Properties

Label 648.2.v.b.35.31
Level $648$
Weight $2$
Character 648.35
Analytic conductor $5.174$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(35,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.v (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 35.31
Character \(\chi\) \(=\) 648.35
Dual form 648.2.v.b.611.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40972 - 0.112665i) q^{2} +(1.97461 - 0.317652i) q^{4} +(-2.47648 - 0.901367i) q^{5} +(2.55949 + 0.451307i) q^{7} +(2.74786 - 0.670270i) q^{8} +(-3.59270 - 0.991660i) q^{10} +(-0.556608 - 1.52927i) q^{11} +(1.88389 + 2.24514i) q^{13} +(3.65901 + 0.347851i) q^{14} +(3.79819 - 1.25448i) q^{16} +(3.28845 - 1.89859i) q^{17} +(4.30904 - 7.46347i) q^{19} +(-5.17642 - 0.993190i) q^{20} +(-0.956956 - 2.09313i) q^{22} +(1.07009 + 6.06879i) q^{23} +(1.49029 + 1.25050i) q^{25} +(2.90871 + 2.95276i) q^{26} +(5.19736 + 0.0781292i) q^{28} +(-3.88174 - 3.25716i) q^{29} +(-3.57300 + 0.630016i) q^{31} +(5.21305 - 2.19639i) q^{32} +(4.42189 - 3.04697i) q^{34} +(-5.93174 - 3.42469i) q^{35} +(-6.40179 + 3.69607i) q^{37} +(5.23366 - 11.0069i) q^{38} +(-7.40919 - 0.816916i) q^{40} +(4.43232 + 5.28224i) q^{41} +(-3.77811 + 1.37512i) q^{43} +(-1.58486 - 2.84290i) q^{44} +(2.19227 + 8.43472i) q^{46} +(-0.253807 + 1.43941i) q^{47} +(-0.230541 - 0.0839100i) q^{49} +(2.24178 + 1.59495i) q^{50} +(4.43313 + 3.83485i) q^{52} -0.180986 q^{53} +4.28892i q^{55} +(7.33562 - 0.475421i) q^{56} +(-5.83912 - 4.15435i) q^{58} +(-0.253090 + 0.695359i) q^{59} +(11.1190 + 1.96057i) q^{61} +(-4.96594 + 1.29070i) q^{62} +(7.10148 - 3.68362i) q^{64} +(-2.64174 - 7.25812i) q^{65} +(-10.5159 + 8.82387i) q^{67} +(5.89033 - 4.79357i) q^{68} +(-8.74793 - 4.15955i) q^{70} +(-2.57253 - 4.45576i) q^{71} +(-2.62831 + 4.55236i) q^{73} +(-8.60830 + 5.93168i) q^{74} +(6.13789 - 16.1062i) q^{76} +(-0.734463 - 4.16534i) q^{77} +(-6.72831 + 8.01849i) q^{79} +(-10.5369 - 0.316864i) q^{80} +(6.84345 + 6.94710i) q^{82} +(-7.39656 + 8.81488i) q^{83} +(-9.85513 + 1.73773i) q^{85} +(-5.17114 + 2.36419i) q^{86} +(-2.55450 - 3.82914i) q^{88} +(0.211259 + 0.121971i) q^{89} +(3.80856 + 6.59662i) q^{91} +(4.04078 + 11.6436i) q^{92} +(-0.195625 + 2.05776i) q^{94} +(-17.3986 + 14.5992i) q^{95} +(1.95441 - 0.711348i) q^{97} +(-0.334451 - 0.0923156i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 6 q^{2} - 6 q^{4} + 9 q^{8} - 3 q^{10} + 30 q^{11} - 9 q^{14} - 6 q^{16} + 18 q^{17} - 6 q^{19} + 27 q^{20} - 18 q^{22} - 12 q^{25} - 12 q^{28} + 36 q^{32} + 12 q^{34} + 18 q^{35} + 102 q^{38} + 9 q^{40}+ \cdots - 162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40972 0.112665i 0.996822 0.0796663i
\(3\) 0 0
\(4\) 1.97461 0.317652i 0.987307 0.158826i
\(5\) −2.47648 0.901367i −1.10752 0.403103i −0.277435 0.960744i \(-0.589484\pi\)
−0.830082 + 0.557641i \(0.811707\pi\)
\(6\) 0 0
\(7\) 2.55949 + 0.451307i 0.967396 + 0.170578i 0.634958 0.772547i \(-0.281018\pi\)
0.332438 + 0.943125i \(0.392129\pi\)
\(8\) 2.74786 0.670270i 0.971515 0.236976i
\(9\) 0 0
\(10\) −3.59270 0.991660i −1.13611 0.313590i
\(11\) −0.556608 1.52927i −0.167824 0.461091i 0.827061 0.562113i \(-0.190011\pi\)
−0.994884 + 0.101021i \(0.967789\pi\)
\(12\) 0 0
\(13\) 1.88389 + 2.24514i 0.522498 + 0.622689i 0.961169 0.275959i \(-0.0889953\pi\)
−0.438672 + 0.898647i \(0.644551\pi\)
\(14\) 3.65901 + 0.347851i 0.977911 + 0.0929670i
\(15\) 0 0
\(16\) 3.79819 1.25448i 0.949549 0.313620i
\(17\) 3.28845 1.89859i 0.797567 0.460476i −0.0450525 0.998985i \(-0.514346\pi\)
0.842620 + 0.538509i \(0.181012\pi\)
\(18\) 0 0
\(19\) 4.30904 7.46347i 0.988561 1.71224i 0.363666 0.931530i \(-0.381525\pi\)
0.624895 0.780708i \(-0.285142\pi\)
\(20\) −5.17642 0.993190i −1.15748 0.222084i
\(21\) 0 0
\(22\) −0.956956 2.09313i −0.204024 0.446256i
\(23\) 1.07009 + 6.06879i 0.223129 + 1.26543i 0.866229 + 0.499647i \(0.166537\pi\)
−0.643100 + 0.765783i \(0.722352\pi\)
\(24\) 0 0
\(25\) 1.49029 + 1.25050i 0.298059 + 0.250101i
\(26\) 2.90871 + 2.95276i 0.570444 + 0.579084i
\(27\) 0 0
\(28\) 5.19736 + 0.0781292i 0.982209 + 0.0147650i
\(29\) −3.88174 3.25716i −0.720820 0.604840i 0.206792 0.978385i \(-0.433698\pi\)
−0.927612 + 0.373545i \(0.878142\pi\)
\(30\) 0 0
\(31\) −3.57300 + 0.630016i −0.641729 + 0.113154i −0.485037 0.874493i \(-0.661194\pi\)
−0.156692 + 0.987648i \(0.550083\pi\)
\(32\) 5.21305 2.19639i 0.921546 0.388270i
\(33\) 0 0
\(34\) 4.42189 3.04697i 0.758348 0.522551i
\(35\) −5.93174 3.42469i −1.00265 0.578879i
\(36\) 0 0
\(37\) −6.40179 + 3.69607i −1.05245 + 0.607631i −0.923333 0.383999i \(-0.874547\pi\)
−0.129114 + 0.991630i \(0.541213\pi\)
\(38\) 5.23366 11.0069i 0.849011 1.78555i
\(39\) 0 0
\(40\) −7.40919 0.816916i −1.17150 0.129166i
\(41\) 4.43232 + 5.28224i 0.692212 + 0.824947i 0.991621 0.129178i \(-0.0412339\pi\)
−0.299409 + 0.954125i \(0.596789\pi\)
\(42\) 0 0
\(43\) −3.77811 + 1.37512i −0.576156 + 0.209704i −0.613630 0.789594i \(-0.710291\pi\)
0.0374734 + 0.999298i \(0.488069\pi\)
\(44\) −1.58486 2.84290i −0.238927 0.428584i
\(45\) 0 0
\(46\) 2.19227 + 8.43472i 0.323232 + 1.24363i
\(47\) −0.253807 + 1.43941i −0.0370215 + 0.209960i −0.997707 0.0676790i \(-0.978441\pi\)
0.960686 + 0.277639i \(0.0895517\pi\)
\(48\) 0 0
\(49\) −0.230541 0.0839100i −0.0329344 0.0119871i
\(50\) 2.24178 + 1.59495i 0.317036 + 0.225561i
\(51\) 0 0
\(52\) 4.43313 + 3.83485i 0.614765 + 0.531798i
\(53\) −0.180986 −0.0248604 −0.0124302 0.999923i \(-0.503957\pi\)
−0.0124302 + 0.999923i \(0.503957\pi\)
\(54\) 0 0
\(55\) 4.28892i 0.578317i
\(56\) 7.33562 0.475421i 0.980263 0.0635308i
\(57\) 0 0
\(58\) −5.83912 4.15435i −0.766714 0.545492i
\(59\) −0.253090 + 0.695359i −0.0329495 + 0.0905280i −0.955077 0.296359i \(-0.904227\pi\)
0.922127 + 0.386887i \(0.126450\pi\)
\(60\) 0 0
\(61\) 11.1190 + 1.96057i 1.42364 + 0.251026i 0.831819 0.555047i \(-0.187300\pi\)
0.591817 + 0.806072i \(0.298411\pi\)
\(62\) −4.96594 + 1.29070i −0.630675 + 0.163919i
\(63\) 0 0
\(64\) 7.10148 3.68362i 0.887684 0.460452i
\(65\) −2.64174 7.25812i −0.327668 0.900259i
\(66\) 0 0
\(67\) −10.5159 + 8.82387i −1.28472 + 1.07801i −0.292144 + 0.956374i \(0.594369\pi\)
−0.992575 + 0.121633i \(0.961187\pi\)
\(68\) 5.89033 4.79357i 0.714308 0.581305i
\(69\) 0 0
\(70\) −8.74793 4.15955i −1.04558 0.497162i
\(71\) −2.57253 4.45576i −0.305303 0.528801i 0.672025 0.740528i \(-0.265425\pi\)
−0.977329 + 0.211727i \(0.932091\pi\)
\(72\) 0 0
\(73\) −2.62831 + 4.55236i −0.307620 + 0.532814i −0.977841 0.209348i \(-0.932866\pi\)
0.670221 + 0.742161i \(0.266199\pi\)
\(74\) −8.60830 + 5.93168i −1.00069 + 0.689544i
\(75\) 0 0
\(76\) 6.13789 16.1062i 0.704065 1.84751i
\(77\) −0.734463 4.16534i −0.0836998 0.474685i
\(78\) 0 0
\(79\) −6.72831 + 8.01849i −0.756994 + 0.902151i −0.997654 0.0684588i \(-0.978192\pi\)
0.240660 + 0.970610i \(0.422636\pi\)
\(80\) −10.5369 0.316864i −1.17806 0.0354264i
\(81\) 0 0
\(82\) 6.84345 + 6.94710i 0.755733 + 0.767179i
\(83\) −7.39656 + 8.81488i −0.811878 + 0.967559i −0.999893 0.0146072i \(-0.995350\pi\)
0.188015 + 0.982166i \(0.439795\pi\)
\(84\) 0 0
\(85\) −9.85513 + 1.73773i −1.06894 + 0.188483i
\(86\) −5.17114 + 2.36419i −0.557619 + 0.254938i
\(87\) 0 0
\(88\) −2.55450 3.82914i −0.272311 0.408187i
\(89\) 0.211259 + 0.121971i 0.0223934 + 0.0129289i 0.511155 0.859489i \(-0.329218\pi\)
−0.488761 + 0.872417i \(0.662551\pi\)
\(90\) 0 0
\(91\) 3.80856 + 6.59662i 0.399245 + 0.691513i
\(92\) 4.04078 + 11.6436i 0.421280 + 1.21393i
\(93\) 0 0
\(94\) −0.195625 + 2.05776i −0.0201772 + 0.212242i
\(95\) −17.3986 + 14.5992i −1.78506 + 1.49784i
\(96\) 0 0
\(97\) 1.95441 0.711348i 0.198441 0.0722264i −0.240888 0.970553i \(-0.577439\pi\)
0.439329 + 0.898326i \(0.355216\pi\)
\(98\) −0.334451 0.0923156i −0.0337847 0.00932528i
\(99\) 0 0
\(100\) 3.33998 + 1.99587i 0.333998 + 0.199587i
\(101\) 3.09813 17.5704i 0.308276 1.74832i −0.299394 0.954130i \(-0.596784\pi\)
0.607670 0.794190i \(-0.292104\pi\)
\(102\) 0 0
\(103\) −4.29301 + 11.7949i −0.423003 + 1.16219i 0.526977 + 0.849879i \(0.323325\pi\)
−0.949980 + 0.312311i \(0.898897\pi\)
\(104\) 6.68152 + 4.90660i 0.655177 + 0.481132i
\(105\) 0 0
\(106\) −0.255140 + 0.0203908i −0.0247814 + 0.00198053i
\(107\) 10.9395i 1.05757i 0.848757 + 0.528783i \(0.177351\pi\)
−0.848757 + 0.528783i \(0.822649\pi\)
\(108\) 0 0
\(109\) 6.35577i 0.608772i −0.952549 0.304386i \(-0.901549\pi\)
0.952549 0.304386i \(-0.0984513\pi\)
\(110\) 0.483211 + 6.04616i 0.0460724 + 0.576479i
\(111\) 0 0
\(112\) 10.2876 1.49668i 0.972086 0.141423i
\(113\) 1.20684 3.31577i 0.113530 0.311921i −0.869895 0.493237i \(-0.835813\pi\)
0.983425 + 0.181316i \(0.0580356\pi\)
\(114\) 0 0
\(115\) 2.82014 15.9938i 0.262979 1.49143i
\(116\) −8.69957 5.19859i −0.807735 0.482677i
\(117\) 0 0
\(118\) −0.278443 + 1.00877i −0.0256327 + 0.0928652i
\(119\) 9.27361 3.37532i 0.850110 0.309415i
\(120\) 0 0
\(121\) 6.39764 5.36826i 0.581604 0.488024i
\(122\) 15.8955 + 1.51114i 1.43911 + 0.136812i
\(123\) 0 0
\(124\) −6.85516 + 2.37901i −0.615612 + 0.213641i
\(125\) 4.02503 + 6.97155i 0.360009 + 0.623554i
\(126\) 0 0
\(127\) −15.7942 9.11876i −1.40150 0.809159i −0.406958 0.913447i \(-0.633410\pi\)
−0.994547 + 0.104288i \(0.966744\pi\)
\(128\) 9.59607 5.99295i 0.848180 0.529707i
\(129\) 0 0
\(130\) −4.54185 9.93428i −0.398347 0.871294i
\(131\) −4.10519 + 0.723856i −0.358672 + 0.0632436i −0.350081 0.936719i \(-0.613846\pi\)
−0.00859153 + 0.999963i \(0.502735\pi\)
\(132\) 0 0
\(133\) 14.3973 17.1580i 1.24840 1.48779i
\(134\) −13.8303 + 13.6239i −1.19475 + 1.17693i
\(135\) 0 0
\(136\) 7.76365 7.42121i 0.665727 0.636364i
\(137\) 10.2458 12.2105i 0.875360 1.04321i −0.123347 0.992364i \(-0.539363\pi\)
0.998706 0.0508494i \(-0.0161928\pi\)
\(138\) 0 0
\(139\) −0.411616 2.33439i −0.0349128 0.198000i 0.962363 0.271769i \(-0.0876086\pi\)
−0.997275 + 0.0737683i \(0.976497\pi\)
\(140\) −12.8008 4.87821i −1.08186 0.412284i
\(141\) 0 0
\(142\) −4.12856 5.99153i −0.346461 0.502798i
\(143\) 2.38482 4.13064i 0.199429 0.345421i
\(144\) 0 0
\(145\) 6.67716 + 11.5652i 0.554508 + 0.960436i
\(146\) −3.19228 + 6.71367i −0.264195 + 0.555627i
\(147\) 0 0
\(148\) −11.4670 + 9.33186i −0.942580 + 0.767074i
\(149\) −12.2426 + 10.2728i −1.00295 + 0.841578i −0.987391 0.158300i \(-0.949399\pi\)
−0.0155632 + 0.999879i \(0.504954\pi\)
\(150\) 0 0
\(151\) 0.806403 + 2.21557i 0.0656242 + 0.180301i 0.968170 0.250292i \(-0.0805267\pi\)
−0.902546 + 0.430593i \(0.858304\pi\)
\(152\) 6.83809 23.3968i 0.554642 1.89773i
\(153\) 0 0
\(154\) −1.50467 5.78922i −0.121250 0.466508i
\(155\) 9.41635 + 1.66036i 0.756339 + 0.133363i
\(156\) 0 0
\(157\) 0.284046 0.780410i 0.0226693 0.0622835i −0.927842 0.372974i \(-0.878338\pi\)
0.950511 + 0.310691i \(0.100560\pi\)
\(158\) −8.58162 + 12.0619i −0.682717 + 0.959590i
\(159\) 0 0
\(160\) −14.8898 + 0.740454i −1.17714 + 0.0585381i
\(161\) 16.0159i 1.26223i
\(162\) 0 0
\(163\) −11.2657 −0.882401 −0.441200 0.897409i \(-0.645447\pi\)
−0.441200 + 0.897409i \(0.645447\pi\)
\(164\) 10.4300 + 9.02244i 0.814449 + 0.704534i
\(165\) 0 0
\(166\) −9.43394 + 13.2598i −0.732216 + 1.02916i
\(167\) 16.4192 + 5.97611i 1.27056 + 0.462445i 0.887299 0.461195i \(-0.152579\pi\)
0.383260 + 0.923641i \(0.374801\pi\)
\(168\) 0 0
\(169\) 0.765842 4.34331i 0.0589110 0.334101i
\(170\) −13.6972 + 3.56003i −1.05053 + 0.273042i
\(171\) 0 0
\(172\) −7.02350 + 3.91545i −0.535537 + 0.298551i
\(173\) −17.4791 + 6.36186i −1.32891 + 0.483683i −0.906302 0.422630i \(-0.861107\pi\)
−0.422606 + 0.906313i \(0.638885\pi\)
\(174\) 0 0
\(175\) 3.25003 + 3.87323i 0.245679 + 0.292789i
\(176\) −4.03254 5.11020i −0.303964 0.385196i
\(177\) 0 0
\(178\) 0.311558 + 0.148143i 0.0233523 + 0.0111038i
\(179\) 6.13650 3.54291i 0.458663 0.264809i −0.252819 0.967514i \(-0.581358\pi\)
0.711482 + 0.702704i \(0.248024\pi\)
\(180\) 0 0
\(181\) −0.129860 0.0749748i −0.00965242 0.00557283i 0.495166 0.868798i \(-0.335107\pi\)
−0.504818 + 0.863226i \(0.668441\pi\)
\(182\) 6.11220 + 8.87028i 0.453067 + 0.657509i
\(183\) 0 0
\(184\) 7.00819 + 15.9589i 0.516651 + 1.17651i
\(185\) 19.1854 3.38291i 1.41054 0.248717i
\(186\) 0 0
\(187\) −4.73383 3.97216i −0.346172 0.290473i
\(188\) −0.0439385 + 2.92290i −0.00320454 + 0.213174i
\(189\) 0 0
\(190\) −22.8823 + 22.5409i −1.66006 + 1.63529i
\(191\) −8.37441 7.02696i −0.605951 0.508453i 0.287401 0.957810i \(-0.407209\pi\)
−0.893352 + 0.449357i \(0.851653\pi\)
\(192\) 0 0
\(193\) 0.508999 + 2.88668i 0.0366385 + 0.207788i 0.997631 0.0687854i \(-0.0219124\pi\)
−0.960993 + 0.276573i \(0.910801\pi\)
\(194\) 2.67503 1.22299i 0.192056 0.0878059i
\(195\) 0 0
\(196\) −0.481883 0.0924580i −0.0344202 0.00660414i
\(197\) 1.40635 2.43587i 0.100198 0.173548i −0.811568 0.584258i \(-0.801386\pi\)
0.911766 + 0.410710i \(0.134719\pi\)
\(198\) 0 0
\(199\) −0.874354 + 0.504808i −0.0619813 + 0.0357849i −0.530670 0.847578i \(-0.678060\pi\)
0.468689 + 0.883363i \(0.344726\pi\)
\(200\) 4.93329 + 2.43731i 0.348836 + 0.172344i
\(201\) 0 0
\(202\) 2.38793 25.1184i 0.168014 1.76732i
\(203\) −8.46528 10.0885i −0.594146 0.708076i
\(204\) 0 0
\(205\) −6.21535 17.0765i −0.434099 1.19268i
\(206\) −4.72306 + 17.1112i −0.329071 + 1.19220i
\(207\) 0 0
\(208\) 9.97187 + 6.16416i 0.691425 + 0.427407i
\(209\) −13.8121 2.43544i −0.955402 0.168463i
\(210\) 0 0
\(211\) −3.98399 1.45005i −0.274269 0.0998257i 0.201224 0.979545i \(-0.435508\pi\)
−0.475493 + 0.879720i \(0.657730\pi\)
\(212\) −0.357378 + 0.0574907i −0.0245448 + 0.00394848i
\(213\) 0 0
\(214\) 1.23250 + 15.4217i 0.0842523 + 1.05420i
\(215\) 10.5959 0.722636
\(216\) 0 0
\(217\) −9.42938 −0.640108
\(218\) −0.716074 8.95985i −0.0484986 0.606837i
\(219\) 0 0
\(220\) 1.36238 + 8.46895i 0.0918519 + 0.570976i
\(221\) 10.4577 + 3.80629i 0.703460 + 0.256039i
\(222\) 0 0
\(223\) 15.7442 + 2.77613i 1.05431 + 0.185903i 0.673831 0.738886i \(-0.264648\pi\)
0.380480 + 0.924789i \(0.375759\pi\)
\(224\) 14.3340 3.26895i 0.957730 0.218416i
\(225\) 0 0
\(226\) 1.32774 4.81027i 0.0883197 0.319975i
\(227\) −0.588042 1.61563i −0.0390297 0.107233i 0.918647 0.395080i \(-0.129283\pi\)
−0.957677 + 0.287846i \(0.907061\pi\)
\(228\) 0 0
\(229\) −5.91992 7.05508i −0.391199 0.466213i 0.534116 0.845411i \(-0.320644\pi\)
−0.925316 + 0.379198i \(0.876200\pi\)
\(230\) 2.17366 22.8645i 0.143327 1.50764i
\(231\) 0 0
\(232\) −12.8496 6.34842i −0.843621 0.416794i
\(233\) −16.7671 + 9.68050i −1.09845 + 0.634191i −0.935814 0.352495i \(-0.885333\pi\)
−0.162637 + 0.986686i \(0.552000\pi\)
\(234\) 0 0
\(235\) 1.92599 3.33590i 0.125637 0.217610i
\(236\) −0.278872 + 1.45346i −0.0181530 + 0.0946121i
\(237\) 0 0
\(238\) 12.6929 5.80306i 0.822759 0.376157i
\(239\) −0.803749 4.55829i −0.0519902 0.294851i 0.947715 0.319117i \(-0.103386\pi\)
−0.999706 + 0.0242659i \(0.992275\pi\)
\(240\) 0 0
\(241\) 21.1035 + 17.7079i 1.35939 + 1.14067i 0.976169 + 0.217012i \(0.0696312\pi\)
0.383226 + 0.923655i \(0.374813\pi\)
\(242\) 8.41406 8.28853i 0.540876 0.532807i
\(243\) 0 0
\(244\) 22.5784 + 0.339410i 1.44544 + 0.0217285i
\(245\) 0.495297 + 0.415604i 0.0316434 + 0.0265519i
\(246\) 0 0
\(247\) 24.8743 4.38601i 1.58271 0.279075i
\(248\) −9.39582 + 4.12607i −0.596635 + 0.262006i
\(249\) 0 0
\(250\) 6.45960 + 9.37444i 0.408541 + 0.592892i
\(251\) 12.0234 + 6.94172i 0.758911 + 0.438158i 0.828905 0.559390i \(-0.188964\pi\)
−0.0699933 + 0.997547i \(0.522298\pi\)
\(252\) 0 0
\(253\) 8.68518 5.01439i 0.546033 0.315252i
\(254\) −23.2927 11.0754i −1.46151 0.694935i
\(255\) 0 0
\(256\) 12.8526 9.52952i 0.803285 0.595595i
\(257\) 1.09064 + 1.29978i 0.0680325 + 0.0810779i 0.798987 0.601348i \(-0.205369\pi\)
−0.730955 + 0.682426i \(0.760925\pi\)
\(258\) 0 0
\(259\) −18.0534 + 6.57089i −1.12178 + 0.408295i
\(260\) −7.52198 13.4928i −0.466493 0.836790i
\(261\) 0 0
\(262\) −5.70561 + 1.48295i −0.352494 + 0.0916167i
\(263\) 0.720517 4.08625i 0.0444290 0.251969i −0.954502 0.298206i \(-0.903612\pi\)
0.998931 + 0.0462368i \(0.0147229\pi\)
\(264\) 0 0
\(265\) 0.448210 + 0.163135i 0.0275333 + 0.0100213i
\(266\) 18.3630 25.8100i 1.12591 1.58251i
\(267\) 0 0
\(268\) −17.9619 + 20.7641i −1.09720 + 1.26837i
\(269\) 31.4461 1.91730 0.958650 0.284588i \(-0.0918567\pi\)
0.958650 + 0.284588i \(0.0918567\pi\)
\(270\) 0 0
\(271\) 28.1714i 1.71129i −0.517564 0.855644i \(-0.673161\pi\)
0.517564 0.855644i \(-0.326839\pi\)
\(272\) 10.1084 11.3365i 0.612914 0.687377i
\(273\) 0 0
\(274\) 13.0680 18.3677i 0.789469 1.10963i
\(275\) 1.08285 2.97510i 0.0652981 0.179405i
\(276\) 0 0
\(277\) 24.3185 + 4.28801i 1.46116 + 0.257641i 0.847021 0.531559i \(-0.178394\pi\)
0.614136 + 0.789201i \(0.289505\pi\)
\(278\) −0.843267 3.24446i −0.0505758 0.194590i
\(279\) 0 0
\(280\) −18.5951 5.43471i −1.11127 0.324786i
\(281\) 6.58678 + 18.0970i 0.392935 + 1.07958i 0.965655 + 0.259828i \(0.0836659\pi\)
−0.572720 + 0.819751i \(0.694112\pi\)
\(282\) 0 0
\(283\) 6.85978 5.75604i 0.407772 0.342161i −0.415717 0.909494i \(-0.636469\pi\)
0.823488 + 0.567333i \(0.192025\pi\)
\(284\) −6.49514 7.98123i −0.385416 0.473599i
\(285\) 0 0
\(286\) 2.89655 6.09172i 0.171277 0.360211i
\(287\) 8.96057 + 15.5202i 0.528926 + 0.916126i
\(288\) 0 0
\(289\) −1.29071 + 2.23558i −0.0759243 + 0.131505i
\(290\) 10.7159 + 15.5514i 0.629260 + 0.913208i
\(291\) 0 0
\(292\) −3.74382 + 9.82404i −0.219091 + 0.574909i
\(293\) −3.69497 20.9552i −0.215863 1.22422i −0.879403 0.476078i \(-0.842058\pi\)
0.663540 0.748140i \(-0.269053\pi\)
\(294\) 0 0
\(295\) 1.25355 1.49392i 0.0729843 0.0869793i
\(296\) −15.1138 + 14.4472i −0.878475 + 0.839728i
\(297\) 0 0
\(298\) −16.1013 + 15.8610i −0.932721 + 0.918805i
\(299\) −11.6093 + 13.8354i −0.671384 + 0.800125i
\(300\) 0 0
\(301\) −10.2906 + 1.81452i −0.593142 + 0.104587i
\(302\) 1.38642 + 3.03248i 0.0797795 + 0.174500i
\(303\) 0 0
\(304\) 7.00378 33.7533i 0.401694 1.93589i
\(305\) −25.7687 14.8776i −1.47551 0.851888i
\(306\) 0 0
\(307\) 4.48896 + 7.77511i 0.256199 + 0.443749i 0.965220 0.261438i \(-0.0841966\pi\)
−0.709022 + 0.705187i \(0.750863\pi\)
\(308\) −2.77341 7.99164i −0.158030 0.455366i
\(309\) 0 0
\(310\) 13.4615 + 1.27974i 0.764560 + 0.0726844i
\(311\) −13.0417 + 10.9433i −0.739525 + 0.620535i −0.932710 0.360627i \(-0.882563\pi\)
0.193185 + 0.981162i \(0.438118\pi\)
\(312\) 0 0
\(313\) −9.04413 + 3.29179i −0.511204 + 0.186063i −0.584727 0.811230i \(-0.698798\pi\)
0.0735224 + 0.997294i \(0.476576\pi\)
\(314\) 0.312500 1.13216i 0.0176354 0.0638915i
\(315\) 0 0
\(316\) −10.7387 + 17.9707i −0.604100 + 1.01093i
\(317\) −1.05306 + 5.97220i −0.0591457 + 0.335432i −0.999994 0.00339548i \(-0.998919\pi\)
0.940849 + 0.338827i \(0.110030\pi\)
\(318\) 0 0
\(319\) −2.82047 + 7.74917i −0.157916 + 0.433870i
\(320\) −20.9070 + 2.72139i −1.16874 + 0.152130i
\(321\) 0 0
\(322\) 1.80444 + 22.5780i 0.100557 + 1.25822i
\(323\) 32.7244i 1.82083i
\(324\) 0 0
\(325\) 5.70173i 0.316275i
\(326\) −15.8815 + 1.26926i −0.879596 + 0.0702976i
\(327\) 0 0
\(328\) 15.7199 + 11.5440i 0.867988 + 0.637410i
\(329\) −1.29923 + 3.56961i −0.0716290 + 0.196799i
\(330\) 0 0
\(331\) 0.638218 3.61951i 0.0350796 0.198946i −0.962231 0.272233i \(-0.912238\pi\)
0.997311 + 0.0732869i \(0.0233489\pi\)
\(332\) −11.8053 + 19.7555i −0.647899 + 1.08422i
\(333\) 0 0
\(334\) 23.8198 + 6.57476i 1.30336 + 0.359755i
\(335\) 33.9960 12.3735i 1.85740 0.676037i
\(336\) 0 0
\(337\) 14.8826 12.4880i 0.810707 0.680264i −0.140070 0.990142i \(-0.544733\pi\)
0.950776 + 0.309878i \(0.100288\pi\)
\(338\) 0.590283 6.20913i 0.0321072 0.337732i
\(339\) 0 0
\(340\) −18.9081 + 6.56184i −1.02543 + 0.355866i
\(341\) 2.95222 + 5.11340i 0.159872 + 0.276906i
\(342\) 0 0
\(343\) −16.3076 9.41522i −0.880530 0.508374i
\(344\) −9.46002 + 6.31099i −0.510050 + 0.340266i
\(345\) 0 0
\(346\) −23.9238 + 10.9377i −1.28615 + 0.588015i
\(347\) −14.8923 + 2.62591i −0.799458 + 0.140966i −0.558430 0.829552i \(-0.688596\pi\)
−0.241029 + 0.970518i \(0.577485\pi\)
\(348\) 0 0
\(349\) −14.4505 + 17.2214i −0.773518 + 0.921843i −0.998621 0.0524923i \(-0.983284\pi\)
0.225104 + 0.974335i \(0.427728\pi\)
\(350\) 5.01800 + 5.09400i 0.268223 + 0.272286i
\(351\) 0 0
\(352\) −6.26049 6.74962i −0.333685 0.359756i
\(353\) 13.4020 15.9719i 0.713316 0.850096i −0.280648 0.959811i \(-0.590549\pi\)
0.993963 + 0.109715i \(0.0349937\pi\)
\(354\) 0 0
\(355\) 2.35457 + 13.3534i 0.124967 + 0.708725i
\(356\) 0.455900 + 0.173738i 0.0241626 + 0.00920808i
\(357\) 0 0
\(358\) 8.25157 5.68587i 0.436109 0.300508i
\(359\) 5.43854 9.41983i 0.287035 0.497159i −0.686066 0.727540i \(-0.740664\pi\)
0.973101 + 0.230380i \(0.0739970\pi\)
\(360\) 0 0
\(361\) −27.6356 47.8663i −1.45451 2.51928i
\(362\) −0.191513 0.0910626i −0.0100657 0.00478614i
\(363\) 0 0
\(364\) 9.61586 + 11.8160i 0.504008 + 0.619325i
\(365\) 10.6123 8.90479i 0.555474 0.466098i
\(366\) 0 0
\(367\) −3.96735 10.9002i −0.207094 0.568985i 0.792046 0.610462i \(-0.209016\pi\)
−0.999139 + 0.0414764i \(0.986794\pi\)
\(368\) 11.6776 + 21.7080i 0.608736 + 1.13161i
\(369\) 0 0
\(370\) 26.6649 6.93048i 1.38624 0.360299i
\(371\) −0.463232 0.0816804i −0.0240498 0.00424063i
\(372\) 0 0
\(373\) −1.65913 + 4.55843i −0.0859066 + 0.236027i −0.975206 0.221299i \(-0.928970\pi\)
0.889299 + 0.457326i \(0.151193\pi\)
\(374\) −7.12089 5.06628i −0.368213 0.261971i
\(375\) 0 0
\(376\) 0.267368 + 4.12542i 0.0137885 + 0.212752i
\(377\) 14.8512i 0.764874i
\(378\) 0 0
\(379\) 31.5863 1.62248 0.811238 0.584715i \(-0.198794\pi\)
0.811238 + 0.584715i \(0.198794\pi\)
\(380\) −29.7180 + 34.3544i −1.52450 + 1.76234i
\(381\) 0 0
\(382\) −12.5973 8.96253i −0.644531 0.458563i
\(383\) −5.33286 1.94100i −0.272496 0.0991805i 0.202158 0.979353i \(-0.435205\pi\)
−0.474654 + 0.880172i \(0.657427\pi\)
\(384\) 0 0
\(385\) −1.93562 + 10.9774i −0.0986482 + 0.559462i
\(386\) 1.04277 + 4.01206i 0.0530758 + 0.204208i
\(387\) 0 0
\(388\) 3.63325 2.02546i 0.184450 0.102827i
\(389\) −7.70166 + 2.80317i −0.390490 + 0.142127i −0.529801 0.848122i \(-0.677733\pi\)
0.139311 + 0.990249i \(0.455511\pi\)
\(390\) 0 0
\(391\) 15.0411 + 17.9253i 0.760660 + 0.906520i
\(392\) −0.689737 0.0760483i −0.0348370 0.00384102i
\(393\) 0 0
\(394\) 1.70812 3.59233i 0.0860537 0.180979i
\(395\) 23.8902 13.7930i 1.20204 0.694001i
\(396\) 0 0
\(397\) 25.2112 + 14.5557i 1.26532 + 0.730531i 0.974098 0.226126i \(-0.0726061\pi\)
0.291218 + 0.956657i \(0.405939\pi\)
\(398\) −1.17572 + 0.810147i −0.0589334 + 0.0406090i
\(399\) 0 0
\(400\) 7.22915 + 2.88011i 0.361458 + 0.144006i
\(401\) −13.6729 + 2.41090i −0.682792 + 0.120395i −0.504276 0.863542i \(-0.668241\pi\)
−0.178516 + 0.983937i \(0.557130\pi\)
\(402\) 0 0
\(403\) −8.14562 6.83498i −0.405762 0.340475i
\(404\) 0.536342 35.6789i 0.0266840 1.77509i
\(405\) 0 0
\(406\) −13.0703 13.2682i −0.648667 0.658492i
\(407\) 9.21557 + 7.73278i 0.456799 + 0.383300i
\(408\) 0 0
\(409\) −2.85854 16.2116i −0.141346 0.801613i −0.970229 0.242190i \(-0.922134\pi\)
0.828883 0.559422i \(-0.188977\pi\)
\(410\) −10.6858 23.3728i −0.527735 1.15430i
\(411\) 0 0
\(412\) −4.73034 + 24.6541i −0.233047 + 1.21462i
\(413\) −0.961601 + 1.66554i −0.0473173 + 0.0819559i
\(414\) 0 0
\(415\) 26.2629 15.1629i 1.28920 0.744318i
\(416\) 14.7520 + 7.56624i 0.723277 + 0.370966i
\(417\) 0 0
\(418\) −19.7455 1.87715i −0.965786 0.0918144i
\(419\) −10.4296 12.4295i −0.509520 0.607223i 0.448549 0.893758i \(-0.351941\pi\)
−0.958070 + 0.286535i \(0.907496\pi\)
\(420\) 0 0
\(421\) −0.181389 0.498362i −0.00884036 0.0242887i 0.935194 0.354136i \(-0.115225\pi\)
−0.944034 + 0.329847i \(0.893003\pi\)
\(422\) −5.77967 1.59531i −0.281350 0.0776585i
\(423\) 0 0
\(424\) −0.497325 + 0.121310i −0.0241522 + 0.00589132i
\(425\) 7.27495 + 1.28277i 0.352887 + 0.0622235i
\(426\) 0 0
\(427\) 27.5740 + 10.0361i 1.33440 + 0.485682i
\(428\) 3.47497 + 21.6014i 0.167969 + 1.04414i
\(429\) 0 0
\(430\) 14.9373 1.19379i 0.720339 0.0575697i
\(431\) −12.2920 −0.592084 −0.296042 0.955175i \(-0.595667\pi\)
−0.296042 + 0.955175i \(0.595667\pi\)
\(432\) 0 0
\(433\) 14.6907 0.705991 0.352996 0.935625i \(-0.385163\pi\)
0.352996 + 0.935625i \(0.385163\pi\)
\(434\) −13.2928 + 1.06236i −0.638073 + 0.0509950i
\(435\) 0 0
\(436\) −2.01892 12.5502i −0.0966889 0.601045i
\(437\) 49.9053 + 18.1640i 2.38729 + 0.868904i
\(438\) 0 0
\(439\) −28.8488 5.08682i −1.37688 0.242781i −0.564270 0.825591i \(-0.690842\pi\)
−0.812609 + 0.582810i \(0.801953\pi\)
\(440\) 2.87473 + 11.7853i 0.137048 + 0.561844i
\(441\) 0 0
\(442\) 15.1712 + 4.18758i 0.721622 + 0.199183i
\(443\) 11.6096 + 31.8970i 0.551588 + 1.51547i 0.831543 + 0.555461i \(0.187458\pi\)
−0.279955 + 0.960013i \(0.590320\pi\)
\(444\) 0 0
\(445\) −0.413240 0.492480i −0.0195895 0.0233458i
\(446\) 22.5077 + 2.13974i 1.06577 + 0.101319i
\(447\) 0 0
\(448\) 19.8386 6.22324i 0.937285 0.294020i
\(449\) 15.4011 8.89184i 0.726823 0.419632i −0.0904355 0.995902i \(-0.528826\pi\)
0.817259 + 0.576271i \(0.195493\pi\)
\(450\) 0 0
\(451\) 5.61089 9.71834i 0.264206 0.457619i
\(452\) 1.32978 6.93072i 0.0625478 0.325994i
\(453\) 0 0
\(454\) −1.01100 2.21133i −0.0474485 0.103783i
\(455\) −3.48587 19.7693i −0.163420 0.926800i
\(456\) 0 0
\(457\) 9.21939 + 7.73598i 0.431265 + 0.361874i 0.832429 0.554132i \(-0.186950\pi\)
−0.401164 + 0.916006i \(0.631394\pi\)
\(458\) −9.14028 9.27871i −0.427097 0.433566i
\(459\) 0 0
\(460\) 0.488216 32.4774i 0.0227632 1.51427i
\(461\) −12.6139 10.5843i −0.587487 0.492960i 0.299909 0.953968i \(-0.403044\pi\)
−0.887396 + 0.461008i \(0.847488\pi\)
\(462\) 0 0
\(463\) −3.83957 + 0.677019i −0.178440 + 0.0314638i −0.262154 0.965026i \(-0.584433\pi\)
0.0837142 + 0.996490i \(0.473322\pi\)
\(464\) −18.8296 7.50177i −0.874144 0.348261i
\(465\) 0 0
\(466\) −22.5463 + 15.5359i −1.04444 + 0.719685i
\(467\) 8.38005 + 4.83822i 0.387782 + 0.223886i 0.681199 0.732098i \(-0.261459\pi\)
−0.293416 + 0.955985i \(0.594792\pi\)
\(468\) 0 0
\(469\) −30.8975 + 17.8387i −1.42672 + 0.823715i
\(470\) 2.33926 4.91968i 0.107902 0.226928i
\(471\) 0 0
\(472\) −0.229377 + 2.08039i −0.0105579 + 0.0957576i
\(473\) 4.20585 + 5.01234i 0.193385 + 0.230468i
\(474\) 0 0
\(475\) 15.7548 5.73429i 0.722881 0.263107i
\(476\) 17.2396 9.61073i 0.790176 0.440507i
\(477\) 0 0
\(478\) −1.64662 6.33535i −0.0753146 0.289772i
\(479\) 0.352574 1.99955i 0.0161095 0.0913616i −0.975693 0.219142i \(-0.929674\pi\)
0.991802 + 0.127780i \(0.0407853\pi\)
\(480\) 0 0
\(481\) −20.3585 7.40988i −0.928266 0.337861i
\(482\) 31.7450 + 22.5856i 1.44595 + 1.02874i
\(483\) 0 0
\(484\) 10.9276 12.6325i 0.496710 0.574203i
\(485\) −5.48126 −0.248891
\(486\) 0 0
\(487\) 7.67766i 0.347908i 0.984754 + 0.173954i \(0.0556544\pi\)
−0.984754 + 0.173954i \(0.944346\pi\)
\(488\) 31.8675 2.06533i 1.44257 0.0934930i
\(489\) 0 0
\(490\) 0.745054 + 0.530082i 0.0336581 + 0.0239466i
\(491\) −6.23136 + 17.1205i −0.281217 + 0.772638i 0.716001 + 0.698100i \(0.245971\pi\)
−0.997218 + 0.0745389i \(0.976251\pi\)
\(492\) 0 0
\(493\) −18.9489 3.34121i −0.853417 0.150480i
\(494\) 34.5716 8.98550i 1.55545 0.404277i
\(495\) 0 0
\(496\) −12.7806 + 6.87518i −0.573866 + 0.308705i
\(497\) −4.57346 12.5655i −0.205148 0.563638i
\(498\) 0 0
\(499\) −0.594620 + 0.498945i −0.0266189 + 0.0223359i −0.656000 0.754761i \(-0.727753\pi\)
0.629381 + 0.777097i \(0.283308\pi\)
\(500\) 10.1624 + 12.4876i 0.454476 + 0.558460i
\(501\) 0 0
\(502\) 17.7317 + 8.43126i 0.791406 + 0.376305i
\(503\) −16.6264 28.7978i −0.741335 1.28403i −0.951887 0.306448i \(-0.900859\pi\)
0.210552 0.977583i \(-0.432474\pi\)
\(504\) 0 0
\(505\) −23.5098 + 40.7203i −1.04617 + 1.81203i
\(506\) 11.6787 8.04740i 0.519182 0.357750i
\(507\) 0 0
\(508\) −34.0839 12.9890i −1.51223 0.576293i
\(509\) −5.59821 31.7490i −0.248136 1.40725i −0.813095 0.582132i \(-0.802219\pi\)
0.564958 0.825119i \(-0.308892\pi\)
\(510\) 0 0
\(511\) −8.78164 + 10.4655i −0.388477 + 0.462969i
\(512\) 17.0448 14.8820i 0.753283 0.657697i
\(513\) 0 0
\(514\) 1.68394 + 1.70944i 0.0742754 + 0.0754003i
\(515\) 21.2631 25.3404i 0.936966 1.11663i
\(516\) 0 0
\(517\) 2.34251 0.413048i 0.103024 0.0181658i
\(518\) −24.7099 + 11.2971i −1.08569 + 0.496366i
\(519\) 0 0
\(520\) −12.1240 18.1736i −0.531674 0.796966i
\(521\) 27.9816 + 16.1552i 1.22590 + 0.707773i 0.966169 0.257909i \(-0.0830335\pi\)
0.259729 + 0.965682i \(0.416367\pi\)
\(522\) 0 0
\(523\) −1.25831 2.17946i −0.0550222 0.0953012i 0.837202 0.546893i \(-0.184190\pi\)
−0.892225 + 0.451592i \(0.850856\pi\)
\(524\) −7.87623 + 2.73336i −0.344075 + 0.119407i
\(525\) 0 0
\(526\) 0.555348 5.84165i 0.0242143 0.254708i
\(527\) −10.5535 + 8.85544i −0.459718 + 0.385749i
\(528\) 0 0
\(529\) −14.0722 + 5.12185i −0.611833 + 0.222689i
\(530\) 0.650229 + 0.179477i 0.0282442 + 0.00779598i
\(531\) 0 0
\(532\) 22.9787 38.4537i 0.996255 1.66718i
\(533\) −3.50932 + 19.9023i −0.152005 + 0.862066i
\(534\) 0 0
\(535\) 9.86054 27.0916i 0.426308 1.17127i
\(536\) −22.9818 + 31.2952i −0.992662 + 1.35175i
\(537\) 0 0
\(538\) 44.3301 3.54287i 1.91121 0.152744i
\(539\) 0.399264i 0.0171975i
\(540\) 0 0
\(541\) 20.7984i 0.894192i −0.894486 0.447096i \(-0.852458\pi\)
0.894486 0.447096i \(-0.147542\pi\)
\(542\) −3.17393 39.7137i −0.136332 1.70585i
\(543\) 0 0
\(544\) 12.9728 17.1202i 0.556206 0.734021i
\(545\) −5.72888 + 15.7400i −0.245398 + 0.674226i
\(546\) 0 0
\(547\) −3.11764 + 17.6810i −0.133301 + 0.755985i 0.842727 + 0.538341i \(0.180949\pi\)
−0.976028 + 0.217645i \(0.930163\pi\)
\(548\) 16.3528 27.3656i 0.698559 1.16900i
\(549\) 0 0
\(550\) 1.19132 4.31605i 0.0507980 0.184037i
\(551\) −41.0363 + 14.9360i −1.74820 + 0.636294i
\(552\) 0 0
\(553\) −20.8398 + 17.4867i −0.886200 + 0.743610i
\(554\) 34.7653 + 3.30504i 1.47704 + 0.140418i
\(555\) 0 0
\(556\) −1.55431 4.47877i −0.0659173 0.189942i
\(557\) 15.8779 + 27.5013i 0.672766 + 1.16527i 0.977116 + 0.212705i \(0.0682274\pi\)
−0.304350 + 0.952560i \(0.598439\pi\)
\(558\) 0 0
\(559\) −10.2049 5.89179i −0.431621 0.249196i
\(560\) −26.8261 5.56639i −1.13361 0.235223i
\(561\) 0 0
\(562\) 11.3244 + 24.7696i 0.477692 + 1.04484i
\(563\) −21.2510 + 3.74712i −0.895621 + 0.157922i −0.602468 0.798143i \(-0.705816\pi\)
−0.293153 + 0.956065i \(0.594705\pi\)
\(564\) 0 0
\(565\) −5.97745 + 7.12365i −0.251473 + 0.299694i
\(566\) 9.02186 8.88726i 0.379217 0.373559i
\(567\) 0 0
\(568\) −10.0555 10.5195i −0.421920 0.441389i
\(569\) −28.0024 + 33.3720i −1.17392 + 1.39903i −0.274701 + 0.961530i \(0.588579\pi\)
−0.899221 + 0.437495i \(0.855866\pi\)
\(570\) 0 0
\(571\) 5.33260 + 30.2427i 0.223162 + 1.26562i 0.866167 + 0.499754i \(0.166576\pi\)
−0.643005 + 0.765862i \(0.722313\pi\)
\(572\) 3.39700 8.91395i 0.142036 0.372711i
\(573\) 0 0
\(574\) 14.3805 + 20.8695i 0.600229 + 0.871077i
\(575\) −5.99429 + 10.3824i −0.249979 + 0.432977i
\(576\) 0 0
\(577\) −18.5251 32.0864i −0.771210 1.33578i −0.936900 0.349597i \(-0.886318\pi\)
0.165690 0.986178i \(-0.447015\pi\)
\(578\) −1.56767 + 3.29696i −0.0652065 + 0.137135i
\(579\) 0 0
\(580\) 16.8585 + 20.7157i 0.700012 + 0.860174i
\(581\) −22.9096 + 19.2235i −0.950452 + 0.797524i
\(582\) 0 0
\(583\) 0.100738 + 0.276776i 0.00417216 + 0.0114629i
\(584\) −4.17091 + 14.2709i −0.172593 + 0.590535i
\(585\) 0 0
\(586\) −7.56980 29.1247i −0.312706 1.20313i
\(587\) −2.18563 0.385385i −0.0902104 0.0159065i 0.128361 0.991728i \(-0.459028\pi\)
−0.218571 + 0.975821i \(0.570140\pi\)
\(588\) 0 0
\(589\) −10.6941 + 29.3817i −0.440642 + 1.21065i
\(590\) 1.59883 2.24724i 0.0658230 0.0925172i
\(591\) 0 0
\(592\) −19.6786 + 22.0693i −0.808784 + 0.907043i
\(593\) 7.72015i 0.317028i 0.987357 + 0.158514i \(0.0506704\pi\)
−0.987357 + 0.158514i \(0.949330\pi\)
\(594\) 0 0
\(595\) −26.0084 −1.06624
\(596\) −20.9113 + 24.1736i −0.856559 + 0.990191i
\(597\) 0 0
\(598\) −14.8071 + 20.8121i −0.605507 + 0.851068i
\(599\) 5.13051 + 1.86735i 0.209627 + 0.0762980i 0.444699 0.895680i \(-0.353311\pi\)
−0.235072 + 0.971978i \(0.575533\pi\)
\(600\) 0 0
\(601\) 2.68385 15.2209i 0.109477 0.620872i −0.879861 0.475231i \(-0.842364\pi\)
0.989337 0.145641i \(-0.0465245\pi\)
\(602\) −14.3025 + 3.71735i −0.582925 + 0.151508i
\(603\) 0 0
\(604\) 2.29612 + 4.11875i 0.0934277 + 0.167589i
\(605\) −20.6824 + 7.52779i −0.840860 + 0.306048i
\(606\) 0 0
\(607\) −0.0926471 0.110413i −0.00376043 0.00448151i 0.764161 0.645026i \(-0.223153\pi\)
−0.767921 + 0.640544i \(0.778709\pi\)
\(608\) 6.07054 48.3718i 0.246193 1.96173i
\(609\) 0 0
\(610\) −38.0028 18.0700i −1.53869 0.731632i
\(611\) −3.70982 + 2.14186i −0.150083 + 0.0866505i
\(612\) 0 0
\(613\) 30.3578 + 17.5271i 1.22614 + 0.707913i 0.966220 0.257717i \(-0.0829702\pi\)
0.259921 + 0.965630i \(0.416304\pi\)
\(614\) 7.20416 + 10.4550i 0.290736 + 0.421928i
\(615\) 0 0
\(616\) −4.81011 10.9535i −0.193805 0.441329i
\(617\) −1.95314 + 0.344391i −0.0786304 + 0.0138647i −0.212825 0.977090i \(-0.568266\pi\)
0.134195 + 0.990955i \(0.457155\pi\)
\(618\) 0 0
\(619\) 30.9839 + 25.9986i 1.24535 + 1.04497i 0.997087 + 0.0762782i \(0.0243037\pi\)
0.248262 + 0.968693i \(0.420141\pi\)
\(620\) 19.1211 + 0.287437i 0.767920 + 0.0115438i
\(621\) 0 0
\(622\) −17.1522 + 16.8962i −0.687739 + 0.677478i
\(623\) 0.485670 + 0.407525i 0.0194579 + 0.0163272i
\(624\) 0 0
\(625\) −5.37310 30.4724i −0.214924 1.21890i
\(626\) −12.3788 + 5.65946i −0.494756 + 0.226197i
\(627\) 0 0
\(628\) 0.312982 1.63124i 0.0124893 0.0650934i
\(629\) −14.0347 + 24.3087i −0.559598 + 0.969253i
\(630\) 0 0
\(631\) 28.0718 16.2073i 1.11752 0.645202i 0.176755 0.984255i \(-0.443440\pi\)
0.940767 + 0.339053i \(0.110107\pi\)
\(632\) −13.1139 + 26.5435i −0.521643 + 1.05584i
\(633\) 0 0
\(634\) −0.811659 + 8.53776i −0.0322351 + 0.339078i
\(635\) 30.8946 + 36.8188i 1.22602 + 1.46111i
\(636\) 0 0
\(637\) −0.245925 0.675673i −0.00974390 0.0267711i
\(638\) −3.10301 + 11.2419i −0.122849 + 0.445072i
\(639\) 0 0
\(640\) −29.1664 + 6.19189i −1.15290 + 0.244756i
\(641\) −16.3026 2.87458i −0.643912 0.113539i −0.157850 0.987463i \(-0.550456\pi\)
−0.486063 + 0.873924i \(0.661567\pi\)
\(642\) 0 0
\(643\) −25.2314 9.18349i −0.995030 0.362161i −0.207364 0.978264i \(-0.566489\pi\)
−0.787666 + 0.616102i \(0.788711\pi\)
\(644\) 5.08750 + 31.6253i 0.200476 + 1.24621i
\(645\) 0 0
\(646\) −3.68690 46.1322i −0.145059 1.81505i
\(647\) −29.0527 −1.14218 −0.571090 0.820887i \(-0.693479\pi\)
−0.571090 + 0.820887i \(0.693479\pi\)
\(648\) 0 0
\(649\) 1.20426 0.0472714
\(650\) 0.642386 + 8.03783i 0.0251964 + 0.315270i
\(651\) 0 0
\(652\) −22.2455 + 3.57859i −0.871200 + 0.140148i
\(653\) −32.5052 11.8309i −1.27203 0.462980i −0.384240 0.923233i \(-0.625537\pi\)
−0.887788 + 0.460253i \(0.847759\pi\)
\(654\) 0 0
\(655\) 10.8189 + 1.90767i 0.422730 + 0.0745387i
\(656\) 23.4613 + 14.5027i 0.916009 + 0.566235i
\(657\) 0 0
\(658\) −1.42938 + 5.17852i −0.0557231 + 0.201880i
\(659\) −7.44079 20.4434i −0.289852 0.796362i −0.996086 0.0883842i \(-0.971830\pi\)
0.706234 0.707978i \(-0.250393\pi\)
\(660\) 0 0
\(661\) −16.3906 19.5335i −0.637519 0.759766i 0.346457 0.938066i \(-0.387385\pi\)
−0.983976 + 0.178300i \(0.942940\pi\)
\(662\) 0.491915 5.17440i 0.0191188 0.201109i
\(663\) 0 0
\(664\) −14.4164 + 29.1798i −0.559464 + 1.13239i
\(665\) −51.1202 + 29.5143i −1.98236 + 1.14451i
\(666\) 0 0
\(667\) 15.6132 27.0429i 0.604546 1.04710i
\(668\) 34.3200 + 6.58490i 1.32788 + 0.254778i
\(669\) 0 0
\(670\) 46.5307 21.2733i 1.79764 0.821860i
\(671\) −3.19066 18.0951i −0.123174 0.698555i
\(672\) 0 0
\(673\) −6.18349 5.18857i −0.238356 0.200005i 0.515783 0.856719i \(-0.327501\pi\)
−0.754139 + 0.656715i \(0.771946\pi\)
\(674\) 19.5733 19.2813i 0.753936 0.742687i
\(675\) 0 0
\(676\) 0.132581 8.81963i 0.00509927 0.339216i
\(677\) 11.8370 + 9.93243i 0.454933 + 0.381734i 0.841263 0.540627i \(-0.181813\pi\)
−0.386330 + 0.922361i \(0.626257\pi\)
\(678\) 0 0
\(679\) 5.32333 0.938647i 0.204291 0.0360220i
\(680\) −25.9158 + 11.3806i −0.993825 + 0.436427i
\(681\) 0 0
\(682\) 4.73790 + 6.87584i 0.181424 + 0.263289i
\(683\) 1.82111 + 1.05142i 0.0696830 + 0.0402315i 0.534437 0.845209i \(-0.320524\pi\)
−0.464754 + 0.885440i \(0.653857\pi\)
\(684\) 0 0
\(685\) −36.3798 + 21.0039i −1.39000 + 0.802516i
\(686\) −24.0499 11.4355i −0.918231 0.436610i
\(687\) 0 0
\(688\) −12.6249 + 9.96254i −0.481321 + 0.379818i
\(689\) −0.340959 0.406339i −0.0129895 0.0154803i
\(690\) 0 0
\(691\) −21.9905 + 8.00388i −0.836557 + 0.304482i −0.724547 0.689225i \(-0.757951\pi\)
−0.112010 + 0.993707i \(0.535729\pi\)
\(692\) −32.4935 + 18.1145i −1.23522 + 0.688609i
\(693\) 0 0
\(694\) −20.6981 + 5.37963i −0.785687 + 0.204208i
\(695\) −1.08478 + 6.15210i −0.0411481 + 0.233362i
\(696\) 0 0
\(697\) 24.6043 + 8.95523i 0.931954 + 0.339203i
\(698\) −18.4309 + 25.9055i −0.697619 + 0.980536i
\(699\) 0 0
\(700\) 7.64789 + 6.61575i 0.289063 + 0.250052i
\(701\) −40.5028 −1.52977 −0.764884 0.644168i \(-0.777204\pi\)
−0.764884 + 0.644168i \(0.777204\pi\)
\(702\) 0 0
\(703\) 63.7061i 2.40272i
\(704\) −9.58598 8.80972i −0.361285 0.332029i
\(705\) 0 0
\(706\) 17.0936 24.0258i 0.643324 0.904222i
\(707\) 15.8593 43.5730i 0.596450 1.63873i
\(708\) 0 0
\(709\) −12.4782 2.20024i −0.468628 0.0826317i −0.0656523 0.997843i \(-0.520913\pi\)
−0.402975 + 0.915211i \(0.632024\pi\)
\(710\) 4.82374 + 18.5593i 0.181032 + 0.696517i
\(711\) 0 0
\(712\) 0.662264 + 0.193557i 0.0248194 + 0.00725387i
\(713\) −7.64687 21.0096i −0.286377 0.786815i
\(714\) 0 0
\(715\) −9.62920 + 8.07986i −0.360112 + 0.302170i
\(716\) 10.9918 8.94514i 0.410783 0.334296i
\(717\) 0 0
\(718\) 6.60552 13.8920i 0.246516 0.518446i
\(719\) −23.2178 40.2145i −0.865879 1.49975i −0.866171 0.499747i \(-0.833426\pi\)
0.000291815 1.00000i \(-0.499907\pi\)
\(720\) 0 0
\(721\) −16.3111 + 28.2516i −0.607455 + 1.05214i
\(722\) −44.3513 64.3644i −1.65058 2.39540i
\(723\) 0 0
\(724\) −0.280239 0.106796i −0.0104150 0.00396903i
\(725\) −1.71183 9.70825i −0.0635756 0.360555i
\(726\) 0 0
\(727\) −7.82850 + 9.32964i −0.290343 + 0.346017i −0.891424 0.453171i \(-0.850293\pi\)
0.601081 + 0.799188i \(0.294737\pi\)
\(728\) 14.8869 + 15.5738i 0.551745 + 0.577204i
\(729\) 0 0
\(730\) 13.9571 13.7489i 0.516576 0.508869i
\(731\) −9.81335 + 11.6951i −0.362960 + 0.432559i
\(732\) 0 0
\(733\) 9.85329 1.73740i 0.363939 0.0641723i 0.0113117 0.999936i \(-0.496399\pi\)
0.352628 + 0.935764i \(0.385288\pi\)
\(734\) −6.82091 14.9192i −0.251764 0.550679i
\(735\) 0 0
\(736\) 18.9079 + 29.2866i 0.696953 + 1.07952i
\(737\) 19.3473 + 11.1702i 0.712666 + 0.411458i
\(738\) 0 0
\(739\) 22.0318 + 38.1602i 0.810454 + 1.40375i 0.912547 + 0.408972i \(0.134113\pi\)
−0.102093 + 0.994775i \(0.532554\pi\)
\(740\) 36.8092 12.7742i 1.35313 0.469590i
\(741\) 0 0
\(742\) −0.662230 0.0629562i −0.0243112 0.00231119i
\(743\) −6.42946 + 5.39496i −0.235874 + 0.197922i −0.753061 0.657950i \(-0.771424\pi\)
0.517187 + 0.855872i \(0.326979\pi\)
\(744\) 0 0
\(745\) 39.5782 14.4053i 1.45003 0.527769i
\(746\) −1.82533 + 6.61303i −0.0668302 + 0.242120i
\(747\) 0 0
\(748\) −10.6092 6.33976i −0.387913 0.231805i
\(749\) −4.93709 + 27.9996i −0.180397 + 1.02308i
\(750\) 0 0
\(751\) 7.74342 21.2749i 0.282561 0.776331i −0.714494 0.699642i \(-0.753343\pi\)
0.997055 0.0766890i \(-0.0244348\pi\)
\(752\) 0.841704 + 5.78556i 0.0306938 + 0.210977i
\(753\) 0 0
\(754\) −1.67321 20.9360i −0.0609347 0.762443i
\(755\) 6.21370i 0.226140i
\(756\) 0 0
\(757\) 19.5088i 0.709058i 0.935045 + 0.354529i \(0.115359\pi\)
−0.935045 + 0.354529i \(0.884641\pi\)
\(758\) 44.5277 3.55867i 1.61732 0.129257i
\(759\) 0 0
\(760\) −38.0235 + 51.7782i −1.37926 + 1.87819i
\(761\) 9.62500 26.4445i 0.348906 0.958612i −0.633809 0.773489i \(-0.718510\pi\)
0.982715 0.185122i \(-0.0592682\pi\)
\(762\) 0 0
\(763\) 2.86840 16.2675i 0.103843 0.588924i
\(764\) −18.7683 11.2154i −0.679015 0.405758i
\(765\) 0 0
\(766\) −7.73651 2.13544i −0.279532 0.0771565i
\(767\) −2.03797 + 0.741760i −0.0735868 + 0.0267834i
\(768\) 0 0
\(769\) 12.3157 10.3341i 0.444117 0.372658i −0.393130 0.919483i \(-0.628608\pi\)
0.837247 + 0.546824i \(0.184163\pi\)
\(770\) −1.49190 + 15.6932i −0.0537644 + 0.565543i
\(771\) 0 0
\(772\) 1.92204 + 5.53839i 0.0691756 + 0.199331i
\(773\) −6.27436 10.8675i −0.225673 0.390877i 0.730848 0.682540i \(-0.239125\pi\)
−0.956521 + 0.291663i \(0.905791\pi\)
\(774\) 0 0
\(775\) −6.11265 3.52914i −0.219573 0.126770i
\(776\) 4.89366 3.26467i 0.175672 0.117195i
\(777\) 0 0
\(778\) −10.5413 + 4.81939i −0.377926 + 0.172784i
\(779\) 58.5229 10.3192i 2.09680 0.369722i
\(780\) 0 0
\(781\) −5.38215 + 6.41420i −0.192589 + 0.229518i
\(782\) 23.2232 + 23.5750i 0.830462 + 0.843039i
\(783\) 0 0
\(784\) −0.980902 0.0294975i −0.0350322 0.00105348i
\(785\) −1.40687 + 1.67664i −0.0502134 + 0.0598420i
\(786\) 0 0
\(787\) −3.64035 20.6454i −0.129764 0.735930i −0.978363 0.206894i \(-0.933665\pi\)
0.848599 0.529037i \(-0.177447\pi\)
\(788\) 2.00323 5.25662i 0.0713623 0.187259i
\(789\) 0 0
\(790\) 32.1244 22.1358i 1.14294 0.787557i
\(791\) 4.58533 7.94202i 0.163036 0.282386i
\(792\) 0 0
\(793\) 16.5452 + 28.6571i 0.587536 + 1.01764i
\(794\) 37.1807 + 17.6790i 1.31949 + 0.627406i
\(795\) 0 0
\(796\) −1.56616 + 1.27454i −0.0555109 + 0.0451749i
\(797\) 21.2235 17.8086i 0.751775 0.630814i −0.184197 0.982889i \(-0.558968\pi\)
0.935972 + 0.352075i \(0.114524\pi\)
\(798\) 0 0
\(799\) 1.89822 + 5.21531i 0.0671541 + 0.184504i
\(800\) 10.5156 + 3.24568i 0.371781 + 0.114752i
\(801\) 0 0
\(802\) −19.0033 + 4.93915i −0.671030 + 0.174407i
\(803\) 8.42472 + 1.48550i 0.297302 + 0.0524223i
\(804\) 0 0
\(805\) 14.4362 39.6632i 0.508810 1.39794i
\(806\) −12.2531 8.71768i −0.431597 0.307067i
\(807\) 0 0
\(808\) −3.26367 50.3576i −0.114816 1.77157i
\(809\) 21.9542i 0.771867i −0.922527 0.385933i \(-0.873879\pi\)
0.922527 0.385933i \(-0.126121\pi\)
\(810\) 0 0
\(811\) −17.4685 −0.613401 −0.306700 0.951806i \(-0.599225\pi\)
−0.306700 + 0.951806i \(0.599225\pi\)
\(812\) −19.9203 17.2319i −0.699065 0.604722i
\(813\) 0 0
\(814\) 13.8626 + 9.86277i 0.485883 + 0.345690i
\(815\) 27.8994 + 10.1546i 0.977274 + 0.355699i
\(816\) 0 0
\(817\) −6.01685 + 34.1233i −0.210503 + 1.19382i
\(818\) −5.85623 22.5318i −0.204758 0.787804i
\(819\) 0 0
\(820\) −17.6973 31.7452i −0.618017 1.10859i
\(821\) 40.3394 14.6823i 1.40786 0.512417i 0.477355 0.878710i \(-0.341595\pi\)
0.930500 + 0.366293i \(0.119373\pi\)
\(822\) 0 0
\(823\) −17.8062 21.2206i −0.620686 0.739705i 0.360502 0.932758i \(-0.382605\pi\)
−0.981188 + 0.193053i \(0.938161\pi\)
\(824\) −3.89079 + 35.2883i −0.135542 + 1.22933i
\(825\) 0 0
\(826\) −1.16794 + 2.45628i −0.0406378 + 0.0854650i
\(827\) −23.1043 + 13.3392i −0.803414 + 0.463851i −0.844663 0.535298i \(-0.820199\pi\)
0.0412497 + 0.999149i \(0.486866\pi\)
\(828\) 0 0
\(829\) −2.23315 1.28931i −0.0775606 0.0447796i 0.460718 0.887547i \(-0.347592\pi\)
−0.538279 + 0.842767i \(0.680925\pi\)
\(830\) 35.3150 24.3343i 1.22580 0.844657i
\(831\) 0 0
\(832\) 21.6486 + 9.00424i 0.750532 + 0.312166i
\(833\) −0.917434 + 0.161768i −0.0317872 + 0.00560494i
\(834\) 0 0
\(835\) −35.2753 29.5995i −1.22075 1.02433i
\(836\) −28.0472 0.421619i −0.970031 0.0145820i
\(837\) 0 0
\(838\) −16.1032 16.3471i −0.556276 0.564701i
\(839\) 27.0517 + 22.6991i 0.933928 + 0.783659i 0.976518 0.215434i \(-0.0691166\pi\)
−0.0425905 + 0.999093i \(0.513561\pi\)
\(840\) 0 0
\(841\) −0.577037 3.27254i −0.0198978 0.112846i
\(842\) −0.311855 0.682114i −0.0107472 0.0235072i
\(843\) 0 0
\(844\) −8.32744 1.59777i −0.286642 0.0549975i
\(845\) −5.81151 + 10.0658i −0.199922 + 0.346275i
\(846\) 0 0
\(847\) 18.7974 10.8527i 0.645887 0.372903i
\(848\) −0.687421 + 0.227044i −0.0236061 + 0.00779671i
\(849\) 0 0
\(850\) 10.4002 + 0.988712i 0.356723 + 0.0339125i
\(851\) −29.2812 34.8959i −1.00375 1.19622i
\(852\) 0 0
\(853\) 11.8972 + 32.6874i 0.407354 + 1.11919i 0.958576 + 0.284837i \(0.0919393\pi\)
−0.551222 + 0.834358i \(0.685838\pi\)
\(854\) 40.0023 + 11.0415i 1.36885 + 0.377832i
\(855\) 0 0
\(856\) 7.33245 + 30.0603i 0.250618 + 1.02744i
\(857\) 14.7995 + 2.60955i 0.505541 + 0.0891405i 0.420601 0.907246i \(-0.361819\pi\)
0.0849397 + 0.996386i \(0.472930\pi\)
\(858\) 0 0
\(859\) −11.2421 4.09177i −0.383574 0.139610i 0.143034 0.989718i \(-0.454314\pi\)
−0.526608 + 0.850108i \(0.676536\pi\)
\(860\) 20.9228 3.36582i 0.713463 0.114773i
\(861\) 0 0
\(862\) −17.3282 + 1.38488i −0.590203 + 0.0471692i
\(863\) 4.99128 0.169905 0.0849526 0.996385i \(-0.472926\pi\)
0.0849526 + 0.996385i \(0.472926\pi\)
\(864\) 0 0
\(865\) 49.0210 1.66676
\(866\) 20.7098 1.65513i 0.703747 0.0562437i
\(867\) 0 0
\(868\) −18.6194 + 2.99526i −0.631983 + 0.101666i
\(869\) 16.0074 + 5.82624i 0.543016 + 0.197641i
\(870\) 0 0
\(871\) −39.6216 6.98635i −1.34253 0.236724i
\(872\) −4.26008 17.4648i −0.144265 0.591432i
\(873\) 0 0
\(874\) 72.3989 + 19.9836i 2.44893 + 0.675955i
\(875\) 7.15570 + 19.6601i 0.241907 + 0.664634i
\(876\) 0 0
\(877\) 13.3228 + 15.8774i 0.449878 + 0.536143i 0.942547 0.334073i \(-0.108423\pi\)
−0.492670 + 0.870217i \(0.663979\pi\)
\(878\) −41.2418 3.92073i −1.39184 0.132318i
\(879\) 0 0
\(880\) 5.38036 + 16.2901i 0.181372 + 0.549140i
\(881\) −7.33774 + 4.23645i −0.247215 + 0.142729i −0.618488 0.785794i \(-0.712255\pi\)
0.371274 + 0.928524i \(0.378921\pi\)
\(882\) 0 0
\(883\) 9.03674 15.6521i 0.304111 0.526735i −0.672952 0.739686i \(-0.734974\pi\)
0.977063 + 0.212951i \(0.0683074\pi\)
\(884\) 21.8590 + 4.19404i 0.735197 + 0.141061i
\(885\) 0 0
\(886\) 19.9599 + 43.6579i 0.670567 + 1.46671i
\(887\) −3.87890 21.9983i −0.130241 0.738632i −0.978056 0.208341i \(-0.933194\pi\)
0.847816 0.530291i \(-0.177917\pi\)
\(888\) 0 0
\(889\) −36.3096 30.4674i −1.21779 1.02184i
\(890\) −0.638038 0.647701i −0.0213871 0.0217110i
\(891\) 0 0
\(892\) 31.9706 + 0.480597i 1.07045 + 0.0160916i
\(893\) 9.64933 + 8.09675i 0.322903 + 0.270948i
\(894\) 0 0
\(895\) −18.3904 + 3.24272i −0.614723 + 0.108392i
\(896\) 27.2657 11.0081i 0.910883 0.367756i
\(897\) 0 0
\(898\) 20.7094 14.2702i 0.691083 0.476201i
\(899\) 15.9215 + 9.19228i 0.531012 + 0.306580i
\(900\) 0 0
\(901\) −0.595165 + 0.343619i −0.0198278 + 0.0114476i
\(902\) 6.81485 14.3323i 0.226910 0.477213i
\(903\) 0 0
\(904\) 1.09377 9.92019i 0.0363783 0.329940i
\(905\) 0.254017 + 0.302725i 0.00844380 + 0.0100629i
\(906\) 0 0
\(907\) 37.7812 13.7512i 1.25450 0.456602i 0.372583 0.927999i \(-0.378472\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(908\) −1.67436 3.00345i −0.0555657 0.0996731i
\(909\) 0 0
\(910\) −7.14140 27.4765i −0.236735 0.910836i
\(911\) 1.26349 7.16560i 0.0418613 0.237407i −0.956697 0.291086i \(-0.905984\pi\)
0.998558 + 0.0536786i \(0.0170946\pi\)
\(912\) 0 0
\(913\) 17.5973 + 6.40489i 0.582386 + 0.211971i
\(914\) 13.8683 + 9.86686i 0.458723 + 0.326367i
\(915\) 0 0
\(916\) −13.9306 12.0506i −0.460280 0.398162i
\(917\) −10.8339 −0.357766
\(918\) 0 0
\(919\) 24.9111i 0.821741i 0.911694 + 0.410870i \(0.134775\pi\)
−0.911694 + 0.410870i \(0.865225\pi\)
\(920\) −2.97082 45.8390i −0.0979451 1.51127i
\(921\) 0 0
\(922\) −18.9745 13.4997i −0.624892 0.444591i
\(923\) 5.15741 14.1699i 0.169758 0.466406i
\(924\) 0 0
\(925\) −14.1625 2.49723i −0.465660 0.0821084i
\(926\) −5.33643 + 1.38699i −0.175366 + 0.0455794i
\(927\) 0 0
\(928\) −27.3897 8.45395i −0.899110 0.277514i
\(929\) −12.8203 35.2236i −0.420621 1.15565i −0.951352 0.308107i \(-0.900305\pi\)
0.530730 0.847541i \(-0.321918\pi\)
\(930\) 0 0
\(931\) −1.61967 + 1.35906i −0.0530825 + 0.0445415i
\(932\) −30.0336 + 24.4414i −0.983782 + 0.800604i
\(933\) 0 0
\(934\) 12.3586 + 5.87639i 0.404386 + 0.192281i
\(935\) 8.14289 + 14.1039i 0.266301 + 0.461247i
\(936\) 0 0
\(937\) 4.91136 8.50673i 0.160447 0.277903i −0.774582 0.632474i \(-0.782040\pi\)
0.935029 + 0.354571i \(0.115373\pi\)
\(938\) −41.5470 + 28.6286i −1.35656 + 0.934758i
\(939\) 0 0
\(940\) 2.74342 7.19891i 0.0894804 0.234803i
\(941\) 1.11021 + 6.29630i 0.0361918 + 0.205254i 0.997542 0.0700759i \(-0.0223242\pi\)
−0.961350 + 0.275330i \(0.911213\pi\)
\(942\) 0 0
\(943\) −27.3138 + 32.5513i −0.889459 + 1.06002i
\(944\) −0.0889704 + 2.95860i −0.00289574 + 0.0962943i
\(945\) 0 0
\(946\) 6.49378 + 6.59213i 0.211131 + 0.214329i
\(947\) −2.56959 + 3.06232i −0.0835006 + 0.0995121i −0.806177 0.591674i \(-0.798467\pi\)
0.722677 + 0.691186i \(0.242912\pi\)
\(948\) 0 0
\(949\) −15.1721 + 2.67525i −0.492508 + 0.0868424i
\(950\) 21.5638 9.85875i 0.699623 0.319860i
\(951\) 0 0
\(952\) 23.2202 15.4907i 0.752571 0.502057i
\(953\) −38.3667 22.1510i −1.24282 0.717542i −0.273152 0.961971i \(-0.588066\pi\)
−0.969667 + 0.244428i \(0.921400\pi\)
\(954\) 0 0
\(955\) 14.4052 + 24.9506i 0.466142 + 0.807382i
\(956\) −3.03504 8.74554i −0.0981603 0.282851i
\(957\) 0 0
\(958\) 0.271751 2.85852i 0.00877987 0.0923546i
\(959\) 31.7348 26.6286i 1.02477 0.859883i
\(960\) 0 0
\(961\) −16.7611 + 6.10053i −0.540680 + 0.196791i
\(962\) −29.5345 8.15215i −0.952232 0.262836i
\(963\) 0 0
\(964\) 47.2962 + 28.2627i 1.52331 + 0.910281i
\(965\) 1.34143 7.60761i 0.0431820 0.244897i
\(966\) 0 0
\(967\) 8.11445 22.2943i 0.260943 0.716935i −0.738161 0.674624i \(-0.764306\pi\)
0.999104 0.0423110i \(-0.0134720\pi\)
\(968\) 13.9816 19.0394i 0.449387 0.611949i
\(969\) 0 0
\(970\) −7.72703 + 0.617547i −0.248100 + 0.0198282i
\(971\) 23.3729i 0.750071i 0.927010 + 0.375036i \(0.122369\pi\)
−0.927010 + 0.375036i \(0.877631\pi\)
\(972\) 0 0
\(973\) 6.16061i 0.197500i
\(974\) 0.865004 + 10.8233i 0.0277165 + 0.346802i
\(975\) 0 0
\(976\) 44.6915 6.50188i 1.43054 0.208120i
\(977\) −17.9667 + 49.3632i −0.574807 + 1.57927i 0.222007 + 0.975045i \(0.428739\pi\)
−0.796814 + 0.604224i \(0.793483\pi\)
\(978\) 0 0
\(979\) 0.0689371 0.390962i 0.00220324 0.0124952i
\(980\) 1.11004 + 0.663324i 0.0354589 + 0.0211891i
\(981\) 0 0
\(982\) −6.85558 + 24.8372i −0.218770 + 0.792586i
\(983\) 10.1837 3.70656i 0.324809 0.118221i −0.174469 0.984663i \(-0.555821\pi\)
0.499278 + 0.866442i \(0.333599\pi\)
\(984\) 0 0
\(985\) −5.67841 + 4.76475i −0.180929 + 0.151817i
\(986\) −27.0891 2.57528i −0.862692 0.0820136i
\(987\) 0 0
\(988\) 47.7239 16.5620i 1.51830 0.526909i
\(989\) −12.3882 21.4570i −0.393923 0.682294i
\(990\) 0 0
\(991\) 37.1953 + 21.4747i 1.18155 + 0.682167i 0.956372 0.292152i \(-0.0943712\pi\)
0.225175 + 0.974318i \(0.427705\pi\)
\(992\) −17.2425 + 11.1320i −0.547448 + 0.353441i
\(993\) 0 0
\(994\) −7.86297 17.1985i −0.249398 0.545503i
\(995\) 2.62034 0.462037i 0.0830704 0.0146475i
\(996\) 0 0
\(997\) 27.5401 32.8210i 0.872204 1.03945i −0.126667 0.991945i \(-0.540428\pi\)
0.998871 0.0475071i \(-0.0151277\pi\)
\(998\) −0.782033 + 0.770366i −0.0247548 + 0.0243855i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.v.b.35.31 192
3.2 odd 2 216.2.v.b.11.2 192
8.3 odd 2 inner 648.2.v.b.35.16 192
12.11 even 2 864.2.bh.b.335.18 192
24.5 odd 2 864.2.bh.b.335.17 192
24.11 even 2 216.2.v.b.11.17 yes 192
27.5 odd 18 inner 648.2.v.b.611.16 192
27.22 even 9 216.2.v.b.59.17 yes 192
108.103 odd 18 864.2.bh.b.815.17 192
216.59 even 18 inner 648.2.v.b.611.31 192
216.157 even 18 864.2.bh.b.815.18 192
216.211 odd 18 216.2.v.b.59.2 yes 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.2 192 3.2 odd 2
216.2.v.b.11.17 yes 192 24.11 even 2
216.2.v.b.59.2 yes 192 216.211 odd 18
216.2.v.b.59.17 yes 192 27.22 even 9
648.2.v.b.35.16 192 8.3 odd 2 inner
648.2.v.b.35.31 192 1.1 even 1 trivial
648.2.v.b.611.16 192 27.5 odd 18 inner
648.2.v.b.611.31 192 216.59 even 18 inner
864.2.bh.b.335.17 192 24.5 odd 2
864.2.bh.b.335.18 192 12.11 even 2
864.2.bh.b.815.17 192 108.103 odd 18
864.2.bh.b.815.18 192 216.157 even 18