Properties

Label 648.2.t.a.613.8
Level $648$
Weight $2$
Character 648.613
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 613.8
Character \(\chi\) \(=\) 648.613
Dual form 648.2.t.a.37.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12116 + 0.861977i) q^{2} +(0.513991 - 1.93283i) q^{4} +(1.15428 - 3.17134i) q^{5} +(0.593321 - 3.36489i) q^{7} +(1.08978 + 2.61005i) q^{8} +(1.43950 + 4.55054i) q^{10} +(0.197048 + 0.541384i) q^{11} +(4.30199 + 5.12691i) q^{13} +(2.23525 + 4.28400i) q^{14} +(-3.47163 - 1.98691i) q^{16} +(-1.15893 - 2.00733i) q^{17} +(-0.353289 - 0.203971i) q^{19} +(-5.53637 - 3.86106i) q^{20} +(-0.687582 - 0.437127i) q^{22} +(-1.15186 - 6.53250i) q^{23} +(-4.89486 - 4.10727i) q^{25} +(-9.24249 - 2.03986i) q^{26} +(-6.19878 - 2.87631i) q^{28} +(2.24644 - 2.67721i) q^{29} +(-0.382945 - 2.17179i) q^{31} +(5.60491 - 0.764819i) q^{32} +(3.02962 + 1.25156i) q^{34} +(-9.98637 - 5.76564i) q^{35} +(-1.05249 + 0.607656i) q^{37} +(0.571912 - 0.0758426i) q^{38} +(9.53529 - 0.443366i) q^{40} +(-5.09057 + 4.27150i) q^{41} +(0.442145 + 1.21478i) q^{43} +(1.14768 - 0.102592i) q^{44} +(6.92227 + 6.33109i) q^{46} +(0.547022 - 3.10232i) q^{47} +(-4.39261 - 1.59878i) q^{49} +(9.02828 + 0.385648i) q^{50} +(12.1206 - 5.67980i) q^{52} +9.35460i q^{53} +1.94436 q^{55} +(9.42913 - 2.11841i) q^{56} +(-0.210928 + 4.93796i) q^{58} +(3.00302 - 8.25072i) q^{59} +(-4.67459 - 0.824257i) q^{61} +(2.30137 + 2.10483i) q^{62} +(-5.62474 + 5.68879i) q^{64} +(21.2249 - 7.72523i) q^{65} +(-9.67062 - 11.5250i) q^{67} +(-4.47550 + 1.20826i) q^{68} +(16.1662 - 2.14383i) q^{70} +(3.92323 + 6.79524i) q^{71} +(0.641809 - 1.11165i) q^{73} +(0.656224 - 1.58850i) q^{74} +(-0.575829 + 0.578006i) q^{76} +(1.93861 - 0.341829i) q^{77} +(3.84081 + 3.22282i) q^{79} +(-10.3084 + 8.71628i) q^{80} +(2.02541 - 9.17698i) q^{82} +(-6.67152 + 7.95081i) q^{83} +(-7.70366 + 1.35836i) q^{85} +(-1.54283 - 0.980846i) q^{86} +(-1.19830 + 1.10430i) q^{88} +(2.86501 - 4.96234i) q^{89} +(19.8040 - 11.4338i) q^{91} +(-13.2182 - 1.13131i) q^{92} +(2.06083 + 3.94971i) q^{94} +(-1.05466 + 0.884962i) q^{95} +(10.5548 - 3.84165i) q^{97} +(6.30293 - 1.99385i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12116 + 0.861977i −0.792779 + 0.609510i
\(3\) 0 0
\(4\) 0.513991 1.93283i 0.256996 0.966413i
\(5\) 1.15428 3.17134i 0.516208 1.41827i −0.358460 0.933545i \(-0.616698\pi\)
0.874667 0.484723i \(-0.161080\pi\)
\(6\) 0 0
\(7\) 0.593321 3.36489i 0.224254 1.27181i −0.639851 0.768499i \(-0.721004\pi\)
0.864106 0.503311i \(-0.167885\pi\)
\(8\) 1.08978 + 2.61005i 0.385297 + 0.922793i
\(9\) 0 0
\(10\) 1.43950 + 4.55054i 0.455210 + 1.43901i
\(11\) 0.197048 + 0.541384i 0.0594121 + 0.163233i 0.965848 0.259111i \(-0.0834295\pi\)
−0.906435 + 0.422344i \(0.861207\pi\)
\(12\) 0 0
\(13\) 4.30199 + 5.12691i 1.19316 + 1.42195i 0.881779 + 0.471664i \(0.156346\pi\)
0.311379 + 0.950286i \(0.399209\pi\)
\(14\) 2.23525 + 4.28400i 0.597396 + 1.14495i
\(15\) 0 0
\(16\) −3.47163 1.98691i −0.867906 0.496728i
\(17\) −1.15893 2.00733i −0.281082 0.486849i 0.690569 0.723266i \(-0.257360\pi\)
−0.971652 + 0.236417i \(0.924027\pi\)
\(18\) 0 0
\(19\) −0.353289 0.203971i −0.0810500 0.0467943i 0.458927 0.888474i \(-0.348234\pi\)
−0.539977 + 0.841680i \(0.681567\pi\)
\(20\) −5.53637 3.86106i −1.23797 0.863358i
\(21\) 0 0
\(22\) −0.687582 0.437127i −0.146593 0.0931957i
\(23\) −1.15186 6.53250i −0.240178 1.36212i −0.831429 0.555631i \(-0.812477\pi\)
0.591250 0.806488i \(-0.298635\pi\)
\(24\) 0 0
\(25\) −4.89486 4.10727i −0.978971 0.821454i
\(26\) −9.24249 2.03986i −1.81260 0.400050i
\(27\) 0 0
\(28\) −6.19878 2.87631i −1.17146 0.543572i
\(29\) 2.24644 2.67721i 0.417154 0.497145i −0.516016 0.856579i \(-0.672586\pi\)
0.933171 + 0.359434i \(0.117030\pi\)
\(30\) 0 0
\(31\) −0.382945 2.17179i −0.0687790 0.390065i −0.999692 0.0248236i \(-0.992098\pi\)
0.930913 0.365241i \(-0.119014\pi\)
\(32\) 5.60491 0.764819i 0.990818 0.135202i
\(33\) 0 0
\(34\) 3.02962 + 1.25156i 0.519575 + 0.214641i
\(35\) −9.98637 5.76564i −1.68801 0.974570i
\(36\) 0 0
\(37\) −1.05249 + 0.607656i −0.173028 + 0.0998980i −0.584013 0.811744i \(-0.698518\pi\)
0.410985 + 0.911642i \(0.365185\pi\)
\(38\) 0.571912 0.0758426i 0.0927763 0.0123033i
\(39\) 0 0
\(40\) 9.53529 0.443366i 1.50766 0.0701023i
\(41\) −5.09057 + 4.27150i −0.795014 + 0.667096i −0.946981 0.321290i \(-0.895884\pi\)
0.151967 + 0.988386i \(0.451439\pi\)
\(42\) 0 0
\(43\) 0.442145 + 1.21478i 0.0674265 + 0.185253i 0.968830 0.247728i \(-0.0796840\pi\)
−0.901403 + 0.432981i \(0.857462\pi\)
\(44\) 1.14768 0.102592i 0.173020 0.0154663i
\(45\) 0 0
\(46\) 6.92227 + 6.33109i 1.02063 + 0.933468i
\(47\) 0.547022 3.10232i 0.0797914 0.452520i −0.918568 0.395263i \(-0.870654\pi\)
0.998359 0.0572567i \(-0.0182354\pi\)
\(48\) 0 0
\(49\) −4.39261 1.59878i −0.627516 0.228397i
\(50\) 9.02828 + 0.385648i 1.27679 + 0.0545389i
\(51\) 0 0
\(52\) 12.1206 5.67980i 1.68083 0.787647i
\(53\) 9.35460i 1.28495i 0.766305 + 0.642477i \(0.222093\pi\)
−0.766305 + 0.642477i \(0.777907\pi\)
\(54\) 0 0
\(55\) 1.94436 0.262178
\(56\) 9.42913 2.11841i 1.26002 0.283084i
\(57\) 0 0
\(58\) −0.210928 + 4.93796i −0.0276962 + 0.648385i
\(59\) 3.00302 8.25072i 0.390959 1.07415i −0.575605 0.817728i \(-0.695233\pi\)
0.966564 0.256424i \(-0.0825444\pi\)
\(60\) 0 0
\(61\) −4.67459 0.824257i −0.598520 0.105535i −0.133824 0.991005i \(-0.542726\pi\)
−0.464697 + 0.885470i \(0.653837\pi\)
\(62\) 2.30137 + 2.10483i 0.292275 + 0.267314i
\(63\) 0 0
\(64\) −5.62474 + 5.68879i −0.703092 + 0.711099i
\(65\) 21.2249 7.72523i 2.63262 0.958196i
\(66\) 0 0
\(67\) −9.67062 11.5250i −1.18145 1.40800i −0.892731 0.450589i \(-0.851214\pi\)
−0.288723 0.957413i \(-0.593231\pi\)
\(68\) −4.47550 + 1.20826i −0.542734 + 0.146523i
\(69\) 0 0
\(70\) 16.1662 2.14383i 1.93222 0.256237i
\(71\) 3.92323 + 6.79524i 0.465602 + 0.806446i 0.999228 0.0392740i \(-0.0125045\pi\)
−0.533627 + 0.845720i \(0.679171\pi\)
\(72\) 0 0
\(73\) 0.641809 1.11165i 0.0751180 0.130108i −0.826020 0.563641i \(-0.809400\pi\)
0.901138 + 0.433533i \(0.142733\pi\)
\(74\) 0.656224 1.58850i 0.0762844 0.184660i
\(75\) 0 0
\(76\) −0.575829 + 0.578006i −0.0660521 + 0.0663019i
\(77\) 1.93861 0.341829i 0.220925 0.0389551i
\(78\) 0 0
\(79\) 3.84081 + 3.22282i 0.432125 + 0.362596i 0.832753 0.553645i \(-0.186764\pi\)
−0.400628 + 0.916241i \(0.631208\pi\)
\(80\) −10.3084 + 8.71628i −1.15251 + 0.974510i
\(81\) 0 0
\(82\) 2.02541 9.17698i 0.223669 1.01343i
\(83\) −6.67152 + 7.95081i −0.732295 + 0.872715i −0.995763 0.0919529i \(-0.970689\pi\)
0.263468 + 0.964668i \(0.415134\pi\)
\(84\) 0 0
\(85\) −7.70366 + 1.35836i −0.835580 + 0.147335i
\(86\) −1.54283 0.980846i −0.166368 0.105767i
\(87\) 0 0
\(88\) −1.19830 + 1.10430i −0.127739 + 0.117718i
\(89\) 2.86501 4.96234i 0.303690 0.526007i −0.673278 0.739389i \(-0.735114\pi\)
0.976969 + 0.213382i \(0.0684478\pi\)
\(90\) 0 0
\(91\) 19.8040 11.4338i 2.07602 1.19859i
\(92\) −13.2182 1.13131i −1.37809 0.117947i
\(93\) 0 0
\(94\) 2.06083 + 3.94971i 0.212558 + 0.407381i
\(95\) −1.05466 + 0.884962i −0.108205 + 0.0907952i
\(96\) 0 0
\(97\) 10.5548 3.84165i 1.07168 0.390061i 0.254877 0.966974i \(-0.417965\pi\)
0.816806 + 0.576913i \(0.195743\pi\)
\(98\) 6.30293 1.99385i 0.636692 0.201409i
\(99\) 0 0
\(100\) −10.4546 + 7.34980i −1.04546 + 0.734980i
\(101\) 12.2411 + 2.15844i 1.21804 + 0.214773i 0.745481 0.666527i \(-0.232220\pi\)
0.472557 + 0.881300i \(0.343331\pi\)
\(102\) 0 0
\(103\) −14.8537 5.40632i −1.46358 0.532701i −0.517233 0.855844i \(-0.673038\pi\)
−0.946350 + 0.323144i \(0.895260\pi\)
\(104\) −8.69326 + 16.8156i −0.852444 + 1.64891i
\(105\) 0 0
\(106\) −8.06345 10.4880i −0.783192 1.01868i
\(107\) 2.44491i 0.236359i 0.992992 + 0.118179i \(0.0377058\pi\)
−0.992992 + 0.118179i \(0.962294\pi\)
\(108\) 0 0
\(109\) 16.2522i 1.55668i 0.627843 + 0.778340i \(0.283938\pi\)
−0.627843 + 0.778340i \(0.716062\pi\)
\(110\) −2.17994 + 1.67600i −0.207849 + 0.159800i
\(111\) 0 0
\(112\) −8.74553 + 10.5028i −0.826375 + 0.992418i
\(113\) 11.4376 + 4.16294i 1.07596 + 0.391617i 0.818402 0.574646i \(-0.194860\pi\)
0.257556 + 0.966263i \(0.417083\pi\)
\(114\) 0 0
\(115\) −22.0464 3.88737i −2.05583 0.362499i
\(116\) −4.01992 5.71804i −0.373240 0.530907i
\(117\) 0 0
\(118\) 3.74507 + 11.8389i 0.344762 + 1.08986i
\(119\) −7.44207 + 2.70869i −0.682213 + 0.248305i
\(120\) 0 0
\(121\) 8.17222 6.85731i 0.742929 0.623392i
\(122\) 5.95145 3.10527i 0.538819 0.281138i
\(123\) 0 0
\(124\) −4.39452 0.376115i −0.394639 0.0337762i
\(125\) −4.06195 + 2.34517i −0.363312 + 0.209758i
\(126\) 0 0
\(127\) −4.79341 + 8.30243i −0.425346 + 0.736722i −0.996453 0.0841546i \(-0.973181\pi\)
0.571106 + 0.820876i \(0.306514\pi\)
\(128\) 1.40262 11.2264i 0.123975 0.992285i
\(129\) 0 0
\(130\) −17.1375 + 26.9566i −1.50306 + 2.36425i
\(131\) −0.406480 + 0.0716734i −0.0355143 + 0.00626213i −0.191377 0.981517i \(-0.561295\pi\)
0.155863 + 0.987779i \(0.450184\pi\)
\(132\) 0 0
\(133\) −0.895956 + 1.06776i −0.0776892 + 0.0925864i
\(134\) 20.7766 + 4.58549i 1.79482 + 0.396126i
\(135\) 0 0
\(136\) 3.97625 5.21243i 0.340960 0.446962i
\(137\) −12.0727 10.1302i −1.03144 0.865480i −0.0404177 0.999183i \(-0.512869\pi\)
−0.991021 + 0.133703i \(0.957313\pi\)
\(138\) 0 0
\(139\) 2.17442 0.383409i 0.184432 0.0325204i −0.0806691 0.996741i \(-0.525706\pi\)
0.265101 + 0.964221i \(0.414595\pi\)
\(140\) −16.2769 + 16.3384i −1.37565 + 1.38085i
\(141\) 0 0
\(142\) −10.2559 4.23680i −0.860656 0.355544i
\(143\) −1.92793 + 3.33928i −0.161222 + 0.279244i
\(144\) 0 0
\(145\) −5.89733 10.2145i −0.489747 0.848267i
\(146\) 0.238644 + 1.79955i 0.0197503 + 0.148932i
\(147\) 0 0
\(148\) 0.633521 + 2.34661i 0.0520751 + 0.192890i
\(149\) 4.40044 + 5.24424i 0.360498 + 0.429625i 0.915558 0.402186i \(-0.131749\pi\)
−0.555060 + 0.831810i \(0.687305\pi\)
\(150\) 0 0
\(151\) 11.0866 4.03519i 0.902213 0.328379i 0.151074 0.988522i \(-0.451727\pi\)
0.751139 + 0.660144i \(0.229505\pi\)
\(152\) 0.147367 1.14439i 0.0119531 0.0928221i
\(153\) 0 0
\(154\) −1.87884 + 2.05428i −0.151401 + 0.165539i
\(155\) −7.32952 1.29239i −0.588721 0.103807i
\(156\) 0 0
\(157\) 4.12184 11.3247i 0.328959 0.903808i −0.659417 0.751778i \(-0.729197\pi\)
0.988376 0.152030i \(-0.0485810\pi\)
\(158\) −7.08416 0.302604i −0.563585 0.0240739i
\(159\) 0 0
\(160\) 4.04411 18.6579i 0.319715 1.47504i
\(161\) −22.6646 −1.78622
\(162\) 0 0
\(163\) 13.3972i 1.04935i 0.851303 + 0.524675i \(0.175813\pi\)
−0.851303 + 0.524675i \(0.824187\pi\)
\(164\) 5.63955 + 12.0347i 0.440375 + 0.939752i
\(165\) 0 0
\(166\) 0.626417 14.6648i 0.0486194 1.13821i
\(167\) 6.36473 + 2.31657i 0.492517 + 0.179262i 0.576325 0.817220i \(-0.304486\pi\)
−0.0838081 + 0.996482i \(0.526708\pi\)
\(168\) 0 0
\(169\) −5.52068 + 31.3093i −0.424668 + 2.40841i
\(170\) 7.46615 8.16332i 0.572627 0.626098i
\(171\) 0 0
\(172\) 2.57522 0.230201i 0.196359 0.0175526i
\(173\) −0.576454 1.58380i −0.0438270 0.120414i 0.915848 0.401524i \(-0.131519\pi\)
−0.959675 + 0.281111i \(0.909297\pi\)
\(174\) 0 0
\(175\) −16.7247 + 14.0337i −1.26427 + 1.06085i
\(176\) 0.391606 2.27100i 0.0295184 0.171183i
\(177\) 0 0
\(178\) 1.06530 + 8.03314i 0.0798473 + 0.602110i
\(179\) −10.3190 + 5.95768i −0.771279 + 0.445298i −0.833331 0.552775i \(-0.813569\pi\)
0.0620517 + 0.998073i \(0.480236\pi\)
\(180\) 0 0
\(181\) 14.3027 + 8.25769i 1.06311 + 0.613789i 0.926292 0.376806i \(-0.122978\pi\)
0.136822 + 0.990596i \(0.456311\pi\)
\(182\) −12.3477 + 29.8897i −0.915271 + 2.21557i
\(183\) 0 0
\(184\) 15.7949 10.1254i 1.16441 0.746456i
\(185\) 0.712223 + 4.03922i 0.0523636 + 0.296969i
\(186\) 0 0
\(187\) 0.858372 1.02297i 0.0627703 0.0748068i
\(188\) −5.71507 2.65186i −0.416815 0.193407i
\(189\) 0 0
\(190\) 0.419620 1.90127i 0.0304424 0.137933i
\(191\) 10.1267 + 8.49734i 0.732745 + 0.614846i 0.930878 0.365329i \(-0.119044\pi\)
−0.198134 + 0.980175i \(0.563488\pi\)
\(192\) 0 0
\(193\) −0.0307325 0.174293i −0.00221218 0.0125459i 0.983682 0.179918i \(-0.0575831\pi\)
−0.985894 + 0.167372i \(0.946472\pi\)
\(194\) −8.52224 + 13.4051i −0.611861 + 0.962433i
\(195\) 0 0
\(196\) −5.34793 + 7.66839i −0.381995 + 0.547742i
\(197\) 0.841221 + 0.485679i 0.0599345 + 0.0346032i 0.529668 0.848205i \(-0.322317\pi\)
−0.469733 + 0.882808i \(0.655650\pi\)
\(198\) 0 0
\(199\) 2.04926 + 3.54942i 0.145268 + 0.251612i 0.929473 0.368890i \(-0.120262\pi\)
−0.784205 + 0.620502i \(0.786929\pi\)
\(200\) 5.38585 17.2519i 0.380837 1.21989i
\(201\) 0 0
\(202\) −15.5848 + 8.13161i −1.09654 + 0.572138i
\(203\) −7.67565 9.14748i −0.538725 0.642027i
\(204\) 0 0
\(205\) 7.67047 + 21.0745i 0.535729 + 1.47190i
\(206\) 21.3135 6.74225i 1.48498 0.469755i
\(207\) 0 0
\(208\) −4.74818 26.3464i −0.329227 1.82679i
\(209\) 0.0408121 0.231457i 0.00282303 0.0160102i
\(210\) 0 0
\(211\) 1.28341 3.52613i 0.0883534 0.242749i −0.887644 0.460530i \(-0.847660\pi\)
0.975998 + 0.217781i \(0.0698817\pi\)
\(212\) 18.0808 + 4.80819i 1.24180 + 0.330228i
\(213\) 0 0
\(214\) −2.10746 2.74114i −0.144063 0.187380i
\(215\) 4.36285 0.297544
\(216\) 0 0
\(217\) −7.53504 −0.511512
\(218\) −14.0090 18.2213i −0.948812 1.23410i
\(219\) 0 0
\(220\) 0.999386 3.75811i 0.0673786 0.253372i
\(221\) 5.30569 14.5773i 0.356899 0.980572i
\(222\) 0 0
\(223\) 0.680991 3.86209i 0.0456025 0.258625i −0.953480 0.301457i \(-0.902527\pi\)
0.999082 + 0.0428323i \(0.0136381\pi\)
\(224\) 0.751980 19.3137i 0.0502437 1.29045i
\(225\) 0 0
\(226\) −16.4117 + 5.19162i −1.09169 + 0.345342i
\(227\) 4.04735 + 11.1200i 0.268632 + 0.738061i 0.998514 + 0.0544879i \(0.0173526\pi\)
−0.729882 + 0.683573i \(0.760425\pi\)
\(228\) 0 0
\(229\) −6.81207 8.11831i −0.450154 0.536473i 0.492470 0.870330i \(-0.336094\pi\)
−0.942624 + 0.333857i \(0.891650\pi\)
\(230\) 28.0683 14.6451i 1.85077 0.965669i
\(231\) 0 0
\(232\) 9.43579 + 2.94575i 0.619490 + 0.193398i
\(233\) 0.565006 + 0.978619i 0.0370148 + 0.0641115i 0.883939 0.467602i \(-0.154882\pi\)
−0.846925 + 0.531713i \(0.821548\pi\)
\(234\) 0 0
\(235\) −9.20711 5.31572i −0.600605 0.346760i
\(236\) −14.4037 10.0451i −0.937599 0.653881i
\(237\) 0 0
\(238\) 6.00890 9.45176i 0.389499 0.612667i
\(239\) −1.00787 5.71591i −0.0651936 0.369731i −0.999898 0.0143045i \(-0.995447\pi\)
0.934704 0.355427i \(-0.115665\pi\)
\(240\) 0 0
\(241\) 22.5974 + 18.9615i 1.45563 + 1.22142i 0.928342 + 0.371728i \(0.121235\pi\)
0.527286 + 0.849688i \(0.323210\pi\)
\(242\) −3.25151 + 14.7324i −0.209015 + 0.947034i
\(243\) 0 0
\(244\) −3.99585 + 8.61151i −0.255808 + 0.551295i
\(245\) −10.1406 + 12.0851i −0.647857 + 0.772086i
\(246\) 0 0
\(247\) −0.474102 2.68876i −0.0301664 0.171082i
\(248\) 5.25115 3.36629i 0.333449 0.213760i
\(249\) 0 0
\(250\) 2.53261 6.13061i 0.160176 0.387734i
\(251\) 5.20730 + 3.00644i 0.328682 + 0.189765i 0.655256 0.755407i \(-0.272561\pi\)
−0.326574 + 0.945172i \(0.605894\pi\)
\(252\) 0 0
\(253\) 3.30962 1.91081i 0.208074 0.120132i
\(254\) −1.78233 13.4401i −0.111833 0.843310i
\(255\) 0 0
\(256\) 8.10437 + 13.7956i 0.506523 + 0.862226i
\(257\) −19.8936 + 16.6927i −1.24093 + 1.04126i −0.243480 + 0.969906i \(0.578289\pi\)
−0.997451 + 0.0713589i \(0.977266\pi\)
\(258\) 0 0
\(259\) 1.42023 + 3.90205i 0.0882489 + 0.242462i
\(260\) −4.02210 44.9947i −0.249440 2.79045i
\(261\) 0 0
\(262\) 0.393948 0.430734i 0.0243382 0.0266108i
\(263\) 2.41565 13.6998i 0.148956 0.844769i −0.815150 0.579250i \(-0.803346\pi\)
0.964106 0.265519i \(-0.0855433\pi\)
\(264\) 0 0
\(265\) 29.6667 + 10.7978i 1.82241 + 0.663303i
\(266\) 0.0841249 1.96942i 0.00515803 0.120753i
\(267\) 0 0
\(268\) −27.2464 + 12.7679i −1.66434 + 0.779921i
\(269\) 3.89404i 0.237424i 0.992929 + 0.118712i \(0.0378765\pi\)
−0.992929 + 0.118712i \(0.962123\pi\)
\(270\) 0 0
\(271\) 27.1005 1.64624 0.823119 0.567869i \(-0.192232\pi\)
0.823119 + 0.567869i \(0.192232\pi\)
\(272\) 0.0349931 + 9.27139i 0.00212177 + 0.562161i
\(273\) 0 0
\(274\) 22.2674 + 0.951165i 1.34522 + 0.0574620i
\(275\) 1.25909 3.45933i 0.0759261 0.208605i
\(276\) 0 0
\(277\) −7.05421 1.24385i −0.423847 0.0747356i −0.0423435 0.999103i \(-0.513482\pi\)
−0.381503 + 0.924368i \(0.624593\pi\)
\(278\) −2.10738 + 2.30417i −0.126392 + 0.138195i
\(279\) 0 0
\(280\) 4.16561 32.3483i 0.248943 1.93318i
\(281\) 0.728892 0.265295i 0.0434820 0.0158262i −0.320188 0.947354i \(-0.603746\pi\)
0.363670 + 0.931528i \(0.381524\pi\)
\(282\) 0 0
\(283\) 0.982704 + 1.17114i 0.0584157 + 0.0696171i 0.794461 0.607315i \(-0.207753\pi\)
−0.736045 + 0.676932i \(0.763309\pi\)
\(284\) 15.1505 4.09023i 0.899017 0.242710i
\(285\) 0 0
\(286\) −0.716862 5.40569i −0.0423889 0.319645i
\(287\) 11.3528 + 19.6636i 0.670134 + 1.16071i
\(288\) 0 0
\(289\) 5.81375 10.0697i 0.341985 0.592336i
\(290\) 15.4165 + 6.36868i 0.905288 + 0.373982i
\(291\) 0 0
\(292\) −1.81873 1.81188i −0.106433 0.106032i
\(293\) 15.6621 2.76164i 0.914987 0.161337i 0.303720 0.952761i \(-0.401771\pi\)
0.611267 + 0.791424i \(0.290660\pi\)
\(294\) 0 0
\(295\) −22.6996 19.0472i −1.32162 1.10897i
\(296\) −2.73300 2.08484i −0.158853 0.121179i
\(297\) 0 0
\(298\) −9.45399 2.08654i −0.547655 0.120870i
\(299\) 28.5363 34.0082i 1.65029 1.96674i
\(300\) 0 0
\(301\) 4.34995 0.767013i 0.250727 0.0442099i
\(302\) −8.95158 + 14.0805i −0.515105 + 0.810240i
\(303\) 0 0
\(304\) 0.821214 + 1.41007i 0.0470998 + 0.0808729i
\(305\) −8.00977 + 13.8733i −0.458638 + 0.794385i
\(306\) 0 0
\(307\) 0.370582 0.213955i 0.0211502 0.0122111i −0.489388 0.872066i \(-0.662780\pi\)
0.510538 + 0.859855i \(0.329446\pi\)
\(308\) 0.335733 3.92269i 0.0191302 0.223516i
\(309\) 0 0
\(310\) 9.33156 4.86890i 0.529997 0.276535i
\(311\) −8.46179 + 7.10028i −0.479824 + 0.402620i −0.850363 0.526197i \(-0.823617\pi\)
0.370539 + 0.928817i \(0.379173\pi\)
\(312\) 0 0
\(313\) −26.1193 + 9.50664i −1.47635 + 0.537347i −0.949817 0.312807i \(-0.898731\pi\)
−0.526533 + 0.850155i \(0.676508\pi\)
\(314\) 5.14037 + 16.2497i 0.290088 + 0.917023i
\(315\) 0 0
\(316\) 8.20330 5.76711i 0.461472 0.324425i
\(317\) 3.46040 + 0.610163i 0.194356 + 0.0342701i 0.269979 0.962866i \(-0.412983\pi\)
−0.0756229 + 0.997136i \(0.524095\pi\)
\(318\) 0 0
\(319\) 1.89205 + 0.688651i 0.105935 + 0.0385571i
\(320\) 11.5486 + 24.4044i 0.645587 + 1.36425i
\(321\) 0 0
\(322\) 25.4106 19.5363i 1.41607 1.08872i
\(323\) 0.945557i 0.0526122i
\(324\) 0 0
\(325\) 42.7649i 2.37217i
\(326\) −11.5481 15.0204i −0.639589 0.831902i
\(327\) 0 0
\(328\) −16.6965 8.63165i −0.921908 0.476603i
\(329\) −10.1144 3.68134i −0.557625 0.202959i
\(330\) 0 0
\(331\) 17.1533 + 3.02459i 0.942832 + 0.166247i 0.623876 0.781523i \(-0.285557\pi\)
0.318956 + 0.947770i \(0.396668\pi\)
\(332\) 11.9384 + 16.9815i 0.655206 + 0.931983i
\(333\) 0 0
\(334\) −9.13270 + 2.88901i −0.499719 + 0.158079i
\(335\) −47.7123 + 17.3659i −2.60680 + 0.948798i
\(336\) 0 0
\(337\) −2.18023 + 1.82943i −0.118765 + 0.0996554i −0.700236 0.713912i \(-0.746922\pi\)
0.581471 + 0.813567i \(0.302477\pi\)
\(338\) −20.7984 39.8614i −1.13128 2.16818i
\(339\) 0 0
\(340\) −1.33414 + 15.5880i −0.0723538 + 0.845379i
\(341\) 1.10031 0.635266i 0.0595853 0.0344016i
\(342\) 0 0
\(343\) 3.97285 6.88117i 0.214514 0.371548i
\(344\) −2.68880 + 2.47787i −0.144971 + 0.133598i
\(345\) 0 0
\(346\) 2.01149 + 1.27879i 0.108138 + 0.0687484i
\(347\) −25.7859 + 4.54675i −1.38426 + 0.244082i −0.815659 0.578533i \(-0.803626\pi\)
−0.568599 + 0.822615i \(0.692514\pi\)
\(348\) 0 0
\(349\) −3.27963 + 3.90851i −0.175555 + 0.209218i −0.846646 0.532157i \(-0.821382\pi\)
0.671091 + 0.741375i \(0.265826\pi\)
\(350\) 6.65433 30.1504i 0.355689 1.61160i
\(351\) 0 0
\(352\) 1.51850 + 2.88371i 0.0809361 + 0.153702i
\(353\) 11.4022 + 9.56754i 0.606875 + 0.509229i 0.893647 0.448770i \(-0.148138\pi\)
−0.286772 + 0.957999i \(0.592582\pi\)
\(354\) 0 0
\(355\) 26.0785 4.59835i 1.38410 0.244055i
\(356\) −8.11875 8.08816i −0.430293 0.428672i
\(357\) 0 0
\(358\) 6.43386 15.5743i 0.340040 0.823125i
\(359\) 7.74329 13.4118i 0.408675 0.707846i −0.586066 0.810263i \(-0.699324\pi\)
0.994742 + 0.102417i \(0.0326575\pi\)
\(360\) 0 0
\(361\) −9.41679 16.3104i −0.495621 0.858440i
\(362\) −23.1536 + 3.07045i −1.21693 + 0.161380i
\(363\) 0 0
\(364\) −11.9205 44.1545i −0.624805 2.31432i
\(365\) −2.78459 3.31854i −0.145752 0.173700i
\(366\) 0 0
\(367\) 24.0744 8.76237i 1.25667 0.457392i 0.374023 0.927419i \(-0.377978\pi\)
0.882652 + 0.470027i \(0.155756\pi\)
\(368\) −8.98068 + 24.9670i −0.468150 + 1.30150i
\(369\) 0 0
\(370\) −4.28022 3.91468i −0.222518 0.203515i
\(371\) 31.4772 + 5.55028i 1.63422 + 0.288156i
\(372\) 0 0
\(373\) 4.86012 13.3531i 0.251648 0.691396i −0.747970 0.663733i \(-0.768971\pi\)
0.999617 0.0276634i \(-0.00880666\pi\)
\(374\) −0.0805960 + 1.88680i −0.00416752 + 0.0975644i
\(375\) 0 0
\(376\) 8.69335 1.95310i 0.448325 0.100724i
\(377\) 23.3900 1.20465
\(378\) 0 0
\(379\) 1.93137i 0.0992080i 0.998769 + 0.0496040i \(0.0157959\pi\)
−0.998769 + 0.0496040i \(0.984204\pi\)
\(380\) 1.16839 + 2.49333i 0.0599373 + 0.127905i
\(381\) 0 0
\(382\) −18.6782 0.797850i −0.955659 0.0408216i
\(383\) −12.4377 4.52695i −0.635537 0.231317i 0.00410258 0.999992i \(-0.498694\pi\)
−0.639639 + 0.768675i \(0.720916\pi\)
\(384\) 0 0
\(385\) 1.15363 6.54257i 0.0587945 0.333440i
\(386\) 0.184692 + 0.168919i 0.00940060 + 0.00859776i
\(387\) 0 0
\(388\) −2.00014 22.3753i −0.101542 1.13593i
\(389\) 8.22522 + 22.5986i 0.417035 + 1.14579i 0.953374 + 0.301792i \(0.0975848\pi\)
−0.536339 + 0.844003i \(0.680193\pi\)
\(390\) 0 0
\(391\) −11.7780 + 9.88288i −0.595637 + 0.499799i
\(392\) −0.614104 13.2073i −0.0310169 0.667068i
\(393\) 0 0
\(394\) −1.36179 + 0.180590i −0.0686058 + 0.00909799i
\(395\) 14.6540 8.46051i 0.737325 0.425695i
\(396\) 0 0
\(397\) 28.6833 + 16.5603i 1.43957 + 0.831137i 0.997820 0.0659997i \(-0.0210236\pi\)
0.441752 + 0.897137i \(0.354357\pi\)
\(398\) −5.35707 2.21305i −0.268525 0.110930i
\(399\) 0 0
\(400\) 8.83232 + 23.9846i 0.441616 + 1.19923i
\(401\) −1.94567 11.0344i −0.0971620 0.551033i −0.994063 0.108802i \(-0.965298\pi\)
0.896901 0.442231i \(-0.145813\pi\)
\(402\) 0 0
\(403\) 9.48715 11.3063i 0.472588 0.563209i
\(404\) 10.4637 22.5505i 0.520590 1.12193i
\(405\) 0 0
\(406\) 16.4905 + 3.63954i 0.818412 + 0.180627i
\(407\) −0.536366 0.450065i −0.0265867 0.0223089i
\(408\) 0 0
\(409\) 1.95004 + 11.0592i 0.0964233 + 0.546844i 0.994302 + 0.106601i \(0.0339966\pi\)
−0.897879 + 0.440243i \(0.854892\pi\)
\(410\) −26.7655 17.0160i −1.32185 0.840362i
\(411\) 0 0
\(412\) −18.0842 + 25.9309i −0.890943 + 1.27752i
\(413\) −25.9810 15.0001i −1.27844 0.738109i
\(414\) 0 0
\(415\) 17.5140 + 30.3351i 0.859728 + 1.48909i
\(416\) 28.0334 + 25.4457i 1.37445 + 1.24758i
\(417\) 0 0
\(418\) 0.153754 + 0.294679i 0.00752035 + 0.0144132i
\(419\) 8.95678 + 10.6743i 0.437567 + 0.521472i 0.939090 0.343672i \(-0.111671\pi\)
−0.501522 + 0.865145i \(0.667226\pi\)
\(420\) 0 0
\(421\) 4.06687 + 11.1736i 0.198207 + 0.544570i 0.998483 0.0550623i \(-0.0175358\pi\)
−0.800276 + 0.599632i \(0.795314\pi\)
\(422\) 1.60054 + 5.05962i 0.0779132 + 0.246298i
\(423\) 0 0
\(424\) −24.4160 + 10.1945i −1.18575 + 0.495089i
\(425\) −2.57184 + 14.5856i −0.124753 + 0.707507i
\(426\) 0 0
\(427\) −5.54707 + 15.2404i −0.268442 + 0.737537i
\(428\) 4.72559 + 1.25666i 0.228420 + 0.0607432i
\(429\) 0 0
\(430\) −4.89145 + 3.76068i −0.235887 + 0.181356i
\(431\) 28.2506 1.36079 0.680393 0.732848i \(-0.261809\pi\)
0.680393 + 0.732848i \(0.261809\pi\)
\(432\) 0 0
\(433\) −27.8524 −1.33850 −0.669251 0.743036i \(-0.733385\pi\)
−0.669251 + 0.743036i \(0.733385\pi\)
\(434\) 8.44798 6.49503i 0.405516 0.311772i
\(435\) 0 0
\(436\) 31.4127 + 8.35350i 1.50440 + 0.400060i
\(437\) −0.925505 + 2.54280i −0.0442729 + 0.121639i
\(438\) 0 0
\(439\) −2.13242 + 12.0935i −0.101775 + 0.577193i 0.890685 + 0.454621i \(0.150225\pi\)
−0.992460 + 0.122572i \(0.960886\pi\)
\(440\) 2.11894 + 5.07489i 0.101016 + 0.241936i
\(441\) 0 0
\(442\) 6.61674 + 20.9168i 0.314726 + 0.994910i
\(443\) 7.22670 + 19.8552i 0.343351 + 0.943348i 0.984415 + 0.175861i \(0.0562710\pi\)
−0.641064 + 0.767487i \(0.721507\pi\)
\(444\) 0 0
\(445\) −12.4303 14.8138i −0.589252 0.702243i
\(446\) 2.56554 + 4.91701i 0.121482 + 0.232827i
\(447\) 0 0
\(448\) 15.8049 + 22.3019i 0.746710 + 1.05367i
\(449\) −13.8708 24.0249i −0.654604 1.13381i −0.981993 0.188917i \(-0.939502\pi\)
0.327389 0.944890i \(-0.393831\pi\)
\(450\) 0 0
\(451\) −3.31561 1.91427i −0.156126 0.0901393i
\(452\) 13.9251 19.9671i 0.654980 0.939176i
\(453\) 0 0
\(454\) −14.1229 8.97856i −0.662821 0.421385i
\(455\) −13.4014 76.0030i −0.628266 3.56307i
\(456\) 0 0
\(457\) −26.0906 21.8926i −1.22047 1.02409i −0.998800 0.0489720i \(-0.984405\pi\)
−0.221668 0.975122i \(-0.571150\pi\)
\(458\) 14.6352 + 3.23006i 0.683858 + 0.150931i
\(459\) 0 0
\(460\) −18.8452 + 40.6137i −0.878664 + 1.89362i
\(461\) 8.93591 10.6494i 0.416187 0.495992i −0.516698 0.856168i \(-0.672839\pi\)
0.932884 + 0.360176i \(0.117283\pi\)
\(462\) 0 0
\(463\) 3.22751 + 18.3041i 0.149995 + 0.850665i 0.963220 + 0.268715i \(0.0865991\pi\)
−0.813224 + 0.581950i \(0.802290\pi\)
\(464\) −13.1182 + 4.83078i −0.608996 + 0.224263i
\(465\) 0 0
\(466\) −1.47701 0.610165i −0.0684211 0.0282653i
\(467\) 8.34116 + 4.81577i 0.385983 + 0.222847i 0.680418 0.732824i \(-0.261798\pi\)
−0.294435 + 0.955671i \(0.595132\pi\)
\(468\) 0 0
\(469\) −44.5181 + 25.7026i −2.05566 + 1.18683i
\(470\) 14.9047 1.97654i 0.687500 0.0911712i
\(471\) 0 0
\(472\) 24.8074 1.15348i 1.14186 0.0530933i
\(473\) −0.570541 + 0.478741i −0.0262335 + 0.0220125i
\(474\) 0 0
\(475\) 0.891532 + 2.44946i 0.0409063 + 0.112389i
\(476\) 1.41027 + 15.7765i 0.0646395 + 0.723113i
\(477\) 0 0
\(478\) 6.05696 + 5.53968i 0.277039 + 0.253379i
\(479\) −5.05443 + 28.6651i −0.230943 + 1.30974i 0.620049 + 0.784563i \(0.287113\pi\)
−0.850992 + 0.525179i \(0.823998\pi\)
\(480\) 0 0
\(481\) −7.64321 2.78190i −0.348500 0.126844i
\(482\) −41.6796 1.78037i −1.89846 0.0810937i
\(483\) 0 0
\(484\) −9.05352 19.3201i −0.411524 0.878185i
\(485\) 37.9074i 1.72129i
\(486\) 0 0
\(487\) −13.1429 −0.595563 −0.297782 0.954634i \(-0.596247\pi\)
−0.297782 + 0.954634i \(0.596247\pi\)
\(488\) −2.94295 13.0992i −0.133221 0.592973i
\(489\) 0 0
\(490\) 0.952140 22.2902i 0.0430133 1.00697i
\(491\) −4.01945 + 11.0433i −0.181395 + 0.498379i −0.996748 0.0805856i \(-0.974321\pi\)
0.815352 + 0.578965i \(0.196543\pi\)
\(492\) 0 0
\(493\) −7.97752 1.40665i −0.359289 0.0633524i
\(494\) 2.84920 + 2.60587i 0.128191 + 0.117243i
\(495\) 0 0
\(496\) −2.98571 + 8.30052i −0.134062 + 0.372704i
\(497\) 25.1930 9.16949i 1.13006 0.411308i
\(498\) 0 0
\(499\) 23.2598 + 27.7199i 1.04125 + 1.24091i 0.969911 + 0.243461i \(0.0782827\pi\)
0.0713387 + 0.997452i \(0.477273\pi\)
\(500\) 2.44499 + 9.05643i 0.109343 + 0.405016i
\(501\) 0 0
\(502\) −8.42969 + 1.11788i −0.376236 + 0.0498936i
\(503\) −1.18773 2.05720i −0.0529581 0.0917261i 0.838331 0.545161i \(-0.183532\pi\)
−0.891289 + 0.453435i \(0.850198\pi\)
\(504\) 0 0
\(505\) 20.9748 36.3294i 0.933366 1.61664i
\(506\) −2.06353 + 4.99514i −0.0917352 + 0.222061i
\(507\) 0 0
\(508\) 13.5834 + 13.5322i 0.602665 + 0.600394i
\(509\) −40.5051 + 7.14215i −1.79536 + 0.316570i −0.969090 0.246706i \(-0.920652\pi\)
−0.826269 + 0.563276i \(0.809541\pi\)
\(510\) 0 0
\(511\) −3.35977 2.81918i −0.148627 0.124713i
\(512\) −20.9778 8.48130i −0.927096 0.374824i
\(513\) 0 0
\(514\) 7.91515 35.8631i 0.349123 1.58185i
\(515\) −34.2906 + 40.8660i −1.51103 + 1.80077i
\(516\) 0 0
\(517\) 1.78734 0.315155i 0.0786069 0.0138605i
\(518\) −4.95578 3.15061i −0.217745 0.138430i
\(519\) 0 0
\(520\) 43.2938 + 46.9792i 1.89856 + 2.06017i
\(521\) 5.21530 9.03316i 0.228486 0.395750i −0.728873 0.684649i \(-0.759956\pi\)
0.957360 + 0.288899i \(0.0932890\pi\)
\(522\) 0 0
\(523\) −14.6626 + 8.46543i −0.641149 + 0.370167i −0.785057 0.619424i \(-0.787366\pi\)
0.143908 + 0.989591i \(0.454033\pi\)
\(524\) −0.0703951 + 0.822494i −0.00307523 + 0.0359308i
\(525\) 0 0
\(526\) 9.10062 + 17.4419i 0.396806 + 0.760504i
\(527\) −3.91569 + 3.28565i −0.170570 + 0.143125i
\(528\) 0 0
\(529\) −19.7338 + 7.18252i −0.857992 + 0.312283i
\(530\) −42.5685 + 13.4660i −1.84906 + 0.584924i
\(531\) 0 0
\(532\) 1.60328 + 2.28054i 0.0695109 + 0.0988741i
\(533\) −43.7992 7.72298i −1.89715 0.334519i
\(534\) 0 0
\(535\) 7.75366 + 2.82210i 0.335220 + 0.122010i
\(536\) 19.5419 37.8006i 0.844083 1.63274i
\(537\) 0 0
\(538\) −3.35658 4.36584i −0.144712 0.188225i
\(539\) 2.69313i 0.116001i
\(540\) 0 0
\(541\) 29.4745i 1.26721i −0.773658 0.633603i \(-0.781575\pi\)
0.773658 0.633603i \(-0.218425\pi\)
\(542\) −30.3839 + 23.3600i −1.30510 + 1.00340i
\(543\) 0 0
\(544\) −8.03096 10.3645i −0.344325 0.444376i
\(545\) 51.5414 + 18.7595i 2.20779 + 0.803570i
\(546\) 0 0
\(547\) −31.4846 5.55158i −1.34618 0.237369i −0.546333 0.837568i \(-0.683977\pi\)
−0.799850 + 0.600199i \(0.795088\pi\)
\(548\) −25.7851 + 18.1276i −1.10149 + 0.774371i
\(549\) 0 0
\(550\) 1.57022 + 4.96376i 0.0669543 + 0.211655i
\(551\) −1.33972 + 0.487617i −0.0570739 + 0.0207732i
\(552\) 0 0
\(553\) 13.1233 11.0117i 0.558059 0.468267i
\(554\) 8.98106 4.68602i 0.381569 0.199090i
\(555\) 0 0
\(556\) 0.376572 4.39985i 0.0159702 0.186595i
\(557\) −7.19468 + 4.15385i −0.304849 + 0.176004i −0.644619 0.764504i \(-0.722984\pi\)
0.339770 + 0.940508i \(0.389651\pi\)
\(558\) 0 0
\(559\) −4.32598 + 7.49282i −0.182970 + 0.316913i
\(560\) 23.2131 + 39.8582i 0.980934 + 1.68432i
\(561\) 0 0
\(562\) −0.588525 + 0.925725i −0.0248254 + 0.0390494i
\(563\) 6.57453 1.15927i 0.277083 0.0488573i −0.0333796 0.999443i \(-0.510627\pi\)
0.310463 + 0.950585i \(0.399516\pi\)
\(564\) 0 0
\(565\) 26.4043 31.4674i 1.11084 1.32384i
\(566\) −2.11126 0.465966i −0.0887430 0.0195860i
\(567\) 0 0
\(568\) −13.4604 + 17.6452i −0.564787 + 0.740375i
\(569\) 24.2709 + 20.3657i 1.01749 + 0.853775i 0.989310 0.145827i \(-0.0465844\pi\)
0.0281798 + 0.999603i \(0.491029\pi\)
\(570\) 0 0
\(571\) −32.6020 + 5.74861i −1.36435 + 0.240572i −0.807416 0.589983i \(-0.799134\pi\)
−0.556936 + 0.830555i \(0.688023\pi\)
\(572\) 5.46329 + 5.44271i 0.228432 + 0.227571i
\(573\) 0 0
\(574\) −29.6778 12.2602i −1.23873 0.511729i
\(575\) −21.1926 + 36.7066i −0.883791 + 1.53077i
\(576\) 0 0
\(577\) 15.0611 + 26.0866i 0.627001 + 1.08600i 0.988150 + 0.153490i \(0.0490512\pi\)
−0.361149 + 0.932508i \(0.617615\pi\)
\(578\) 2.16172 + 16.3011i 0.0899159 + 0.678035i
\(579\) 0 0
\(580\) −22.7740 + 6.14836i −0.945638 + 0.255297i
\(581\) 22.7953 + 27.1663i 0.945707 + 1.12705i
\(582\) 0 0
\(583\) −5.06443 + 1.84330i −0.209747 + 0.0763418i
\(584\) 3.60089 + 0.463700i 0.149006 + 0.0191880i
\(585\) 0 0
\(586\) −15.1792 + 16.5966i −0.627046 + 0.685598i
\(587\) −15.0318 2.65051i −0.620427 0.109398i −0.145406 0.989372i \(-0.546449\pi\)
−0.475022 + 0.879974i \(0.657560\pi\)
\(588\) 0 0
\(589\) −0.307693 + 0.845379i −0.0126783 + 0.0348332i
\(590\) 41.8681 + 1.78842i 1.72368 + 0.0736281i
\(591\) 0 0
\(592\) 4.86121 0.0183477i 0.199795 0.000754087i
\(593\) −27.1813 −1.11620 −0.558101 0.829773i \(-0.688470\pi\)
−0.558101 + 0.829773i \(0.688470\pi\)
\(594\) 0 0
\(595\) 26.7279i 1.09574i
\(596\) 12.3980 5.80978i 0.507841 0.237978i
\(597\) 0 0
\(598\) −2.67939 + 62.7262i −0.109568 + 2.56506i
\(599\) 39.7660 + 14.4737i 1.62480 + 0.591378i 0.984288 0.176573i \(-0.0565012\pi\)
0.640509 + 0.767951i \(0.278723\pi\)
\(600\) 0 0
\(601\) −0.648834 + 3.67972i −0.0264665 + 0.150099i −0.995177 0.0980937i \(-0.968726\pi\)
0.968711 + 0.248193i \(0.0798366\pi\)
\(602\) −4.21583 + 4.60950i −0.171824 + 0.187869i
\(603\) 0 0
\(604\) −2.10090 23.5025i −0.0854844 0.956302i
\(605\) −12.3139 33.8321i −0.500631 1.37547i
\(606\) 0 0
\(607\) 35.5497 29.8298i 1.44292 1.21075i 0.505370 0.862903i \(-0.331356\pi\)
0.937550 0.347850i \(-0.113088\pi\)
\(608\) −2.13616 0.873040i −0.0866325 0.0354065i
\(609\) 0 0
\(610\) −2.97827 22.4584i −0.120587 0.909315i
\(611\) 18.2586 10.5416i 0.738664 0.426468i
\(612\) 0 0
\(613\) −21.9670 12.6827i −0.887239 0.512248i −0.0142005 0.999899i \(-0.504520\pi\)
−0.873038 + 0.487652i \(0.837854\pi\)
\(614\) −0.231056 + 0.559311i −0.00932466 + 0.0225719i
\(615\) 0 0
\(616\) 3.00486 + 4.68735i 0.121069 + 0.188859i
\(617\) −1.23909 7.02722i −0.0498838 0.282905i 0.949654 0.313300i \(-0.101435\pi\)
−0.999538 + 0.0303950i \(0.990323\pi\)
\(618\) 0 0
\(619\) −17.2889 + 20.6041i −0.694900 + 0.828149i −0.991939 0.126716i \(-0.959556\pi\)
0.297039 + 0.954865i \(0.404001\pi\)
\(620\) −6.26528 + 13.5024i −0.251620 + 0.542269i
\(621\) 0 0
\(622\) 3.36672 15.2544i 0.134993 0.611646i
\(623\) −14.9979 12.5847i −0.600877 0.504196i
\(624\) 0 0
\(625\) −2.79914 15.8747i −0.111966 0.634989i
\(626\) 21.0893 33.1727i 0.842900 1.32585i
\(627\) 0 0
\(628\) −19.7700 13.7876i −0.788910 0.550185i
\(629\) 2.43953 + 1.40846i 0.0972705 + 0.0561592i
\(630\) 0 0
\(631\) −11.7466 20.3457i −0.467624 0.809949i 0.531691 0.846938i \(-0.321557\pi\)
−0.999316 + 0.0369893i \(0.988223\pi\)
\(632\) −4.22608 + 13.5369i −0.168104 + 0.538469i
\(633\) 0 0
\(634\) −4.40561 + 2.29870i −0.174969 + 0.0912930i
\(635\) 20.7970 + 24.7848i 0.825302 + 0.983557i
\(636\) 0 0
\(637\) −10.7002 29.3985i −0.423956 1.16481i
\(638\) −2.71489 + 0.858820i −0.107484 + 0.0340010i
\(639\) 0 0
\(640\) −33.9839 17.4066i −1.34333 0.688055i
\(641\) 7.57282 42.9476i 0.299108 1.69633i −0.350911 0.936409i \(-0.614128\pi\)
0.650019 0.759918i \(-0.274761\pi\)
\(642\) 0 0
\(643\) −0.120739 + 0.331727i −0.00476148 + 0.0130820i −0.942051 0.335471i \(-0.891105\pi\)
0.937289 + 0.348553i \(0.113327\pi\)
\(644\) −11.6494 + 43.8066i −0.459050 + 1.72622i
\(645\) 0 0
\(646\) −0.815048 1.06012i −0.0320676 0.0417098i
\(647\) 26.0967 1.02597 0.512984 0.858398i \(-0.328540\pi\)
0.512984 + 0.858398i \(0.328540\pi\)
\(648\) 0 0
\(649\) 5.05855 0.198565
\(650\) 36.8624 + 47.9463i 1.44586 + 1.88061i
\(651\) 0 0
\(652\) 25.8944 + 6.88605i 1.01410 + 0.269678i
\(653\) −0.281991 + 0.774764i −0.0110352 + 0.0303189i −0.945088 0.326816i \(-0.894024\pi\)
0.934053 + 0.357135i \(0.116246\pi\)
\(654\) 0 0
\(655\) −0.241889 + 1.37182i −0.00945137 + 0.0536014i
\(656\) 26.1597 4.71453i 1.02136 0.184071i
\(657\) 0 0
\(658\) 14.5131 4.59101i 0.565779 0.178976i
\(659\) −14.2971 39.2809i −0.556935 1.53017i −0.824058 0.566505i \(-0.808295\pi\)
0.267123 0.963662i \(-0.413927\pi\)
\(660\) 0 0
\(661\) 1.06741 + 1.27208i 0.0415173 + 0.0494784i 0.786404 0.617713i \(-0.211941\pi\)
−0.744886 + 0.667192i \(0.767496\pi\)
\(662\) −21.8387 + 11.3947i −0.848786 + 0.442868i
\(663\) 0 0
\(664\) −28.0226 8.74835i −1.08749 0.339502i
\(665\) 2.35205 + 4.07387i 0.0912086 + 0.157978i
\(666\) 0 0
\(667\) −20.0764 11.5911i −0.777362 0.448810i
\(668\) 7.74894 11.1112i 0.299816 0.429905i
\(669\) 0 0
\(670\) 38.5241 60.5968i 1.48831 2.34106i
\(671\) −0.474878 2.69317i −0.0183325 0.103969i
\(672\) 0 0
\(673\) −4.23311 3.55200i −0.163175 0.136920i 0.557544 0.830147i \(-0.311744\pi\)
−0.720719 + 0.693227i \(0.756188\pi\)
\(674\) 0.867456 3.93039i 0.0334132 0.151393i
\(675\) 0 0
\(676\) 57.6779 + 26.7632i 2.21838 + 1.02936i
\(677\) 2.08429 2.48396i 0.0801056 0.0954662i −0.724503 0.689272i \(-0.757931\pi\)
0.804609 + 0.593805i \(0.202375\pi\)
\(678\) 0 0
\(679\) −6.66432 37.7952i −0.255753 1.45045i
\(680\) −11.9407 18.6266i −0.457906 0.714299i
\(681\) 0 0
\(682\) −0.686041 + 1.66068i −0.0262699 + 0.0635907i
\(683\) 22.4547 + 12.9642i 0.859206 + 0.496063i 0.863746 0.503927i \(-0.168112\pi\)
−0.00454025 + 0.999990i \(0.501445\pi\)
\(684\) 0 0
\(685\) −46.0615 + 26.5936i −1.75992 + 1.01609i
\(686\) 1.47722 + 11.1394i 0.0564006 + 0.425304i
\(687\) 0 0
\(688\) 0.878705 5.09578i 0.0335003 0.194275i
\(689\) −47.9602 + 40.2434i −1.82714 + 1.53315i
\(690\) 0 0
\(691\) 10.2247 + 28.0920i 0.388964 + 1.06867i 0.967469 + 0.252991i \(0.0814145\pi\)
−0.578504 + 0.815679i \(0.696363\pi\)
\(692\) −3.35749 + 0.300128i −0.127633 + 0.0114092i
\(693\) 0 0
\(694\) 24.9909 27.3245i 0.948640 1.03722i
\(695\) 1.29396 7.33841i 0.0490827 0.278362i
\(696\) 0 0
\(697\) 14.4739 + 5.26808i 0.548240 + 0.199543i
\(698\) 0.307938 7.20902i 0.0116556 0.272866i
\(699\) 0 0
\(700\) 18.5284 + 39.5392i 0.700306 + 1.49444i
\(701\) 24.6223i 0.929973i 0.885318 + 0.464987i \(0.153941\pi\)
−0.885318 + 0.464987i \(0.846059\pi\)
\(702\) 0 0
\(703\) 0.495778 0.0186986
\(704\) −4.18816 1.92418i −0.157847 0.0725203i
\(705\) 0 0
\(706\) −21.0306 0.898336i −0.791498 0.0338093i
\(707\) 14.5258 39.9094i 0.546300 1.50095i
\(708\) 0 0
\(709\) 26.4148 + 4.65765i 0.992030 + 0.174922i 0.646029 0.763313i \(-0.276428\pi\)
0.346001 + 0.938234i \(0.387540\pi\)
\(710\) −25.2745 + 27.6346i −0.948535 + 1.03711i
\(711\) 0 0
\(712\) 16.0742 + 2.06994i 0.602407 + 0.0775742i
\(713\) −13.7461 + 5.00317i −0.514796 + 0.187370i
\(714\) 0 0
\(715\) 8.36463 + 9.96858i 0.312819 + 0.372804i
\(716\) 6.21128 + 23.0070i 0.232126 + 0.859813i
\(717\) 0 0
\(718\) 2.87919 + 21.7113i 0.107450 + 0.810257i
\(719\) −9.26666 16.0503i −0.345588 0.598576i 0.639872 0.768481i \(-0.278987\pi\)
−0.985460 + 0.169905i \(0.945654\pi\)
\(720\) 0 0
\(721\) −27.0047 + 46.7736i −1.00571 + 1.74194i
\(722\) 24.6169 + 10.1694i 0.916145 + 0.378467i
\(723\) 0 0
\(724\) 23.3122 23.4003i 0.866390 0.869666i
\(725\) −21.9920 + 3.87779i −0.816764 + 0.144017i
\(726\) 0 0
\(727\) 4.82234 + 4.04643i 0.178851 + 0.150074i 0.727818 0.685770i \(-0.240534\pi\)
−0.548967 + 0.835844i \(0.684979\pi\)
\(728\) 51.4249 + 39.2290i 1.90593 + 1.45392i
\(729\) 0 0
\(730\) 5.98247 + 1.32036i 0.221421 + 0.0488687i
\(731\) 1.92605 2.29538i 0.0712377 0.0848978i
\(732\) 0 0
\(733\) 22.4113 3.95172i 0.827781 0.145960i 0.256323 0.966591i \(-0.417489\pi\)
0.571458 + 0.820631i \(0.306378\pi\)
\(734\) −19.4383 + 30.5756i −0.717480 + 1.12857i
\(735\) 0 0
\(736\) −11.4522 35.7331i −0.422135 1.31714i
\(737\) 4.33388 7.50649i 0.159640 0.276505i
\(738\) 0 0
\(739\) 37.2940 21.5317i 1.37188 0.792056i 0.380717 0.924692i \(-0.375677\pi\)
0.991165 + 0.132636i \(0.0423440\pi\)
\(740\) 8.17317 + 0.699520i 0.300452 + 0.0257149i
\(741\) 0 0
\(742\) −40.0752 + 20.9099i −1.47121 + 0.767626i
\(743\) 27.0616 22.7074i 0.992794 0.833053i 0.00682406 0.999977i \(-0.497828\pi\)
0.985970 + 0.166924i \(0.0533834\pi\)
\(744\) 0 0
\(745\) 21.7106 7.90201i 0.795415 0.289507i
\(746\) 6.06108 + 19.1602i 0.221912 + 0.701506i
\(747\) 0 0
\(748\) −1.53602 2.18488i −0.0561625 0.0798871i
\(749\) 8.22687 + 1.45062i 0.300603 + 0.0530045i
\(750\) 0 0
\(751\) −23.5008 8.55359i −0.857557 0.312125i −0.124439 0.992227i \(-0.539713\pi\)
−0.733117 + 0.680102i \(0.761935\pi\)
\(752\) −8.06309 + 9.68320i −0.294031 + 0.353110i
\(753\) 0 0
\(754\) −26.2239 + 20.1616i −0.955017 + 0.734243i
\(755\) 39.8171i 1.44909i
\(756\) 0 0
\(757\) 31.3025i 1.13771i −0.822439 0.568853i \(-0.807387\pi\)
0.822439 0.568853i \(-0.192613\pi\)
\(758\) −1.66480 2.16538i −0.0604682 0.0786500i
\(759\) 0 0
\(760\) −3.45915 1.78829i −0.125476 0.0648681i
\(761\) 2.59308 + 0.943805i 0.0939992 + 0.0342129i 0.388592 0.921410i \(-0.372962\pi\)
−0.294592 + 0.955623i \(0.595184\pi\)
\(762\) 0 0
\(763\) 54.6869 + 9.64278i 1.97980 + 0.349092i
\(764\) 21.6289 15.2056i 0.782507 0.550121i
\(765\) 0 0
\(766\) 17.8468 5.64558i 0.644830 0.203983i
\(767\) 55.2197 20.0983i 1.99387 0.725708i
\(768\) 0 0
\(769\) 3.61913 3.03681i 0.130509 0.109510i −0.575197 0.818015i \(-0.695074\pi\)
0.705706 + 0.708505i \(0.250630\pi\)
\(770\) 4.34614 + 8.32966i 0.156624 + 0.300180i
\(771\) 0 0
\(772\) −0.352674 0.0301844i −0.0126930 0.00108636i
\(773\) −17.3435 + 10.0133i −0.623803 + 0.360153i −0.778348 0.627833i \(-0.783942\pi\)
0.154545 + 0.987986i \(0.450609\pi\)
\(774\) 0 0
\(775\) −7.04567 + 12.2035i −0.253088 + 0.438361i
\(776\) 21.5294 + 23.3621i 0.772861 + 0.838651i
\(777\) 0 0
\(778\) −28.7012 18.2467i −1.02899 0.654175i
\(779\) 2.66971 0.470742i 0.0956522 0.0168661i
\(780\) 0 0
\(781\) −2.90577 + 3.46296i −0.103977 + 0.123914i
\(782\) 4.68614 21.2326i 0.167576 0.759276i
\(783\) 0 0
\(784\) 12.0729 + 14.2781i 0.431174 + 0.509932i
\(785\) −31.1567 26.1436i −1.11203 0.933105i
\(786\) 0 0
\(787\) −41.5062 + 7.31867i −1.47954 + 0.260882i −0.854393 0.519627i \(-0.826071\pi\)
−0.625144 + 0.780510i \(0.714960\pi\)
\(788\) 1.37111 1.37630i 0.0488439 0.0490286i
\(789\) 0 0
\(790\) −9.13673 + 22.1170i −0.325070 + 0.786888i
\(791\) 20.7940 36.0163i 0.739350 1.28059i
\(792\) 0 0
\(793\) −15.8842 27.5122i −0.564063 0.976986i
\(794\) −46.4331 + 6.15761i −1.64785 + 0.218525i
\(795\) 0 0
\(796\) 7.91372 2.13649i 0.280494 0.0757258i
\(797\) −32.1711 38.3400i −1.13956 1.35807i −0.924369 0.381500i \(-0.875408\pi\)
−0.215189 0.976572i \(-0.569037\pi\)
\(798\) 0 0
\(799\) −6.86134 + 2.49732i −0.242737 + 0.0883489i
\(800\) −30.5766 19.2772i −1.08104 0.681553i
\(801\) 0 0
\(802\) 11.6928 + 10.6942i 0.412888 + 0.377626i
\(803\) 0.728294 + 0.128418i 0.0257009 + 0.00453177i
\(804\) 0 0
\(805\) −26.1611 + 71.8771i −0.922059 + 2.53334i
\(806\) −0.890787 + 20.8539i −0.0313766 + 0.734547i
\(807\) 0 0
\(808\) 7.70655 + 34.3022i 0.271116 + 1.20675i
\(809\) −7.89082 −0.277426 −0.138713 0.990333i \(-0.544297\pi\)
−0.138713 + 0.990333i \(0.544297\pi\)
\(810\) 0 0
\(811\) 16.9433i 0.594960i 0.954728 + 0.297480i \(0.0961461\pi\)
−0.954728 + 0.297480i \(0.903854\pi\)
\(812\) −21.6257 + 10.1340i −0.758913 + 0.355632i
\(813\) 0 0
\(814\) 0.989297 + 0.0422584i 0.0346748 + 0.00148116i
\(815\) 42.4871 + 15.4641i 1.48826 + 0.541682i
\(816\) 0 0
\(817\) 0.0915762 0.519355i 0.00320385 0.0181699i
\(818\) −11.7191 10.7183i −0.409749 0.374755i
\(819\) 0 0
\(820\) 44.6758 3.99359i 1.56015 0.139462i
\(821\) −16.2209 44.5665i −0.566112 1.55538i −0.810522 0.585708i \(-0.800816\pi\)
0.244410 0.969672i \(-0.421406\pi\)
\(822\) 0 0
\(823\) −3.65996 + 3.07107i −0.127578 + 0.107051i −0.704344 0.709858i \(-0.748759\pi\)
0.576766 + 0.816909i \(0.304314\pi\)
\(824\) −2.07661 44.6608i −0.0723422 1.55583i
\(825\) 0 0
\(826\) 42.0586 5.57750i 1.46341 0.194066i
\(827\) −25.0451 + 14.4598i −0.870903 + 0.502816i −0.867648 0.497179i \(-0.834369\pi\)
−0.00325451 + 0.999995i \(0.501036\pi\)
\(828\) 0 0
\(829\) 17.1833 + 9.92077i 0.596800 + 0.344563i 0.767782 0.640711i \(-0.221361\pi\)
−0.170982 + 0.985274i \(0.554694\pi\)
\(830\) −45.7841 18.9138i −1.58919 0.656508i
\(831\) 0 0
\(832\) −53.3635 4.36442i −1.85005 0.151309i
\(833\) 1.88146 + 10.6703i 0.0651888 + 0.369704i
\(834\) 0 0
\(835\) 14.6933 17.5108i 0.508482 0.605986i
\(836\) −0.426389 0.197850i −0.0147470 0.00684278i
\(837\) 0 0
\(838\) −19.2429 4.24701i −0.664737 0.146711i
\(839\) −26.2638 22.0379i −0.906725 0.760833i 0.0647677 0.997900i \(-0.479369\pi\)
−0.971493 + 0.237067i \(0.923814\pi\)
\(840\) 0 0
\(841\) 2.91487 + 16.5310i 0.100513 + 0.570036i
\(842\) −14.1910 9.02187i −0.489055 0.310914i
\(843\) 0 0
\(844\) −6.15574 4.29300i −0.211889 0.147771i
\(845\) 92.9203 + 53.6476i 3.19656 + 1.84553i
\(846\) 0 0
\(847\) −18.2253 31.5672i −0.626230 1.08466i
\(848\) 18.5868 32.4757i 0.638272 1.11522i
\(849\) 0 0
\(850\) −9.68904 18.5697i −0.332331 0.636935i
\(851\) 5.18183 + 6.17546i 0.177631 + 0.211692i
\(852\) 0 0
\(853\) −11.5939 31.8539i −0.396967 1.09066i −0.963754 0.266793i \(-0.914036\pi\)
0.566787 0.823865i \(-0.308186\pi\)
\(854\) −6.91777 21.8684i −0.236721 0.748321i
\(855\) 0 0
\(856\) −6.38135 + 2.66443i −0.218110 + 0.0910683i
\(857\) −0.670084 + 3.80024i −0.0228896 + 0.129814i −0.994111 0.108364i \(-0.965439\pi\)
0.971222 + 0.238177i \(0.0765500\pi\)
\(858\) 0 0
\(859\) 7.37600 20.2654i 0.251666 0.691446i −0.747951 0.663754i \(-0.768962\pi\)
0.999617 0.0276917i \(-0.00881567\pi\)
\(860\) 2.24247 8.43263i 0.0764676 0.287550i
\(861\) 0 0
\(862\) −31.6734 + 24.3514i −1.07880 + 0.829412i
\(863\) −30.2497 −1.02971 −0.514857 0.857276i \(-0.672155\pi\)
−0.514857 + 0.857276i \(0.672155\pi\)
\(864\) 0 0
\(865\) −5.68815 −0.193403
\(866\) 31.2270 24.0082i 1.06114 0.815830i
\(867\) 0 0
\(868\) −3.87295 + 14.5639i −0.131456 + 0.494332i
\(869\) −0.987962 + 2.71440i −0.0335143 + 0.0920799i
\(870\) 0 0
\(871\) 17.4847 99.1608i 0.592447 3.35994i
\(872\) −42.4191 + 17.7114i −1.43649 + 0.599784i
\(873\) 0 0
\(874\) −1.15420 3.64865i −0.0390414 0.123417i
\(875\) 5.48119 + 15.0594i 0.185298 + 0.509102i
\(876\) 0 0
\(877\) 10.0265 + 11.9491i 0.338571 + 0.403493i 0.908286 0.418349i \(-0.137391\pi\)
−0.569715 + 0.821842i \(0.692947\pi\)
\(878\) −8.03357 15.3969i −0.271120 0.519619i
\(879\) 0 0
\(880\) −6.75010 3.86328i −0.227546 0.130231i
\(881\) −18.2832 31.6674i −0.615977 1.06690i −0.990212 0.139569i \(-0.955428\pi\)
0.374235 0.927334i \(-0.377905\pi\)
\(882\) 0 0
\(883\) −26.1355 15.0893i −0.879529 0.507796i −0.00902592 0.999959i \(-0.502873\pi\)
−0.870503 + 0.492163i \(0.836206\pi\)
\(884\) −25.4482 17.7476i −0.855916 0.596915i
\(885\) 0 0
\(886\) −25.2170 16.0316i −0.847181 0.538591i
\(887\) 7.16882 + 40.6564i 0.240705 + 1.36511i 0.830258 + 0.557379i \(0.188193\pi\)
−0.589553 + 0.807730i \(0.700696\pi\)
\(888\) 0 0
\(889\) 25.0927 + 21.0553i 0.841584 + 0.706172i
\(890\) 26.7055 + 5.89404i 0.895171 + 0.197569i
\(891\) 0 0
\(892\) −7.11472 3.30132i −0.238219 0.110536i
\(893\) −0.826041 + 0.984438i −0.0276424 + 0.0329430i
\(894\) 0 0
\(895\) 6.98289 + 39.6019i 0.233412 + 1.32375i
\(896\) −36.9435 11.3805i −1.23420 0.380197i
\(897\) 0 0
\(898\) 36.2603 + 14.9794i 1.21002 + 0.499870i
\(899\) −6.67459 3.85358i −0.222610 0.128524i
\(900\) 0 0
\(901\) 18.7778 10.8414i 0.625578 0.361178i
\(902\) 5.36737 0.711781i 0.178714 0.0236997i
\(903\) 0 0
\(904\) 1.59902 + 34.3894i 0.0531826 + 1.14378i
\(905\) 42.6973 35.8273i 1.41931 1.19094i
\(906\) 0 0
\(907\) −13.9229 38.2529i −0.462303 1.27017i −0.923749 0.382999i \(-0.874891\pi\)
0.461446 0.887168i \(-0.347331\pi\)
\(908\) 23.5733 2.10723i 0.782308 0.0699310i
\(909\) 0 0
\(910\) 80.5379 + 73.6597i 2.66980 + 2.44179i
\(911\) −7.42318 + 42.0989i −0.245941 + 1.39480i 0.572357 + 0.820005i \(0.306029\pi\)
−0.818298 + 0.574795i \(0.805082\pi\)
\(912\) 0 0
\(913\) −5.61905 2.04517i −0.185963 0.0676852i
\(914\) 48.1227 + 2.05559i 1.59176 + 0.0679928i
\(915\) 0 0
\(916\) −19.1926 + 8.99380i −0.634142 + 0.297163i
\(917\) 1.41029i 0.0465717i
\(918\) 0 0
\(919\) −4.00742 −0.132193 −0.0660963 0.997813i \(-0.521054\pi\)
−0.0660963 + 0.997813i \(0.521054\pi\)
\(920\) −13.8796 61.7785i −0.457595 2.03678i
\(921\) 0 0
\(922\) −0.839029 + 19.6422i −0.0276319 + 0.646882i
\(923\) −17.9609 + 49.3471i −0.591189 + 1.62428i
\(924\) 0 0
\(925\) 7.64760 + 1.34848i 0.251452 + 0.0443377i
\(926\) −19.3963 17.7398i −0.637402 0.582966i
\(927\) 0 0
\(928\) 10.5435 16.7236i 0.346109 0.548980i
\(929\) −46.5451 + 16.9410i −1.52710 + 0.555818i −0.962908 0.269829i \(-0.913033\pi\)
−0.564188 + 0.825646i \(0.690811\pi\)
\(930\) 0 0
\(931\) 1.22576 + 1.46080i 0.0401725 + 0.0478758i
\(932\) 2.18191 0.589056i 0.0714708 0.0192952i
\(933\) 0 0
\(934\) −13.5028 + 1.79065i −0.441826 + 0.0585917i
\(935\) −2.25339 3.90298i −0.0736936 0.127641i
\(936\) 0 0
\(937\) 4.84280 8.38798i 0.158207 0.274023i −0.776015 0.630715i \(-0.782762\pi\)
0.934222 + 0.356691i \(0.116095\pi\)
\(938\) 27.7569 67.1902i 0.906293 2.19384i
\(939\) 0 0
\(940\) −15.0067 + 15.0635i −0.489466 + 0.491317i
\(941\) −5.10500 + 0.900150i −0.166418 + 0.0293440i −0.256236 0.966614i \(-0.582483\pi\)
0.0898181 + 0.995958i \(0.471371\pi\)
\(942\) 0 0
\(943\) 33.7672 + 28.3340i 1.09961 + 0.922682i
\(944\) −26.8188 + 22.6767i −0.872877 + 0.738063i
\(945\) 0 0
\(946\) 0.227003 1.02854i 0.00738051 0.0334406i
\(947\) 19.6357 23.4009i 0.638075 0.760428i −0.345990 0.938238i \(-0.612457\pi\)
0.984065 + 0.177811i \(0.0569014\pi\)
\(948\) 0 0
\(949\) 8.46036 1.49179i 0.274635 0.0484256i
\(950\) −3.11093 1.97776i −0.100932 0.0641669i
\(951\) 0 0
\(952\) −15.1801 16.4723i −0.491989 0.533870i
\(953\) −8.71927 + 15.1022i −0.282445 + 0.489209i −0.971986 0.235037i \(-0.924479\pi\)
0.689542 + 0.724246i \(0.257812\pi\)
\(954\) 0 0
\(955\) 38.6370 22.3071i 1.25027 0.721841i
\(956\) −11.5659 0.989894i −0.374068 0.0320155i
\(957\) 0 0
\(958\) −19.0418 36.4949i −0.615214 1.17910i
\(959\) −41.2500 + 34.6128i −1.33203 + 1.11771i
\(960\) 0 0
\(961\) 24.5605 8.93927i 0.792273 0.288364i
\(962\) 10.9672 3.46932i 0.353596 0.111855i
\(963\) 0 0
\(964\) 48.2641 33.9308i 1.55448 1.09284i
\(965\) −0.588217 0.103718i −0.0189354 0.00333882i
\(966\) 0 0
\(967\) −46.2859 16.8467i −1.48845 0.541752i −0.535411 0.844592i \(-0.679843\pi\)
−0.953042 + 0.302839i \(0.902065\pi\)
\(968\) 26.8039 + 13.8569i 0.861510 + 0.445378i
\(969\) 0 0
\(970\) 32.6753 + 42.5002i 1.04914 + 1.36460i
\(971\) 13.2201i 0.424253i 0.977242 + 0.212126i \(0.0680388\pi\)
−0.977242 + 0.212126i \(0.931961\pi\)
\(972\) 0 0
\(973\) 7.54418i 0.241855i
\(974\) 14.7353 11.3289i 0.472150 0.363002i
\(975\) 0 0
\(976\) 14.5907 + 12.1495i 0.467037 + 0.388896i
\(977\) 22.1311 + 8.05506i 0.708037 + 0.257704i 0.670838 0.741604i \(-0.265934\pi\)
0.0371983 + 0.999308i \(0.488157\pi\)
\(978\) 0 0
\(979\) 3.25108 + 0.573253i 0.103905 + 0.0183212i
\(980\) 18.1461 + 25.8116i 0.579657 + 0.824520i
\(981\) 0 0
\(982\) −5.01267 15.8460i −0.159961 0.505667i
\(983\) 44.1620 16.0737i 1.40855 0.512670i 0.477846 0.878444i \(-0.341418\pi\)
0.930704 + 0.365773i \(0.119195\pi\)
\(984\) 0 0
\(985\) 2.51126 2.10719i 0.0800153 0.0671408i
\(986\) 10.1566 5.29936i 0.323451 0.168766i
\(987\) 0 0
\(988\) −5.44060 0.465646i −0.173088 0.0148142i
\(989\) 7.42628 4.28756i 0.236142 0.136337i
\(990\) 0 0
\(991\) −10.5119 + 18.2072i −0.333922 + 0.578370i −0.983277 0.182115i \(-0.941706\pi\)
0.649355 + 0.760486i \(0.275039\pi\)
\(992\) −3.80740 11.8798i −0.120885 0.377184i
\(993\) 0 0
\(994\) −20.3414 + 31.9962i −0.645190 + 1.01486i
\(995\) 13.6219 2.40190i 0.431842 0.0761454i
\(996\) 0 0
\(997\) −1.15413 + 1.37543i −0.0365515 + 0.0435604i −0.784011 0.620748i \(-0.786829\pi\)
0.747459 + 0.664308i \(0.231274\pi\)
\(998\) −49.9718 11.0290i −1.58183 0.349117i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.613.8 204
3.2 odd 2 216.2.t.a.205.27 yes 204
8.5 even 2 inner 648.2.t.a.613.23 204
12.11 even 2 864.2.bf.a.529.13 204
24.5 odd 2 216.2.t.a.205.12 yes 204
24.11 even 2 864.2.bf.a.529.22 204
27.5 odd 18 216.2.t.a.157.12 204
27.22 even 9 inner 648.2.t.a.37.23 204
108.59 even 18 864.2.bf.a.49.22 204
216.5 odd 18 216.2.t.a.157.27 yes 204
216.59 even 18 864.2.bf.a.49.13 204
216.157 even 18 inner 648.2.t.a.37.8 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.12 204 27.5 odd 18
216.2.t.a.157.27 yes 204 216.5 odd 18
216.2.t.a.205.12 yes 204 24.5 odd 2
216.2.t.a.205.27 yes 204 3.2 odd 2
648.2.t.a.37.8 204 216.157 even 18 inner
648.2.t.a.37.23 204 27.22 even 9 inner
648.2.t.a.613.8 204 1.1 even 1 trivial
648.2.t.a.613.23 204 8.5 even 2 inner
864.2.bf.a.49.13 204 216.59 even 18
864.2.bf.a.49.22 204 108.59 even 18
864.2.bf.a.529.13 204 12.11 even 2
864.2.bf.a.529.22 204 24.11 even 2