 26.5748i 0.106333 + 1.35969i
\(383\) −31.1726 + 11.3459i −1.59285 + 0.579749i −0.977946 0.208856i \(-0.933026\pi\)
−0.614900 + 0.788605i \(0.710804\pi\)
\(384\) 0 0
\(385\) 0.00180784 + 0.0102528i 9.21359e−5 + 0.000522529i
\(386\) −2.09081 2.12973i −0.106419 0.108400i
\(387\) 0 0
\(388\) −0.411341 + 22.3017i −0.0208827 + 1.13220i
\(389\) −6.54404 2.38183i −0.331796 0.120764i 0.170750 0.985314i \(-0.445381\pi\)
−0.502546 + 0.864551i \(0.667603\pi\)
\(390\) 0 0
\(391\) −2.00913 + 2.39438i −0.101606 + 0.121089i
\(392\) −14.9830 + 0.894090i −0.756755 + 0.0451584i
\(393\) 0 0
\(394\) 16.1282 + 1.56102i 0.812529 + 0.0786432i
\(395\) 3.17868 + 1.83521i 0.159937 + 0.0923395i
\(396\) 0 0
\(397\) −31.8597 + 18.3942i −1.59899 + 0.923178i −0.607308 + 0.794466i \(0.707751\pi\)
−0.991682 + 0.128712i \(0.958916\pi\)
\(398\) −7.31526 + 3.32939i −0.366681 + 0.166887i
\(399\) 0 0
\(400\) 4.02391 18.7486i 0.201195 0.937428i
\(401\) −3.00611 0.530059i −0.150118 0.0264699i 0.0980840 0.995178i \(-0.468729\pi\)
−0.248202 + 0.968708i \(0.579840\pi\)
\(402\) 0 0
\(403\) 15.4250 12.9431i 0.768372 0.644740i
\(404\) 29.2031 16.1498i 1.45291 0.803483i
\(405\) 0 0
\(406\) 3.34347 + 12.9547i 0.165934 + 0.642930i
\(407\) −0.0715044 + 0.0599993i −0.00354434 + 0.00297406i
\(408\) 0 0
\(409\) −4.18256 + 23.7205i −0.206814 + 1.17290i 0.687745 + 0.725952i \(0.258601\pi\)
−0.894559 + 0.446949i \(0.852511\pi\)
\(410\) 0.884936 + 1.28896i 0.0437039 + 0.0636570i
\(411\) 0 0
\(412\) −24.8178 + 20.0564i −1.22268 + 0.988110i
\(413\) −7.13978 12.3665i −0.351326 0.608514i
\(414\) 0 0
\(415\) 0.789809 + 0.455997i 0.0387702 + 0.0223840i
\(416\) 10.0056 + 7.71698i 0.490567 + 0.378356i
\(417\) 0 0
\(418\) 0.0145603 0.0304875i 0.000712168 0.00149119i
\(419\) 19.0854 22.7451i 0.932383 1.11117i −0.0612068 0.998125i \(-0.519495\pi\)
0.993590 0.113046i \(-0.0360607\pi\)
\(420\) 0 0
\(421\) 9.82045 26.9815i 0.478619 1.31500i −0.432046 0.901851i \(-0.642208\pi\)
0.910666 0.413144i \(-0.135570\pi\)
\(422\) −6.30192 + 22.6804i −0.306773 + 1.10407i
\(423\) 0 0
\(424\) −28.2150 8.40321i −1.37024 0.408096i
\(425\) 6.93506 1.22284i 0.336400 0.0593164i
\(426\) 0 0
\(427\) −11.0142 + 4.00883i −0.533013 + 0.194001i
\(428\) 12.7425 4.37350i 0.615931 0.211401i
\(429\) 0 0
\(430\) −4.04815 + 5.66937i −0.195219 + 0.273401i
\(431\) 26.5585 1.27928 0.639639 0.768675i \(-0.279084\pi\)
0.639639 + 0.768675i \(0.279084\pi\)
\(432\) 0 0
\(433\) −1.55270 −0.0746180 −0.0373090 0.999304i \(-0.511879\pi\)
−0.0373090 + 0.999304i \(0.511879\pi\)
\(434\) −9.63998 + 13.5006i −0.462734 + 0.648051i
\(435\) 0 0
\(436\) −5.51802 + 1.89390i −0.264265 + 0.0907016i
\(437\) 2.71064 0.986591i 0.129667 0.0471951i
\(438\) 0 0
\(439\) 1.13120 0.199460i 0.0539891 0.00951973i −0.146588 0.989198i \(-0.546829\pi\)
0.200577 + 0.979678i \(0.435718\pi\)
\(440\) 0.00645921 0.0216877i 0.000307931 0.00103392i
\(441\) 0 0
\(442\) −1.24231 + 4.47102i −0.0590904 + 0.212665i
\(443\) −5.79518 + 15.9221i −0.275337 + 0.756483i 0.722538 + 0.691331i \(0.242975\pi\)
−0.997875 + 0.0651518i \(0.979247\pi\)
\(444\) 0 0
\(445\) −0.0349590 + 0.0416625i −0.00165721 + 0.00197499i
\(446\) 1.69300 3.54493i 0.0801658 0.167857i
\(447\) 0 0
\(448\) −9.57045 4.09597i −0.452161 0.193516i
\(449\) 26.5725 + 15.3416i 1.25403 + 0.724017i 0.971908 0.235361i \(-0.0756272\pi\)
0.282126 + 0.959377i \(0.408961\pi\)
\(450\) 0 0
\(451\) −0.0214563 0.0371634i −0.00101034 0.00174996i
\(452\) 30.3424 24.5212i 1.42719 1.15338i
\(453\) 0 0
\(454\) 19.7921 + 28.8282i 0.928889 + 1.35297i
\(455\) −0.229153 + 1.29959i −0.0107428 + 0.0609257i
\(456\) 0 0
\(457\) 5.48725 4.60435i 0.256683 0.215382i −0.505361 0.862908i \(-0.668641\pi\)
0.762044 + 0.647526i \(0.224196\pi\)
\(458\) −5.53905 21.4617i −0.258823 1.00284i
\(459\) 0 0
\(460\) 1.69073 0.935003i 0.0788308 0.0435948i
\(461\) −6.34887 + 5.32733i −0.295696 + 0.248119i −0.778550 0.627582i \(-0.784045\pi\)
0.482854 + 0.875701i \(0.339600\pi\)
\(462\) 0 0
\(463\) 0.381159 + 0.0672086i 0.0177140 + 0.00312345i 0.182498 0.983206i \(-0.441582\pi\)
−0.164784 + 0.986330i \(0.552693\pi\)
\(464\) 6.10253 28.4335i 0.283303 1.31999i
\(465\) 0 0
\(466\) 26.0396 11.8514i 1.20626 0.549004i
\(467\) 5.76908 3.33078i 0.266961 0.154130i −0.360545 0.932742i \(-0.617409\pi\)
0.627506 + 0.778612i \(0.284076\pi\)
\(468\) 0 0
\(469\) −5.44368 3.14291i −0.251366 0.145126i
\(470\) −2.91256 0.281901i −0.134346 0.0130031i
\(471\) 0 0
\(472\) 1.84886 + 30.9829i 0.0851009 + 1.42610i
\(473\) 0.122902 0.146469i 0.00565103 0.00673463i
\(474\) 0 0
\(475\) −6.10704 2.22278i −0.280210 0.101988i
\(476\) 0.0705015 3.82238i 0.00323143 0.175198i
\(477\) 0 0
\(478\) −8.48853 8.64654i −0.388256 0.395483i
\(479\) 0.196814 + 1.11619i 0.00899268 + 0.0510000i 0.988974 0.148090i \(-0.0473125\pi\)
−0.979981 + 0.199090i \(0.936201\pi\)
\(480\) 0 0
\(481\) −11.1181 + 4.04665i −0.506941 + 0.184511i
\(482\) 1.59375 + 20.3794i 0.0725934 + 0.928255i
\(483\) 0 0
\(484\) 7.90418 20.5304i 0.359281 0.933199i
\(485\) 5.06338 0.229916
\(486\) 0 0
\(487\) 41.9634i 1.90154i 0.309896 + 0.950771i \(0.399706\pi\)
−0.309896 + 0.950771i \(0.600294\pi\)
\(488\) 25.3087 + 2.92161i 1.14567 + 0.132255i
\(489\) 0 0
\(490\) 0.265648 + 3.39685i 0.0120007 + 0.153454i
\(491\) 7.04382 + 19.3527i 0.317883 + 0.873377i 0.991003 + 0.133843i \(0.0427317\pi\)
−0.673119 + 0.739534i \(0.735046\pi\)
\(492\) 0 0
\(493\) 10.5175 1.85452i 0.473684 0.0835233i
\(494\) 3.05601 3.00016i 0.137496 0.134984i
\(495\) 0 0
\(496\) 31.8707 16.8652i 1.43104 0.757268i
\(497\) −4.48365 + 12.3187i −0.201119 + 0.552570i
\(498\) 0 0
\(499\) 7.68110 + 6.44521i 0.343853 + 0.288527i 0.798316 0.602239i \(-0.205724\pi\)
−0.454463 + 0.890766i \(0.650169\pi\)
\(500\) −8.72786 1.70548i −0.390322 0.0762715i
\(501\) 0 0
\(502\) 1.99997 20.6634i 0.0892632 0.922253i
\(503\) −12.3849 + 21.4513i −0.552216 + 0.956466i 0.445898 + 0.895084i \(0.352884\pi\)
−0.998114 + 0.0613824i \(0.980449\pi\)
\(504\) 0 0
\(505\) −3.78767 6.56044i −0.168549 0.291936i
\(506\) −0.0482644 + 0.0219665i −0.00214562 + 0.000976532i
\(507\) 0 0
\(508\) −26.1106 22.7429i −1.15847 1.00906i
\(509\) 5.29018 30.0021i 0.234483 1.32982i −0.609217 0.793004i \(-0.708516\pi\)
0.843700 0.536816i \(-0.180373\pi\)
\(510\) 0 0
\(511\) 0.567874 + 0.676766i 0.0251213 + 0.0299383i
\(512\) 14.6186 + 17.2713i 0.646057 + 0.763289i
\(513\) 0 0
\(514\) 7.95597 + 30.8264i 0.350923 + 1.35969i
\(515\) 4.65597 + 5.54877i 0.205167 + 0.244508i
\(516\) 0 0
\(517\) 0.0790932 + 0.0139463i 0.00347852 + 0.000613356i
\(518\) 8.03594 5.51710i 0.353079 0.242408i
\(519\) 0 0
\(520\) 1.70959 2.30322i 0.0749703 0.101003i
\(521\) 2.67309 1.54331i 0.117110 0.0676136i −0.440301 0.897850i \(-0.645128\pi\)
0.557411 + 0.830237i \(0.311795\pi\)
\(522\) 0 0
\(523\) −6.24198 + 10.8114i −0.272943 + 0.472750i −0.969614 0.244640i \(-0.921330\pi\)
0.696671 + 0.717390i \(0.254664\pi\)
\(524\) −0.958157 6.08853i −0.0418573 0.265979i
\(525\) 0 0
\(526\) 22.5991 + 10.7930i 0.985369 + 0.470595i
\(527\) 10.1439 + 8.51177i 0.441877 + 0.370779i
\(528\) 0 0
\(529\) 17.3585 + 6.31798i 0.754717 + 0.274695i
\(530\) −1.78911 + 6.43895i −0.0777139 + 0.279690i
\(531\) 0 0
\(532\) −1.82015 + 3.02246i −0.0789134 + 0.131040i
\(533\) −0.944542 5.35676i −0.0409126 0.232027i
\(534\) 0 0
\(535\) −1.04597 2.87377i −0.0452211 0.124244i
\(536\) 7.52412 + 11.4044i 0.324993 + 0.492596i
\(537\) 0 0
\(538\) 8.42150 11.7942i 0.363076 0.508482i
\(539\) 0.0935167i 0.00402805i
\(540\) 0 0
\(541\) 35.0866i 1.50849i −0.656592 0.754246i \(-0.728003\pi\)
0.656592 0.754246i \(-0.271997\pi\)
\(542\) −21.5586 15.3937i −0.926021 0.661216i
\(543\) 0 0
\(544\) −3.85522 + 7.36131i −0.165291 + 0.315613i
\(545\) 0.452947 + 1.24446i 0.0194021 + 0.0533069i
\(546\) 0 0
\(547\) −0.423952 2.40435i −0.0181269 0.102803i 0.974402 0.224813i \(-0.0721771\pi\)
−0.992529 + 0.122010i \(0.961066\pi\)
\(548\) −12.1578 + 20.1888i −0.519356 + 0.862421i
\(549\) 0 0
\(550\) 0.115111 + 0.0319844i 0.00490835 + 0.00136382i
\(551\) −9.26174 3.37100i −0.394563 0.143609i
\(552\) 0 0
\(553\) 8.05890 + 6.76222i 0.342699 + 0.287559i
\(554\) −13.2784 + 27.8034i −0.564147 + 1.18125i
\(555\) 0 0
\(556\) 10.5854 1.66584i 0.448923 0.0706473i
\(557\) −3.41195 + 5.90968i −0.144569 + 0.250401i −0.929212 0.369547i \(-0.879513\pi\)
0.784643 + 0.619948i \(0.212846\pi\)
\(558\) 0 0
\(559\) 20.9888 12.1179i 0.887730 0.512531i
\(560\) −0.889572 + 2.18929i −0.0375913 + 0.0925144i
\(561\) 0 0
\(562\) 9.25046 + 13.4738i 0.390207 + 0.568357i
\(563\) −20.6520 3.64150i −0.870377 0.153471i −0.279415 0.960170i \(-0.590141\pi\)
−0.590962 + 0.806699i \(0.701252\pi\)
\(564\) 0 0
\(565\) −5.69243 6.78397i −0.239482 0.285404i
\(566\) 5.87730 1.51687i 0.247041 0.0637589i
\(567\) 0 0
\(568\) 20.6982 19.5835i 0.868476 0.821707i
\(569\) 20.8313 + 24.8258i 0.873295 + 1.04075i 0.998815 + 0.0486610i \(0.0154954\pi\)
−0.125521 + 0.992091i \(0.540060\pi\)
\(570\) 0 0
\(571\) −0.396543 + 2.24891i −0.0165948 + 0.0941139i −0.991980 0.126393i \(-0.959660\pi\)
0.975385 + 0.220507i \(0.0707711\pi\)
\(572\) −0.0517082 + 0.0593648i −0.00216203 + 0.00248217i
\(573\) 0 0
\(574\) 1.85634 + 4.07871i 0.0774822 + 0.170242i
\(575\) 5.10017 + 8.83376i 0.212692 + 0.368393i
\(576\) 0 0
\(577\) −10.7395 + 18.6014i −0.447092 + 0.774387i −0.998195 0.0600507i \(-0.980874\pi\)
0.551103 + 0.834437i \(0.314207\pi\)
\(578\) 20.8923 + 2.02213i 0.869006 + 0.0841095i
\(579\) 0 0
\(580\) −6.47891 1.26602i −0.269022 0.0525688i
\(581\) 2.00240 + 1.68021i 0.0830736 + 0.0697070i
\(582\) 0 0
\(583\) 0.0627342 0.172361i 0.00259818 0.00713845i
\(584\) −0.445509 1.86788i −0.0184353 0.0772935i
\(585\) 0 0
\(586\) 12.4541 + 12.6859i 0.514473 + 0.524050i
\(587\) −18.6609 + 3.29041i −0.770216 + 0.135810i −0.544928 0.838483i \(-0.683443\pi\)
−0.225287 + 0.974292i \(0.572332\pi\)
\(588\) 0 0
\(589\) −4.17975 11.4838i −0.172224 0.473180i
\(590\) 7.02425 0.549326i 0.289184 0.0226154i
\(591\) 0 0
\(592\) −20.9869 + 2.90719i −0.862555 + 0.119485i
\(593\) 23.6650i 0.971804i 0.874013 + 0.485902i \(0.161509\pi\)
−0.874013 + 0.485902i \(0.838491\pi\)
\(594\) 0 0
\(595\) −0.867835 −0.0355778
\(596\) 10.3108 26.7814i 0.422347 1.09701i
\(597\) 0 0
\(598\) −6.70113 + 0.524056i −0.274029 + 0.0214302i
\(599\) −8.37844 + 3.04950i −0.342334 + 0.124599i −0.507465 0.861672i \(-0.669417\pi\)
0.165131 + 0.986272i \(0.447195\pi\)
\(600\) 0 0
\(601\) 4.44934 + 25.2334i 0.181492 + 1.02929i 0.930380 + 0.366597i \(0.119477\pi\)
−0.748888 + 0.662697i \(0.769412\pi\)
\(602\) −14.2482 + 13.9878i −0.580714 + 0.570102i
\(603\) 0 0
\(604\) 23.7835 + 0.438672i 0.967735 + 0.0178493i
\(605\) −4.69274 1.70802i −0.190787 0.0694407i
\(606\) 0 0
\(607\) 8.91382 10.6231i 0.361801 0.431177i −0.554182 0.832396i \(-0.686969\pi\)
0.915982 + 0.401218i \(0.131413\pi\)
\(608\) 6.47805 4.10449i 0.262720 0.166459i
\(609\) 0 0
\(610\) 0.557151 5.75639i 0.0225584 0.233070i
\(611\) 8.81625 + 5.09007i 0.356667 + 0.205922i
\(612\) 0 0
\(613\) −17.7329 + 10.2381i −0.716224 + 0.413512i −0.813361 0.581759i \(-0.802365\pi\)
0.0971374 + 0.995271i \(0.469031\pi\)
\(614\) 8.74955 + 19.2243i 0.353103 + 0.775831i
\(615\) 0 0
\(616\) 0.0290263 0.0580021i 0.00116950 0.00233697i
\(617\) −45.9610 8.10416i −1.85032 0.326261i −0.865644 0.500660i \(-0.833091\pi\)
−0.984675 + 0.174399i \(0.944202\pi\)
\(618\) 0 0
\(619\) −20.3900 + 17.1092i −0.819542 + 0.687678i −0.952865 0.303395i \(-0.901880\pi\)
0.133323 + 0.991073i \(0.457435\pi\)
\(620\) −3.96119 7.16288i −0.159085 0.287668i
\(621\) 0 0
\(622\) 1.67164 0.431435i 0.0670268 0.0172990i
\(623\) −0.119413 + 0.100199i −0.00478417 + 0.00401439i
\(624\) 0 0
\(625\) 3.81170 21.6172i 0.152468 0.864688i
\(626\) 4.64249 3.18732i 0.185551 0.127391i
\(627\) 0 0
\(628\) 26.1543 21.1365i 1.04367 0.843440i
\(629\) −3.89042 6.73841i −0.155121 0.268678i
\(630\) 0 0
\(631\) −24.6191 14.2138i −0.980071 0.565844i −0.0777793 0.996971i \(-0.524783\pi\)
−0.902292 + 0.431126i \(0.858116\pi\)
\(632\) −9.08691 20.9835i −0.361458 0.834680i
\(633\) 0 0
\(634\) −9.44732 4.51187i −0.375201 0.179189i
\(635\) −5.05252 + 6.02135i −0.200503 + 0.238950i
\(636\) 0 0
\(637\) 4.05421 11.1389i 0.160634 0.441337i
\(638\) 0.174574 + 0.0485065i 0.00691143 + 0.00192039i
\(639\) 0 0
\(640\) 3.85875 3.39019i 0.152530 0.134009i
\(641\) −19.2764 + 3.39896i −0.761373 + 0.134251i −0.540836 0.841128i \(-0.681892\pi\)
−0.220537 + 0.975379i \(0.570781\pi\)
\(642\) 0 0
\(643\) −10.2317 + 3.72402i −0.403497 + 0.146861i −0.535793 0.844349i \(-0.679987\pi\)
0.132296 + 0.991210i \(0.457765\pi\)
\(644\) 5.23770 1.79769i 0.206394 0.0708391i
\(645\) 0 0
\(646\) 2.29201 + 1.63659i 0.0901781 + 0.0643907i
\(647\) 19.0202 0.747763 0.373881 0.927477i \(-0.378027\pi\)
0.373881 + 0.927477i \(0.378027\pi\)
\(648\) 0 0
\(649\) −0.193381 −0.00759085
\(650\) 12.3244 + 8.80007i 0.483401 + 0.345167i
\(651\) 0 0
\(652\) −6.60795 19.2527i −0.258787 0.753995i
\(653\) 11.7763 4.28623i 0.460843 0.167733i −0.101157 0.994871i \(-0.532254\pi\)
0.562000 + 0.827137i \(0.310032\pi\)
\(654\) 0 0
\(655\) −1.37786 + 0.242955i −0.0538376 + 0.00949302i
\(656\) 0.359194 9.73389i 0.0140242 0.380044i
\(657\) 0 0
\(658\) −8.08082 2.24531i −0.315023 0.0875315i
\(659\) −9.65592 + 26.5294i −0.376141 + 1.03344i 0.596801 + 0.802389i \(0.296438\pi\)
−0.972942 + 0.231050i \(0.925784\pi\)
\(660\) 0 0
\(661\) 10.6735 12.7202i 0.415150 0.494757i −0.517427 0.855727i \(-0.673110\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(662\) −3.82482 1.82667i −0.148656 0.0709955i
\(663\) 0 0
\(664\) −2.25783 5.21379i −0.0876208 0.202334i
\(665\) 0.693608 + 0.400455i 0.0268970 + 0.0155290i
\(666\) 0 0
\(667\) 7.73476 + 13.3970i 0.299491 + 0.518734i
\(668\) 20.1634 + 24.9502i 0.780147 + 0.965352i
\(669\) 0 0
\(670\) 2.55689 1.75544i 0.0987814 0.0678187i
\(671\) −0.0275635 + 0.156320i −0.00106408 + 0.00603468i
\(672\) 0 0
\(673\) 4.64214 3.89522i 0.178941 0.150150i −0.548918 0.835876i \(-0.684960\pi\)
0.727859 + 0.685727i \(0.240516\pi\)
\(674\) 18.0163 4.64982i 0.693962 0.179105i
\(675\) 0 0
\(676\) 14.0199 7.75326i 0.539228 0.298202i
\(677\) 5.34485 4.48486i 0.205419 0.172367i −0.534274 0.845311i \(-0.679415\pi\)
0.739693 + 0.672944i \(0.234971\pi\)
\(678\) 0 0
\(679\) 14.2922 + 2.52009i 0.548483 + 0.0967123i
\(680\) 1.68689 + 0.844178i 0.0646892 + 0.0323727i
\(681\) 0 0
\(682\) 0.0930625 + 0.204475i 0.00356355 + 0.00782975i
\(683\) −25.8624 + 14.9317i −0.989597 + 0.571344i −0.905154 0.425084i \(-0.860244\pi\)
−0.0844432 + 0.996428i \(0.526911\pi\)
\(684\) 0 0
\(685\) 4.63301 + 2.67487i 0.177018 + 0.102201i
\(686\) −2.18183 + 22.5423i −0.0833025 + 0.860668i
\(687\) 0 0
\(688\) 41.3020 13.3296i 1.57463 0.508185i
\(689\) 14.9446 17.8103i 0.569346 0.678520i
\(690\) 0 0
\(691\) 31.1175 + 11.3259i 1.18377 + 0.430856i 0.857531 0.514432i \(-0.171997\pi\)
0.326236 + 0.945288i \(0.394220\pi\)
\(692\) 0.499268 27.0688i 0.0189793 1.02900i
\(693\) 0 0
\(694\) 29.5505 29.0105i 1.12172 1.10122i
\(695\) −0.422398 2.39554i −0.0160225 0.0908679i
\(696\) 0 0
\(697\) 3.36139 1.22345i 0.127322 0.0463414i
\(698\) 29.5599 2.31171i 1.11886 0.0874995i
\(699\) 0 0
\(700\) −11.6431 4.48259i −0.440069 0.169426i
\(701\) 9.68894 0.365946 0.182973 0.983118i \(-0.441428\pi\)
0.182973 + 0.983118i \(0.441428\pi\)
\(702\) 0 0
\(703\) 7.18080i 0.270829i
\(704\) −0.112842 + 0.0845087i −0.00425289 + 0.00318504i
\(705\) 0 0
\(706\) 4.44740 0.347805i 0.167380 0.0130898i
\(707\) −7.42607 20.4030i −0.279286 0.767333i
\(708\) 0 0
\(709\) −24.6853 + 4.35269i −0.927077 + 0.163469i −0.616748 0.787161i \(-0.711550\pi\)
−0.310329 + 0.950629i \(0.600439\pi\)
\(710\) −4.53140 4.61575i −0.170060 0.173226i
\(711\) 0 0
\(712\) 0.329581 0.0786084i 0.0123516 0.00294597i
\(713\) −6.56025 + 18.0241i −0.245683 + 0.675009i
\(714\) 0 0
\(715\) 0.0136901 + 0.0114874i 0.000511981 + 0.000429603i
\(716\) −4.36207 + 22.3230i −0.163018 + 0.834250i
\(717\) 0 0
\(718\) −43.0596 4.16766i −1.60697 0.155536i
\(719\) −16.4482 + 28.4892i −0.613415 + 1.06247i 0.377245 + 0.926113i \(0.376871\pi\)
−0.990660 + 0.136353i \(0.956462\pi\)
\(720\) 0 0
\(721\) 10.3805 + 17.9796i 0.386590 + 0.669594i
\(722\) 10.0541 + 22.0906i 0.374173 + 0.822126i
\(723\) 0 0
\(724\) 22.3545 + 19.4713i 0.830799 + 0.723647i
\(725\) 6.05210 34.3232i 0.224769 1.27473i
\(726\) 0 0
\(727\) 20.0843 + 23.9355i 0.744884 + 0.887719i 0.996792 0.0800327i \(-0.0255025\pi\)
−0.251908 + 0.967751i \(0.581058\pi\)
\(728\) 5.97190 5.65031i 0.221333 0.209414i
\(729\) 0 0
\(730\) −0.422076 + 0.108934i −0.0156217 + 0.00403182i
\(731\) 10.2449 + 12.2094i 0.378920 + 0.451579i
\(732\) 0 0
\(733\) −16.2456 2.86454i −0.600046 0.105804i −0.134630 0.990896i \(-0.542984\pi\)
−0.465417 + 0.885092i \(0.654096\pi\)
\(734\) −17.9093 26.0858i −0.661045 0.962846i
\(735\) 0 0
\(736\) −11.9297 1.60059i −0.439734 0.0589985i
\(737\) −0.0737209 + 0.0425628i −0.00271554 + 0.00156782i
\(738\) 0 0
\(739\) −11.5876 + 20.0704i −0.426258 + 0.738301i −0.996537 0.0831501i \(-0.973502\pi\)
0.570279 + 0.821451i \(0.306835\pi\)
\(740\) 0.747682 + 4.75108i 0.0274853 + 0.174653i
\(741\) 0 0
\(742\) −8.25475 + 17.2844i −0.303041 + 0.634532i
\(743\) −2.55778 2.14623i −0.0938358 0.0787376i 0.594663 0.803975i \(-0.297286\pi\)
−0.688499 + 0.725238i \(0.741730\pi\)
\(744\) 0 0
\(745\) −6.12156 2.22807i −0.224277 0.0816300i
\(746\) −15.5825 4.32971i −0.570517 0.158522i
\(747\) 0 0
\(748\) −0.0443519 0.0267091i −0.00162167 0.000976580i
\(749\) −1.52210 8.63224i −0.0556162 0.315415i
\(750\) 0 0
\(751\) 0.701648 + 1.92776i 0.0256035 + 0.0703450i 0.951836 0.306608i \(-0.0991940\pi\)
−0.926232 + 0.376953i \(0.876972\pi\)
\(752\) 13.5233 + 12.2250i 0.493144 + 0.445798i
\(753\) 0 0
\(754\) 18.6907 + 13.3459i 0.680676 + 0.486029i
\(755\) 5.39982i 0.196519i
\(756\) 0 0
\(757\) 41.6394i 1.51341i −0.653756 0.756705i \(-0.726808\pi\)
0.653756 0.756705i \(-0.273192\pi\)
\(758\) 17.8336 24.9756i 0.647744 0.907154i
\(759\) 0 0
\(760\) −0.958688 1.45310i −0.0347753 0.0527094i
\(761\) 14.1101 + 38.7671i 0.511490 + 1.40531i 0.879684 + 0.475558i \(0.157754\pi\)
−0.368195 + 0.929749i \(0.620024\pi\)
\(762\) 0 0
\(763\) 0.659130 + 3.73811i 0.0238621 + 0.135329i
\(764\) −32.2936 19.4475i −1.16834 0.703585i
\(765\) 0 0
\(766\) 12.5596 45.2016i 0.453796 1.63320i
\(767\) −23.0337 8.38359i −0.831700 0.302714i
\(768\) 0 0
\(769\) −33.4132 28.0370i −1.20491 1.01104i −0.999476 0.0323712i \(-0.989694\pi\)
−0.205437 0.978670i \(-0.565861\pi\)
\(770\) −0.0132859 0.00634510i −0.000478789 0.000228662i
\(771\) 0 0
\(772\) 4.16940 0.656142i 0.150060 0.0236151i
\(773\) 3.52468 6.10492i 0.126774 0.219579i −0.795651 0.605755i \(-0.792871\pi\)
0.922425 + 0.386176i \(0.126204\pi\)
\(774\) 0 0
\(775\) 37.4247 21.6072i 1.34434 0.776153i
\(776\) −25.3295 18.8011i −0.909277 0.674920i
\(777\) 0 0
\(778\) 8.11926 5.57430i 0.291089 0.199848i
\(779\) −3.25111 0.573258i −0.116483 0.0205391i
\(780\) 0 0
\(781\) 0.114116 + 0.135998i 0.00408338 + 0.00486638i
\(782\) −1.10465 4.28008i −0.0395020 0.153055i
\(783\) 0 0
\(784\) 11.2841 17.9791i 0.403004 0.642111i
\(785\) −4.90671 5.84759i −0.175128 0.208709i
\(786\) 0 0
\(787\) 8.03739 45.5823i 0.286502 1.62483i −0.413369 0.910564i \(-0.635648\pi\)
0.699871 0.714270i \(-0.253241\pi\)
\(788\) −15.0509 + 17.2796i −0.536167 + 0.615559i
\(789\) 0 0
\(790\) −4.72446 + 2.15024i −0.168089 + 0.0765021i
\(791\) −12.6913 21.9820i −0.451250 0.781589i
\(792\) 0 0
\(793\) −10.0600 + 17.4245i −0.357242 + 0.618762i
\(794\) 5.01214 51.7846i 0.177874 1.83777i
\(795\) 0 0
\(796\) 2.17985 11.1554i 0.0772628 0.395394i
\(797\) 10.7323 + 9.00550i 0.380159 + 0.318991i 0.812765 0.582592i \(-0.197961\pi\)
−0.432606 + 0.901583i \(0.642406\pi\)
\(798\) 0 0
\(799\) −2.28975 + 6.29103i −0.0810054 + 0.222561i
\(800\) 18.2714 + 20.0389i 0.645990 + 0.708483i
\(801\) 0 0
\(802\) 3.08050 3.02421i 0.108776 0.106789i
\(803\) 0.0117824 0.00207756i 0.000415792 7.33153e-5i
\(804\) 0 0
\(805\) −0.429937 1.18124i −0.0151533 0.0416333i
\(806\) 2.22019 + 28.3897i 0.0782030 + 0.999985i
\(807\) 0 0
\(808\) −5.41207 + 46.8827i −0.190396 + 1.64933i
\(809\) 25.2574i 0.888002i −0.896026 0.444001i \(-0.853559\pi\)
0.896026 0.444001i \(-0.146441\pi\)
\(810\) 0 0
\(811\) −36.9593 −1.29782 −0.648908 0.760867i \(-0.724774\pi\)
−0.648908 + 0.760867i \(0.724774\pi\)
\(812\) −17.6576 6.79815i −0.619659 0.238568i
\(813\) 0 0
\(814\) −0.0102920 0.131604i −0.000360734 0.00461272i
\(815\) −4.34200 + 1.58036i −0.152094 + 0.0553576i
\(816\) 0 0
\(817\) −2.55420 14.4856i −0.0893602 0.506787i
\(818\) −23.8633 24.3075i −0.834359 0.849890i
\(819\) 0 0
\(820\) −2.21074 0.0407758i −0.0772024 0.00142395i
\(821\) 5.42437 + 1.97431i 0.189312 + 0.0689038i 0.434936 0.900461i \(-0.356771\pi\)
−0.245625 + 0.969365i \(0.578993\pi\)
\(822\) 0 0
\(823\) 12.2571 14.6074i 0.427254 0.509182i −0.508874 0.860841i \(-0.669938\pi\)
0.936128 + 0.351659i \(0.114382\pi\)
\(824\) −2.68806 45.0460i −0.0936430 1.56925i
\(825\) 0 0
\(826\) 20.1004 + 1.94548i 0.699383 + 0.0676920i
\(827\) 23.7503 + 13.7122i 0.825878 + 0.476821i 0.852439 0.522826i \(-0.175122\pi\)
−0.0265613 + 0.999647i \(0.508456\pi\)
\(828\) 0 0
\(829\) −23.8710 + 13.7819i −0.829073 + 0.478666i −0.853535 0.521035i \(-0.825546\pi\)
0.0244622 + 0.999701i \(0.492213\pi\)
\(830\) −1.17389 + 0.534271i −0.0407463 + 0.0185448i
\(831\) 0 0
\(832\) −17.1044 + 5.17389i −0.592988 + 0.179372i
\(833\) 7.67695 + 1.35365i 0.265991 + 0.0469013i
\(834\) 0 0
\(835\) 5.57837 4.68081i 0.193048 0.161986i
\(836\) 0.0231231 + 0.0418127i 0.000799731 + 0.00144612i
\(837\) 0 0
\(838\) 10.4934 + 40.6580i 0.362489 + 1.40451i
\(839\) −22.7744 + 19.1100i −0.786259 + 0.659750i −0.944816 0.327600i \(-0.893760\pi\)
0.158558 + 0.987350i \(0.449316\pi\)
\(840\) 0 0
\(841\) 4.14263 23.4940i 0.142849 0.810138i
\(842\) 22.9832 + 33.4762i 0.792052 + 1.15367i
\(843\) 0 0
\(844\) −20.9246 25.8920i −0.720253 0.891240i
\(845\) −1.81840 3.14956i −0.0625548 0.108348i
\(846\) 0 0
\(847\) −12.3959 7.15675i −0.425927 0.245909i
\(848\) 32.8587 25.5676i 1.12837 0.877993i
\(849\) 0 0
\(850\) −4.29189 + 8.98669i −0.147210 + 0.308241i
\(851\) 7.24453 8.63370i 0.248339 0.295959i
\(852\) 0 0
\(853\) −14.9845 + 41.1697i −0.513061 + 1.40962i 0.364970 + 0.931019i \(0.381079\pi\)
−0.878031 + 0.478604i \(0.841143\pi\)
\(854\) 4.43765 15.9710i 0.151853 0.546516i
\(855\) 0 0
\(856\) −5.43829 + 18.2598i −0.185877 + 0.624109i
\(857\) 12.6966 2.23875i 0.433708 0.0764744i 0.0474680 0.998873i \(-0.484885\pi\)
0.386240 + 0.922398i \(0.373774\pi\)
\(858\) 0 0
\(859\) −26.7551 + 9.73806i −0.912872 + 0.332258i −0.755399 0.655265i \(-0.772557\pi\)
−0.157473 + 0.987523i \(0.550335\pi\)
\(860\) −3.19823 9.31826i −0.109059 0.317750i
\(861\) 0 0
\(862\) −21.8260 + 30.5669i −0.743396 + 1.04111i
\(863\) −46.6170 −1.58686 −0.793431 0.608660i \(-0.791707\pi\)
−0.793431 + 0.608660i \(0.791707\pi\)
\(864\) 0 0
\(865\) −6.14571 −0.208961
\(866\) 1.27602 1.78704i 0.0433609 0.0607262i
\(867\) 0 0
\(868\) −7.61603 22.1898i −0.258505 0.753172i
\(869\) 0.133877 0.0487272i 0.00454146 0.00165296i
\(870\) 0 0
\(871\) −10.6262 + 1.87368i −0.360054 + 0.0634873i
\(872\) 2.35500 7.90726i 0.0797505 0.267774i
\(873\) 0 0
\(874\) −1.09213 + 3.93053i −0.0369417 + 0.132952i
\(875\) −1.97894 + 5.43708i −0.0669003 + 0.183807i
\(876\) 0 0
\(877\) −3.98303 + 4.74679i −0.134497 + 0.160288i −0.829089 0.559116i \(-0.811141\pi\)
0.694592 + 0.719404i \(0.255585\pi\)
\(878\) −0.700061 + 1.46584i −0.0236259 + 0.0494698i
\(879\) 0 0
\(880\) 0.0196528 + 0.0252572i 0.000662495 + 0.000851421i
\(881\) 21.9173 + 12.6539i 0.738412 + 0.426322i 0.821492 0.570221i \(-0.193142\pi\)
−0.0830799 + 0.996543i \(0.526476\pi\)
\(882\) 0 0
\(883\) 15.7424 + 27.2667i 0.529775 + 0.917597i 0.999397 + 0.0347290i \(0.0110568\pi\)
−0.469622 + 0.882868i \(0.655610\pi\)
\(884\) −4.12488 5.10412i −0.138735 0.171670i
\(885\) 0 0
\(886\) −13.5627 19.7547i −0.455647 0.663674i
\(887\) −0.0310073 + 0.175851i −0.00104112 + 0.00590451i −0.985324 0.170695i \(-0.945399\pi\)
0.984283 + 0.176600i \(0.0565098\pi\)
\(888\) 0 0
\(889\) −17.2584 + 14.4815i −0.578827 + 0.485694i
\(890\) −0.0192209 0.0744737i −0.000644287 0.00249636i
\(891\) 0 0
\(892\) 2.68864 + 4.86177i 0.0900223 + 0.162784i
\(893\) 4.73299 3.97145i 0.158384 0.132900i
\(894\) 0 0
\(895\) 5.08477 + 0.896582i 0.169965 + 0.0299694i
\(896\) 12.5792 7.64879i 0.420243 0.255528i
\(897\) 0 0
\(898\) −39.4946 + 17.9751i −1.31795 + 0.599838i
\(899\) 56.7571 32.7687i 1.89296 1.09290i
\(900\) 0 0
\(901\) 13.2413 + 7.64488i 0.441132 + 0.254688i
\(902\) 0.0604054 + 0.00584653i 0.00201128 + 0.000194668i
\(903\) 0 0
\(904\) 3.28644 + 55.0736i 0.109305 + 1.83172i
\(905\) 4.32570 5.15517i 0.143791 0.171364i
\(906\) 0 0
\(907\) −18.2575 6.64519i −0.606231 0.220650i 0.0206225 0.999787i \(-0.493435\pi\)
−0.626853 + 0.779137i \(0.715657\pi\)
\(908\) −49.4444 0.911974i −1.64087 0.0302649i
\(909\) 0 0
\(910\) −1.30741 1.33175i −0.0433403 0.0441471i
\(911\) 0.423720 + 2.40304i 0.0140385 + 0.0796161i 0.991022 0.133698i \(-0.0426853\pi\)
−0.976984 + 0.213314i \(0.931574\pi\)
\(912\) 0 0
\(913\) 0.0332645 0.0121073i 0.00110089 0.000400693i
\(914\) 0.789808 + 10.0993i 0.0261245 + 0.334055i
\(915\) 0 0
\(916\) 29.2529 + 11.2623i 0.966542 + 0.372118i
\(917\) −4.01015 −0.132427
\(918\) 0 0
\(919\) 2.20402i 0.0727038i 0.999339 + 0.0363519i \(0.0115737\pi\)
−0.999339 + 0.0363519i \(0.988426\pi\)
\(920\) −0.313335 + 2.71430i −0.0103304 + 0.0894879i
\(921\) 0 0
\(922\) −0.913825 11.6851i −0.0300952 0.384829i
\(923\) 7.69653 + 21.1460i 0.253334 + 0.696030i
\(924\) 0 0
\(925\) −25.0065 + 4.40933i −0.822210 + 0.144978i
\(926\) −0.390591 + 0.383454i −0.0128356 + 0.0126011i
\(927\) 0 0
\(928\) 27.7097 + 30.3904i 0.909617 + 0.997614i
\(929\) −3.30889 + 9.09111i −0.108561 + 0.298270i −0.982063 0.188551i \(-0.939621\pi\)
0.873502 + 0.486820i \(0.161843\pi\)
\(930\) 0 0
\(931\) −5.51109 4.62435i −0.180619 0.151557i
\(932\) −7.75945 + 39.7092i −0.254169 + 1.30072i
\(933\) 0 0
\(934\) −0.907587 + 9.37704i −0.0296972 + 0.306826i
\(935\) −0.00587632 + 0.0101781i −0.000192176 + 0.000332859i
\(936\) 0 0
\(937\) −22.2202 38.4864i −0.725901 1.25730i −0.958602 0.284749i \(-0.908090\pi\)
0.232701 0.972548i \(-0.425243\pi\)
\(938\) 8.09091 3.68241i 0.264178 0.120235i
\(939\) 0 0
\(940\) 2.71801 3.12047i 0.0886516 0.101779i
\(941\) −7.38960 + 41.9085i −0.240894 + 1.36618i 0.588944 + 0.808174i \(0.299544\pi\)
−0.829838 + 0.558004i \(0.811567\pi\)
\(942\) 0 0
\(943\) 3.33056 + 3.96920i 0.108458 + 0.129255i
\(944\) −37.1785 23.3341i −1.21006 0.759460i
\(945\) 0 0
\(946\) 0.0675731 + 0.261820i 0.00219699 + 0.00851250i
\(947\) −30.3650 36.1877i −0.986731 1.17594i −0.984400 0.175943i \(-0.943702\pi\)
−0.00233119 0.999997i \(-0.500742\pi\)
\(948\) 0 0
\(949\) 1.49348 + 0.263341i 0.0484804 + 0.00854841i
\(950\) 7.57707 5.20206i 0.245833 0.168777i
\(951\) 0 0
\(952\) 4.34134 + 3.22240i 0.140704 + 0.104439i
\(953\) 23.8540 13.7721i 0.772707 0.446123i −0.0611321 0.998130i \(-0.519471\pi\)
0.833840 + 0.552007i \(0.186138\pi\)
\(954\) 0 0
\(955\) −4.27868 + 7.41089i −0.138455 + 0.239811i
\(956\) 16.9275 2.66389i 0.547473 0.0861563i
\(957\) 0 0
\(958\) −1.44640 0.690774i −0.0467309 0.0223179i
\(959\) 11.7461 + 9.85611i 0.379300 + 0.318270i
\(960\) 0 0
\(961\) 47.2298 + 17.1902i 1.52354 + 0.554524i
\(962\) 4.47952 16.1217i 0.144426 0.519784i
\(963\) 0 0
\(964\) −24.7649 14.9136i −0.797624 0.480335i
\(965\) −0.166374 0.943555i −0.00535578 0.0303741i
\(966\) 0 0
\(967\) −0.543982 1.49458i −0.0174933 0.0480624i 0.930639 0.365939i \(-0.119252\pi\)
−0.948132 + 0.317877i \(0.897030\pi\)
\(968\) 17.1333 + 25.9692i 0.550684 + 0.834680i
\(969\) 0 0
\(970\) −4.16113 + 5.82759i −0.133606 + 0.187113i
\(971\) 9.93969i 0.318980i 0.987200 + 0.159490i \(0.0509849\pi\)
−0.987200 + 0.159490i \(0.949015\pi\)
\(972\) 0 0
\(973\) 6.97199i 0.223512i
\(974\) −48.2968 34.4858i −1.54753 1.10500i
\(975\) 0 0
\(976\) −24.1615 + 26.7275i −0.773390 + 0.855527i
\(977\) −13.5121 37.1242i −0.432290 1.18771i −0.944403 0.328789i \(-0.893359\pi\)
0.512113 0.858918i \(-0.328863\pi\)
\(978\) 0 0
\(979\) 0.000366577 0.00207896i 1.17158e−5 6.64438e-5i
\(980\) −4.12784 2.48581i −0.131859 0.0794064i
\(981\) 0 0
\(982\) −28.0622 7.79730i −0.895502 0.248822i
\(983\) 30.2880 + 11.0239i 0.966036 + 0.351608i 0.776396 0.630245i \(-0.217046\pi\)
0.189640 + 0.981854i \(0.439268\pi\)
\(984\) 0 0
\(985\) 3.98484 + 3.34368i 0.126967 + 0.106538i
\(986\) −6.50894 + 13.6289i −0.207287 + 0.434033i
\(987\) 0 0
\(988\) 0.941518 + 5.98280i 0.0299537 + 0.190338i
\(989\) −11.5432 + 19.9933i −0.367051 + 0.635751i
\(990\) 0 0
\(991\) 2.66599 1.53921i 0.0846881 0.0488947i −0.457058 0.889437i \(-0.651097\pi\)
0.541746 + 0.840542i \(0.317763\pi\)
\(992\) −6.78099 + 50.5407i −0.215297 + 1.60467i
\(993\) 0 0
\(994\) −10.4932 15.2840i −0.332826 0.484778i
\(995\) −2.54100 0.448048i −0.0805553 0.0142041i
\(996\) 0 0
\(997\) 27.9424 + 33.3004i 0.884944 + 1.05464i 0.998134 + 0.0610619i \(0.0194487\pi\)
−0.113190 + 0.993573i \(0.536107\pi\)
\(998\) −13.7303 + 3.54367i −0.434626 + 0.112173i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.v.b.611.11 192
3.2 odd 2 216.2.v.b.59.22 yes 192
8.3 odd 2 inner 648.2.v.b.611.28 192
12.11 even 2 864.2.bh.b.815.2 192
24.5 odd 2 864.2.bh.b.815.1 192
24.11 even 2 216.2.v.b.59.5 yes 192
27.11 odd 18 inner 648.2.v.b.35.28 192
27.16 even 9 216.2.v.b.11.5 192
108.43 odd 18 864.2.bh.b.335.1 192
216.11 even 18 inner 648.2.v.b.35.11 192
216.43 odd 18 216.2.v.b.11.22 yes 192
216.205 even 18 864.2.bh.b.335.2 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.5 192 27.16 even 9
216.2.v.b.11.22 yes 192 216.43 odd 18
216.2.v.b.59.5 yes 192 24.11 even 2
216.2.v.b.59.22 yes 192 3.2 odd 2
648.2.v.b.35.11 192 216.11 even 18 inner
648.2.v.b.35.28 192 27.11 odd 18 inner
648.2.v.b.611.11 192 1.1 even 1 trivial
648.2.v.b.611.28 192 8.3 odd 2 inner
864.2.bh.b.335.1 192 108.43 odd 18
864.2.bh.b.335.2 192 216.205 even 18
864.2.bh.b.815.1 192 24.5 odd 2
864.2.bh.b.815.2 192 12.11 even 2