Properties

Label 648.2.v.b.35.28
Level $648$
Weight $2$
Character 648.35
Analytic conductor $5.174$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(35,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.v (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 35.28
Character \(\chi\) \(=\) 648.35
Dual form 648.2.v.b.611.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.27615 + 0.609466i) q^{2} +(1.25710 + 1.55554i) q^{4} +(0.426624 + 0.155279i) q^{5} +(1.28150 + 0.225962i) q^{7} +(0.656202 + 2.75125i) q^{8} +(0.449799 + 0.458171i) q^{10} +(-0.00602720 - 0.0165596i) q^{11} +(1.43581 + 1.71113i) q^{13} +(1.49766 + 1.06939i) q^{14} +(-0.839384 + 3.91094i) q^{16} +(-1.27216 + 0.734483i) q^{17} +(0.677841 - 1.17406i) q^{19} +(0.294769 + 0.858831i) q^{20} +(0.00240091 - 0.0248058i) q^{22} +(-0.369486 - 2.09546i) q^{23} +(-3.67233 - 3.08145i) q^{25} +(0.789428 + 3.05873i) q^{26} +(1.25948 + 2.27747i) q^{28} +(5.56933 + 4.67322i) q^{29} +(8.87753 - 1.56535i) q^{31} +(-3.45476 + 4.47936i) q^{32} +(-2.07111 + 0.161969i) q^{34} +(0.511630 + 0.295390i) q^{35} +(-4.58718 + 2.64841i) q^{37} +(1.58057 - 1.08515i) q^{38} +(-0.147259 + 1.27565i) q^{40} +(-1.56527 - 1.86542i) q^{41} +(-10.1956 + 3.71089i) q^{43} +(0.0181822 - 0.0301926i) q^{44} +(0.805592 - 2.89930i) q^{46} +(0.791397 - 4.48824i) q^{47} +(-4.98668 - 1.81500i) q^{49} +(-2.80839 - 6.17054i) q^{50} +(-0.856765 + 4.38452i) q^{52} +10.4085 q^{53} -0.00800062i q^{55} +(0.219241 + 3.67400i) q^{56} +(4.25911 + 9.35804i) q^{58} +(3.75319 - 10.3118i) q^{59} +(-8.87057 - 1.56412i) q^{61} +(12.2831 + 3.41294i) q^{62} +(-7.13880 + 3.61076i) q^{64} +(0.346849 + 0.952961i) q^{65} +(3.70041 - 3.10502i) q^{67} +(-2.74175 - 1.05557i) q^{68} +(0.472885 + 0.688782i) q^{70} +(-5.03714 - 8.72458i) q^{71} +(-0.339460 + 0.587962i) q^{73} +(-7.46803 + 0.584031i) q^{74} +(2.67840 - 0.421502i) q^{76} +(-0.00398198 - 0.0225829i) q^{77} +(5.19665 - 6.19313i) q^{79} +(-0.965387 + 1.53816i) q^{80} +(-0.860607 - 3.33452i) q^{82} +(-1.29122 + 1.53881i) q^{83} +(-0.656785 + 0.115809i) q^{85} +(-15.2727 - 1.47822i) q^{86} +(0.0416046 - 0.0274488i) q^{88} +(0.103744 + 0.0598964i) q^{89} +(1.45333 + 2.51724i) q^{91} +(2.79508 - 3.20896i) q^{92} +(3.74536 - 5.24532i) q^{94} +(0.471489 - 0.395626i) q^{95} +(-10.4801 + 3.81446i) q^{97} +(-5.25755 - 5.35542i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 6 q^{2} - 6 q^{4} + 9 q^{8} - 3 q^{10} + 30 q^{11} - 9 q^{14} - 6 q^{16} + 18 q^{17} - 6 q^{19} + 27 q^{20} - 18 q^{22} - 12 q^{25} - 12 q^{28} + 36 q^{32} + 12 q^{34} + 18 q^{35} + 102 q^{38} + 9 q^{40}+ \cdots - 162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27615 + 0.609466i 0.902372 + 0.430957i
\(3\) 0 0
\(4\) 1.25710 + 1.55554i 0.628551 + 0.777768i
\(5\) 0.426624 + 0.155279i 0.190792 + 0.0694427i 0.435649 0.900116i \(-0.356519\pi\)
−0.244857 + 0.969559i \(0.578741\pi\)
\(6\) 0 0
\(7\) 1.28150 + 0.225962i 0.484360 + 0.0854057i 0.410495 0.911863i \(-0.365356\pi\)
0.0738642 + 0.997268i \(0.476467\pi\)
\(8\) 0.656202 + 2.75125i 0.232003 + 0.972715i
\(9\) 0 0
\(10\) 0.449799 + 0.458171i 0.142239 + 0.144887i
\(11\) −0.00602720 0.0165596i −0.00181727 0.00499290i 0.938781 0.344515i \(-0.111957\pi\)
−0.940598 + 0.339522i \(0.889735\pi\)
\(12\) 0 0
\(13\) 1.43581 + 1.71113i 0.398222 + 0.474582i 0.927477 0.373881i \(-0.121973\pi\)
−0.529255 + 0.848463i \(0.677529\pi\)
\(14\) 1.49766 + 1.06939i 0.400267 + 0.285806i
\(15\) 0 0
\(16\) −0.839384 + 3.91094i −0.209846 + 0.977734i
\(17\) −1.27216 + 0.734483i −0.308545 + 0.178138i −0.646275 0.763105i \(-0.723674\pi\)
0.337730 + 0.941243i \(0.390341\pi\)
\(18\) 0 0
\(19\) 0.677841 1.17406i 0.155507 0.269347i −0.777736 0.628591i \(-0.783632\pi\)
0.933244 + 0.359244i \(0.116965\pi\)
\(20\) 0.294769 + 0.858831i 0.0659124 + 0.192040i
\(21\) 0 0
\(22\) 0.00240091 0.0248058i 0.000511876 0.00528862i
\(23\) −0.369486 2.09546i −0.0770432 0.436933i −0.998792 0.0491452i \(-0.984350\pi\)
0.921748 0.387788i \(-0.126761\pi\)
\(24\) 0 0
\(25\) −3.67233 3.08145i −0.734465 0.616289i
\(26\) 0.789428 + 3.05873i 0.154820 + 0.599866i
\(27\) 0 0
\(28\) 1.25948 + 2.27747i 0.238019 + 0.430401i
\(29\) 5.56933 + 4.67322i 1.03420 + 0.867796i 0.991345 0.131286i \(-0.0419105\pi\)
0.0428540 + 0.999081i \(0.486355\pi\)
\(30\) 0 0
\(31\) 8.87753 1.56535i 1.59445 0.281145i 0.695279 0.718740i \(-0.255281\pi\)
0.899172 + 0.437595i \(0.144170\pi\)
\(32\) −3.45476 + 4.47936i −0.610721 + 0.791846i
\(33\) 0 0
\(34\) −2.07111 + 0.161969i −0.355192 + 0.0277775i
\(35\) 0.511630 + 0.295390i 0.0864813 + 0.0499300i
\(36\) 0 0
\(37\) −4.58718 + 2.64841i −0.754128 + 0.435396i −0.827183 0.561932i \(-0.810058\pi\)
0.0730557 + 0.997328i \(0.476725\pi\)
\(38\) 1.58057 1.08515i 0.256403 0.176034i
\(39\) 0 0
\(40\) −0.147259 + 1.27565i −0.0232837 + 0.201697i
\(41\) −1.56527 1.86542i −0.244454 0.291329i 0.629841 0.776724i \(-0.283120\pi\)
−0.874295 + 0.485395i \(0.838676\pi\)
\(42\) 0 0
\(43\) −10.1956 + 3.71089i −1.55481 + 0.565906i −0.969541 0.244930i \(-0.921235\pi\)
−0.585273 + 0.810836i \(0.699013\pi\)
\(44\) 0.0181822 0.0301926i 0.00274107 0.00455171i
\(45\) 0 0
\(46\) 0.805592 2.89930i 0.118778 0.427479i
\(47\) 0.791397 4.48824i 0.115437 0.654676i −0.871096 0.491113i \(-0.836590\pi\)
0.986533 0.163563i \(-0.0522988\pi\)
\(48\) 0 0
\(49\) −4.98668 1.81500i −0.712382 0.259286i
\(50\) −2.80839 6.17054i −0.397166 0.872646i
\(51\) 0 0
\(52\) −0.856765 + 4.38452i −0.118812 + 0.608023i
\(53\) 10.4085 1.42972 0.714860 0.699267i \(-0.246490\pi\)
0.714860 + 0.699267i \(0.246490\pi\)
\(54\) 0 0
\(55\) 0.00800062i 0.00107880i
\(56\) 0.219241 + 3.67400i 0.0292973 + 0.490958i
\(57\) 0 0
\(58\) 4.25911 + 9.35804i 0.559249 + 1.22877i
\(59\) 3.75319 10.3118i 0.488624 1.34248i −0.413302 0.910594i \(-0.635625\pi\)
0.901926 0.431890i \(-0.142153\pi\)
\(60\) 0 0
\(61\) −8.87057 1.56412i −1.13576 0.200265i −0.426010 0.904718i \(-0.640081\pi\)
−0.709750 + 0.704453i \(0.751192\pi\)
\(62\) 12.2831 + 3.41294i 1.55995 + 0.433443i
\(63\) 0 0
\(64\) −7.13880 + 3.61076i −0.892350 + 0.451345i
\(65\) 0.346849 + 0.952961i 0.0430214 + 0.118200i
\(66\) 0 0
\(67\) 3.70041 3.10502i 0.452078 0.379338i −0.388129 0.921605i \(-0.626878\pi\)
0.840206 + 0.542267i \(0.182434\pi\)
\(68\) −2.74175 1.05557i −0.332486 0.128007i
\(69\) 0 0
\(70\) 0.472885 + 0.688782i 0.0565206 + 0.0823252i
\(71\) −5.03714 8.72458i −0.597799 1.03542i −0.993145 0.116886i \(-0.962709\pi\)
0.395347 0.918532i \(-0.370624\pi\)
\(72\) 0 0
\(73\) −0.339460 + 0.587962i −0.0397308 + 0.0688158i −0.885207 0.465197i \(-0.845983\pi\)
0.845476 + 0.534013i \(0.179317\pi\)
\(74\) −7.46803 + 0.584031i −0.868141 + 0.0678922i
\(75\) 0 0
\(76\) 2.67840 0.421502i 0.307234 0.0483496i
\(77\) −0.00398198 0.0225829i −0.000453789 0.00257357i
\(78\) 0 0
\(79\) 5.19665 6.19313i 0.584669 0.696782i −0.389903 0.920856i \(-0.627491\pi\)
0.974572 + 0.224074i \(0.0719358\pi\)
\(80\) −0.965387 + 1.53816i −0.107934 + 0.171972i
\(81\) 0 0
\(82\) −0.860607 3.33452i −0.0950382 0.368237i
\(83\) −1.29122 + 1.53881i −0.141729 + 0.168907i −0.832240 0.554416i \(-0.812942\pi\)
0.690510 + 0.723323i \(0.257386\pi\)
\(84\) 0 0
\(85\) −0.656785 + 0.115809i −0.0712383 + 0.0125612i
\(86\) −15.2727 1.47822i −1.64690 0.159401i
\(87\) 0 0
\(88\) 0.0416046 0.0274488i 0.00443506 0.00292605i
\(89\) 0.103744 + 0.0598964i 0.0109968 + 0.00634901i 0.505488 0.862833i \(-0.331312\pi\)
−0.494492 + 0.869182i \(0.664646\pi\)
\(90\) 0 0
\(91\) 1.45333 + 2.51724i 0.152351 + 0.263879i
\(92\) 2.79508 3.20896i 0.291407 0.334557i
\(93\) 0 0
\(94\) 3.74536 5.24532i 0.386305 0.541013i
\(95\) 0.471489 0.395626i 0.0483738 0.0405904i
\(96\) 0 0
\(97\) −10.4801 + 3.81446i −1.06410 + 0.387299i −0.813966 0.580913i \(-0.802696\pi\)
−0.250130 + 0.968212i \(0.580474\pi\)
\(98\) −5.25755 5.35542i −0.531093 0.540979i
\(99\) 0 0
\(100\) 0.176811 9.58613i 0.0176811 0.958613i
\(101\) −2.89743 + 16.4321i −0.288305 + 1.63506i 0.404932 + 0.914347i \(0.367295\pi\)
−0.693237 + 0.720710i \(0.743816\pi\)
\(102\) 0 0
\(103\) 5.45676 14.9923i 0.537670 1.47724i −0.312082 0.950055i \(-0.601026\pi\)
0.849753 0.527182i \(-0.176751\pi\)
\(104\) −3.76557 + 5.07312i −0.369245 + 0.497461i
\(105\) 0 0
\(106\) 13.2828 + 6.34364i 1.29014 + 0.616149i
\(107\) 6.73607i 0.651200i −0.945508 0.325600i \(-0.894434\pi\)
0.945508 0.325600i \(-0.105566\pi\)
\(108\) 0 0
\(109\) 2.91699i 0.279397i −0.990194 0.139699i \(-0.955387\pi\)
0.990194 0.139699i \(-0.0446134\pi\)
\(110\) 0.00487610 0.0102100i 0.000464918 0.000973482i
\(111\) 0 0
\(112\) −1.95939 + 4.82218i −0.185145 + 0.455653i
\(113\) 6.67148 18.3297i 0.627600 1.72432i −0.0599724 0.998200i \(-0.519101\pi\)
0.687572 0.726116i \(-0.258677\pi\)
\(114\) 0 0
\(115\) 0.167748 0.951347i 0.0156426 0.0887136i
\(116\) −0.268145 + 14.5380i −0.0248967 + 1.34982i
\(117\) 0 0
\(118\) 11.0743 10.8719i 1.01947 1.00084i
\(119\) −1.79623 + 0.653776i −0.164661 + 0.0599315i
\(120\) 0 0
\(121\) 8.42625 7.07046i 0.766023 0.642769i
\(122\) −10.3669 7.40236i −0.938573 0.670178i
\(123\) 0 0
\(124\) 13.5949 + 11.8415i 1.22086 + 1.06340i
\(125\) −2.22323 3.85075i −0.198852 0.344422i
\(126\) 0 0
\(127\) −14.9938 8.65666i −1.33048 0.768154i −0.345108 0.938563i \(-0.612158\pi\)
−0.985373 + 0.170409i \(0.945491\pi\)
\(128\) −11.3108 + 0.257006i −0.999742 + 0.0227164i
\(129\) 0 0
\(130\) −0.138166 + 1.42751i −0.0121180 + 0.125201i
\(131\) 3.03491 0.535137i 0.265162 0.0467552i −0.0394865 0.999220i \(-0.512572\pi\)
0.304648 + 0.952465i \(0.401461\pi\)
\(132\) 0 0
\(133\) 1.13394 1.35138i 0.0983252 0.117179i
\(134\) 6.61467 1.70718i 0.571421 0.147478i
\(135\) 0 0
\(136\) −2.85554 3.01807i −0.244861 0.258797i
\(137\) −7.57425 + 9.02665i −0.647112 + 0.771198i −0.985476 0.169817i \(-0.945682\pi\)
0.338363 + 0.941016i \(0.390127\pi\)
\(138\) 0 0
\(139\) −0.930383 5.27646i −0.0789140 0.447544i −0.998505 0.0546659i \(-0.982591\pi\)
0.919591 0.392878i \(-0.128520\pi\)
\(140\) 0.183682 + 1.16719i 0.0155240 + 0.0986459i
\(141\) 0 0
\(142\) −1.11080 14.2038i −0.0932160 1.19196i
\(143\) 0.0196817 0.0340897i 0.00164587 0.00285073i
\(144\) 0 0
\(145\) 1.65036 + 2.85851i 0.137055 + 0.237386i
\(146\) −0.791544 + 0.543437i −0.0655086 + 0.0449752i
\(147\) 0 0
\(148\) −9.88625 3.80620i −0.812645 0.312868i
\(149\) −10.9918 + 9.22325i −0.900486 + 0.755598i −0.970285 0.241963i \(-0.922209\pi\)
0.0697991 + 0.997561i \(0.477764\pi\)
\(150\) 0 0
\(151\) 4.06790 + 11.1765i 0.331041 + 0.909528i 0.987842 + 0.155464i \(0.0496872\pi\)
−0.656800 + 0.754065i \(0.728091\pi\)
\(152\) 3.67492 + 1.09450i 0.298076 + 0.0887753i
\(153\) 0 0
\(154\) 0.00868194 0.0312460i 0.000699610 0.00251788i
\(155\) 4.03044 + 0.710675i 0.323733 + 0.0570828i
\(156\) 0 0
\(157\) −5.75062 + 15.7997i −0.458950 + 1.26095i 0.467319 + 0.884089i \(0.345220\pi\)
−0.926268 + 0.376865i \(0.877002\pi\)
\(158\) 10.4062 4.73616i 0.827873 0.376789i
\(159\) 0 0
\(160\) −2.16943 + 1.37455i −0.171509 + 0.108668i
\(161\) 2.76881i 0.218213i
\(162\) 0 0
\(163\) 10.1776 0.797169 0.398585 0.917132i \(-0.369502\pi\)
0.398585 + 0.917132i \(0.369502\pi\)
\(164\) 0.934016 4.77985i 0.0729344 0.373244i
\(165\) 0 0
\(166\) −2.58564 + 1.17680i −0.200684 + 0.0913372i
\(167\) 15.0723 + 5.48587i 1.16633 + 0.424509i 0.851355 0.524591i \(-0.175782\pi\)
0.314975 + 0.949100i \(0.398004\pi\)
\(168\) 0 0
\(169\) 1.39101 7.88879i 0.107000 0.606830i
\(170\) −0.908736 0.252499i −0.0696968 0.0193658i
\(171\) 0 0
\(172\) −18.5893 11.1946i −1.41742 0.853584i
\(173\) −12.7203 + 4.62982i −0.967109 + 0.351999i −0.776815 0.629729i \(-0.783166\pi\)
−0.190293 + 0.981727i \(0.560944\pi\)
\(174\) 0 0
\(175\) −4.00978 4.77867i −0.303111 0.361233i
\(176\) 0.0698226 0.00967213i 0.00526308 0.000729064i
\(177\) 0 0
\(178\) 0.0958874 + 0.139665i 0.00718706 + 0.0104683i
\(179\) −9.84897 + 5.68630i −0.736146 + 0.425014i −0.820667 0.571407i \(-0.806398\pi\)
0.0845201 + 0.996422i \(0.473064\pi\)
\(180\) 0 0
\(181\) 12.8369 + 7.41138i 0.954159 + 0.550884i 0.894370 0.447327i \(-0.147624\pi\)
0.0597883 + 0.998211i \(0.480957\pi\)
\(182\) 0.320491 + 4.09813i 0.0237564 + 0.303774i
\(183\) 0 0
\(184\) 5.52268 2.39159i 0.407138 0.176311i
\(185\) −2.36824 + 0.417585i −0.174117 + 0.0307015i
\(186\) 0 0
\(187\) 0.0198303 + 0.0166396i 0.00145014 + 0.00121681i
\(188\) 7.97648 4.41113i 0.581745 0.321715i
\(189\) 0 0
\(190\) 0.842810 0.217521i 0.0611439 0.0157806i
\(191\) −14.4389 12.1157i −1.04476 0.876659i −0.0522283 0.998635i \(-0.516632\pi\)
−0.992533 + 0.121976i \(0.961077\pi\)
\(192\) 0 0
\(193\) −0.366460 2.07830i −0.0263783 0.149599i 0.968774 0.247946i \(-0.0797556\pi\)
−0.995152 + 0.0983471i \(0.968644\pi\)
\(194\) −15.6990 1.51947i −1.12712 0.109092i
\(195\) 0 0
\(196\) −3.44547 10.0386i −0.246105 0.717043i
\(197\) 5.72884 9.92264i 0.408163 0.706959i −0.586521 0.809934i \(-0.699503\pi\)
0.994684 + 0.102975i \(0.0328362\pi\)
\(198\) 0 0
\(199\) −4.92181 + 2.84161i −0.348898 + 0.201436i −0.664200 0.747555i \(-0.731228\pi\)
0.315302 + 0.948991i \(0.397894\pi\)
\(200\) 6.06805 12.1256i 0.429076 0.857406i
\(201\) 0 0
\(202\) −13.7124 + 19.2039i −0.964798 + 1.35118i
\(203\) 6.08110 + 7.24717i 0.426809 + 0.508652i
\(204\) 0 0
\(205\) −0.378123 1.03889i −0.0264093 0.0725589i
\(206\) 16.1009 15.8067i 1.12180 1.10130i
\(207\) 0 0
\(208\) −7.89732 + 4.17906i −0.547581 + 0.289766i
\(209\) −0.0235273 0.00414851i −0.00162742 0.000286958i
\(210\) 0 0
\(211\) 15.6412 + 5.69295i 1.07679 + 0.391919i 0.818711 0.574206i \(-0.194689\pi\)
0.258077 + 0.966124i \(0.416911\pi\)
\(212\) 13.0846 + 16.1908i 0.898653 + 1.11199i
\(213\) 0 0
\(214\) 4.10540 8.59621i 0.280640 0.587625i
\(215\) −4.92591 −0.335945
\(216\) 0 0
\(217\) 11.7302 0.796300
\(218\) 1.77781 3.72251i 0.120408 0.252120i
\(219\) 0 0
\(220\) 0.0124453 0.0100576i 0.000839059 0.000678083i
\(221\) −3.08338 1.12226i −0.207410 0.0754912i
\(222\) 0 0
\(223\) 2.73564 + 0.482367i 0.183192 + 0.0323017i 0.264491 0.964388i \(-0.414796\pi\)
−0.0812995 + 0.996690i \(0.525907\pi\)
\(224\) −5.43942 + 4.95963i −0.363437 + 0.331379i
\(225\) 0 0
\(226\) 19.6851 19.3254i 1.30944 1.28551i
\(227\) 8.45693 + 23.2352i 0.561306 + 1.54218i 0.817724 + 0.575611i \(0.195236\pi\)
−0.256418 + 0.966566i \(0.582542\pi\)
\(228\) 0 0
\(229\) 10.0744 + 12.0062i 0.665736 + 0.793393i 0.988197 0.153190i \(-0.0489546\pi\)
−0.322461 + 0.946583i \(0.604510\pi\)
\(230\) 0.793885 1.11182i 0.0523472 0.0733114i
\(231\) 0 0
\(232\) −9.20261 + 18.3892i −0.604181 + 1.20731i
\(233\) −17.5198 + 10.1151i −1.14776 + 0.662659i −0.948340 0.317255i \(-0.897239\pi\)
−0.199419 + 0.979914i \(0.563906\pi\)
\(234\) 0 0
\(235\) 1.03456 1.79190i 0.0674870 0.116891i
\(236\) 20.7585 7.12478i 1.35127 0.463784i
\(237\) 0 0
\(238\) −2.69071 0.260429i −0.174413 0.0168811i
\(239\) 1.48780 + 8.43773i 0.0962378 + 0.545791i 0.994361 + 0.106048i \(0.0338196\pi\)
−0.898123 + 0.439744i \(0.855069\pi\)
\(240\) 0 0
\(241\) 11.0727 + 9.29110i 0.713255 + 0.598492i 0.925510 0.378722i \(-0.123636\pi\)
−0.212255 + 0.977214i \(0.568081\pi\)
\(242\) 15.0623 3.88744i 0.968244 0.249894i
\(243\) 0 0
\(244\) −8.71818 15.7648i −0.558124 1.00924i
\(245\) −1.84561 1.54865i −0.117912 0.0989395i
\(246\) 0 0
\(247\) 2.98221 0.525844i 0.189754 0.0334587i
\(248\) 10.1321 + 23.3972i 0.643391 + 1.48572i
\(249\) 0 0
\(250\) −0.490270 6.26911i −0.0310074 0.396493i
\(251\) −12.7128 7.33976i −0.802427 0.463281i 0.0418921 0.999122i \(-0.486661\pi\)
−0.844319 + 0.535841i \(0.819995\pi\)
\(252\) 0 0
\(253\) −0.0324730 + 0.0187483i −0.00204156 + 0.00117869i
\(254\) −13.8583 20.1854i −0.869548 1.26654i
\(255\) 0 0
\(256\) −14.5909 6.56556i −0.911929 0.410348i
\(257\) 14.4703 + 17.2450i 0.902633 + 1.07572i 0.996782 + 0.0801575i \(0.0255423\pi\)
−0.0941497 + 0.995558i \(0.530013\pi\)
\(258\) 0 0
\(259\) −6.47689 + 2.35739i −0.402454 + 0.146481i
\(260\) −1.04634 + 1.73751i −0.0648912 + 0.107756i
\(261\) 0 0
\(262\) 4.19914 + 1.16676i 0.259424 + 0.0720828i
\(263\) 3.07511 17.4398i 0.189620 1.07539i −0.730255 0.683175i \(-0.760599\pi\)
0.919875 0.392212i \(-0.128290\pi\)
\(264\) 0 0
\(265\) 4.44053 + 1.61622i 0.272780 + 0.0992836i
\(266\) 2.27070 1.03346i 0.139225 0.0633655i
\(267\) 0 0
\(268\) 9.48177 + 1.85280i 0.579191 + 0.113178i
\(269\) 10.2475 0.624803 0.312402 0.949950i \(-0.398867\pi\)
0.312402 + 0.949950i \(0.398867\pi\)
\(270\) 0 0
\(271\) 18.7315i 1.13786i 0.822386 + 0.568929i \(0.192642\pi\)
−0.822386 + 0.568929i \(0.807358\pi\)
\(272\) −1.80468 5.59186i −0.109425 0.339056i
\(273\) 0 0
\(274\) −15.1673 + 6.90308i −0.916290 + 0.417030i
\(275\) −0.0288937 + 0.0793847i −0.00174235 + 0.00478708i
\(276\) 0 0
\(277\) −21.4560 3.78327i −1.28917 0.227315i −0.513299 0.858210i \(-0.671577\pi\)
−0.775868 + 0.630895i \(0.782688\pi\)
\(278\) 2.02852 7.30058i 0.121662 0.437860i
\(279\) 0 0
\(280\) −0.476959 + 1.60146i −0.0285038 + 0.0957055i
\(281\) 3.95262 + 10.8597i 0.235793 + 0.647837i 0.999996 + 0.00286067i \(0.000910580\pi\)
−0.764203 + 0.644976i \(0.776867\pi\)
\(282\) 0 0
\(283\) −3.28791 + 2.75888i −0.195446 + 0.163998i −0.735259 0.677786i \(-0.762939\pi\)
0.539813 + 0.841785i \(0.318495\pi\)
\(284\) 7.23920 18.8032i 0.429567 1.11576i
\(285\) 0 0
\(286\) 0.0458933 0.0315082i 0.00271373 0.00186312i
\(287\) −1.58437 2.74421i −0.0935226 0.161986i
\(288\) 0 0
\(289\) −7.42107 + 12.8537i −0.436533 + 0.756098i
\(290\) 0.363940 + 4.65372i 0.0213713 + 0.273276i
\(291\) 0 0
\(292\) −1.34133 + 0.211087i −0.0784956 + 0.0123529i
\(293\) −2.18285 12.3796i −0.127523 0.723221i −0.979777 0.200092i \(-0.935876\pi\)
0.852254 0.523129i \(-0.175235\pi\)
\(294\) 0 0
\(295\) 3.20241 3.81648i 0.186451 0.222204i
\(296\) −10.2966 10.8826i −0.598476 0.632538i
\(297\) 0 0
\(298\) −19.6485 + 5.07107i −1.13820 + 0.293759i
\(299\) 3.05509 3.64092i 0.176681 0.210560i
\(300\) 0 0
\(301\) −13.9041 + 2.45167i −0.801421 + 0.141312i
\(302\) −1.62043 + 16.7421i −0.0932455 + 0.963398i
\(303\) 0 0
\(304\) 4.02269 + 3.63648i 0.230717 + 0.208566i
\(305\) −3.54153 2.04470i −0.202787 0.117079i
\(306\) 0 0
\(307\) 7.46768 + 12.9344i 0.426203 + 0.738205i 0.996532 0.0832113i \(-0.0265176\pi\)
−0.570329 + 0.821416i \(0.693184\pi\)
\(308\) 0.0301228 0.0345832i 0.00171641 0.00197056i
\(309\) 0 0
\(310\) 4.71030 + 3.36334i 0.267527 + 0.191025i
\(311\) 0.935160 0.784692i 0.0530280 0.0444958i −0.615888 0.787833i \(-0.711203\pi\)
0.668916 + 0.743338i \(0.266758\pi\)
\(312\) 0 0
\(313\) −3.74180 + 1.36190i −0.211499 + 0.0769794i −0.445597 0.895234i \(-0.647009\pi\)
0.234098 + 0.972213i \(0.424786\pi\)
\(314\) −16.9680 + 16.6579i −0.957561 + 0.940062i
\(315\) 0 0
\(316\) 16.1664 + 0.298179i 0.909429 + 0.0167739i
\(317\) −1.28552 + 7.29053i −0.0722018 + 0.409477i 0.927190 + 0.374593i \(0.122217\pi\)
−0.999391 + 0.0348844i \(0.988894\pi\)
\(318\) 0 0
\(319\) 0.0438192 0.120392i 0.00245340 0.00674067i
\(320\) −3.60626 + 0.431935i −0.201596 + 0.0241459i
\(321\) 0 0
\(322\) 1.68750 3.53341i 0.0940404 0.196909i
\(323\) 1.99145i 0.110807i
\(324\) 0 0
\(325\) 10.7082i 0.593984i
\(326\) 12.9881 + 6.20288i 0.719343 + 0.343546i
\(327\) 0 0
\(328\) 4.10510 5.53055i 0.226666 0.305373i
\(329\) 2.02834 5.57283i 0.111826 0.307240i
\(330\) 0 0
\(331\) 0.520452 2.95163i 0.0286066 0.162236i −0.967158 0.254176i \(-0.918196\pi\)
0.995765 + 0.0919400i \(0.0293068\pi\)
\(332\) −4.01687 0.0740888i −0.220454 0.00406615i
\(333\) 0 0
\(334\) 15.8910 + 16.1868i 0.869518 + 0.885704i
\(335\) 2.06083 0.750081i 0.112595 0.0409813i
\(336\) 0 0
\(337\) −10.0788 + 8.45709i −0.549025 + 0.460687i −0.874611 0.484826i \(-0.838883\pi\)
0.325586 + 0.945513i \(0.394439\pi\)
\(338\) 6.58307 9.21948i 0.358072 0.501474i
\(339\) 0 0
\(340\) −1.00579 0.876069i −0.0545467 0.0475115i
\(341\) −0.0794281 0.137574i −0.00430127 0.00745003i
\(342\) 0 0
\(343\) −13.8688 8.00714i −0.748844 0.432345i
\(344\) −16.9000 25.6156i −0.911186 1.38110i
\(345\) 0 0
\(346\) −19.0547 1.84427i −1.02439 0.0991487i
\(347\) −28.8369 + 5.08472i −1.54804 + 0.272962i −0.881385 0.472400i \(-0.843388\pi\)
−0.666660 + 0.745362i \(0.732277\pi\)
\(348\) 0 0
\(349\) 13.4766 16.0608i 0.721385 0.859713i −0.273380 0.961906i \(-0.588141\pi\)
0.994765 + 0.102193i \(0.0325859\pi\)
\(350\) −2.20463 8.54210i −0.117843 0.456595i
\(351\) 0 0
\(352\) 0.0949988 + 0.0302114i 0.00506345 + 0.00161028i
\(353\) −2.02760 + 2.41640i −0.107918 + 0.128612i −0.817300 0.576213i \(-0.804530\pi\)
0.709381 + 0.704825i \(0.248974\pi\)
\(354\) 0 0
\(355\) −0.794226 4.50428i −0.0421532 0.239062i
\(356\) 0.0372454 + 0.236673i 0.00197400 + 0.0125436i
\(357\) 0 0
\(358\) −16.0343 + 1.25395i −0.847441 + 0.0662734i
\(359\) −15.2950 + 26.4917i −0.807240 + 1.39818i 0.107529 + 0.994202i \(0.465706\pi\)
−0.914768 + 0.403979i \(0.867627\pi\)
\(360\) 0 0
\(361\) 8.58106 + 14.8628i 0.451635 + 0.782255i
\(362\) 11.8648 + 17.2817i 0.623599 + 0.908304i
\(363\) 0 0
\(364\) −2.08868 + 5.42514i −0.109476 + 0.284355i
\(365\) −0.236120 + 0.198128i −0.0123591 + 0.0103705i
\(366\) 0 0
\(367\) 7.65245 + 21.0249i 0.399455 + 1.09749i 0.962551 + 0.271101i \(0.0873878\pi\)
−0.563096 + 0.826391i \(0.690390\pi\)
\(368\) 8.50535 + 0.313859i 0.443372 + 0.0163610i
\(369\) 0 0
\(370\) −3.27673 0.910464i −0.170349 0.0473327i
\(371\) 13.3385 + 2.35193i 0.692499 + 0.122106i
\(372\) 0 0
\(373\) −3.91132 + 10.7463i −0.202521 + 0.556421i −0.998824 0.0484764i \(-0.984563\pi\)
0.796304 + 0.604897i \(0.206786\pi\)
\(374\) 0.0151651 + 0.0333205i 0.000784170 + 0.00172296i
\(375\) 0 0
\(376\) 12.8676 0.767856i 0.663595 0.0395992i
\(377\) 16.2397i 0.836387i
\(378\) 0 0
\(379\) −21.7004 −1.11468 −0.557338 0.830286i \(-0.688177\pi\)
−0.557338 + 0.830286i \(0.688177\pi\)
\(380\) 1.20812 + 0.236075i 0.0619753 + 0.0121104i
\(381\) 0 0
\(382\) −11.0421 24.2614i −0.564961 1.24132i
\(383\) 31.1726 + 11.3459i 1.59285 + 0.579749i 0.977946 0.208856i \(-0.0669740\pi\)
0.614900 + 0.788605i \(0.289196\pi\)
\(384\) 0 0
\(385\) 0.00180784 0.0102528i 9.21359e−5 0.000522529i
\(386\) 0.798994 2.87556i 0.0406677 0.146362i
\(387\) 0 0
\(388\) −19.1081 11.5071i −0.970068 0.584182i
\(389\) 6.54404 2.38183i 0.331796 0.120764i −0.170750 0.985314i \(-0.554619\pi\)
0.502546 + 0.864551i \(0.332397\pi\)
\(390\) 0 0
\(391\) 2.00913 + 2.39438i 0.101606 + 0.121089i
\(392\) 1.72126 14.9106i 0.0869369 0.753100i
\(393\) 0 0
\(394\) 13.3584 9.17122i 0.672984 0.462039i
\(395\) 3.17868 1.83521i 0.159937 0.0923395i
\(396\) 0 0
\(397\) 31.8597 + 18.3942i 1.59899 + 0.923178i 0.991682 + 0.128712i \(0.0410841\pi\)
0.607308 + 0.794466i \(0.292249\pi\)
\(398\) −8.01281 + 0.626635i −0.401646 + 0.0314104i
\(399\) 0 0
\(400\) 15.1338 11.7757i 0.756692 0.588786i
\(401\) −3.00611 + 0.530059i −0.150118 + 0.0264699i −0.248202 0.968708i \(-0.579840\pi\)
0.0980840 + 0.995178i \(0.468729\pi\)
\(402\) 0 0
\(403\) 15.4250 + 12.9431i 0.768372 + 0.644740i
\(404\) −29.2031 + 16.1498i −1.45291 + 0.803483i
\(405\) 0 0
\(406\) 3.34347 + 12.9547i 0.165934 + 0.642930i
\(407\) 0.0715044 + 0.0599993i 0.00354434 + 0.00297406i
\(408\) 0 0
\(409\) −4.18256 23.7205i −0.206814 1.17290i −0.894559 0.446949i \(-0.852511\pi\)
0.687745 0.725952i \(-0.258601\pi\)
\(410\) 0.150624 1.55622i 0.00743879 0.0768564i
\(411\) 0 0
\(412\) 30.1808 10.3587i 1.48690 0.510337i
\(413\) 7.13978 12.3665i 0.351326 0.608514i
\(414\) 0 0
\(415\) −0.789809 + 0.455997i −0.0387702 + 0.0223840i
\(416\) −12.6251 + 0.519953i −0.618998 + 0.0254928i
\(417\) 0 0
\(418\) −0.0274960 0.0196332i −0.00134487 0.000960292i
\(419\) 19.0854 + 22.7451i 0.932383 + 1.11117i 0.993590 + 0.113046i \(0.0360607\pi\)
−0.0612068 + 0.998125i \(0.519495\pi\)
\(420\) 0 0
\(421\) −9.82045 26.9815i −0.478619 1.31500i −0.910666 0.413144i \(-0.864430\pi\)
0.432046 0.901851i \(-0.357792\pi\)
\(422\) 16.4909 + 16.7978i 0.802763 + 0.817706i
\(423\) 0 0
\(424\) 6.83010 + 28.6365i 0.331699 + 1.39071i
\(425\) 6.93506 + 1.22284i 0.336400 + 0.0593164i
\(426\) 0 0
\(427\) −11.0142 4.00883i −0.533013 0.194001i
\(428\) 10.4782 8.46793i 0.506483 0.409313i
\(429\) 0 0
\(430\) −6.28619 3.00218i −0.303147 0.144778i
\(431\) −26.5585 −1.27928 −0.639639 0.768675i \(-0.720916\pi\)
−0.639639 + 0.768675i \(0.720916\pi\)
\(432\) 0 0
\(433\) −1.55270 −0.0746180 −0.0373090 0.999304i \(-0.511879\pi\)
−0.0373090 + 0.999304i \(0.511879\pi\)
\(434\) 14.9695 + 7.14917i 0.718559 + 0.343171i
\(435\) 0 0
\(436\) 4.53749 3.66696i 0.217306 0.175616i
\(437\) −2.71064 0.986591i −0.129667 0.0471951i
\(438\) 0 0
\(439\) −1.13120 0.199460i −0.0539891 0.00951973i 0.146588 0.989198i \(-0.453171\pi\)
−0.200577 + 0.979678i \(0.564282\pi\)
\(440\) 0.0220117 0.00525002i 0.00104937 0.000250285i
\(441\) 0 0
\(442\) −3.25087 3.31138i −0.154628 0.157506i
\(443\) −5.79518 15.9221i −0.275337 0.756483i −0.997875 0.0651518i \(-0.979247\pi\)
0.722538 0.691331i \(-0.242975\pi\)
\(444\) 0 0
\(445\) 0.0349590 + 0.0416625i 0.00165721 + 0.00197499i
\(446\) 3.19709 + 2.28285i 0.151387 + 0.108096i
\(447\) 0 0
\(448\) −9.96423 + 3.01407i −0.470766 + 0.142401i
\(449\) 26.5725 15.3416i 1.25403 0.724017i 0.282126 0.959377i \(-0.408961\pi\)
0.971908 + 0.235361i \(0.0756272\pi\)
\(450\) 0 0
\(451\) −0.0214563 + 0.0371634i −0.00101034 + 0.00174996i
\(452\) 36.8993 12.6646i 1.73560 0.595694i
\(453\) 0 0
\(454\) −3.36879 + 34.8058i −0.158105 + 1.63352i
\(455\) 0.229153 + 1.29959i 0.0107428 + 0.0609257i
\(456\) 0 0
\(457\) 5.48725 + 4.60435i 0.256683 + 0.215382i 0.762044 0.647526i \(-0.224196\pi\)
−0.505361 + 0.862908i \(0.668641\pi\)
\(458\) 5.53905 + 21.4617i 0.258823 + 1.00284i
\(459\) 0 0
\(460\) 1.69073 0.935003i 0.0788308 0.0435948i
\(461\) 6.34887 + 5.32733i 0.295696 + 0.248119i 0.778550 0.627582i \(-0.215955\pi\)
−0.482854 + 0.875701i \(0.660400\pi\)
\(462\) 0 0
\(463\) −0.381159 + 0.0672086i −0.0177140 + 0.00312345i −0.182498 0.983206i \(-0.558418\pi\)
0.164784 + 0.986330i \(0.447307\pi\)
\(464\) −22.9515 + 17.8587i −1.06550 + 0.829068i
\(465\) 0 0
\(466\) −28.5226 + 2.23059i −1.32128 + 0.103330i
\(467\) 5.76908 + 3.33078i 0.266961 + 0.154130i 0.627506 0.778612i \(-0.284076\pi\)
−0.360545 + 0.932742i \(0.617409\pi\)
\(468\) 0 0
\(469\) 5.44368 3.14291i 0.251366 0.145126i
\(470\) 2.41235 1.65621i 0.111273 0.0763951i
\(471\) 0 0
\(472\) 30.8333 + 3.55935i 1.41922 + 0.163832i
\(473\) 0.122902 + 0.146469i 0.00565103 + 0.00673463i
\(474\) 0 0
\(475\) −6.10704 + 2.22278i −0.280210 + 0.101988i
\(476\) −3.27502 1.97224i −0.150110 0.0903977i
\(477\) 0 0
\(478\) −3.24386 + 11.6745i −0.148371 + 0.533981i
\(479\) −0.196814 + 1.11619i −0.00899268 + 0.0510000i −0.988974 0.148090i \(-0.952687\pi\)
0.979981 + 0.199090i \(0.0637986\pi\)
\(480\) 0 0
\(481\) −11.1181 4.04665i −0.506941 0.184511i
\(482\) 8.46779 + 18.6052i 0.385697 + 0.847446i
\(483\) 0 0
\(484\) 21.5910 + 4.21904i 0.981410 + 0.191774i
\(485\) −5.06338 −0.229916
\(486\) 0 0
\(487\) 41.9634i 1.90154i 0.309896 + 0.950771i \(0.399706\pi\)
−0.309896 + 0.950771i \(0.600294\pi\)
\(488\) −1.51760 25.4316i −0.0686983 1.15123i
\(489\) 0 0
\(490\) −1.41142 3.10114i −0.0637614 0.140095i
\(491\) 7.04382 19.3527i 0.317883 0.873377i −0.673119 0.739534i \(-0.735046\pi\)
0.991003 0.133843i \(-0.0427317\pi\)
\(492\) 0 0
\(493\) −10.5175 1.85452i −0.473684 0.0835233i
\(494\) 4.12622 + 1.14650i 0.185648 + 0.0515835i
\(495\) 0 0
\(496\) −1.32968 + 36.0334i −0.0597045 + 1.61795i
\(497\) −4.48365 12.3187i −0.201119 0.552570i
\(498\) 0 0
\(499\) 7.68110 6.44521i 0.343853 0.288527i −0.454463 0.890766i \(-0.650169\pi\)
0.798316 + 0.602239i \(0.205724\pi\)
\(500\) 3.19515 8.29911i 0.142891 0.371147i
\(501\) 0 0
\(502\) −11.7501 17.1146i −0.524433 0.763864i
\(503\) 12.3849 + 21.4513i 0.552216 + 0.956466i 0.998114 + 0.0613824i \(0.0195509\pi\)
−0.445898 + 0.895084i \(0.647116\pi\)
\(504\) 0 0
\(505\) −3.78767 + 6.56044i −0.168549 + 0.291936i
\(506\) −0.0528667 + 0.00413440i −0.00235021 + 0.000183796i
\(507\) 0 0
\(508\) −5.38297 34.2057i −0.238831 1.51763i
\(509\) −5.29018 30.0021i −0.234483 1.32982i −0.843700 0.536816i \(-0.819627\pi\)
0.609217 0.793004i \(-0.291484\pi\)
\(510\) 0 0
\(511\) −0.567874 + 0.676766i −0.0251213 + 0.0299383i
\(512\) −14.6186 17.2713i −0.646057 0.763289i
\(513\) 0 0
\(514\) 7.95597 + 30.8264i 0.350923 + 1.35969i
\(515\) 4.65597 5.54877i 0.205167 0.244508i
\(516\) 0 0
\(517\) −0.0790932 + 0.0139463i −0.00347852 + 0.000613356i
\(518\) −9.70221 0.939060i −0.426291 0.0412599i
\(519\) 0 0
\(520\) −2.39423 + 1.57961i −0.104994 + 0.0692703i
\(521\) 2.67309 + 1.54331i 0.117110 + 0.0676136i 0.557411 0.830237i \(-0.311795\pi\)
−0.440301 + 0.897850i \(0.645128\pi\)
\(522\) 0 0
\(523\) −6.24198 10.8114i −0.272943 0.472750i 0.696671 0.717390i \(-0.254664\pi\)
−0.969614 + 0.244640i \(0.921330\pi\)
\(524\) 4.64762 + 4.04820i 0.203032 + 0.176846i
\(525\) 0 0
\(526\) 14.5533 20.3816i 0.634553 0.888681i
\(527\) −10.1439 + 8.51177i −0.441877 + 0.370779i
\(528\) 0 0
\(529\) 17.3585 6.31798i 0.754717 0.274695i
\(530\) 4.68174 + 4.76889i 0.203362 + 0.207147i
\(531\) 0 0
\(532\) 3.52760 + 0.0650645i 0.152941 + 0.00282091i
\(533\) 0.944542 5.35676i 0.0409126 0.232027i
\(534\) 0 0
\(535\) 1.04597 2.87377i 0.0452211 0.124244i
\(536\) 10.9709 + 8.14326i 0.473871 + 0.351735i
\(537\) 0 0
\(538\) 13.0774 + 6.24552i 0.563805 + 0.269264i
\(539\) 0.0935167i 0.00402805i
\(540\) 0 0
\(541\) 35.0866i 1.50849i −0.656592 0.754246i \(-0.728003\pi\)
0.656592 0.754246i \(-0.271997\pi\)
\(542\) −11.4162 + 23.9042i −0.490368 + 1.02677i
\(543\) 0 0
\(544\) 1.10500 8.23593i 0.0473767 0.353113i
\(545\) 0.452947 1.24446i 0.0194021 0.0533069i
\(546\) 0 0
\(547\) −0.423952 + 2.40435i −0.0181269 + 0.102803i −0.992529 0.122010i \(-0.961066\pi\)
0.974402 + 0.224813i \(0.0721771\pi\)
\(548\) −23.5629 0.434604i −1.00656 0.0185654i
\(549\) 0 0
\(550\) −0.0852548 + 0.0836968i −0.00363528 + 0.00356884i
\(551\) 9.26174 3.37100i 0.394563 0.143609i
\(552\) 0 0
\(553\) 8.05890 6.76222i 0.342699 0.287559i
\(554\) −25.0752 17.9047i −1.06535 0.760699i
\(555\) 0 0
\(556\) 7.03814 8.08030i 0.298484 0.342681i
\(557\) 3.41195 + 5.90968i 0.144569 + 0.250401i 0.929212 0.369547i \(-0.120487\pi\)
−0.784643 + 0.619948i \(0.787154\pi\)
\(558\) 0 0
\(559\) −20.9888 12.1179i −0.887730 0.512531i
\(560\) −1.58471 + 1.75301i −0.0669660 + 0.0740781i
\(561\) 0 0
\(562\) −1.57451 + 16.2676i −0.0664167 + 0.686207i
\(563\) −20.6520 + 3.64150i −0.870377 + 0.153471i −0.590962 0.806699i \(-0.701252\pi\)
−0.279415 + 0.960170i \(0.590141\pi\)
\(564\) 0 0
\(565\) 5.69243 6.78397i 0.239482 0.285404i
\(566\) −5.87730 + 1.51687i −0.247041 + 0.0637589i
\(567\) 0 0
\(568\) 20.6982 19.5835i 0.868476 0.821707i
\(569\) 20.8313 24.8258i 0.873295 1.04075i −0.125521 0.992091i \(-0.540060\pi\)
0.998815 0.0486610i \(-0.0154954\pi\)
\(570\) 0 0
\(571\) −0.396543 2.24891i −0.0165948 0.0941139i 0.975385 0.220507i \(-0.0707711\pi\)
−0.991980 + 0.126393i \(0.959660\pi\)
\(572\) 0.0777697 0.0122387i 0.00325172 0.000511725i
\(573\) 0 0
\(574\) −0.349388 4.46764i −0.0145832 0.186476i
\(575\) −5.10017 + 8.83376i −0.212692 + 0.368393i
\(576\) 0 0
\(577\) −10.7395 18.6014i −0.447092 0.774387i 0.551103 0.834437i \(-0.314207\pi\)
−0.998195 + 0.0600507i \(0.980874\pi\)
\(578\) −17.3042 + 11.8803i −0.719762 + 0.494155i
\(579\) 0 0
\(580\) −2.37184 + 6.16064i −0.0984853 + 0.255806i
\(581\) −2.00240 + 1.68021i −0.0830736 + 0.0697070i
\(582\) 0 0
\(583\) −0.0627342 0.172361i −0.00259818 0.00713845i
\(584\) −1.84039 0.548119i −0.0761558 0.0226813i
\(585\) 0 0
\(586\) 4.75928 17.1285i 0.196604 0.707572i
\(587\) −18.6609 3.29041i −0.770216 0.135810i −0.225287 0.974292i \(-0.572332\pi\)
−0.544928 + 0.838483i \(0.683443\pi\)
\(588\) 0 0
\(589\) 4.17975 11.4838i 0.172224 0.473180i
\(590\) 6.41276 2.91863i 0.264009 0.120158i
\(591\) 0 0
\(592\) −6.50736 20.1632i −0.267451 0.828703i
\(593\) 23.6650i 0.971804i −0.874013 0.485902i \(-0.838491\pi\)
0.874013 0.485902i \(-0.161509\pi\)
\(594\) 0 0
\(595\) −0.867835 −0.0355778
\(596\) −28.1650 5.50363i −1.15368 0.225437i
\(597\) 0 0
\(598\) 6.11776 2.78437i 0.250174 0.113861i
\(599\) 8.37844 + 3.04950i 0.342334 + 0.124599i 0.507465 0.861672i \(-0.330583\pi\)
−0.165131 + 0.986272i \(0.552805\pi\)
\(600\) 0 0
\(601\) 4.44934 25.2334i 0.181492 1.02929i −0.748888 0.662697i \(-0.769412\pi\)
0.930380 0.366597i \(-0.119477\pi\)
\(602\) −19.2379 5.34540i −0.784080 0.217862i
\(603\) 0 0
\(604\) −12.2716 + 20.3777i −0.499326 + 0.829159i
\(605\) 4.69274 1.70802i 0.190787 0.0694407i
\(606\) 0 0
\(607\) −8.91382 10.6231i −0.361801 0.431177i 0.554182 0.832396i \(-0.313031\pi\)
−0.915982 + 0.401218i \(0.868587\pi\)
\(608\) 2.91723 + 7.09237i 0.118309 + 0.287634i
\(609\) 0 0
\(610\) −3.27334 4.76778i −0.132533 0.193042i
\(611\) 8.81625 5.09007i 0.356667 0.205922i
\(612\) 0 0
\(613\) 17.7329 + 10.2381i 0.716224 + 0.413512i 0.813361 0.581759i \(-0.197635\pi\)
−0.0971374 + 0.995271i \(0.530969\pi\)
\(614\) 1.64678 + 21.0575i 0.0664587 + 0.849811i
\(615\) 0 0
\(616\) 0.0595184 0.0257744i 0.00239807 0.00103848i
\(617\) −45.9610 + 8.10416i −1.85032 + 0.326261i −0.984675 0.174399i \(-0.944202\pi\)
−0.865644 + 0.500660i \(0.833091\pi\)
\(618\) 0 0
\(619\) −20.3900 17.1092i −0.819542 0.687678i 0.133323 0.991073i \(-0.457435\pi\)
−0.952865 + 0.303395i \(0.901880\pi\)
\(620\) 3.96119 + 7.16288i 0.159085 + 0.287668i
\(621\) 0 0
\(622\) 1.67164 0.431435i 0.0670268 0.0172990i
\(623\) 0.119413 + 0.100199i 0.00478417 + 0.00401439i
\(624\) 0 0
\(625\) 3.81170 + 21.6172i 0.152468 + 0.864688i
\(626\) −5.60513 0.542510i −0.224026 0.0216831i
\(627\) 0 0
\(628\) −31.8061 + 10.9166i −1.26920 + 0.435618i
\(629\) 3.89042 6.73841i 0.155121 0.268678i
\(630\) 0 0
\(631\) 24.6191 14.2138i 0.980071 0.565844i 0.0777793 0.996971i \(-0.475217\pi\)
0.902292 + 0.431126i \(0.141884\pi\)
\(632\) 20.4489 + 10.2334i 0.813415 + 0.407062i
\(633\) 0 0
\(634\) −6.08384 + 8.52031i −0.241620 + 0.338385i
\(635\) −5.05252 6.02135i −0.200503 0.238950i
\(636\) 0 0
\(637\) −4.05421 11.1389i −0.160634 0.441337i
\(638\) 0.129295 0.126932i 0.00511882 0.00502528i
\(639\) 0 0
\(640\) −4.86537 1.64668i −0.192321 0.0650907i
\(641\) −19.2764 3.39896i −0.761373 0.134251i −0.220537 0.975379i \(-0.570781\pi\)
−0.540836 + 0.841128i \(0.681892\pi\)
\(642\) 0 0
\(643\) −10.2317 3.72402i −0.403497 0.146861i 0.132296 0.991210i \(-0.457765\pi\)
−0.535793 + 0.844349i \(0.679987\pi\)
\(644\) 4.30698 3.48068i 0.169719 0.137158i
\(645\) 0 0
\(646\) −1.21372 + 2.54138i −0.0477532 + 0.0999894i
\(647\) −19.0202 −0.747763 −0.373881 0.927477i \(-0.621973\pi\)
−0.373881 + 0.927477i \(0.621973\pi\)
\(648\) 0 0
\(649\) −0.193381 −0.00759085
\(650\) 6.52628 13.6652i 0.255982 0.535995i
\(651\) 0 0
\(652\) 12.7943 + 15.8316i 0.501062 + 0.620013i
\(653\) −11.7763 4.28623i −0.460843 0.167733i 0.101157 0.994871i \(-0.467746\pi\)
−0.562000 + 0.827137i \(0.689968\pi\)
\(654\) 0 0
\(655\) 1.37786 + 0.242955i 0.0538376 + 0.00949302i
\(656\) 8.60939 4.55587i 0.336140 0.177877i
\(657\) 0 0
\(658\) 5.98491 5.87554i 0.233316 0.229052i
\(659\) −9.65592 26.5294i −0.376141 1.03344i −0.972942 0.231050i \(-0.925784\pi\)
0.596801 0.802389i \(-0.296438\pi\)
\(660\) 0 0
\(661\) −10.6735 12.7202i −0.415150 0.494757i 0.517427 0.855727i \(-0.326890\pi\)
−0.932577 + 0.360971i \(0.882445\pi\)
\(662\) 2.46309 3.44952i 0.0957307 0.134069i
\(663\) 0 0
\(664\) −5.08096 2.54269i −0.197180 0.0986756i
\(665\) 0.693608 0.400455i 0.0268970 0.0155290i
\(666\) 0 0
\(667\) 7.73476 13.3970i 0.299491 0.518734i
\(668\) 10.4140 + 30.3418i 0.402929 + 1.17396i
\(669\) 0 0
\(670\) 3.08707 + 0.298792i 0.119264 + 0.0115433i
\(671\) 0.0275635 + 0.156320i 0.00106408 + 0.00603468i
\(672\) 0 0
\(673\) 4.64214 + 3.89522i 0.178941 + 0.150150i 0.727859 0.685727i \(-0.240516\pi\)
−0.548918 + 0.835876i \(0.684960\pi\)
\(674\) −18.0163 + 4.64982i −0.693962 + 0.179105i
\(675\) 0 0
\(676\) 14.0199 7.75326i 0.539228 0.298202i
\(677\) −5.34485 4.48486i −0.205419 0.172367i 0.534274 0.845311i \(-0.320585\pi\)
−0.739693 + 0.672944i \(0.765029\pi\)
\(678\) 0 0
\(679\) −14.2922 + 2.52009i −0.548483 + 0.0967123i
\(680\) −0.749603 1.73099i −0.0287460 0.0663804i
\(681\) 0 0
\(682\) −0.0175156 0.223973i −0.000670707 0.00857636i
\(683\) −25.8624 14.9317i −0.989597 0.571344i −0.0844432 0.996428i \(-0.526911\pi\)
−0.905154 + 0.425084i \(0.860244\pi\)
\(684\) 0 0
\(685\) −4.63301 + 2.67487i −0.177018 + 0.102201i
\(686\) −12.8185 18.6708i −0.489413 0.712856i
\(687\) 0 0
\(688\) −5.95505 42.9892i −0.227034 1.63895i
\(689\) 14.9446 + 17.8103i 0.569346 + 0.678520i
\(690\) 0 0
\(691\) 31.1175 11.3259i 1.18377 0.430856i 0.326236 0.945288i \(-0.394220\pi\)
0.857531 + 0.514432i \(0.171997\pi\)
\(692\) −23.1926 13.9668i −0.881651 0.530937i
\(693\) 0 0
\(694\) −39.8991 11.0862i −1.51455 0.420828i
\(695\) 0.422398 2.39554i 0.0160225 0.0908679i
\(696\) 0 0
\(697\) 3.36139 + 1.22345i 0.127322 + 0.0463414i
\(698\) 26.9866 12.2824i 1.02146 0.464895i
\(699\) 0 0
\(700\) 2.39268 12.2446i 0.0904350 0.462803i
\(701\) −9.68894 −0.365946 −0.182973 0.983118i \(-0.558572\pi\)
−0.182973 + 0.983118i \(0.558572\pi\)
\(702\) 0 0
\(703\) 7.18080i 0.270829i
\(704\) 0.102820 + 0.0964528i 0.00387516 + 0.00363520i
\(705\) 0 0
\(706\) −4.06024 + 1.84793i −0.152809 + 0.0695478i
\(707\) −7.42607 + 20.4030i −0.279286 + 0.767333i
\(708\) 0 0
\(709\) 24.6853 + 4.35269i 0.927077 + 0.163469i 0.616748 0.787161i \(-0.288450\pi\)
0.310329 + 0.950629i \(0.399561\pi\)
\(710\) 1.73166 6.23218i 0.0649879 0.233890i
\(711\) 0 0
\(712\) −0.0967135 + 0.324729i −0.00362449 + 0.0121697i
\(713\) −6.56025 18.0241i −0.245683 0.675009i
\(714\) 0 0
\(715\) 0.0136901 0.0114874i 0.000511981 0.000429603i
\(716\) −21.2264 8.17215i −0.793268 0.305408i
\(717\) 0 0
\(718\) −35.6645 + 24.4856i −1.33099 + 0.913793i
\(719\) 16.4482 + 28.4892i 0.613415 + 1.06247i 0.990660 + 0.136353i \(0.0435381\pi\)
−0.377245 + 0.926113i \(0.623129\pi\)
\(720\) 0 0
\(721\) 10.3805 17.9796i 0.386590 0.669594i
\(722\) 1.89231 + 24.1970i 0.0704244 + 0.900520i
\(723\) 0 0
\(724\) 4.60862 + 29.2851i 0.171278 + 1.08837i
\(725\) −6.05210 34.3232i −0.224769 1.27473i
\(726\) 0 0
\(727\) −20.0843 + 23.9355i −0.744884 + 0.887719i −0.996792 0.0800327i \(-0.974498\pi\)
0.251908 + 0.967751i \(0.418942\pi\)
\(728\) −5.97190 + 5.65031i −0.221333 + 0.209414i
\(729\) 0 0
\(730\) −0.422076 + 0.108934i −0.0156217 + 0.00403182i
\(731\) 10.2449 12.2094i 0.378920 0.451579i
\(732\) 0 0
\(733\) 16.2456 2.86454i 0.600046 0.105804i 0.134630 0.990896i \(-0.457016\pi\)
0.465417 + 0.885092i \(0.345904\pi\)
\(734\) −3.04832 + 31.4948i −0.112516 + 1.16249i
\(735\) 0 0
\(736\) 10.6628 + 5.58425i 0.393036 + 0.205838i
\(737\) −0.0737209 0.0425628i −0.00271554 0.00156782i
\(738\) 0 0
\(739\) −11.5876 20.0704i −0.426258 0.738301i 0.570279 0.821451i \(-0.306835\pi\)
−0.996537 + 0.0831501i \(0.973502\pi\)
\(740\) −3.62670 3.15894i −0.133320 0.116125i
\(741\) 0 0
\(742\) 15.5884 + 11.1308i 0.572269 + 0.408623i
\(743\) 2.55778 2.14623i 0.0938358 0.0787376i −0.594663 0.803975i \(-0.702714\pi\)
0.688499 + 0.725238i \(0.258270\pi\)
\(744\) 0 0
\(745\) −6.12156 + 2.22807i −0.224277 + 0.0816300i
\(746\) −11.5409 + 11.3300i −0.422542 + 0.414821i
\(747\) 0 0
\(748\) −0.000954765 0.0517644i −3.49097e−5 0.00189270i
\(749\) 1.52210 8.63224i 0.0556162 0.315415i
\(750\) 0 0
\(751\) −0.701648 + 1.92776i −0.0256035 + 0.0703450i −0.951836 0.306608i \(-0.900806\pi\)
0.926232 + 0.376953i \(0.123028\pi\)
\(752\) 16.8889 + 6.86246i 0.615876 + 0.250248i
\(753\) 0 0
\(754\) −9.89754 + 20.7243i −0.360447 + 0.754733i
\(755\) 5.39982i 0.196519i
\(756\) 0 0
\(757\) 41.6394i 1.51341i −0.653756 0.756705i \(-0.726808\pi\)
0.653756 0.756705i \(-0.273192\pi\)
\(758\) −27.6929 13.2257i −1.00585 0.480377i
\(759\) 0 0
\(760\) 1.39786 + 1.03758i 0.0507057 + 0.0376368i
\(761\) 14.1101 38.7671i 0.511490 1.40531i −0.368195 0.929749i \(-0.620024\pi\)
0.879684 0.475558i \(-0.157754\pi\)
\(762\) 0 0
\(763\) 0.659130 3.73811i 0.0238621 0.135329i
\(764\) 0.695186 37.6909i 0.0251509 1.36361i
\(765\) 0 0
\(766\) 32.8659 + 33.4777i 1.18749 + 1.20960i
\(767\) 23.0337 8.38359i 0.831700 0.302714i
\(768\) 0 0
\(769\) −33.4132 + 28.0370i −1.20491 + 1.01104i −0.205437 + 0.978670i \(0.565861\pi\)
−0.999476 + 0.0323712i \(0.989694\pi\)
\(770\) 0.00855577 0.0119822i 0.000308329 0.000431809i
\(771\) 0 0
\(772\) 2.77219 3.18267i 0.0997732 0.114547i
\(773\) −3.52468 6.10492i −0.126774 0.219579i 0.795651 0.605755i \(-0.207129\pi\)
−0.922425 + 0.386176i \(0.873796\pi\)
\(774\) 0 0
\(775\) −37.4247 21.6072i −1.34434 0.776153i
\(776\) −17.3716 26.3305i −0.623605 0.945208i
\(777\) 0 0
\(778\) 9.80280 + 0.948795i 0.351447 + 0.0340160i
\(779\) −3.25111 + 0.573258i −0.116483 + 0.0205391i
\(780\) 0 0
\(781\) −0.114116 + 0.135998i −0.00408338 + 0.00486638i
\(782\) 1.10465 + 4.28008i 0.0395020 + 0.153055i
\(783\) 0 0
\(784\) 11.2841 17.9791i 0.403004 0.642111i
\(785\) −4.90671 + 5.84759i −0.175128 + 0.208709i
\(786\) 0 0
\(787\) 8.03739 + 45.5823i 0.286502 + 1.62483i 0.699871 + 0.714270i \(0.253241\pi\)
−0.413369 + 0.910564i \(0.635648\pi\)
\(788\) 22.6368 3.56237i 0.806402 0.126904i
\(789\) 0 0
\(790\) 5.17496 0.404704i 0.184117 0.0143987i
\(791\) 12.6913 21.9820i 0.451250 0.781589i
\(792\) 0 0
\(793\) −10.0600 17.4245i −0.357242 0.618762i
\(794\) 29.4470 + 42.8911i 1.04503 + 1.52215i
\(795\) 0 0
\(796\) −10.6074 4.08386i −0.375971 0.144748i
\(797\) −10.7323 + 9.00550i −0.380159 + 0.318991i −0.812765 0.582592i \(-0.802039\pi\)
0.432606 + 0.901583i \(0.357594\pi\)
\(798\) 0 0
\(799\) 2.28975 + 6.29103i 0.0810054 + 0.222561i
\(800\) 26.4899 5.80399i 0.936559 0.205202i
\(801\) 0 0
\(802\) −4.15930 1.15569i −0.146870 0.0408088i
\(803\) 0.0117824 + 0.00207756i 0.000415792 + 7.33153e-5i
\(804\) 0 0
\(805\) 0.429937 1.18124i 0.0151533 0.0416333i
\(806\) 11.7962 + 25.9182i 0.415502 + 0.912931i
\(807\) 0 0
\(808\) −47.1102 + 2.81124i −1.65733 + 0.0988991i
\(809\) 25.2574i 0.888002i 0.896026 + 0.444001i \(0.146441\pi\)
−0.896026 + 0.444001i \(0.853559\pi\)
\(810\) 0 0
\(811\) −36.9593 −1.29782 −0.648908 0.760867i \(-0.724774\pi\)
−0.648908 + 0.760867i \(0.724774\pi\)
\(812\) −3.62867 + 18.5698i −0.127341 + 0.651672i
\(813\) 0 0
\(814\) 0.0546826 + 0.120147i 0.00191662 + 0.00421116i
\(815\) 4.34200 + 1.58036i 0.152094 + 0.0553576i
\(816\) 0 0
\(817\) −2.55420 + 14.4856i −0.0893602 + 0.506787i
\(818\) 9.11925 32.8199i 0.318847 1.14752i
\(819\) 0 0
\(820\) 1.14068 1.89417i 0.0398344 0.0661473i
\(821\) −5.42437 + 1.97431i −0.189312 + 0.0689038i −0.434936 0.900461i \(-0.643229\pi\)
0.245625 + 0.969365i \(0.421007\pi\)
\(822\) 0 0
\(823\) −12.2571 14.6074i −0.427254 0.509182i 0.508874 0.860841i \(-0.330062\pi\)
−0.936128 + 0.351659i \(0.885618\pi\)
\(824\) 44.8284 + 5.17493i 1.56167 + 0.180277i
\(825\) 0 0
\(826\) 16.6483 11.4300i 0.579270 0.397700i
\(827\) 23.7503 13.7122i 0.825878 0.476821i −0.0265613 0.999647i \(-0.508456\pi\)
0.852439 + 0.522826i \(0.175122\pi\)
\(828\) 0 0
\(829\) 23.8710 + 13.7819i 0.829073 + 0.478666i 0.853535 0.521035i \(-0.174454\pi\)
−0.0244622 + 0.999701i \(0.507787\pi\)
\(830\) −1.28583 + 0.100557i −0.0446317 + 0.00349038i
\(831\) 0 0
\(832\) −16.4284 7.03105i −0.569553 0.243758i
\(833\) 7.67695 1.35365i 0.265991 0.0469013i
\(834\) 0 0
\(835\) 5.57837 + 4.68081i 0.193048 + 0.161986i
\(836\) −0.0231231 0.0418127i −0.000799731 0.00144612i
\(837\) 0 0
\(838\) 10.4934 + 40.6580i 0.362489 + 1.40451i
\(839\) 22.7744 + 19.1100i 0.786259 + 0.659750i 0.944816 0.327600i \(-0.106240\pi\)
−0.158558 + 0.987350i \(0.550684\pi\)
\(840\) 0 0
\(841\) 4.14263 + 23.4940i 0.142849 + 0.810138i
\(842\) 3.91194 40.4175i 0.134814 1.39288i
\(843\) 0 0
\(844\) 10.8071 + 31.4871i 0.371995 + 1.08383i
\(845\) 1.81840 3.14956i 0.0625548 0.108348i
\(846\) 0 0
\(847\) 12.3959 7.15675i 0.425927 0.245909i
\(848\) −8.73675 + 40.7071i −0.300021 + 1.39789i
\(849\) 0 0
\(850\) 8.10488 + 5.78721i 0.277995 + 0.198500i
\(851\) 7.24453 + 8.63370i 0.248339 + 0.295959i
\(852\) 0 0
\(853\) 14.9845 + 41.1697i 0.513061 + 1.40962i 0.878031 + 0.478604i \(0.158857\pi\)
−0.364970 + 0.931019i \(0.618921\pi\)
\(854\) −11.6124 11.8286i −0.397370 0.404767i
\(855\) 0 0
\(856\) 18.5326 4.42022i 0.633432 0.151080i
\(857\) 12.6966 + 2.23875i 0.433708 + 0.0764744i 0.386240 0.922398i \(-0.373774\pi\)
0.0474680 + 0.998873i \(0.484885\pi\)
\(858\) 0 0
\(859\) −26.7551 9.73806i −0.912872 0.332258i −0.157473 0.987523i \(-0.550335\pi\)
−0.755399 + 0.655265i \(0.772557\pi\)
\(860\) −6.19238 7.66244i −0.211158 0.261287i
\(861\) 0 0
\(862\) −33.8926 16.1865i −1.15439 0.551315i
\(863\) 46.6170 1.58686 0.793431 0.608660i \(-0.208293\pi\)
0.793431 + 0.608660i \(0.208293\pi\)
\(864\) 0 0
\(865\) −6.14571 −0.208961
\(866\) −1.98147 0.946317i −0.0673332 0.0321572i
\(867\) 0 0
\(868\) 14.7461 + 18.2468i 0.500515 + 0.619336i
\(869\) −0.133877 0.0487272i −0.00454146 0.00165296i
\(870\) 0 0
\(871\) 10.6262 + 1.87368i 0.360054 + 0.0634873i
\(872\) 8.02539 1.91414i 0.271774 0.0648209i
\(873\) 0 0
\(874\) −2.85788 2.91108i −0.0966692 0.0984686i
\(875\) −1.97894 5.43708i −0.0669003 0.183807i
\(876\) 0 0
\(877\) 3.98303 + 4.74679i 0.134497 + 0.160288i 0.829089 0.559116i \(-0.188859\pi\)
−0.694592 + 0.719404i \(0.744415\pi\)
\(878\) −1.32201 0.943966i −0.0446156 0.0318573i
\(879\) 0 0
\(880\) 0.0312899 + 0.00671560i 0.00105478 + 0.000226383i
\(881\) 21.9173 12.6539i 0.738412 0.426322i −0.0830799 0.996543i \(-0.526476\pi\)
0.821492 + 0.570221i \(0.193142\pi\)
\(882\) 0 0
\(883\) 15.7424 27.2667i 0.529775 0.917597i −0.469622 0.882868i \(-0.655610\pi\)
0.999397 0.0347290i \(-0.0110568\pi\)
\(884\) −2.13041 6.20710i −0.0716535 0.208767i
\(885\) 0 0
\(886\) 2.30849 23.8509i 0.0775552 0.801288i
\(887\) 0.0310073 + 0.175851i 0.00104112 + 0.00590451i 0.985324 0.170695i \(-0.0546013\pi\)
−0.984283 + 0.176600i \(0.943490\pi\)
\(888\) 0 0
\(889\) −17.2584 14.4815i −0.578827 0.485694i
\(890\) 0.0192209 + 0.0744737i 0.000644287 + 0.00249636i
\(891\) 0 0
\(892\) 2.68864 + 4.86177i 0.0900223 + 0.162784i
\(893\) −4.73299 3.97145i −0.158384 0.132900i
\(894\) 0 0
\(895\) −5.08477 + 0.896582i −0.169965 + 0.0299694i
\(896\) −14.5528 2.22646i −0.486175 0.0743807i
\(897\) 0 0
\(898\) 43.2606 3.38316i 1.44363 0.112898i
\(899\) 56.7571 + 32.7687i 1.89296 + 1.09290i
\(900\) 0 0
\(901\) −13.2413 + 7.64488i −0.441132 + 0.254688i
\(902\) −0.0500313 + 0.0343491i −0.00166586 + 0.00114370i
\(903\) 0 0
\(904\) 54.8076 + 6.32691i 1.82287 + 0.210430i
\(905\) 4.32570 + 5.15517i 0.143791 + 0.171364i
\(906\) 0 0
\(907\) −18.2575 + 6.64519i −0.606231 + 0.220650i −0.626853 0.779137i \(-0.715657\pi\)
0.0206225 + 0.999787i \(0.493435\pi\)
\(908\) −25.5120 + 42.3641i −0.846646 + 1.40590i
\(909\) 0 0
\(910\) −0.499623 + 1.79813i −0.0165623 + 0.0596074i
\(911\) −0.423720 + 2.40304i −0.0140385 + 0.0796161i −0.991022 0.133698i \(-0.957315\pi\)
0.976984 + 0.213314i \(0.0684258\pi\)
\(912\) 0 0
\(913\) 0.0332645 + 0.0121073i 0.00110089 + 0.000400693i
\(914\) 4.19634 + 9.22011i 0.138803 + 0.304974i
\(915\) 0 0
\(916\) −6.01153 + 30.7641i −0.198626 + 1.01648i
\(917\) 4.01015 0.132427
\(918\) 0 0
\(919\) 2.20402i 0.0727038i 0.999339 + 0.0363519i \(0.0115737\pi\)
−0.999339 + 0.0363519i \(0.988426\pi\)
\(920\) 2.72748 0.162758i 0.0899222 0.00536599i
\(921\) 0 0
\(922\) 4.85526 + 10.6679i 0.159900 + 0.351328i
\(923\) 7.69653 21.1460i 0.253334 0.696030i
\(924\) 0 0
\(925\) 25.0065 + 4.40933i 0.822210 + 0.144978i
\(926\) −0.527376 0.146535i −0.0173307 0.00481545i
\(927\) 0 0
\(928\) −40.1737 + 8.80214i −1.31877 + 0.288944i
\(929\) −3.30889 9.09111i −0.108561 0.298270i 0.873502 0.486820i \(-0.161843\pi\)
−0.982063 + 0.188551i \(0.939621\pi\)
\(930\) 0 0
\(931\) −5.51109 + 4.62435i −0.180619 + 0.151557i
\(932\) −37.7585 14.5370i −1.23682 0.476175i
\(933\) 0 0
\(934\) 5.33220 + 7.76662i 0.174475 + 0.254131i
\(935\) 0.00587632 + 0.0101781i 0.000192176 + 0.000332859i
\(936\) 0 0
\(937\) −22.2202 + 38.4864i −0.725901 + 1.25730i 0.232701 + 0.972548i \(0.425243\pi\)
−0.958602 + 0.284749i \(0.908090\pi\)
\(938\) 8.86243 0.693079i 0.289369 0.0226298i
\(939\) 0 0
\(940\) 4.08792 0.643318i 0.133333 0.0209827i
\(941\) 7.38960 + 41.9085i 0.240894 + 1.36618i 0.829838 + 0.558004i \(0.188433\pi\)
−0.588944 + 0.808174i \(0.700456\pi\)
\(942\) 0 0
\(943\) −3.33056 + 3.96920i −0.108458 + 0.129255i
\(944\) 37.1785 + 23.3341i 1.21006 + 0.759460i
\(945\) 0 0
\(946\) 0.0675731 + 0.261820i 0.00219699 + 0.00851250i
\(947\) −30.3650 + 36.1877i −0.986731 + 1.17594i −0.00233119 + 0.999997i \(0.500742\pi\)
−0.984400 + 0.175943i \(0.943702\pi\)
\(948\) 0 0
\(949\) −1.49348 + 0.263341i −0.0484804 + 0.00854841i
\(950\) −9.14819 0.885437i −0.296807 0.0287274i
\(951\) 0 0
\(952\) −2.97740 4.51289i −0.0964980 0.146264i
\(953\) 23.8540 + 13.7721i 0.772707 + 0.446123i 0.833840 0.552007i \(-0.186138\pi\)
−0.0611321 + 0.998130i \(0.519471\pi\)
\(954\) 0 0
\(955\) −4.27868 7.41089i −0.138455 0.239811i
\(956\) −11.2549 + 12.9214i −0.364009 + 0.417909i
\(957\) 0 0
\(958\) −0.931443 + 1.30447i −0.0300936 + 0.0421455i
\(959\) −11.7461 + 9.85611i −0.379300 + 0.318270i
\(960\) 0 0
\(961\) 47.2298 17.1902i 1.52354 0.554524i
\(962\) −11.7220 11.9402i −0.377933 0.384968i
\(963\) 0 0
\(964\) −0.533115 + 28.9039i −0.0171705 + 0.930930i
\(965\) 0.166374 0.943555i 0.00535578 0.0303741i
\(966\) 0 0
\(967\) 0.543982 1.49458i 0.0174933 0.0480624i −0.930639 0.365939i \(-0.880748\pi\)
0.948132 + 0.317877i \(0.102970\pi\)
\(968\) 24.9820 + 18.5431i 0.802951 + 0.595998i
\(969\) 0 0
\(970\) −6.46162 3.08596i −0.207470 0.0990842i
\(971\) 9.93969i 0.318980i −0.987200 0.159490i \(-0.949015\pi\)
0.987200 0.159490i \(-0.0509849\pi\)
\(972\) 0 0
\(973\) 6.97199i 0.223512i
\(974\) −25.5752 + 53.5514i −0.819483 + 1.71590i
\(975\) 0 0
\(976\) 13.5630 33.3794i 0.434141 1.06845i
\(977\) −13.5121 + 37.1242i −0.432290 + 1.18771i 0.512113 + 0.858918i \(0.328863\pi\)
−0.944403 + 0.328789i \(0.893359\pi\)
\(978\) 0 0
\(979\) 0.000366577 0.00207896i 1.17158e−5 6.64438e-5i
\(980\) 0.0888600 4.81772i 0.00283853 0.153896i
\(981\) 0 0
\(982\) 20.7838 20.4040i 0.663237 0.651117i
\(983\) −30.2880 + 11.0239i −0.966036 + 0.351608i −0.776396 0.630245i \(-0.782954\pi\)
−0.189640 + 0.981854i \(0.560732\pi\)
\(984\) 0 0
\(985\) 3.98484 3.34368i 0.126967 0.106538i
\(986\) −12.2916 8.77669i −0.391444 0.279507i
\(987\) 0 0
\(988\) 4.56692 + 3.97790i 0.145293 + 0.126554i
\(989\) 11.5432 + 19.9933i 0.367051 + 0.635751i
\(990\) 0 0
\(991\) −2.66599 1.53921i −0.0846881 0.0488947i 0.457058 0.889437i \(-0.348903\pi\)
−0.541746 + 0.840542i \(0.682237\pi\)
\(992\) −23.6580 + 45.1735i −0.751142 + 1.43426i
\(993\) 0 0
\(994\) 1.78604 18.4531i 0.0566499 0.585297i
\(995\) −2.54100 + 0.448048i −0.0805553 + 0.0142041i
\(996\) 0 0
\(997\) −27.9424 + 33.3004i −0.884944 + 1.05464i 0.113190 + 0.993573i \(0.463893\pi\)
−0.998134 + 0.0610619i \(0.980551\pi\)
\(998\) 13.7303 3.54367i 0.434626 0.112173i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.v.b.35.28 192
3.2 odd 2 216.2.v.b.11.5 192
8.3 odd 2 inner 648.2.v.b.35.11 192
12.11 even 2 864.2.bh.b.335.1 192
24.5 odd 2 864.2.bh.b.335.2 192
24.11 even 2 216.2.v.b.11.22 yes 192
27.5 odd 18 inner 648.2.v.b.611.11 192
27.22 even 9 216.2.v.b.59.22 yes 192
108.103 odd 18 864.2.bh.b.815.2 192
216.59 even 18 inner 648.2.v.b.611.28 192
216.157 even 18 864.2.bh.b.815.1 192
216.211 odd 18 216.2.v.b.59.5 yes 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.5 192 3.2 odd 2
216.2.v.b.11.22 yes 192 24.11 even 2
216.2.v.b.59.5 yes 192 216.211 odd 18
216.2.v.b.59.22 yes 192 27.22 even 9
648.2.v.b.35.11 192 8.3 odd 2 inner
648.2.v.b.35.28 192 1.1 even 1 trivial
648.2.v.b.611.11 192 27.5 odd 18 inner
648.2.v.b.611.28 192 216.59 even 18 inner
864.2.bh.b.335.1 192 12.11 even 2
864.2.bh.b.335.2 192 24.5 odd 2
864.2.bh.b.815.1 192 216.157 even 18
864.2.bh.b.815.2 192 108.103 odd 18