Properties

Label 648.2.v.b.35.16
Level $648$
Weight $2$
Character 648.35
Analytic conductor $5.174$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(35,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.v (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 35.16
Character \(\chi\) \(=\) 648.35
Dual form 648.2.v.b.611.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.133842 - 1.40787i) q^{2} +(-1.96417 + 0.376862i) q^{4} +(2.47648 + 0.901367i) q^{5} +(-2.55949 - 0.451307i) q^{7} +(0.793459 + 2.71485i) q^{8} +(0.937547 - 3.60720i) q^{10} +(-0.556608 - 1.52927i) q^{11} +(-1.88389 - 2.24514i) q^{13} +(-0.292814 + 3.66382i) q^{14} +(3.71595 - 1.48044i) q^{16} +(3.28845 - 1.89859i) q^{17} +(4.30904 - 7.46347i) q^{19} +(-5.20394 - 0.837147i) q^{20} +(-2.07851 + 0.988309i) q^{22} +(-1.07009 - 6.06879i) q^{23} +(1.49029 + 1.25050i) q^{25} +(-2.90871 + 2.95276i) q^{26} +(5.19736 - 0.0781292i) q^{28} +(3.88174 + 3.25716i) q^{29} +(3.57300 - 0.630016i) q^{31} +(-2.58162 - 5.03341i) q^{32} +(-3.11309 - 4.37559i) q^{34} +(-5.93174 - 3.42469i) q^{35} +(6.40179 - 3.69607i) q^{37} +(-11.0843 - 5.06762i) q^{38} +(-0.482088 + 7.43849i) q^{40} +(4.43232 + 5.28224i) q^{41} +(-3.77811 + 1.37512i) q^{43} +(1.66960 + 2.79398i) q^{44} +(-8.40082 + 2.31880i) q^{46} +(0.253807 - 1.43941i) q^{47} +(-0.230541 - 0.0839100i) q^{49} +(1.56108 - 2.26550i) q^{50} +(4.54640 + 3.69987i) q^{52} +0.180986 q^{53} -4.28892i q^{55} +(-0.805618 - 7.30673i) q^{56} +(4.06611 - 5.90091i) q^{58} +(-0.253090 + 0.695359i) q^{59} +(-11.1190 - 1.96057i) q^{61} +(-1.36519 - 4.94598i) q^{62} +(-6.74085 + 4.30825i) q^{64} +(-2.64174 - 7.25812i) q^{65} +(-10.5159 + 8.82387i) q^{67} +(-5.74359 + 4.96845i) q^{68} +(-4.02760 + 8.80947i) q^{70} +(2.57253 + 4.45576i) q^{71} +(-2.62831 + 4.55236i) q^{73} +(-6.06040 - 8.51817i) q^{74} +(-5.65100 + 16.2835i) q^{76} +(0.734463 + 4.16534i) q^{77} +(6.72831 - 8.01849i) q^{79} +(10.5369 - 0.316864i) q^{80} +(6.84345 - 6.94710i) q^{82} +(-7.39656 + 8.81488i) q^{83} +(9.85513 - 1.73773i) q^{85} +(2.44165 + 5.13502i) q^{86} +(3.71009 - 2.72452i) q^{88} +(0.211259 + 0.121971i) q^{89} +(3.80856 + 6.59662i) q^{91} +(4.38894 + 11.5169i) q^{92} +(-2.06047 - 0.164673i) q^{94} +(17.3986 - 14.5992i) q^{95} +(1.95441 - 0.711348i) q^{97} +(-0.0872781 + 0.335801i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 6 q^{2} - 6 q^{4} + 9 q^{8} - 3 q^{10} + 30 q^{11} - 9 q^{14} - 6 q^{16} + 18 q^{17} - 6 q^{19} + 27 q^{20} - 18 q^{22} - 12 q^{25} - 12 q^{28} + 36 q^{32} + 12 q^{34} + 18 q^{35} + 102 q^{38} + 9 q^{40}+ \cdots - 162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.133842 1.40787i −0.0946403 0.995512i
\(3\) 0 0
\(4\) −1.96417 + 0.376862i −0.982086 + 0.188431i
\(5\) 2.47648 + 0.901367i 1.10752 + 0.403103i 0.830082 0.557641i \(-0.188293\pi\)
0.277435 + 0.960744i \(0.410516\pi\)
\(6\) 0 0
\(7\) −2.55949 0.451307i −0.967396 0.170578i −0.332438 0.943125i \(-0.607871\pi\)
−0.634958 + 0.772547i \(0.718982\pi\)
\(8\) 0.793459 + 2.71485i 0.280530 + 0.959845i
\(9\) 0 0
\(10\) 0.937547 3.60720i 0.296478 1.14070i
\(11\) −0.556608 1.52927i −0.167824 0.461091i 0.827061 0.562113i \(-0.190011\pi\)
−0.994884 + 0.101021i \(0.967789\pi\)
\(12\) 0 0
\(13\) −1.88389 2.24514i −0.522498 0.622689i 0.438672 0.898647i \(-0.355449\pi\)
−0.961169 + 0.275959i \(0.911005\pi\)
\(14\) −0.292814 + 3.66382i −0.0782577 + 0.979197i
\(15\) 0 0
\(16\) 3.71595 1.48044i 0.928988 0.370111i
\(17\) 3.28845 1.89859i 0.797567 0.460476i −0.0450525 0.998985i \(-0.514346\pi\)
0.842620 + 0.538509i \(0.181012\pi\)
\(18\) 0 0
\(19\) 4.30904 7.46347i 0.988561 1.71224i 0.363666 0.931530i \(-0.381525\pi\)
0.624895 0.780708i \(-0.285142\pi\)
\(20\) −5.20394 0.837147i −1.16364 0.187192i
\(21\) 0 0
\(22\) −2.07851 + 0.988309i −0.443139 + 0.210708i
\(23\) −1.07009 6.06879i −0.223129 1.26543i −0.866229 0.499647i \(-0.833463\pi\)
0.643100 0.765783i \(-0.277648\pi\)
\(24\) 0 0
\(25\) 1.49029 + 1.25050i 0.298059 + 0.250101i
\(26\) −2.90871 + 2.95276i −0.570444 + 0.579084i
\(27\) 0 0
\(28\) 5.19736 0.0781292i 0.982209 0.0147650i
\(29\) 3.88174 + 3.25716i 0.720820 + 0.604840i 0.927612 0.373545i \(-0.121858\pi\)
−0.206792 + 0.978385i \(0.566302\pi\)
\(30\) 0 0
\(31\) 3.57300 0.630016i 0.641729 0.113154i 0.156692 0.987648i \(-0.449917\pi\)
0.485037 + 0.874493i \(0.338806\pi\)
\(32\) −2.58162 5.03341i −0.456369 0.889790i
\(33\) 0 0
\(34\) −3.11309 4.37559i −0.533891 0.750408i
\(35\) −5.93174 3.42469i −1.00265 0.578879i
\(36\) 0 0
\(37\) 6.40179 3.69607i 1.05245 0.607631i 0.129114 0.991630i \(-0.458787\pi\)
0.923333 + 0.383999i \(0.125453\pi\)
\(38\) −11.0843 5.06762i −1.79811 0.822077i
\(39\) 0 0
\(40\) −0.482088 + 7.43849i −0.0762248 + 1.17613i
\(41\) 4.43232 + 5.28224i 0.692212 + 0.824947i 0.991621 0.129178i \(-0.0412339\pi\)
−0.299409 + 0.954125i \(0.596789\pi\)
\(42\) 0 0
\(43\) −3.77811 + 1.37512i −0.576156 + 0.209704i −0.613630 0.789594i \(-0.710291\pi\)
0.0374734 + 0.999298i \(0.488069\pi\)
\(44\) 1.66960 + 2.79398i 0.251701 + 0.421209i
\(45\) 0 0
\(46\) −8.40082 + 2.31880i −1.23863 + 0.341889i
\(47\) 0.253807 1.43941i 0.0370215 0.209960i −0.960686 0.277639i \(-0.910448\pi\)
0.997707 + 0.0676790i \(0.0215594\pi\)
\(48\) 0 0
\(49\) −0.230541 0.0839100i −0.0329344 0.0119871i
\(50\) 1.56108 2.26550i 0.220770 0.320390i
\(51\) 0 0
\(52\) 4.54640 + 3.69987i 0.630472 + 0.513079i
\(53\) 0.180986 0.0248604 0.0124302 0.999923i \(-0.496043\pi\)
0.0124302 + 0.999923i \(0.496043\pi\)
\(54\) 0 0
\(55\) 4.28892i 0.578317i
\(56\) −0.805618 7.30673i −0.107655 0.976403i
\(57\) 0 0
\(58\) 4.06611 5.90091i 0.533906 0.774827i
\(59\) −0.253090 + 0.695359i −0.0329495 + 0.0905280i −0.955077 0.296359i \(-0.904227\pi\)
0.922127 + 0.386887i \(0.126450\pi\)
\(60\) 0 0
\(61\) −11.1190 1.96057i −1.42364 0.251026i −0.591817 0.806072i \(-0.701589\pi\)
−0.831819 + 0.555047i \(0.812700\pi\)
\(62\) −1.36519 4.94598i −0.173380 0.628140i
\(63\) 0 0
\(64\) −6.74085 + 4.30825i −0.842606 + 0.538531i
\(65\) −2.64174 7.25812i −0.327668 0.900259i
\(66\) 0 0
\(67\) −10.5159 + 8.82387i −1.28472 + 1.07801i −0.292144 + 0.956374i \(0.594369\pi\)
−0.992575 + 0.121633i \(0.961187\pi\)
\(68\) −5.74359 + 4.96845i −0.696512 + 0.602513i
\(69\) 0 0
\(70\) −4.02760 + 8.80947i −0.481390 + 1.05293i
\(71\) 2.57253 + 4.45576i 0.305303 + 0.528801i 0.977329 0.211727i \(-0.0679088\pi\)
−0.672025 + 0.740528i \(0.734575\pi\)
\(72\) 0 0
\(73\) −2.62831 + 4.55236i −0.307620 + 0.532814i −0.977841 0.209348i \(-0.932866\pi\)
0.670221 + 0.742161i \(0.266199\pi\)
\(74\) −6.06040 8.51817i −0.704507 0.990217i
\(75\) 0 0
\(76\) −5.65100 + 16.2835i −0.648214 + 1.86784i
\(77\) 0.734463 + 4.16534i 0.0836998 + 0.474685i
\(78\) 0 0
\(79\) 6.72831 8.01849i 0.756994 0.902151i −0.240660 0.970610i \(-0.577364\pi\)
0.997654 + 0.0684588i \(0.0218082\pi\)
\(80\) 10.5369 0.316864i 1.17806 0.0354264i
\(81\) 0 0
\(82\) 6.84345 6.94710i 0.755733 0.767179i
\(83\) −7.39656 + 8.81488i −0.811878 + 0.967559i −0.999893 0.0146072i \(-0.995350\pi\)
0.188015 + 0.982166i \(0.439795\pi\)
\(84\) 0 0
\(85\) 9.85513 1.73773i 1.06894 0.188483i
\(86\) 2.44165 + 5.13502i 0.263290 + 0.553724i
\(87\) 0 0
\(88\) 3.71009 2.72452i 0.395497 0.290435i
\(89\) 0.211259 + 0.121971i 0.0223934 + 0.0129289i 0.511155 0.859489i \(-0.329218\pi\)
−0.488761 + 0.872417i \(0.662551\pi\)
\(90\) 0 0
\(91\) 3.80856 + 6.59662i 0.399245 + 0.691513i
\(92\) 4.38894 + 11.5169i 0.457579 + 1.20072i
\(93\) 0 0
\(94\) −2.06047 0.164673i −0.212521 0.0169847i
\(95\) 17.3986 14.5992i 1.78506 1.49784i
\(96\) 0 0
\(97\) 1.95441 0.711348i 0.198441 0.0722264i −0.240888 0.970553i \(-0.577439\pi\)
0.439329 + 0.898326i \(0.355216\pi\)
\(98\) −0.0872781 + 0.335801i −0.00881642 + 0.0339211i
\(99\) 0 0
\(100\) −3.39846 1.89457i −0.339846 0.189457i
\(101\) −3.09813 + 17.5704i −0.308276 + 1.74832i 0.299394 + 0.954130i \(0.403216\pi\)
−0.607670 + 0.794190i \(0.707896\pi\)
\(102\) 0 0
\(103\) 4.29301 11.7949i 0.423003 1.16219i −0.526977 0.849879i \(-0.676675\pi\)
0.949980 0.312311i \(-0.101103\pi\)
\(104\) 4.60042 6.89591i 0.451108 0.676200i
\(105\) 0 0
\(106\) −0.0242235 0.254804i −0.00235279 0.0247488i
\(107\) 10.9395i 1.05757i 0.848757 + 0.528783i \(0.177351\pi\)
−0.848757 + 0.528783i \(0.822649\pi\)
\(108\) 0 0
\(109\) 6.35577i 0.608772i 0.952549 + 0.304386i \(0.0984513\pi\)
−0.952549 + 0.304386i \(0.901549\pi\)
\(110\) −6.03822 + 0.574035i −0.575721 + 0.0547321i
\(111\) 0 0
\(112\) −10.1791 + 2.11215i −0.961832 + 0.199579i
\(113\) 1.20684 3.31577i 0.113530 0.311921i −0.869895 0.493237i \(-0.835813\pi\)
0.983425 + 0.181316i \(0.0580356\pi\)
\(114\) 0 0
\(115\) 2.82014 15.9938i 0.262979 1.49143i
\(116\) −8.85190 4.93475i −0.821878 0.458180i
\(117\) 0 0
\(118\) 1.01285 + 0.263249i 0.0932400 + 0.0242340i
\(119\) −9.27361 + 3.37532i −0.850110 + 0.309415i
\(120\) 0 0
\(121\) 6.39764 5.36826i 0.581604 0.488024i
\(122\) −1.27204 + 15.9164i −0.115165 + 1.44100i
\(123\) 0 0
\(124\) −6.78056 + 2.58399i −0.608912 + 0.232049i
\(125\) −4.02503 6.97155i −0.360009 0.623554i
\(126\) 0 0
\(127\) 15.7942 + 9.11876i 1.40150 + 0.809159i 0.994547 0.104288i \(-0.0332563\pi\)
0.406958 + 0.913447i \(0.366590\pi\)
\(128\) 6.96764 + 8.91358i 0.615858 + 0.787857i
\(129\) 0 0
\(130\) −9.86489 + 4.69066i −0.865208 + 0.411398i
\(131\) −4.10519 + 0.723856i −0.358672 + 0.0632436i −0.350081 0.936719i \(-0.613846\pi\)
−0.00859153 + 0.999963i \(0.502735\pi\)
\(132\) 0 0
\(133\) −14.3973 + 17.1580i −1.24840 + 1.48779i
\(134\) 13.8303 + 13.6239i 1.19475 + 1.17693i
\(135\) 0 0
\(136\) 7.76365 + 7.42121i 0.665727 + 0.636364i
\(137\) 10.2458 12.2105i 0.875360 1.04321i −0.123347 0.992364i \(-0.539363\pi\)
0.998706 0.0508494i \(-0.0161928\pi\)
\(138\) 0 0
\(139\) −0.411616 2.33439i −0.0349128 0.198000i 0.962363 0.271769i \(-0.0876086\pi\)
−0.997275 + 0.0737683i \(0.976497\pi\)
\(140\) 12.9416 + 4.49124i 1.09377 + 0.379579i
\(141\) 0 0
\(142\) 5.92880 4.21815i 0.497534 0.353979i
\(143\) −2.38482 + 4.13064i −0.199429 + 0.345421i
\(144\) 0 0
\(145\) 6.67716 + 11.5652i 0.554508 + 0.960436i
\(146\) 6.76089 + 3.09101i 0.559535 + 0.255814i
\(147\) 0 0
\(148\) −11.1813 + 9.67232i −0.919098 + 0.795060i
\(149\) 12.2426 10.2728i 1.00295 0.841578i 0.0155632 0.999879i \(-0.495046\pi\)
0.987391 + 0.158300i \(0.0506014\pi\)
\(150\) 0 0
\(151\) −0.806403 2.21557i −0.0656242 0.180301i 0.902546 0.430593i \(-0.141696\pi\)
−0.968170 + 0.250292i \(0.919473\pi\)
\(152\) 23.6813 + 5.77644i 1.92080 + 0.468531i
\(153\) 0 0
\(154\) 5.76595 1.59152i 0.464633 0.128248i
\(155\) 9.41635 + 1.66036i 0.756339 + 0.133363i
\(156\) 0 0
\(157\) −0.284046 + 0.780410i −0.0226693 + 0.0622835i −0.950511 0.310691i \(-0.899440\pi\)
0.927842 + 0.372974i \(0.121662\pi\)
\(158\) −12.1895 8.39936i −0.969744 0.668217i
\(159\) 0 0
\(160\) −1.85638 14.7922i −0.146760 1.16942i
\(161\) 16.0159i 1.26223i
\(162\) 0 0
\(163\) −11.2657 −0.882401 −0.441200 0.897409i \(-0.645447\pi\)
−0.441200 + 0.897409i \(0.645447\pi\)
\(164\) −10.6965 8.70485i −0.835258 0.679735i
\(165\) 0 0
\(166\) 13.4001 + 9.23357i 1.04005 + 0.716664i
\(167\) −16.4192 5.97611i −1.27056 0.462445i −0.383260 0.923641i \(-0.625199\pi\)
−0.887299 + 0.461195i \(0.847421\pi\)
\(168\) 0 0
\(169\) 0.765842 4.34331i 0.0589110 0.334101i
\(170\) −3.76551 13.6421i −0.288802 1.04630i
\(171\) 0 0
\(172\) 6.90263 4.12480i 0.526321 0.314513i
\(173\) 17.4791 6.36186i 1.32891 0.483683i 0.422606 0.906313i \(-0.361115\pi\)
0.906302 + 0.422630i \(0.138893\pi\)
\(174\) 0 0
\(175\) −3.25003 3.87323i −0.245679 0.292789i
\(176\) −4.33232 4.85865i −0.326561 0.366235i
\(177\) 0 0
\(178\) 0.143443 0.313749i 0.0107515 0.0235165i
\(179\) 6.13650 3.54291i 0.458663 0.264809i −0.252819 0.967514i \(-0.581358\pi\)
0.711482 + 0.702704i \(0.248024\pi\)
\(180\) 0 0
\(181\) 0.129860 + 0.0749748i 0.00965242 + 0.00557283i 0.504818 0.863226i \(-0.331559\pi\)
−0.495166 + 0.868798i \(0.664893\pi\)
\(182\) 8.77741 6.24484i 0.650625 0.462898i
\(183\) 0 0
\(184\) 15.6268 7.72047i 1.15202 0.569161i
\(185\) 19.1854 3.38291i 1.41054 0.248717i
\(186\) 0 0
\(187\) −4.73383 3.97216i −0.346172 0.290473i
\(188\) 0.0439385 + 2.92290i 0.00320454 + 0.213174i
\(189\) 0 0
\(190\) −22.8823 22.5409i −1.66006 1.63529i
\(191\) 8.37441 + 7.02696i 0.605951 + 0.508453i 0.893352 0.449357i \(-0.148347\pi\)
−0.287401 + 0.957810i \(0.592791\pi\)
\(192\) 0 0
\(193\) 0.508999 + 2.88668i 0.0366385 + 0.207788i 0.997631 0.0687854i \(-0.0219124\pi\)
−0.960993 + 0.276573i \(0.910801\pi\)
\(194\) −1.26306 2.65634i −0.0906827 0.190714i
\(195\) 0 0
\(196\) 0.484445 + 0.0779317i 0.0346032 + 0.00556655i
\(197\) −1.40635 + 2.43587i −0.100198 + 0.173548i −0.911766 0.410710i \(-0.865281\pi\)
0.811568 + 0.584258i \(0.198614\pi\)
\(198\) 0 0
\(199\) 0.874354 0.504808i 0.0619813 0.0357849i −0.468689 0.883363i \(-0.655274\pi\)
0.530670 + 0.847578i \(0.321940\pi\)
\(200\) −2.21245 + 5.03815i −0.156444 + 0.356251i
\(201\) 0 0
\(202\) 25.1514 + 2.01011i 1.76965 + 0.141431i
\(203\) −8.46528 10.0885i −0.594146 0.708076i
\(204\) 0 0
\(205\) 6.21535 + 17.0765i 0.434099 + 1.19268i
\(206\) −17.1803 4.46533i −1.19701 0.311114i
\(207\) 0 0
\(208\) −10.3243 5.55382i −0.715858 0.385088i
\(209\) −13.8121 2.43544i −0.955402 0.168463i
\(210\) 0 0
\(211\) −3.98399 1.45005i −0.274269 0.0998257i 0.201224 0.979545i \(-0.435508\pi\)
−0.475493 + 0.879720i \(0.657730\pi\)
\(212\) −0.355488 + 0.0682068i −0.0244150 + 0.00468447i
\(213\) 0 0
\(214\) 15.4014 1.46417i 1.05282 0.100088i
\(215\) −10.5959 −0.722636
\(216\) 0 0
\(217\) −9.42938 −0.640108
\(218\) 8.94807 0.850666i 0.606040 0.0576144i
\(219\) 0 0
\(220\) 1.61633 + 8.42417i 0.108973 + 0.567958i
\(221\) −10.4577 3.80629i −0.703460 0.256039i
\(222\) 0 0
\(223\) −15.7442 2.77613i −1.05431 0.185903i −0.380480 0.924789i \(-0.624241\pi\)
−0.673831 + 0.738886i \(0.735352\pi\)
\(224\) 4.33600 + 14.0481i 0.289711 + 0.938626i
\(225\) 0 0
\(226\) −4.82969 1.25528i −0.321266 0.0835002i
\(227\) −0.588042 1.61563i −0.0390297 0.107233i 0.918647 0.395080i \(-0.129283\pi\)
−0.957677 + 0.287846i \(0.907061\pi\)
\(228\) 0 0
\(229\) 5.91992 + 7.05508i 0.391199 + 0.466213i 0.925316 0.379198i \(-0.123800\pi\)
−0.534116 + 0.845411i \(0.679356\pi\)
\(230\) −22.8946 1.82974i −1.50962 0.120650i
\(231\) 0 0
\(232\) −5.76272 + 13.1228i −0.378341 + 0.861552i
\(233\) −16.7671 + 9.68050i −1.09845 + 0.634191i −0.935814 0.352495i \(-0.885333\pi\)
−0.162637 + 0.986686i \(0.552000\pi\)
\(234\) 0 0
\(235\) 1.92599 3.33590i 0.125637 0.217610i
\(236\) 0.235058 1.46118i 0.0153010 0.0951150i
\(237\) 0 0
\(238\) 5.99319 + 12.6042i 0.388481 + 0.817012i
\(239\) 0.803749 + 4.55829i 0.0519902 + 0.294851i 0.999706 0.0242659i \(-0.00772482\pi\)
−0.947715 + 0.319117i \(0.896614\pi\)
\(240\) 0 0
\(241\) 21.1035 + 17.7079i 1.35939 + 1.14067i 0.976169 + 0.217012i \(0.0696312\pi\)
0.383226 + 0.923655i \(0.374813\pi\)
\(242\) −8.41406 8.28853i −0.540876 0.532807i
\(243\) 0 0
\(244\) 22.5784 0.339410i 1.44544 0.0217285i
\(245\) −0.495297 0.415604i −0.0316434 0.0265519i
\(246\) 0 0
\(247\) −24.8743 + 4.38601i −1.58271 + 0.279075i
\(248\) 4.54543 + 9.20027i 0.288635 + 0.584218i
\(249\) 0 0
\(250\) −9.27629 + 6.59978i −0.586684 + 0.417407i
\(251\) 12.0234 + 6.94172i 0.758911 + 0.438158i 0.828905 0.559390i \(-0.188964\pi\)
−0.0699933 + 0.997547i \(0.522298\pi\)
\(252\) 0 0
\(253\) −8.68518 + 5.01439i −0.546033 + 0.315252i
\(254\) 10.7241 23.4565i 0.672888 1.47179i
\(255\) 0 0
\(256\) 11.6166 11.0025i 0.726036 0.687657i
\(257\) 1.09064 + 1.29978i 0.0680325 + 0.0810779i 0.798987 0.601348i \(-0.205369\pi\)
−0.730955 + 0.682426i \(0.760925\pi\)
\(258\) 0 0
\(259\) −18.0534 + 6.57089i −1.12178 + 0.408295i
\(260\) 7.92415 + 13.2606i 0.491435 + 0.822390i
\(261\) 0 0
\(262\) 1.56854 + 5.68268i 0.0969046 + 0.351077i
\(263\) −0.720517 + 4.08625i −0.0444290 + 0.251969i −0.998931 0.0462368i \(-0.985277\pi\)
0.954502 + 0.298206i \(0.0963882\pi\)
\(264\) 0 0
\(265\) 0.448210 + 0.163135i 0.0275333 + 0.0100213i
\(266\) 26.0831 + 17.9730i 1.59926 + 1.10199i
\(267\) 0 0
\(268\) 17.3296 21.2946i 1.05858 1.30078i
\(269\) −31.4461 −1.91730 −0.958650 0.284588i \(-0.908143\pi\)
−0.958650 + 0.284588i \(0.908143\pi\)
\(270\) 0 0
\(271\) 28.1714i 1.71129i 0.517564 + 0.855644i \(0.326839\pi\)
−0.517564 + 0.855644i \(0.673161\pi\)
\(272\) 9.40898 11.9234i 0.570503 0.722965i
\(273\) 0 0
\(274\) −18.5621 12.7905i −1.12137 0.772701i
\(275\) 1.08285 2.97510i 0.0652981 0.179405i
\(276\) 0 0
\(277\) −24.3185 4.28801i −1.46116 0.257641i −0.614136 0.789201i \(-0.710495\pi\)
−0.847021 + 0.531559i \(0.821606\pi\)
\(278\) −3.23142 + 0.891939i −0.193808 + 0.0534949i
\(279\) 0 0
\(280\) 4.59094 18.8212i 0.274361 1.12478i
\(281\) 6.58678 + 18.0970i 0.392935 + 1.07958i 0.965655 + 0.259828i \(0.0836659\pi\)
−0.572720 + 0.819751i \(0.694112\pi\)
\(282\) 0 0
\(283\) 6.85978 5.75604i 0.407772 0.342161i −0.415717 0.909494i \(-0.636469\pi\)
0.823488 + 0.567333i \(0.192025\pi\)
\(284\) −6.73210 7.78239i −0.399477 0.461800i
\(285\) 0 0
\(286\) 6.13457 + 2.80466i 0.362745 + 0.165843i
\(287\) −8.96057 15.5202i −0.528926 0.916126i
\(288\) 0 0
\(289\) −1.29071 + 2.23558i −0.0759243 + 0.131505i
\(290\) 15.3885 10.9484i 0.903646 0.642915i
\(291\) 0 0
\(292\) 3.44684 9.93214i 0.201711 0.581234i
\(293\) 3.69497 + 20.9552i 0.215863 + 1.22422i 0.879403 + 0.476078i \(0.157942\pi\)
−0.663540 + 0.748140i \(0.730947\pi\)
\(294\) 0 0
\(295\) −1.25355 + 1.49392i −0.0729843 + 0.0869793i
\(296\) 15.1138 + 14.4472i 0.878475 + 0.839728i
\(297\) 0 0
\(298\) −16.1013 15.8610i −0.932721 0.918805i
\(299\) −11.6093 + 13.8354i −0.671384 + 0.800125i
\(300\) 0 0
\(301\) 10.2906 1.81452i 0.593142 0.104587i
\(302\) −3.01130 + 1.43184i −0.173281 + 0.0823933i
\(303\) 0 0
\(304\) 4.96291 34.1132i 0.284643 1.95653i
\(305\) −25.7687 14.8776i −1.47551 0.851888i
\(306\) 0 0
\(307\) 4.48896 + 7.77511i 0.256199 + 0.443749i 0.965220 0.261438i \(-0.0841966\pi\)
−0.709022 + 0.705187i \(0.750863\pi\)
\(308\) −3.01237 7.90467i −0.171646 0.450410i
\(309\) 0 0
\(310\) 1.07726 13.4792i 0.0611843 0.765566i
\(311\) 13.0417 10.9433i 0.739525 0.620535i −0.193185 0.981162i \(-0.561882\pi\)
0.932710 + 0.360627i \(0.117437\pi\)
\(312\) 0 0
\(313\) −9.04413 + 3.29179i −0.511204 + 0.186063i −0.584727 0.811230i \(-0.698798\pi\)
0.0735224 + 0.997294i \(0.476576\pi\)
\(314\) 1.13673 + 0.295447i 0.0641494 + 0.0166731i
\(315\) 0 0
\(316\) −10.1937 + 18.2853i −0.573441 + 1.02863i
\(317\) 1.05306 5.97220i 0.0591457 0.335432i −0.940849 0.338827i \(-0.889970\pi\)
0.999994 + 0.00339548i \(0.00108082\pi\)
\(318\) 0 0
\(319\) 2.82047 7.74917i 0.157916 0.433870i
\(320\) −20.5769 + 4.59334i −1.15028 + 0.256775i
\(321\) 0 0
\(322\) 22.5483 2.14360i 1.25657 0.119458i
\(323\) 32.7244i 1.82083i
\(324\) 0 0
\(325\) 5.70173i 0.316275i
\(326\) 1.50782 + 15.8607i 0.0835107 + 0.878440i
\(327\) 0 0
\(328\) −10.8236 + 16.2243i −0.597635 + 0.895839i
\(329\) −1.29923 + 3.56961i −0.0716290 + 0.196799i
\(330\) 0 0
\(331\) 0.638218 3.61951i 0.0350796 0.198946i −0.962231 0.272233i \(-0.912238\pi\)
0.997311 + 0.0732869i \(0.0233489\pi\)
\(332\) 11.2061 20.1014i 0.615017 1.10321i
\(333\) 0 0
\(334\) −6.21599 + 23.9159i −0.340124 + 1.30862i
\(335\) −33.9960 + 12.3735i −1.85740 + 0.676037i
\(336\) 0 0
\(337\) 14.8826 12.4880i 0.810707 0.680264i −0.140070 0.990142i \(-0.544733\pi\)
0.950776 + 0.309878i \(0.100288\pi\)
\(338\) −6.21730 0.496888i −0.338176 0.0270272i
\(339\) 0 0
\(340\) −18.7023 + 7.12722i −1.01427 + 0.386528i
\(341\) −2.95222 5.11340i −0.159872 0.276906i
\(342\) 0 0
\(343\) 16.3076 + 9.41522i 0.880530 + 0.508374i
\(344\) −6.73102 9.16591i −0.362912 0.494193i
\(345\) 0 0
\(346\) −11.2961 23.7567i −0.607280 1.27717i
\(347\) −14.8923 + 2.62591i −0.799458 + 0.140966i −0.558430 0.829552i \(-0.688596\pi\)
−0.241029 + 0.970518i \(0.577485\pi\)
\(348\) 0 0
\(349\) 14.4505 17.2214i 0.773518 0.921843i −0.225104 0.974335i \(-0.572272\pi\)
0.998621 + 0.0524923i \(0.0167165\pi\)
\(350\) −5.01800 + 5.09400i −0.268223 + 0.272286i
\(351\) 0 0
\(352\) −6.26049 + 6.74962i −0.333685 + 0.359756i
\(353\) 13.4020 15.9719i 0.713316 0.850096i −0.280648 0.959811i \(-0.590549\pi\)
0.993963 + 0.109715i \(0.0349937\pi\)
\(354\) 0 0
\(355\) 2.35457 + 13.3534i 0.124967 + 0.708725i
\(356\) −0.460916 0.159956i −0.0244285 0.00847764i
\(357\) 0 0
\(358\) −5.80926 8.16517i −0.307029 0.431543i
\(359\) −5.43854 + 9.41983i −0.287035 + 0.497159i −0.973101 0.230380i \(-0.926003\pi\)
0.686066 + 0.727540i \(0.259336\pi\)
\(360\) 0 0
\(361\) −27.6356 47.8663i −1.45451 2.51928i
\(362\) 0.0881737 0.192860i 0.00463431 0.0101365i
\(363\) 0 0
\(364\) −9.96668 11.5216i −0.522396 0.603896i
\(365\) −10.6123 + 8.90479i −0.555474 + 0.466098i
\(366\) 0 0
\(367\) 3.96735 + 10.9002i 0.207094 + 0.568985i 0.999139 0.0414764i \(-0.0132061\pi\)
−0.792046 + 0.610462i \(0.790984\pi\)
\(368\) −12.9609 20.9671i −0.675634 1.09299i
\(369\) 0 0
\(370\) −7.33050 26.5578i −0.381094 1.38067i
\(371\) −0.463232 0.0816804i −0.0240498 0.00424063i
\(372\) 0 0
\(373\) 1.65913 4.55843i 0.0859066 0.236027i −0.889299 0.457326i \(-0.848807\pi\)
0.975206 + 0.221299i \(0.0710297\pi\)
\(374\) −4.95868 + 7.19624i −0.256407 + 0.372109i
\(375\) 0 0
\(376\) 4.10917 0.453065i 0.211914 0.0233650i
\(377\) 14.8512i 0.764874i
\(378\) 0 0
\(379\) 31.5863 1.62248 0.811238 0.584715i \(-0.198794\pi\)
0.811238 + 0.584715i \(0.198794\pi\)
\(380\) −28.6720 + 35.2321i −1.47084 + 1.80737i
\(381\) 0 0
\(382\) 8.77218 12.7305i 0.448824 0.651351i
\(383\) 5.33286 + 1.94100i 0.272496 + 0.0991805i 0.474654 0.880172i \(-0.342573\pi\)
−0.202158 + 0.979353i \(0.564795\pi\)
\(384\) 0 0
\(385\) −1.93562 + 10.9774i −0.0986482 + 0.559462i
\(386\) 3.99593 1.10296i 0.203387 0.0561392i
\(387\) 0 0
\(388\) −3.57072 + 2.13375i −0.181276 + 0.108325i
\(389\) 7.70166 2.80317i 0.390490 0.142127i −0.139311 0.990249i \(-0.544489\pi\)
0.529801 + 0.848122i \(0.322267\pi\)
\(390\) 0 0
\(391\) −15.0411 17.9253i −0.760660 0.906520i
\(392\) 0.0448785 0.692464i 0.00226671 0.0349747i
\(393\) 0 0
\(394\) 3.61760 + 1.65393i 0.182252 + 0.0833237i
\(395\) 23.8902 13.7930i 1.20204 0.694001i
\(396\) 0 0
\(397\) −25.2112 14.5557i −1.26532 0.730531i −0.291218 0.956657i \(-0.594061\pi\)
−0.974098 + 0.226126i \(0.927394\pi\)
\(398\) −0.827727 1.16341i −0.0414902 0.0583164i
\(399\) 0 0
\(400\) 7.38915 + 2.44052i 0.369458 + 0.122026i
\(401\) −13.6729 + 2.41090i −0.682792 + 0.120395i −0.504276 0.863542i \(-0.668241\pi\)
−0.178516 + 0.983937i \(0.557130\pi\)
\(402\) 0 0
\(403\) −8.14562 6.83498i −0.405762 0.340475i
\(404\) −0.536342 35.6789i −0.0266840 1.77509i
\(405\) 0 0
\(406\) −13.0703 + 13.2682i −0.648667 + 0.658492i
\(407\) −9.21557 7.73278i −0.456799 0.383300i
\(408\) 0 0
\(409\) −2.85854 16.2116i −0.141346 0.801613i −0.970229 0.242190i \(-0.922134\pi\)
0.828883 0.559422i \(-0.188977\pi\)
\(410\) 23.2096 11.0359i 1.14624 0.545025i
\(411\) 0 0
\(412\) −3.98715 + 24.7852i −0.196433 + 1.22108i
\(413\) 0.961601 1.66554i 0.0473173 0.0819559i
\(414\) 0 0
\(415\) −26.2629 + 15.1629i −1.28920 + 0.744318i
\(416\) −6.43721 + 15.2785i −0.315610 + 0.749090i
\(417\) 0 0
\(418\) −1.58015 + 19.7715i −0.0772875 + 0.967057i
\(419\) −10.4296 12.4295i −0.509520 0.607223i 0.448549 0.893758i \(-0.351941\pi\)
−0.958070 + 0.286535i \(0.907496\pi\)
\(420\) 0 0
\(421\) 0.181389 + 0.498362i 0.00884036 + 0.0242887i 0.944034 0.329847i \(-0.106997\pi\)
−0.935194 + 0.354136i \(0.884775\pi\)
\(422\) −1.50826 + 5.80300i −0.0734208 + 0.282485i
\(423\) 0 0
\(424\) 0.143605 + 0.491351i 0.00697409 + 0.0238621i
\(425\) 7.27495 + 1.28277i 0.352887 + 0.0622235i
\(426\) 0 0
\(427\) 27.5740 + 10.0361i 1.33440 + 0.485682i
\(428\) −4.12270 21.4872i −0.199278 1.03862i
\(429\) 0 0
\(430\) 1.41817 + 14.9176i 0.0683905 + 0.719392i
\(431\) 12.2920 0.592084 0.296042 0.955175i \(-0.404333\pi\)
0.296042 + 0.955175i \(0.404333\pi\)
\(432\) 0 0
\(433\) 14.6907 0.705991 0.352996 0.935625i \(-0.385163\pi\)
0.352996 + 0.935625i \(0.385163\pi\)
\(434\) 1.26204 + 13.2753i 0.0605800 + 0.637235i
\(435\) 0 0
\(436\) −2.39525 12.4838i −0.114712 0.597867i
\(437\) −49.9053 18.1640i −2.38729 0.868904i
\(438\) 0 0
\(439\) 28.8488 + 5.08682i 1.37688 + 0.242781i 0.812609 0.582810i \(-0.198047\pi\)
0.564270 + 0.825591i \(0.309158\pi\)
\(440\) 11.6438 3.40308i 0.555095 0.162235i
\(441\) 0 0
\(442\) −3.95907 + 15.2325i −0.188314 + 0.724534i
\(443\) 11.6096 + 31.8970i 0.551588 + 1.51547i 0.831543 + 0.555461i \(0.187458\pi\)
−0.279955 + 0.960013i \(0.590320\pi\)
\(444\) 0 0
\(445\) 0.413240 + 0.492480i 0.0195895 + 0.0233458i
\(446\) −1.80119 + 22.5373i −0.0852887 + 1.06717i
\(447\) 0 0
\(448\) 19.1975 7.98473i 0.906995 0.377243i
\(449\) 15.4011 8.89184i 0.726823 0.419632i −0.0904355 0.995902i \(-0.528826\pi\)
0.817259 + 0.576271i \(0.195493\pi\)
\(450\) 0 0
\(451\) 5.61089 9.71834i 0.264206 0.457619i
\(452\) −1.12086 + 6.96756i −0.0527207 + 0.327726i
\(453\) 0 0
\(454\) −2.19589 + 1.04412i −0.103058 + 0.0490031i
\(455\) 3.48587 + 19.7693i 0.163420 + 0.926800i
\(456\) 0 0
\(457\) 9.21939 + 7.73598i 0.431265 + 0.361874i 0.832429 0.554132i \(-0.186950\pi\)
−0.401164 + 0.916006i \(0.631394\pi\)
\(458\) 9.14028 9.27871i 0.427097 0.433566i
\(459\) 0 0
\(460\) 0.488216 + 32.4774i 0.0227632 + 1.51427i
\(461\) 12.6139 + 10.5843i 0.587487 + 0.492960i 0.887396 0.461008i \(-0.152512\pi\)
−0.299909 + 0.953968i \(0.596956\pi\)
\(462\) 0 0
\(463\) 3.83957 0.677019i 0.178440 0.0314638i −0.0837142 0.996490i \(-0.526678\pi\)
0.262154 + 0.965026i \(0.415567\pi\)
\(464\) 19.2464 + 6.35676i 0.893491 + 0.295105i
\(465\) 0 0
\(466\) 15.8730 + 22.3102i 0.735302 + 1.03350i
\(467\) 8.38005 + 4.83822i 0.387782 + 0.223886i 0.681199 0.732098i \(-0.261459\pi\)
−0.293416 + 0.955985i \(0.594792\pi\)
\(468\) 0 0
\(469\) 30.8975 17.8387i 1.42672 0.823715i
\(470\) −4.95428 2.26505i −0.228524 0.104479i
\(471\) 0 0
\(472\) −2.08861 0.135363i −0.0961362 0.00623058i
\(473\) 4.20585 + 5.01234i 0.193385 + 0.230468i
\(474\) 0 0
\(475\) 15.7548 5.73429i 0.722881 0.263107i
\(476\) 16.9429 10.1246i 0.776579 0.464059i
\(477\) 0 0
\(478\) 6.30988 1.74166i 0.288607 0.0796616i
\(479\) −0.352574 + 1.99955i −0.0161095 + 0.0913616i −0.991802 0.127780i \(-0.959215\pi\)
0.975693 + 0.219142i \(0.0703258\pi\)
\(480\) 0 0
\(481\) −20.3585 7.40988i −0.928266 0.337861i
\(482\) 22.1059 32.0809i 1.00689 1.46125i
\(483\) 0 0
\(484\) −10.5430 + 12.9552i −0.479226 + 0.588874i
\(485\) 5.48126 0.248891
\(486\) 0 0
\(487\) 7.67766i 0.347908i −0.984754 0.173954i \(-0.944346\pi\)
0.984754 0.173954i \(-0.0556544\pi\)
\(488\) −3.49977 31.7420i −0.158427 1.43689i
\(489\) 0 0
\(490\) −0.518823 + 0.752937i −0.0234380 + 0.0340142i
\(491\) −6.23136 + 17.1205i −0.281217 + 0.772638i 0.716001 + 0.698100i \(0.245971\pi\)
−0.997218 + 0.0745389i \(0.976251\pi\)
\(492\) 0 0
\(493\) 18.9489 + 3.34121i 0.853417 + 0.150480i
\(494\) 9.50412 + 34.4326i 0.427611 + 1.54920i
\(495\) 0 0
\(496\) 12.3444 7.63073i 0.554279 0.342630i
\(497\) −4.57346 12.5655i −0.205148 0.563638i
\(498\) 0 0
\(499\) −0.594620 + 0.498945i −0.0266189 + 0.0223359i −0.656000 0.754761i \(-0.727753\pi\)
0.629381 + 0.777097i \(0.283308\pi\)
\(500\) 10.5332 + 12.1764i 0.471057 + 0.544547i
\(501\) 0 0
\(502\) 8.16378 17.8565i 0.364367 0.796972i
\(503\) 16.6264 + 28.7978i 0.741335 + 1.28403i 0.951887 + 0.306448i \(0.0991406\pi\)
−0.210552 + 0.977583i \(0.567526\pi\)
\(504\) 0 0
\(505\) −23.5098 + 40.7203i −1.04617 + 1.81203i
\(506\) 8.22203 + 11.5564i 0.365514 + 0.513746i
\(507\) 0 0
\(508\) −34.4590 11.9586i −1.52887 0.530577i
\(509\) 5.59821 + 31.7490i 0.248136 + 1.40725i 0.813095 + 0.582132i \(0.197781\pi\)
−0.564958 + 0.825119i \(0.691108\pi\)
\(510\) 0 0
\(511\) 8.78164 10.4655i 0.388477 0.462969i
\(512\) −17.0448 14.8820i −0.753283 0.657697i
\(513\) 0 0
\(514\) 1.68394 1.70944i 0.0742754 0.0754003i
\(515\) 21.2631 25.3404i 0.936966 1.11663i
\(516\) 0 0
\(517\) −2.34251 + 0.413048i −0.103024 + 0.0181658i
\(518\) 11.6672 + 24.5373i 0.512628 + 1.07811i
\(519\) 0 0
\(520\) 17.6086 12.9310i 0.772189 0.567060i
\(521\) 27.9816 + 16.1552i 1.22590 + 0.707773i 0.966169 0.257909i \(-0.0830335\pi\)
0.259729 + 0.965682i \(0.416367\pi\)
\(522\) 0 0
\(523\) −1.25831 2.17946i −0.0550222 0.0953012i 0.837202 0.546893i \(-0.184190\pi\)
−0.892225 + 0.451592i \(0.850856\pi\)
\(524\) 7.79052 2.96887i 0.340330 0.129696i
\(525\) 0 0
\(526\) 5.84933 + 0.467480i 0.255043 + 0.0203831i
\(527\) 10.5535 8.85544i 0.459718 0.385749i
\(528\) 0 0
\(529\) −14.0722 + 5.12185i −0.611833 + 0.222689i
\(530\) 0.169683 0.652853i 0.00737056 0.0283581i
\(531\) 0 0
\(532\) 21.8125 39.1270i 0.945692 1.69637i
\(533\) 3.50932 19.9023i 0.152005 0.862066i
\(534\) 0 0
\(535\) −9.86054 + 27.0916i −0.426308 + 1.17127i
\(536\) −32.2994 21.5477i −1.39512 0.930718i
\(537\) 0 0
\(538\) 4.20879 + 44.2718i 0.181454 + 1.90869i
\(539\) 0.399264i 0.0171975i
\(540\) 0 0
\(541\) 20.7984i 0.894192i 0.894486 + 0.447096i \(0.147542\pi\)
−0.894486 + 0.447096i \(0.852458\pi\)
\(542\) 39.6615 3.77050i 1.70361 0.161957i
\(543\) 0 0
\(544\) −18.0459 11.6507i −0.773712 0.499521i
\(545\) −5.72888 + 15.7400i −0.245398 + 0.674226i
\(546\) 0 0
\(547\) −3.11764 + 17.6810i −0.133301 + 0.755985i 0.842727 + 0.538341i \(0.180949\pi\)
−0.976028 + 0.217645i \(0.930163\pi\)
\(548\) −15.5229 + 27.8448i −0.663105 + 1.18947i
\(549\) 0 0
\(550\) −4.33347 1.12631i −0.184780 0.0480261i
\(551\) 41.0363 14.9360i 1.74820 0.636294i
\(552\) 0 0
\(553\) −20.8398 + 17.4867i −0.886200 + 0.743610i
\(554\) −2.78211 + 34.8111i −0.118201 + 1.47898i
\(555\) 0 0
\(556\) 1.68823 + 4.43002i 0.0715968 + 0.187875i
\(557\) −15.8779 27.5013i −0.672766 1.16527i −0.977116 0.212705i \(-0.931773\pi\)
0.304350 0.952560i \(-0.401561\pi\)
\(558\) 0 0
\(559\) 10.2049 + 5.89179i 0.431621 + 0.249196i
\(560\) −27.1121 3.94438i −1.14570 0.166680i
\(561\) 0 0
\(562\) 24.5966 11.6954i 1.03755 0.493343i
\(563\) −21.2510 + 3.74712i −0.895621 + 0.157922i −0.602468 0.798143i \(-0.705816\pi\)
−0.293153 + 0.956065i \(0.594705\pi\)
\(564\) 0 0
\(565\) 5.97745 7.12365i 0.251473 0.299694i
\(566\) −9.02186 8.88726i −0.379217 0.373559i
\(567\) 0 0
\(568\) −10.0555 + 10.5195i −0.421920 + 0.441389i
\(569\) −28.0024 + 33.3720i −1.17392 + 1.39903i −0.274701 + 0.961530i \(0.588579\pi\)
−0.899221 + 0.437495i \(0.855866\pi\)
\(570\) 0 0
\(571\) 5.33260 + 30.2427i 0.223162 + 1.26562i 0.866167 + 0.499754i \(0.166576\pi\)
−0.643005 + 0.765862i \(0.722313\pi\)
\(572\) 3.12753 9.01203i 0.130768 0.376812i
\(573\) 0 0
\(574\) −20.6510 + 14.6925i −0.861957 + 0.613254i
\(575\) 5.99429 10.3824i 0.249979 0.432977i
\(576\) 0 0
\(577\) −18.5251 32.0864i −0.771210 1.33578i −0.936900 0.349597i \(-0.886318\pi\)
0.165690 0.986178i \(-0.447015\pi\)
\(578\) 3.32015 + 1.51794i 0.138100 + 0.0631379i
\(579\) 0 0
\(580\) −17.4736 20.1996i −0.725551 0.838745i
\(581\) 22.9096 19.2235i 0.950452 0.797524i
\(582\) 0 0
\(583\) −0.100738 0.276776i −0.00417216 0.0114629i
\(584\) −14.4444 3.52335i −0.597715 0.145797i
\(585\) 0 0
\(586\) 29.0076 8.00671i 1.19829 0.330754i
\(587\) −2.18563 0.385385i −0.0902104 0.0159065i 0.128361 0.991728i \(-0.459028\pi\)
−0.218571 + 0.975821i \(0.570140\pi\)
\(588\) 0 0
\(589\) 10.6941 29.3817i 0.440642 1.21065i
\(590\) 2.27101 + 1.56488i 0.0934961 + 0.0644249i
\(591\) 0 0
\(592\) 18.3169 23.2119i 0.752820 0.954004i
\(593\) 7.72015i 0.317028i 0.987357 + 0.158514i \(0.0506704\pi\)
−0.987357 + 0.158514i \(0.949330\pi\)
\(594\) 0 0
\(595\) −26.0084 −1.06624
\(596\) −20.1752 + 24.7913i −0.826408 + 1.01549i
\(597\) 0 0
\(598\) 21.0323 + 14.4926i 0.860073 + 0.592647i
\(599\) −5.13051 1.86735i −0.209627 0.0762980i 0.235072 0.971978i \(-0.424467\pi\)
−0.444699 + 0.895680i \(0.646689\pi\)
\(600\) 0 0
\(601\) 2.68385 15.2209i 0.109477 0.620872i −0.879861 0.475231i \(-0.842364\pi\)
0.989337 0.145641i \(-0.0465245\pi\)
\(602\) −3.93191 14.2450i −0.160253 0.580582i
\(603\) 0 0
\(604\) 2.41888 + 4.04787i 0.0984229 + 0.164705i
\(605\) 20.6824 7.52779i 0.840860 0.306048i
\(606\) 0 0
\(607\) 0.0926471 + 0.110413i 0.00376043 + 0.00448151i 0.767921 0.640544i \(-0.221291\pi\)
−0.764161 + 0.645026i \(0.776847\pi\)
\(608\) −48.6910 2.42136i −1.97468 0.0981990i
\(609\) 0 0
\(610\) −17.4967 + 38.2702i −0.708421 + 1.54951i
\(611\) −3.70982 + 2.14186i −0.150083 + 0.0866505i
\(612\) 0 0
\(613\) −30.3578 17.5271i −1.22614 0.707913i −0.259921 0.965630i \(-0.583696\pi\)
−0.966220 + 0.257717i \(0.917030\pi\)
\(614\) 10.3455 7.36049i 0.417510 0.297045i
\(615\) 0 0
\(616\) −10.7255 + 5.29899i −0.432144 + 0.213502i
\(617\) −1.95314 + 0.344391i −0.0786304 + 0.0138647i −0.212825 0.977090i \(-0.568266\pi\)
0.134195 + 0.990955i \(0.457155\pi\)
\(618\) 0 0
\(619\) 30.9839 + 25.9986i 1.24535 + 1.04497i 0.997087 + 0.0762782i \(0.0243037\pi\)
0.248262 + 0.968693i \(0.420141\pi\)
\(620\) −19.1211 + 0.287437i −0.767920 + 0.0115438i
\(621\) 0 0
\(622\) −17.1522 16.8962i −0.687739 0.677478i
\(623\) −0.485670 0.407525i −0.0194579 0.0163272i
\(624\) 0 0
\(625\) −5.37310 30.4724i −0.214924 1.21890i
\(626\) 5.84488 + 12.2923i 0.233608 + 0.491301i
\(627\) 0 0
\(628\) 0.263809 1.63991i 0.0105271 0.0654394i
\(629\) 14.0347 24.3087i 0.559598 0.969253i
\(630\) 0 0
\(631\) −28.0718 + 16.2073i −1.11752 + 0.645202i −0.940767 0.339053i \(-0.889893\pi\)
−0.176755 + 0.984255i \(0.556560\pi\)
\(632\) 27.1077 + 11.9040i 1.07828 + 0.473517i
\(633\) 0 0
\(634\) −8.54900 0.683238i −0.339524 0.0271349i
\(635\) 30.8946 + 36.8188i 1.22602 + 1.46111i
\(636\) 0 0
\(637\) 0.245925 + 0.675673i 0.00974390 + 0.0267711i
\(638\) −11.2873 2.93368i −0.446868 0.116146i
\(639\) 0 0
\(640\) 9.22085 + 28.3548i 0.364486 + 1.12082i
\(641\) −16.3026 2.87458i −0.643912 0.113539i −0.157850 0.987463i \(-0.550456\pi\)
−0.486063 + 0.873924i \(0.661567\pi\)
\(642\) 0 0
\(643\) −25.2314 9.18349i −0.995030 0.362161i −0.207364 0.978264i \(-0.566489\pi\)
−0.787666 + 0.616102i \(0.788711\pi\)
\(644\) −6.03580 31.4581i −0.237844 1.23962i
\(645\) 0 0
\(646\) −46.0715 + 4.37988i −1.81266 + 0.172324i
\(647\) 29.0527 1.14218 0.571090 0.820887i \(-0.306521\pi\)
0.571090 + 0.820887i \(0.306521\pi\)
\(648\) 0 0
\(649\) 1.20426 0.0472714
\(650\) −8.02726 + 0.763128i −0.314855 + 0.0299323i
\(651\) 0 0
\(652\) 22.1279 4.24563i 0.866594 0.166272i
\(653\) 32.5052 + 11.8309i 1.27203 + 0.462980i 0.887788 0.460253i \(-0.152241\pi\)
0.384240 + 0.923233i \(0.374463\pi\)
\(654\) 0 0
\(655\) −10.8189 1.90767i −0.422730 0.0745387i
\(656\) 24.2903 + 13.0667i 0.948379 + 0.510170i
\(657\) 0 0
\(658\) 5.19942 + 1.35138i 0.202695 + 0.0526824i
\(659\) −7.44079 20.4434i −0.289852 0.796362i −0.996086 0.0883842i \(-0.971830\pi\)
0.706234 0.707978i \(-0.250393\pi\)
\(660\) 0 0
\(661\) 16.3906 + 19.5335i 0.637519 + 0.759766i 0.983976 0.178300i \(-0.0570597\pi\)
−0.346457 + 0.938066i \(0.612615\pi\)
\(662\) −5.18121 0.414084i −0.201373 0.0160938i
\(663\) 0 0
\(664\) −29.8000 13.0863i −1.15646 0.507848i
\(665\) −51.1202 + 29.5143i −1.98236 + 1.14451i
\(666\) 0 0
\(667\) 15.6132 27.0429i 0.604546 1.04710i
\(668\) 34.5024 + 5.55033i 1.33494 + 0.214749i
\(669\) 0 0
\(670\) 21.9703 + 46.2056i 0.848788 + 1.78508i
\(671\) 3.19066 + 18.0951i 0.123174 + 0.698555i
\(672\) 0 0
\(673\) −6.18349 5.18857i −0.238356 0.200005i 0.515783 0.856719i \(-0.327501\pi\)
−0.754139 + 0.656715i \(0.771946\pi\)
\(674\) −19.5733 19.2813i −0.753936 0.742687i
\(675\) 0 0
\(676\) 0.132581 + 8.81963i 0.00509927 + 0.339216i
\(677\) −11.8370 9.93243i −0.454933 0.381734i 0.386330 0.922361i \(-0.373743\pi\)
−0.841263 + 0.540627i \(0.818187\pi\)
\(678\) 0 0
\(679\) −5.32333 + 0.938647i −0.204291 + 0.0360220i
\(680\) 12.5373 + 25.3764i 0.480784 + 0.973141i
\(681\) 0 0
\(682\) −6.80385 + 4.84072i −0.260533 + 0.185361i
\(683\) 1.82111 + 1.05142i 0.0696830 + 0.0402315i 0.534437 0.845209i \(-0.320524\pi\)
−0.464754 + 0.885440i \(0.653857\pi\)
\(684\) 0 0
\(685\) 36.3798 21.0039i 1.39000 0.802516i
\(686\) 11.0727 24.2191i 0.422759 0.924690i
\(687\) 0 0
\(688\) −12.0035 + 10.7032i −0.457628 + 0.408054i
\(689\) −0.340959 0.406339i −0.0129895 0.0154803i
\(690\) 0 0
\(691\) −21.9905 + 8.00388i −0.836557 + 0.304482i −0.724547 0.689225i \(-0.757951\pi\)
−0.112010 + 0.993707i \(0.535729\pi\)
\(692\) −31.9344 + 19.0830i −1.21396 + 0.725426i
\(693\) 0 0
\(694\) 5.69013 + 20.6149i 0.215994 + 0.782529i
\(695\) 1.08478 6.15210i 0.0411481 0.233362i
\(696\) 0 0
\(697\) 24.6043 + 8.95523i 0.931954 + 0.339203i
\(698\) −26.1796 18.0394i −0.990911 0.682802i
\(699\) 0 0
\(700\) 7.84329 + 6.38288i 0.296448 + 0.241250i
\(701\) 40.5028 1.52977 0.764884 0.644168i \(-0.222796\pi\)
0.764884 + 0.644168i \(0.222796\pi\)
\(702\) 0 0
\(703\) 63.7061i 2.40272i
\(704\) 10.3405 + 7.91055i 0.389721 + 0.298140i
\(705\) 0 0
\(706\) −24.2800 16.7305i −0.913789 0.629660i
\(707\) 15.8593 43.5730i 0.596450 1.63873i
\(708\) 0 0
\(709\) 12.4782 + 2.20024i 0.468628 + 0.0826317i 0.402975 0.915211i \(-0.367976\pi\)
0.0656523 + 0.997843i \(0.479087\pi\)
\(710\) 18.4847 5.10216i 0.693717 0.191480i
\(711\) 0 0
\(712\) −0.163507 + 0.670316i −0.00612767 + 0.0251212i
\(713\) −7.64687 21.0096i −0.286377 0.786815i
\(714\) 0 0
\(715\) −9.62920 + 8.07986i −0.360112 + 0.302170i
\(716\) −10.7180 + 9.27149i −0.400549 + 0.346492i
\(717\) 0 0
\(718\) 13.9898 + 6.39597i 0.522093 + 0.238695i
\(719\) 23.2178 + 40.2145i 0.865879 + 1.49975i 0.866171 + 0.499747i \(0.166574\pi\)
−0.000291815 1.00000i \(0.500093\pi\)
\(720\) 0 0
\(721\) −16.3111 + 28.2516i −0.607455 + 1.05214i
\(722\) −63.6905 + 45.3137i −2.37032 + 1.68640i
\(723\) 0 0
\(724\) −0.283323 0.0983241i −0.0105296 0.00365418i
\(725\) 1.71183 + 9.70825i 0.0635756 + 0.360555i
\(726\) 0 0
\(727\) 7.82850 9.32964i 0.290343 0.346017i −0.601081 0.799188i \(-0.705263\pi\)
0.891424 + 0.453171i \(0.149707\pi\)
\(728\) −14.8869 + 15.5738i −0.551745 + 0.577204i
\(729\) 0 0
\(730\) 13.9571 + 13.7489i 0.516576 + 0.508869i
\(731\) −9.81335 + 11.6951i −0.362960 + 0.432559i
\(732\) 0 0
\(733\) −9.85329 + 1.73740i −0.363939 + 0.0641723i −0.352628 0.935764i \(-0.614712\pi\)
−0.0113117 + 0.999936i \(0.503601\pi\)
\(734\) 14.8150 7.04439i 0.546832 0.260013i
\(735\) 0 0
\(736\) −27.7842 + 21.0535i −1.02414 + 0.776042i
\(737\) 19.3473 + 11.1702i 0.712666 + 0.411458i
\(738\) 0 0
\(739\) 22.0318 + 38.1602i 0.810454 + 1.40375i 0.912547 + 0.408972i \(0.134113\pi\)
−0.102093 + 0.994775i \(0.532554\pi\)
\(740\) −36.4086 + 13.8749i −1.33841 + 0.510051i
\(741\) 0 0
\(742\) −0.0529953 + 0.663101i −0.00194552 + 0.0243432i
\(743\) 6.42946 5.39496i 0.235874 0.197922i −0.517187 0.855872i \(-0.673021\pi\)
0.753061 + 0.657950i \(0.228576\pi\)
\(744\) 0 0
\(745\) 39.5782 14.4053i 1.45003 0.527769i
\(746\) −6.63972 1.72573i −0.243097 0.0631834i
\(747\) 0 0
\(748\) 10.7950 + 6.01800i 0.394705 + 0.220040i
\(749\) 4.93709 27.9996i 0.180397 1.02308i
\(750\) 0 0
\(751\) −7.74342 + 21.2749i −0.282561 + 0.776331i 0.714494 + 0.699642i \(0.246657\pi\)
−0.997055 + 0.0766890i \(0.975565\pi\)
\(752\) −1.18783 5.72452i −0.0433158 0.208752i
\(753\) 0 0
\(754\) −20.9085 + 1.98770i −0.761441 + 0.0723879i
\(755\) 6.21370i 0.226140i
\(756\) 0 0
\(757\) 19.5088i 0.709058i −0.935045 0.354529i \(-0.884641\pi\)
0.935045 0.354529i \(-0.115359\pi\)
\(758\) −4.22755 44.4692i −0.153552 1.61519i
\(759\) 0 0
\(760\) 53.4396 + 35.6508i 1.93846 + 1.29319i
\(761\) 9.62500 26.4445i 0.348906 0.958612i −0.633809 0.773489i \(-0.718510\pi\)
0.982715 0.185122i \(-0.0592682\pi\)
\(762\) 0 0
\(763\) 2.86840 16.2675i 0.103843 0.588924i
\(764\) −19.0970 10.6462i −0.690904 0.385165i
\(765\) 0 0
\(766\) 2.01891 7.76774i 0.0729463 0.280660i
\(767\) 2.03797 0.741760i 0.0735868 0.0267834i
\(768\) 0 0
\(769\) 12.3157 10.3341i 0.444117 0.372658i −0.393130 0.919483i \(-0.628608\pi\)
0.837247 + 0.546824i \(0.184163\pi\)
\(770\) 15.7138 + 1.25585i 0.566287 + 0.0452578i
\(771\) 0 0
\(772\) −2.08764 5.47811i −0.0751358 0.197161i
\(773\) 6.27436 + 10.8675i 0.225673 + 0.390877i 0.956521 0.291663i \(-0.0942086\pi\)
−0.730848 + 0.682540i \(0.760875\pi\)
\(774\) 0 0
\(775\) 6.11265 + 3.52914i 0.219573 + 0.126770i
\(776\) 3.48195 + 4.74152i 0.124995 + 0.170210i
\(777\) 0 0
\(778\) −4.97730 10.4677i −0.178445 0.375286i
\(779\) 58.5229 10.3192i 2.09680 0.369722i
\(780\) 0 0
\(781\) 5.38215 6.41420i 0.192589 0.229518i
\(782\) −23.2232 + 23.5750i −0.830462 + 0.843039i
\(783\) 0 0
\(784\) −0.980902 + 0.0294975i −0.0350322 + 0.00105348i
\(785\) −1.40687 + 1.67664i −0.0502134 + 0.0598420i
\(786\) 0 0
\(787\) −3.64035 20.6454i −0.129764 0.735930i −0.978363 0.206894i \(-0.933665\pi\)
0.848599 0.529037i \(-0.177447\pi\)
\(788\) 1.84432 5.31446i 0.0657013 0.189320i
\(789\) 0 0
\(790\) −22.6162 31.7881i −0.804648 1.13097i
\(791\) −4.58533 + 7.94202i −0.163036 + 0.282386i
\(792\) 0 0
\(793\) 16.5452 + 28.6571i 0.587536 + 1.01764i
\(794\) −17.1182 + 37.4422i −0.607502 + 1.32877i
\(795\) 0 0
\(796\) −1.52714 + 1.32104i −0.0541280 + 0.0468231i
\(797\) −21.2235 + 17.8086i −0.751775 + 0.630814i −0.935972 0.352075i \(-0.885476\pi\)
0.184197 + 0.982889i \(0.441032\pi\)
\(798\) 0 0
\(799\) −1.89822 5.21531i −0.0671541 0.184504i
\(800\) 2.44694 10.7296i 0.0865125 0.379348i
\(801\) 0 0
\(802\) 5.22423 + 18.9269i 0.184474 + 0.668333i
\(803\) 8.42472 + 1.48550i 0.297302 + 0.0524223i
\(804\) 0 0
\(805\) −14.4362 + 39.6632i −0.508810 + 1.39794i
\(806\) −8.53252 + 12.3827i −0.300545 + 0.436163i
\(807\) 0 0
\(808\) −50.1593 + 5.53041i −1.76460 + 0.194559i
\(809\) 21.9542i 0.771867i −0.922527 0.385933i \(-0.873879\pi\)
0.922527 0.385933i \(-0.126121\pi\)
\(810\) 0 0
\(811\) −17.4685 −0.613401 −0.306700 0.951806i \(-0.599225\pi\)
−0.306700 + 0.951806i \(0.599225\pi\)
\(812\) 20.4293 + 16.6254i 0.716926 + 0.583436i
\(813\) 0 0
\(814\) −9.65329 + 14.0093i −0.338348 + 0.491024i
\(815\) −27.8994 10.1546i −0.977274 0.355699i
\(816\) 0 0
\(817\) −6.01685 + 34.1233i −0.210503 + 1.19382i
\(818\) −22.4412 + 6.19424i −0.784638 + 0.216576i
\(819\) 0 0
\(820\) −18.6435 31.1989i −0.651060 1.08951i
\(821\) −40.3394 + 14.6823i −1.40786 + 0.512417i −0.930500 0.366293i \(-0.880627\pi\)
−0.477355 + 0.878710i \(0.658405\pi\)
\(822\) 0 0
\(823\) 17.8062 + 21.2206i 0.620686 + 0.739705i 0.981188 0.193053i \(-0.0618390\pi\)
−0.360502 + 0.932758i \(0.617395\pi\)
\(824\) 35.4279 + 2.29608i 1.23419 + 0.0799877i
\(825\) 0 0
\(826\) −2.47356 1.13089i −0.0860662 0.0393486i
\(827\) −23.1043 + 13.3392i −0.803414 + 0.463851i −0.844663 0.535298i \(-0.820199\pi\)
0.0412497 + 0.999149i \(0.486866\pi\)
\(828\) 0 0
\(829\) 2.23315 + 1.28931i 0.0775606 + 0.0447796i 0.538279 0.842767i \(-0.319075\pi\)
−0.460718 + 0.887547i \(0.652408\pi\)
\(830\) 24.8624 + 34.9452i 0.862987 + 1.21297i
\(831\) 0 0
\(832\) 22.3716 + 7.01784i 0.775597 + 0.243300i
\(833\) −0.917434 + 0.161768i −0.0317872 + 0.00560494i
\(834\) 0 0
\(835\) −35.2753 29.5995i −1.22075 1.02433i
\(836\) 28.0472 0.421619i 0.970031 0.0145820i
\(837\) 0 0
\(838\) −16.1032 + 16.3471i −0.556276 + 0.564701i
\(839\) −27.0517 22.6991i −0.933928 0.783659i 0.0425905 0.999093i \(-0.486439\pi\)
−0.976518 + 0.215434i \(0.930883\pi\)
\(840\) 0 0
\(841\) −0.577037 3.27254i −0.0198978 0.112846i
\(842\) 0.677349 0.322073i 0.0233430 0.0110994i
\(843\) 0 0
\(844\) 8.37171 + 1.34674i 0.288166 + 0.0463567i
\(845\) 5.81151 10.0658i 0.199922 0.346275i
\(846\) 0 0
\(847\) −18.7974 + 10.8527i −0.645887 + 0.372903i
\(848\) 0.672536 0.267940i 0.0230950 0.00920110i
\(849\) 0 0
\(850\) 0.832278 10.4138i 0.0285469 0.357192i
\(851\) −29.2812 34.8959i −1.00375 1.19622i
\(852\) 0 0
\(853\) −11.8972 32.6874i −0.407354 1.11919i −0.958576 0.284837i \(-0.908061\pi\)
0.551222 0.834358i \(-0.314162\pi\)
\(854\) 10.4390 40.1638i 0.357214 1.37438i
\(855\) 0 0
\(856\) −29.6992 + 8.68008i −1.01510 + 0.296679i
\(857\) 14.7995 + 2.60955i 0.505541 + 0.0891405i 0.420601 0.907246i \(-0.361819\pi\)
0.0849397 + 0.996386i \(0.472930\pi\)
\(858\) 0 0
\(859\) −11.2421 4.09177i −0.383574 0.139610i 0.143034 0.989718i \(-0.454314\pi\)
−0.526608 + 0.850108i \(0.676536\pi\)
\(860\) 20.8122 3.99320i 0.709691 0.136167i
\(861\) 0 0
\(862\) −1.64518 17.3055i −0.0560350 0.589427i
\(863\) −4.99128 −0.169905 −0.0849526 0.996385i \(-0.527074\pi\)
−0.0849526 + 0.996385i \(0.527074\pi\)
\(864\) 0 0
\(865\) 49.0210 1.66676
\(866\) −1.96623 20.6826i −0.0668152 0.702822i
\(867\) 0 0
\(868\) 18.5209 3.55357i 0.628641 0.120616i
\(869\) −16.0074 5.82624i −0.543016 0.197641i
\(870\) 0 0
\(871\) 39.6216 + 6.98635i 1.34253 + 0.236724i
\(872\) −17.2550 + 5.04304i −0.584327 + 0.170779i
\(873\) 0 0
\(874\) −18.8931 + 72.6911i −0.639070 + 2.45881i
\(875\) 7.15570 + 19.6601i 0.241907 + 0.664634i
\(876\) 0 0
\(877\) −13.3228 15.8774i −0.449878 0.536143i 0.492670 0.870217i \(-0.336021\pi\)
−0.942547 + 0.334073i \(0.891577\pi\)
\(878\) 3.30039 41.2961i 0.111383 1.39367i
\(879\) 0 0
\(880\) −6.34950 15.9374i −0.214042 0.537249i
\(881\) −7.33774 + 4.23645i −0.247215 + 0.142729i −0.618488 0.785794i \(-0.712255\pi\)
0.371274 + 0.928524i \(0.378921\pi\)
\(882\) 0 0
\(883\) 9.03674 15.6521i 0.304111 0.526735i −0.672952 0.739686i \(-0.734974\pi\)
0.977063 + 0.212951i \(0.0683074\pi\)
\(884\) 21.9752 + 3.53510i 0.739104 + 0.118898i
\(885\) 0 0
\(886\) 43.3529 20.6139i 1.45647 0.692537i
\(887\) 3.87890 + 21.9983i 0.130241 + 0.738632i 0.978056 + 0.208341i \(0.0668063\pi\)
−0.847816 + 0.530291i \(0.822083\pi\)
\(888\) 0 0
\(889\) −36.3096 30.4674i −1.21779 1.02184i
\(890\) 0.638038 0.647701i 0.0213871 0.0217110i
\(891\) 0 0
\(892\) 31.9706 0.480597i 1.07045 0.0160916i
\(893\) −9.64933 8.09675i −0.322903 0.270948i
\(894\) 0 0
\(895\) 18.3904 3.24272i 0.614723 0.108392i
\(896\) −13.8108 25.9588i −0.461388 0.867222i
\(897\) 0 0
\(898\) −14.5798 20.4926i −0.486535 0.683847i
\(899\) 15.9215 + 9.19228i 0.531012 + 0.306580i
\(900\) 0 0
\(901\) 0.595165 0.343619i 0.0198278 0.0114476i
\(902\) −14.4331 6.59866i −0.480569 0.219711i
\(903\) 0 0
\(904\) 9.95941 + 0.645469i 0.331245 + 0.0214680i
\(905\) 0.254017 + 0.302725i 0.00844380 + 0.0100629i
\(906\) 0 0
\(907\) 37.7812 13.7512i 1.25450 0.456602i 0.372583 0.927999i \(-0.378472\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(908\) 1.76389 + 2.95177i 0.0585366 + 0.0979579i
\(909\) 0 0
\(910\) 27.3660 7.55359i 0.907174 0.250399i
\(911\) −1.26349 + 7.16560i −0.0418613 + 0.237407i −0.998558 0.0536786i \(-0.982905\pi\)
0.956697 + 0.291086i \(0.0940165\pi\)
\(912\) 0 0
\(913\) 17.5973 + 6.40489i 0.582386 + 0.211971i
\(914\) 9.65729 14.0151i 0.319435 0.463577i
\(915\) 0 0
\(916\) −14.2865 11.6264i −0.472040 0.384147i
\(917\) 10.8339 0.357766
\(918\) 0 0
\(919\) 24.9111i 0.821741i −0.911694 0.410870i \(-0.865225\pi\)
0.911694 0.410870i \(-0.134775\pi\)
\(920\) 45.6585 5.03417i 1.50532 0.165972i
\(921\) 0 0
\(922\) 13.2130 19.1753i 0.435148 0.631504i
\(923\) 5.15741 14.1699i 0.169758 0.466406i
\(924\) 0 0
\(925\) 14.1625 + 2.49723i 0.465660 + 0.0821084i
\(926\) −1.46705 5.31498i −0.0482101 0.174661i
\(927\) 0 0
\(928\) 6.37350 27.9471i 0.209220 0.917409i
\(929\) −12.8203 35.2236i −0.420621 1.15565i −0.951352 0.308107i \(-0.900305\pi\)
0.530730 0.847541i \(-0.321918\pi\)
\(930\) 0 0
\(931\) −1.61967 + 1.35906i −0.0530825 + 0.0445415i
\(932\) 29.2853 25.3331i 0.959272 0.829812i
\(933\) 0 0
\(934\) 5.68997 12.4455i 0.186181 0.407230i
\(935\) −8.14289 14.1039i −0.266301 0.461247i
\(936\) 0 0
\(937\) 4.91136 8.50673i 0.160447 0.277903i −0.774582 0.632474i \(-0.782040\pi\)
0.935029 + 0.354571i \(0.115373\pi\)
\(938\) −29.2499 41.1120i −0.955043 1.34236i
\(939\) 0 0
\(940\) −2.52579 + 7.27812i −0.0823823 + 0.237386i
\(941\) −1.11021 6.29630i −0.0361918 0.205254i 0.961350 0.275330i \(-0.0887870\pi\)
−0.997542 + 0.0700759i \(0.977676\pi\)
\(942\) 0 0
\(943\) 27.3138 32.5513i 0.889459 1.06002i
\(944\) 0.0889704 + 2.95860i 0.00289574 + 0.0962943i
\(945\) 0 0
\(946\) 6.49378 6.59213i 0.211131 0.214329i
\(947\) −2.56959 + 3.06232i −0.0835006 + 0.0995121i −0.806177 0.591674i \(-0.798467\pi\)
0.722677 + 0.691186i \(0.242912\pi\)
\(948\) 0 0
\(949\) 15.1721 2.67525i 0.492508 0.0868424i
\(950\) −10.1818 21.4132i −0.330340 0.694736i
\(951\) 0 0
\(952\) −16.5217 22.4983i −0.535472 0.729174i
\(953\) −38.3667 22.1510i −1.24282 0.717542i −0.273152 0.961971i \(-0.588066\pi\)
−0.969667 + 0.244428i \(0.921400\pi\)
\(954\) 0 0
\(955\) 14.4052 + 24.9506i 0.466142 + 0.807382i
\(956\) −3.29655 8.65036i −0.106618 0.279773i
\(957\) 0 0
\(958\) 2.86228 + 0.228754i 0.0924761 + 0.00739072i
\(959\) −31.7348 + 26.6286i −1.02477 + 0.859883i
\(960\) 0 0
\(961\) −16.7611 + 6.10053i −0.540680 + 0.196791i
\(962\) −7.70730 + 29.6537i −0.248493 + 0.956075i
\(963\) 0 0
\(964\) −48.1243 26.8283i −1.54998 0.864082i
\(965\) −1.34143 + 7.60761i −0.0431820 + 0.244897i
\(966\) 0 0
\(967\) −8.11445 + 22.2943i −0.260943 + 0.716935i 0.738161 + 0.674624i \(0.235694\pi\)
−0.999104 + 0.0423110i \(0.986528\pi\)
\(968\) 19.6503 + 13.1092i 0.631584 + 0.421344i
\(969\) 0 0
\(970\) −0.733620 7.71688i −0.0235551 0.247774i
\(971\) 23.3729i 0.750071i 0.927010 + 0.375036i \(0.122369\pi\)
−0.927010 + 0.375036i \(0.877631\pi\)
\(972\) 0 0
\(973\) 6.16061i 0.197500i
\(974\) −10.8091 + 1.02759i −0.346346 + 0.0329261i
\(975\) 0 0
\(976\) −44.2200 + 9.17561i −1.41545 + 0.293704i
\(977\) −17.9667 + 49.3632i −0.574807 + 1.57927i 0.222007 + 0.975045i \(0.428739\pi\)
−0.796814 + 0.604224i \(0.793483\pi\)
\(978\) 0 0
\(979\) 0.0689371 0.390962i 0.00220324 0.0124952i
\(980\) 1.12947 + 0.629659i 0.0360797 + 0.0201137i
\(981\) 0 0
\(982\) 24.9374 + 6.48148i 0.795785 + 0.206832i
\(983\) −10.1837 + 3.70656i −0.324809 + 0.118221i −0.499278 0.866442i \(-0.666401\pi\)
0.174469 + 0.984663i \(0.444179\pi\)
\(984\) 0 0
\(985\) −5.67841 + 4.76475i −0.180929 + 0.151817i
\(986\) 2.16782 27.1247i 0.0690374 0.863828i
\(987\) 0 0
\(988\) 47.2045 17.9890i 1.50177 0.572308i
\(989\) 12.3882 + 21.4570i 0.393923 + 0.682294i
\(990\) 0 0
\(991\) −37.1953 21.4747i −1.18155 0.682167i −0.225175 0.974318i \(-0.572295\pi\)
−0.956372 + 0.292152i \(0.905629\pi\)
\(992\) −12.3952 16.3579i −0.393549 0.519364i
\(993\) 0 0
\(994\) −17.0784 + 8.12059i −0.541693 + 0.257570i
\(995\) 2.62034 0.462037i 0.0830704 0.0146475i
\(996\) 0 0
\(997\) −27.5401 + 32.8210i −0.872204 + 1.03945i 0.126667 + 0.991945i \(0.459572\pi\)
−0.998871 + 0.0475071i \(0.984872\pi\)
\(998\) 0.782033 + 0.770366i 0.0247548 + 0.0243855i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.v.b.35.16 192
3.2 odd 2 216.2.v.b.11.17 yes 192
8.3 odd 2 inner 648.2.v.b.35.31 192
12.11 even 2 864.2.bh.b.335.17 192
24.5 odd 2 864.2.bh.b.335.18 192
24.11 even 2 216.2.v.b.11.2 192
27.5 odd 18 inner 648.2.v.b.611.31 192
27.22 even 9 216.2.v.b.59.2 yes 192
108.103 odd 18 864.2.bh.b.815.18 192
216.59 even 18 inner 648.2.v.b.611.16 192
216.157 even 18 864.2.bh.b.815.17 192
216.211 odd 18 216.2.v.b.59.17 yes 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.2 192 24.11 even 2
216.2.v.b.11.17 yes 192 3.2 odd 2
216.2.v.b.59.2 yes 192 27.22 even 9
216.2.v.b.59.17 yes 192 216.211 odd 18
648.2.v.b.35.16 192 1.1 even 1 trivial
648.2.v.b.35.31 192 8.3 odd 2 inner
648.2.v.b.611.16 192 216.59 even 18 inner
648.2.v.b.611.31 192 27.5 odd 18 inner
864.2.bh.b.335.17 192 12.11 even 2
864.2.bh.b.335.18 192 24.5 odd 2
864.2.bh.b.815.17 192 216.157 even 18
864.2.bh.b.815.18 192 108.103 odd 18