Properties

Label 648.2.t.a.613.6
Level $648$
Weight $2$
Character 648.613
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 613.6
Character \(\chi\) \(=\) 648.613
Dual form 648.2.t.a.37.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.21270 - 0.727574i) q^{2} +(0.941271 + 1.76466i) q^{4} +(0.0465753 - 0.127965i) q^{5} +(-0.252128 + 1.42989i) q^{7} +(0.142441 - 2.82484i) q^{8} +(-0.149586 + 0.121295i) q^{10} +(0.771344 + 2.11925i) q^{11} +(0.634290 + 0.755917i) q^{13} +(1.34611 - 1.55058i) q^{14} +(-2.22802 + 3.32204i) q^{16} +(0.439205 + 0.760726i) q^{17} +(-5.20298 - 3.00394i) q^{19} +(0.269654 - 0.0382600i) q^{20} +(0.606505 - 3.13122i) q^{22} +(0.748645 + 4.24578i) q^{23} +(3.81602 + 3.20202i) q^{25} +(-0.219216 - 1.37819i) q^{26} +(-2.76058 + 0.900994i) q^{28} +(0.146501 - 0.174594i) q^{29} +(1.15687 + 6.56095i) q^{31} +(5.11894 - 2.40758i) q^{32} +(0.0208614 - 1.24208i) q^{34} +(0.171232 + 0.0988610i) q^{35} +(-9.25201 + 5.34165i) q^{37} +(4.12405 + 7.42842i) q^{38} +(-0.354845 - 0.149795i) q^{40} +(1.19321 - 1.00123i) q^{41} +(-1.11062 - 3.05141i) q^{43} +(-3.01370 + 3.35595i) q^{44} +(2.18124 - 5.69354i) q^{46} +(-1.36645 + 7.74952i) q^{47} +(4.59683 + 1.67311i) q^{49} +(-2.29797 - 6.65952i) q^{50} +(-0.736895 + 1.83083i) q^{52} -5.08895i q^{53} +0.307115 q^{55} +(4.00329 + 0.915895i) q^{56} +(-0.304692 + 0.105139i) q^{58} +(-3.15956 + 8.68082i) q^{59} +(12.3724 + 2.18158i) q^{61} +(3.37064 - 8.79816i) q^{62} +(-7.95942 - 0.804744i) q^{64} +(0.126273 - 0.0459596i) q^{65} +(5.90023 + 7.03162i) q^{67} +(-0.929007 + 1.49109i) q^{68} +(-0.135724 - 0.244473i) q^{70} +(5.93006 + 10.2712i) q^{71} +(4.88366 - 8.45874i) q^{73} +(15.1063 + 0.253718i) q^{74} +(0.403507 - 12.0090i) q^{76} +(-3.22477 + 0.568614i) q^{77} +(5.49238 + 4.60866i) q^{79} +(0.321333 + 0.439832i) q^{80} +(-2.17548 + 0.346032i) q^{82} +(-0.867764 + 1.03416i) q^{83} +(0.117802 - 0.0207717i) q^{85} +(-0.873278 + 4.50850i) q^{86} +(6.09641 - 1.87706i) q^{88} +(3.19969 - 5.54203i) q^{89} +(-1.24080 + 0.716376i) q^{91} +(-6.78766 + 5.31753i) q^{92} +(7.29544 - 8.40363i) q^{94} +(-0.626728 + 0.525888i) q^{95} +(0.779817 - 0.283830i) q^{97} +(-4.35726 - 5.37352i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21270 0.727574i −0.857507 0.514473i
\(3\) 0 0
\(4\) 0.941271 + 1.76466i 0.470636 + 0.882328i
\(5\) 0.0465753 0.127965i 0.0208291 0.0572275i −0.928842 0.370475i \(-0.879195\pi\)
0.949671 + 0.313248i \(0.101417\pi\)
\(6\) 0 0
\(7\) −0.252128 + 1.42989i −0.0952954 + 0.540447i 0.899361 + 0.437207i \(0.144032\pi\)
−0.994656 + 0.103240i \(0.967079\pi\)
\(8\) 0.142441 2.82484i 0.0503604 0.998731i
\(9\) 0 0
\(10\) −0.149586 + 0.121295i −0.0473031 + 0.0383570i
\(11\) 0.771344 + 2.11925i 0.232569 + 0.638978i 0.999998 0.00215610i \(-0.000686309\pi\)
−0.767429 + 0.641134i \(0.778464\pi\)
\(12\) 0 0
\(13\) 0.634290 + 0.755917i 0.175920 + 0.209654i 0.846798 0.531914i \(-0.178527\pi\)
−0.670878 + 0.741568i \(0.734083\pi\)
\(14\) 1.34611 1.55058i 0.359762 0.414410i
\(15\) 0 0
\(16\) −2.22802 + 3.32204i −0.557004 + 0.830510i
\(17\) 0.439205 + 0.760726i 0.106523 + 0.184503i 0.914359 0.404904i \(-0.132695\pi\)
−0.807836 + 0.589407i \(0.799362\pi\)
\(18\) 0 0
\(19\) −5.20298 3.00394i −1.19364 0.689151i −0.234513 0.972113i \(-0.575350\pi\)
−0.959131 + 0.282962i \(0.908683\pi\)
\(20\) 0.269654 0.0382600i 0.0602964 0.00855521i
\(21\) 0 0
\(22\) 0.606505 3.13122i 0.129307 0.667579i
\(23\) 0.748645 + 4.24578i 0.156103 + 0.885306i 0.957770 + 0.287535i \(0.0928357\pi\)
−0.801667 + 0.597771i \(0.796053\pi\)
\(24\) 0 0
\(25\) 3.81602 + 3.20202i 0.763203 + 0.640404i
\(26\) −0.219216 1.37819i −0.0429918 0.270286i
\(27\) 0 0
\(28\) −2.76058 + 0.900994i −0.521701 + 0.170272i
\(29\) 0.146501 0.174594i 0.0272046 0.0324212i −0.752271 0.658854i \(-0.771041\pi\)
0.779475 + 0.626433i \(0.215486\pi\)
\(30\) 0 0
\(31\) 1.15687 + 6.56095i 0.207781 + 1.17838i 0.893004 + 0.450049i \(0.148593\pi\)
−0.685223 + 0.728333i \(0.740295\pi\)
\(32\) 5.11894 2.40758i 0.904909 0.425604i
\(33\) 0 0
\(34\) 0.0208614 1.24208i 0.00357770 0.213016i
\(35\) 0.171232 + 0.0988610i 0.0289435 + 0.0167106i
\(36\) 0 0
\(37\) −9.25201 + 5.34165i −1.52102 + 0.878162i −0.521330 + 0.853355i \(0.674564\pi\)
−0.999692 + 0.0248069i \(0.992103\pi\)
\(38\) 4.12405 + 7.42842i 0.669009 + 1.20505i
\(39\) 0 0
\(40\) −0.354845 0.149795i −0.0561060 0.0236847i
\(41\) 1.19321 1.00123i 0.186349 0.156365i −0.544841 0.838540i \(-0.683410\pi\)
0.731190 + 0.682174i \(0.238965\pi\)
\(42\) 0 0
\(43\) −1.11062 3.05141i −0.169368 0.465335i 0.825749 0.564038i \(-0.190753\pi\)
−0.995117 + 0.0987027i \(0.968531\pi\)
\(44\) −3.01370 + 3.35595i −0.454333 + 0.505928i
\(45\) 0 0
\(46\) 2.18124 5.69354i 0.321606 0.839467i
\(47\) −1.36645 + 7.74952i −0.199317 + 1.13038i 0.706818 + 0.707395i \(0.250130\pi\)
−0.906135 + 0.422988i \(0.860981\pi\)
\(48\) 0 0
\(49\) 4.59683 + 1.67311i 0.656691 + 0.239016i
\(50\) −2.29797 6.65952i −0.324982 0.941798i
\(51\) 0 0
\(52\) −0.736895 + 1.83083i −0.102189 + 0.253890i
\(53\) 5.08895i 0.699021i −0.936932 0.349510i \(-0.886348\pi\)
0.936932 0.349510i \(-0.113652\pi\)
\(54\) 0 0
\(55\) 0.307115 0.0414114
\(56\) 4.00329 + 0.915895i 0.534962 + 0.122392i
\(57\) 0 0
\(58\) −0.304692 + 0.105139i −0.0400080 + 0.0138054i
\(59\) −3.15956 + 8.68082i −0.411340 + 1.13015i 0.545139 + 0.838346i \(0.316477\pi\)
−0.956479 + 0.291801i \(0.905745\pi\)
\(60\) 0 0
\(61\) 12.3724 + 2.18158i 1.58412 + 0.279323i 0.895250 0.445563i \(-0.146997\pi\)
0.688869 + 0.724886i \(0.258108\pi\)
\(62\) 3.37064 8.79816i 0.428072 1.11737i
\(63\) 0 0
\(64\) −7.95942 0.804744i −0.994928 0.100593i
\(65\) 0.126273 0.0459596i 0.0156622 0.00570059i
\(66\) 0 0
\(67\) 5.90023 + 7.03162i 0.720828 + 0.859049i 0.994711 0.102714i \(-0.0327526\pi\)
−0.273883 + 0.961763i \(0.588308\pi\)
\(68\) −0.929007 + 1.49109i −0.112659 + 0.180822i
\(69\) 0 0
\(70\) −0.135724 0.244473i −0.0162222 0.0292201i
\(71\) 5.93006 + 10.2712i 0.703769 + 1.21896i 0.967134 + 0.254267i \(0.0818341\pi\)
−0.263366 + 0.964696i \(0.584833\pi\)
\(72\) 0 0
\(73\) 4.88366 8.45874i 0.571589 0.990021i −0.424814 0.905281i \(-0.639661\pi\)
0.996403 0.0847405i \(-0.0270061\pi\)
\(74\) 15.1063 + 0.253718i 1.75608 + 0.0294941i
\(75\) 0 0
\(76\) 0.403507 12.0090i 0.0462854 1.37752i
\(77\) −3.22477 + 0.568614i −0.367497 + 0.0647996i
\(78\) 0 0
\(79\) 5.49238 + 4.60866i 0.617941 + 0.518514i 0.897156 0.441714i \(-0.145630\pi\)
−0.279214 + 0.960229i \(0.590074\pi\)
\(80\) 0.321333 + 0.439832i 0.0359261 + 0.0491748i
\(81\) 0 0
\(82\) −2.17548 + 0.346032i −0.240241 + 0.0382129i
\(83\) −0.867764 + 1.03416i −0.0952494 + 0.113514i −0.811564 0.584264i \(-0.801383\pi\)
0.716314 + 0.697778i \(0.245828\pi\)
\(84\) 0 0
\(85\) 0.117802 0.0207717i 0.0127774 0.00225301i
\(86\) −0.873278 + 4.50850i −0.0941680 + 0.486164i
\(87\) 0 0
\(88\) 6.09641 1.87706i 0.649880 0.200095i
\(89\) 3.19969 5.54203i 0.339167 0.587454i −0.645110 0.764090i \(-0.723188\pi\)
0.984276 + 0.176636i \(0.0565216\pi\)
\(90\) 0 0
\(91\) −1.24080 + 0.716376i −0.130071 + 0.0750966i
\(92\) −6.78766 + 5.31753i −0.707662 + 0.554391i
\(93\) 0 0
\(94\) 7.29544 8.40363i 0.752467 0.866768i
\(95\) −0.626728 + 0.525888i −0.0643010 + 0.0539549i
\(96\) 0 0
\(97\) 0.779817 0.283830i 0.0791784 0.0288186i −0.302127 0.953268i \(-0.597697\pi\)
0.381306 + 0.924449i \(0.375475\pi\)
\(98\) −4.35726 5.37352i −0.440149 0.542807i
\(99\) 0 0
\(100\) −2.05855 + 9.74792i −0.205855 + 0.974792i
\(101\) −7.06509 1.24577i −0.703003 0.123958i −0.189291 0.981921i \(-0.560619\pi\)
−0.513712 + 0.857963i \(0.671730\pi\)
\(102\) 0 0
\(103\) −7.48465 2.72419i −0.737484 0.268422i −0.0541548 0.998533i \(-0.517246\pi\)
−0.683329 + 0.730110i \(0.739469\pi\)
\(104\) 2.22569 1.68409i 0.218247 0.165139i
\(105\) 0 0
\(106\) −3.70259 + 6.17136i −0.359627 + 0.599415i
\(107\) 19.5243i 1.88748i −0.330687 0.943740i \(-0.607280\pi\)
0.330687 0.943740i \(-0.392720\pi\)
\(108\) 0 0
\(109\) 5.56480i 0.533011i 0.963833 + 0.266506i \(0.0858691\pi\)
−0.963833 + 0.266506i \(0.914131\pi\)
\(110\) −0.372438 0.223449i −0.0355105 0.0213050i
\(111\) 0 0
\(112\) −4.18840 4.02340i −0.395767 0.380175i
\(113\) −11.5278 4.19578i −1.08445 0.394706i −0.262885 0.964827i \(-0.584674\pi\)
−0.821561 + 0.570121i \(0.806896\pi\)
\(114\) 0 0
\(115\) 0.578178 + 0.101948i 0.0539154 + 0.00950674i
\(116\) 0.445995 + 0.0941846i 0.0414096 + 0.00874482i
\(117\) 0 0
\(118\) 10.1475 8.22840i 0.934157 0.757486i
\(119\) −1.19849 + 0.436214i −0.109865 + 0.0399877i
\(120\) 0 0
\(121\) 4.53023 3.80132i 0.411840 0.345574i
\(122\) −13.4167 11.6474i −1.21469 1.05451i
\(123\) 0 0
\(124\) −10.4889 + 8.21712i −0.941930 + 0.737919i
\(125\) 1.17714 0.679623i 0.105287 0.0607873i
\(126\) 0 0
\(127\) −4.15115 + 7.19001i −0.368355 + 0.638010i −0.989309 0.145838i \(-0.953412\pi\)
0.620953 + 0.783848i \(0.286746\pi\)
\(128\) 9.06686 + 6.76698i 0.801405 + 0.598122i
\(129\) 0 0
\(130\) −0.186570 0.0361379i −0.0163633 0.00316950i
\(131\) −16.3299 + 2.87941i −1.42675 + 0.251575i −0.833090 0.553138i \(-0.813430\pi\)
−0.593664 + 0.804713i \(0.702319\pi\)
\(132\) 0 0
\(133\) 5.60712 6.68230i 0.486199 0.579429i
\(134\) −2.03917 12.8201i −0.176157 1.10749i
\(135\) 0 0
\(136\) 2.21149 1.13233i 0.189633 0.0970961i
\(137\) −6.20446 5.20616i −0.530083 0.444792i 0.338047 0.941129i \(-0.390234\pi\)
−0.868130 + 0.496337i \(0.834678\pi\)
\(138\) 0 0
\(139\) 3.76315 0.663545i 0.319186 0.0562811i −0.0117598 0.999931i \(-0.503743\pi\)
0.330946 + 0.943650i \(0.392632\pi\)
\(140\) −0.0132796 + 0.395221i −0.00112233 + 0.0334023i
\(141\) 0 0
\(142\) 0.281666 16.7704i 0.0236369 1.40734i
\(143\) −1.11272 + 1.92729i −0.0930505 + 0.161168i
\(144\) 0 0
\(145\) −0.0155185 0.0268788i −0.00128874 0.00223216i
\(146\) −12.0768 + 6.70467i −0.999480 + 0.554883i
\(147\) 0 0
\(148\) −18.1348 11.2987i −1.49067 0.928745i
\(149\) 14.3501 + 17.1018i 1.17561 + 1.40104i 0.897802 + 0.440400i \(0.145163\pi\)
0.277807 + 0.960637i \(0.410392\pi\)
\(150\) 0 0
\(151\) −17.9058 + 6.51719i −1.45716 + 0.530362i −0.944581 0.328280i \(-0.893531\pi\)
−0.512576 + 0.858642i \(0.671309\pi\)
\(152\) −9.22676 + 14.2697i −0.748389 + 1.15742i
\(153\) 0 0
\(154\) 4.32438 + 1.65670i 0.348469 + 0.133501i
\(155\) 0.893452 + 0.157540i 0.0717638 + 0.0126539i
\(156\) 0 0
\(157\) 2.93811 8.07239i 0.234487 0.644247i −0.765513 0.643421i \(-0.777515\pi\)
1.00000 0.000826492i \(-0.000263081\pi\)
\(158\) −3.30746 9.58503i −0.263127 0.762544i
\(159\) 0 0
\(160\) −0.0696688 0.767177i −0.00550780 0.0606507i
\(161\) −6.25975 −0.493337
\(162\) 0 0
\(163\) 10.0518i 0.787315i −0.919257 0.393657i \(-0.871210\pi\)
0.919257 0.393657i \(-0.128790\pi\)
\(164\) 2.88996 + 1.16319i 0.225668 + 0.0908297i
\(165\) 0 0
\(166\) 1.80476 0.622761i 0.140077 0.0483357i
\(167\) −14.9465 5.44008i −1.15660 0.420966i −0.308715 0.951154i \(-0.599899\pi\)
−0.847880 + 0.530188i \(0.822121\pi\)
\(168\) 0 0
\(169\) 2.08834 11.8436i 0.160641 0.911043i
\(170\) −0.157971 0.0605200i −0.0121158 0.00464167i
\(171\) 0 0
\(172\) 4.33929 4.83207i 0.330868 0.368442i
\(173\) −6.92421 19.0241i −0.526438 1.44638i −0.863236 0.504800i \(-0.831566\pi\)
0.336798 0.941577i \(-0.390656\pi\)
\(174\) 0 0
\(175\) −5.54065 + 4.64916i −0.418834 + 0.351444i
\(176\) −8.75880 2.15929i −0.660220 0.162763i
\(177\) 0 0
\(178\) −7.91250 + 4.39279i −0.593067 + 0.329254i
\(179\) 19.1336 11.0468i 1.43011 0.825676i 0.432984 0.901402i \(-0.357461\pi\)
0.997129 + 0.0757257i \(0.0241273\pi\)
\(180\) 0 0
\(181\) −15.2536 8.80669i −1.13379 0.654596i −0.188907 0.981995i \(-0.560494\pi\)
−0.944886 + 0.327399i \(0.893828\pi\)
\(182\) 2.02593 + 0.0340265i 0.150172 + 0.00252221i
\(183\) 0 0
\(184\) 12.1003 1.51003i 0.892044 0.111321i
\(185\) 0.252627 + 1.43272i 0.0185735 + 0.105336i
\(186\) 0 0
\(187\) −1.27339 + 1.51757i −0.0931195 + 0.110976i
\(188\) −14.9614 + 4.88309i −1.09117 + 0.356136i
\(189\) 0 0
\(190\) 1.14265 0.181751i 0.0828969 0.0131856i
\(191\) 7.20145 + 6.04274i 0.521079 + 0.437237i 0.865008 0.501759i \(-0.167313\pi\)
−0.343929 + 0.938996i \(0.611758\pi\)
\(192\) 0 0
\(193\) −1.28620 7.29438i −0.0925824 0.525061i −0.995461 0.0951660i \(-0.969662\pi\)
0.902879 0.429895i \(-0.141449\pi\)
\(194\) −1.15219 0.223175i −0.0827224 0.0160230i
\(195\) 0 0
\(196\) 1.37440 + 9.68668i 0.0981717 + 0.691906i
\(197\) 15.7746 + 9.10747i 1.12389 + 0.648881i 0.942392 0.334510i \(-0.108571\pi\)
0.181502 + 0.983391i \(0.441904\pi\)
\(198\) 0 0
\(199\) −8.05228 13.9470i −0.570811 0.988674i −0.996483 0.0837964i \(-0.973295\pi\)
0.425672 0.904878i \(-0.360038\pi\)
\(200\) 9.58874 10.3235i 0.678026 0.729984i
\(201\) 0 0
\(202\) 7.66144 + 6.65112i 0.539057 + 0.467971i
\(203\) 0.212712 + 0.253501i 0.0149295 + 0.0177923i
\(204\) 0 0
\(205\) −0.0725472 0.199322i −0.00506692 0.0139212i
\(206\) 7.09456 + 8.74925i 0.494302 + 0.609589i
\(207\) 0 0
\(208\) −3.92439 + 0.422939i −0.272108 + 0.0293255i
\(209\) 2.35282 13.3435i 0.162748 0.922988i
\(210\) 0 0
\(211\) −6.47874 + 17.8002i −0.446015 + 1.22542i 0.489461 + 0.872025i \(0.337193\pi\)
−0.935476 + 0.353390i \(0.885029\pi\)
\(212\) 8.98024 4.79008i 0.616765 0.328984i
\(213\) 0 0
\(214\) −14.2053 + 23.6770i −0.971057 + 1.61853i
\(215\) −0.442200 −0.0301578
\(216\) 0 0
\(217\) −9.67311 −0.656654
\(218\) 4.04881 6.74842i 0.274220 0.457061i
\(219\) 0 0
\(220\) 0.289078 + 0.541952i 0.0194897 + 0.0365384i
\(221\) −0.296462 + 0.814523i −0.0199422 + 0.0547908i
\(222\) 0 0
\(223\) 2.02862 11.5049i 0.135847 0.770424i −0.838420 0.545025i \(-0.816520\pi\)
0.974267 0.225399i \(-0.0723686\pi\)
\(224\) 2.15194 + 7.92654i 0.143783 + 0.529614i
\(225\) 0 0
\(226\) 10.9270 + 13.4756i 0.726854 + 0.896381i
\(227\) 0.619851 + 1.70303i 0.0411409 + 0.113034i 0.958562 0.284884i \(-0.0919551\pi\)
−0.917421 + 0.397918i \(0.869733\pi\)
\(228\) 0 0
\(229\) −7.88646 9.39872i −0.521152 0.621085i 0.439701 0.898144i \(-0.355085\pi\)
−0.960853 + 0.277060i \(0.910640\pi\)
\(230\) −0.626980 0.544300i −0.0413418 0.0358901i
\(231\) 0 0
\(232\) −0.472331 0.438712i −0.0310100 0.0288029i
\(233\) 0.421533 + 0.730116i 0.0276155 + 0.0478315i 0.879503 0.475894i \(-0.157875\pi\)
−0.851887 + 0.523725i \(0.824542\pi\)
\(234\) 0 0
\(235\) 0.928021 + 0.535793i 0.0605374 + 0.0349513i
\(236\) −18.2927 + 2.59547i −1.19075 + 0.168951i
\(237\) 0 0
\(238\) 1.77078 + 0.342994i 0.114783 + 0.0222330i
\(239\) 1.87603 + 10.6395i 0.121350 + 0.688211i 0.983409 + 0.181402i \(0.0580637\pi\)
−0.862059 + 0.506808i \(0.830825\pi\)
\(240\) 0 0
\(241\) 6.85566 + 5.75258i 0.441612 + 0.370557i 0.836312 0.548253i \(-0.184707\pi\)
−0.394700 + 0.918810i \(0.629152\pi\)
\(242\) −8.25955 + 1.31377i −0.530944 + 0.0844522i
\(243\) 0 0
\(244\) 7.79601 + 23.8864i 0.499088 + 1.52917i
\(245\) 0.428198 0.510307i 0.0273566 0.0326023i
\(246\) 0 0
\(247\) −1.02947 5.83839i −0.0655033 0.371488i
\(248\) 18.6984 2.33343i 1.18735 0.148173i
\(249\) 0 0
\(250\) −1.92199 0.0322808i −0.121558 0.00204162i
\(251\) 6.48934 + 3.74662i 0.409603 + 0.236485i 0.690619 0.723219i \(-0.257338\pi\)
−0.281016 + 0.959703i \(0.590671\pi\)
\(252\) 0 0
\(253\) −8.42041 + 4.86153i −0.529387 + 0.305641i
\(254\) 10.2654 5.69903i 0.644106 0.357589i
\(255\) 0 0
\(256\) −6.07188 14.8031i −0.379492 0.925195i
\(257\) 12.7573 10.7046i 0.795777 0.667736i −0.151391 0.988474i \(-0.548375\pi\)
0.947168 + 0.320738i \(0.103931\pi\)
\(258\) 0 0
\(259\) −5.30528 14.5761i −0.329654 0.905717i
\(260\) 0.199960 + 0.179568i 0.0124010 + 0.0111363i
\(261\) 0 0
\(262\) 21.8983 + 8.38939i 1.35288 + 0.518298i
\(263\) 3.21128 18.2121i 0.198016 1.12300i −0.710042 0.704159i \(-0.751324\pi\)
0.908058 0.418844i \(-0.137565\pi\)
\(264\) 0 0
\(265\) −0.651206 0.237019i −0.0400032 0.0145600i
\(266\) −11.6616 + 4.02402i −0.715019 + 0.246728i
\(267\) 0 0
\(268\) −6.85467 + 17.0305i −0.418716 + 1.04031i
\(269\) 25.3167i 1.54359i 0.635873 + 0.771793i \(0.280640\pi\)
−0.635873 + 0.771793i \(0.719360\pi\)
\(270\) 0 0
\(271\) 16.6229 1.00977 0.504884 0.863187i \(-0.331535\pi\)
0.504884 + 0.863187i \(0.331535\pi\)
\(272\) −3.50572 0.235853i −0.212565 0.0143007i
\(273\) 0 0
\(274\) 3.73627 + 10.8277i 0.225716 + 0.654126i
\(275\) −3.84242 + 10.5570i −0.231707 + 0.636608i
\(276\) 0 0
\(277\) 17.4590 + 3.07849i 1.04901 + 0.184969i 0.671475 0.741027i \(-0.265661\pi\)
0.377534 + 0.925996i \(0.376772\pi\)
\(278\) −5.04634 1.93329i −0.302659 0.115951i
\(279\) 0 0
\(280\) 0.303657 0.469622i 0.0181470 0.0280653i
\(281\) 15.3990 5.60477i 0.918626 0.334352i 0.160934 0.986965i \(-0.448549\pi\)
0.757692 + 0.652613i \(0.226327\pi\)
\(282\) 0 0
\(283\) 11.8313 + 14.0999i 0.703295 + 0.838154i 0.992895 0.118993i \(-0.0379667\pi\)
−0.289600 + 0.957148i \(0.593522\pi\)
\(284\) −12.5433 + 20.1325i −0.744306 + 1.19464i
\(285\) 0 0
\(286\) 2.75164 1.52763i 0.162708 0.0903309i
\(287\) 1.13080 + 1.95860i 0.0667490 + 0.115613i
\(288\) 0 0
\(289\) 8.11420 14.0542i 0.477306 0.826718i
\(290\) −0.000737097 0.0438866i −4.32838e−5 0.00257711i
\(291\) 0 0
\(292\) 19.5236 + 0.656002i 1.14253 + 0.0383896i
\(293\) 27.7186 4.88753i 1.61934 0.285533i 0.710818 0.703376i \(-0.248325\pi\)
0.908519 + 0.417843i \(0.137214\pi\)
\(294\) 0 0
\(295\) 0.963681 + 0.808624i 0.0561077 + 0.0470799i
\(296\) 13.7714 + 26.8963i 0.800449 + 1.56332i
\(297\) 0 0
\(298\) −4.95953 31.1801i −0.287298 1.80622i
\(299\) −2.73460 + 3.25897i −0.158146 + 0.188471i
\(300\) 0 0
\(301\) 4.64319 0.818720i 0.267629 0.0471903i
\(302\) 26.4561 + 5.12445i 1.52238 + 0.294879i
\(303\) 0 0
\(304\) 21.5715 10.5917i 1.23721 0.607473i
\(305\) 0.855412 1.48162i 0.0489808 0.0848372i
\(306\) 0 0
\(307\) 14.1955 8.19580i 0.810182 0.467759i −0.0368369 0.999321i \(-0.511728\pi\)
0.847019 + 0.531562i \(0.178395\pi\)
\(308\) −4.03879 5.15539i −0.230132 0.293756i
\(309\) 0 0
\(310\) −0.968865 0.841101i −0.0550278 0.0477713i
\(311\) 23.5558 19.7657i 1.33573 1.12081i 0.353028 0.935613i \(-0.385152\pi\)
0.982701 0.185197i \(-0.0592924\pi\)
\(312\) 0 0
\(313\) −20.6090 + 7.50106i −1.16489 + 0.423985i −0.850842 0.525422i \(-0.823907\pi\)
−0.314048 + 0.949407i \(0.601685\pi\)
\(314\) −9.43630 + 7.65168i −0.532521 + 0.431809i
\(315\) 0 0
\(316\) −2.96287 + 14.0302i −0.166674 + 0.789258i
\(317\) −26.6872 4.70567i −1.49890 0.264297i −0.636799 0.771030i \(-0.719742\pi\)
−0.862103 + 0.506733i \(0.830853\pi\)
\(318\) 0 0
\(319\) 0.483011 + 0.175802i 0.0270434 + 0.00984300i
\(320\) −0.473691 + 0.981043i −0.0264802 + 0.0548420i
\(321\) 0 0
\(322\) 7.59118 + 4.55443i 0.423040 + 0.253809i
\(323\) 5.27738i 0.293641i
\(324\) 0 0
\(325\) 4.91560i 0.272668i
\(326\) −7.31340 + 12.1897i −0.405052 + 0.675128i
\(327\) 0 0
\(328\) −2.65834 3.51325i −0.146782 0.193987i
\(329\) −10.7364 3.90774i −0.591918 0.215441i
\(330\) 0 0
\(331\) −14.1842 2.50105i −0.779633 0.137470i −0.230351 0.973108i \(-0.573987\pi\)
−0.549282 + 0.835637i \(0.685099\pi\)
\(332\) −2.64174 0.557878i −0.144984 0.0306176i
\(333\) 0 0
\(334\) 14.1675 + 17.4719i 0.775213 + 0.956018i
\(335\) 1.17460 0.427521i 0.0641755 0.0233580i
\(336\) 0 0
\(337\) −12.1559 + 10.2000i −0.662174 + 0.555630i −0.910737 0.412986i \(-0.864486\pi\)
0.248564 + 0.968616i \(0.420041\pi\)
\(338\) −11.1496 + 12.8432i −0.606458 + 0.698580i
\(339\) 0 0
\(340\) 0.147539 + 0.188328i 0.00800140 + 0.0102135i
\(341\) −13.0120 + 7.51246i −0.704637 + 0.406822i
\(342\) 0 0
\(343\) −8.63317 + 14.9531i −0.466147 + 0.807391i
\(344\) −8.77793 + 2.70268i −0.473274 + 0.145719i
\(345\) 0 0
\(346\) −5.44448 + 28.1084i −0.292697 + 1.51112i
\(347\) −14.4283 + 2.54411i −0.774554 + 0.136575i −0.546934 0.837175i \(-0.684205\pi\)
−0.227619 + 0.973750i \(0.573094\pi\)
\(348\) 0 0
\(349\) 5.21744 6.21790i 0.279283 0.332837i −0.608108 0.793854i \(-0.708071\pi\)
0.887391 + 0.461018i \(0.152516\pi\)
\(350\) 10.1017 1.60679i 0.539961 0.0858865i
\(351\) 0 0
\(352\) 9.05073 + 8.99125i 0.482406 + 0.479235i
\(353\) 9.20716 + 7.72572i 0.490047 + 0.411199i 0.854043 0.520202i \(-0.174143\pi\)
−0.363996 + 0.931401i \(0.618588\pi\)
\(354\) 0 0
\(355\) 1.59054 0.280455i 0.0844171 0.0148850i
\(356\) 12.7915 + 0.429801i 0.677951 + 0.0227794i
\(357\) 0 0
\(358\) −31.2406 0.524701i −1.65112 0.0277313i
\(359\) 6.32415 10.9538i 0.333776 0.578117i −0.649473 0.760385i \(-0.725010\pi\)
0.983249 + 0.182268i \(0.0583438\pi\)
\(360\) 0 0
\(361\) 8.54731 + 14.8044i 0.449858 + 0.779178i
\(362\) 12.0905 + 21.7780i 0.635464 + 1.14463i
\(363\) 0 0
\(364\) −2.43209 1.51528i −0.127476 0.0794223i
\(365\) −0.854962 1.01890i −0.0447508 0.0533319i
\(366\) 0 0
\(367\) 15.1415 5.51105i 0.790380 0.287675i 0.0848857 0.996391i \(-0.472947\pi\)
0.705494 + 0.708716i \(0.250725\pi\)
\(368\) −15.7726 6.97264i −0.822205 0.363474i
\(369\) 0 0
\(370\) 0.736050 1.92126i 0.0382654 0.0998816i
\(371\) 7.27663 + 1.28307i 0.377784 + 0.0666135i
\(372\) 0 0
\(373\) −5.87846 + 16.1509i −0.304375 + 0.836263i 0.689352 + 0.724427i \(0.257895\pi\)
−0.993727 + 0.111836i \(0.964327\pi\)
\(374\) 2.64838 0.913864i 0.136944 0.0472548i
\(375\) 0 0
\(376\) 21.6965 + 4.96384i 1.11891 + 0.255991i
\(377\) 0.224903 0.0115831
\(378\) 0 0
\(379\) 12.8581i 0.660478i −0.943897 0.330239i \(-0.892871\pi\)
0.943897 0.330239i \(-0.107129\pi\)
\(380\) −1.51793 0.610957i −0.0778683 0.0313414i
\(381\) 0 0
\(382\) −4.33665 12.5676i −0.221882 0.643015i
\(383\) −4.63308 1.68630i −0.236740 0.0861662i 0.220926 0.975291i \(-0.429092\pi\)
−0.457666 + 0.889124i \(0.651314\pi\)
\(384\) 0 0
\(385\) −0.0774323 + 0.439140i −0.00394631 + 0.0223807i
\(386\) −3.74743 + 9.78167i −0.190739 + 0.497874i
\(387\) 0 0
\(388\) 1.23488 + 1.10895i 0.0626916 + 0.0562983i
\(389\) −5.45591 14.9900i −0.276625 0.760022i −0.997739 0.0672055i \(-0.978592\pi\)
0.721114 0.692817i \(-0.243631\pi\)
\(390\) 0 0
\(391\) −2.90106 + 2.43428i −0.146713 + 0.123107i
\(392\) 5.38104 12.7470i 0.271784 0.643820i
\(393\) 0 0
\(394\) −12.5035 22.5218i −0.629916 1.13463i
\(395\) 0.845555 0.488181i 0.0425445 0.0245631i
\(396\) 0 0
\(397\) 18.8993 + 10.9115i 0.948529 + 0.547633i 0.892624 0.450803i \(-0.148862\pi\)
0.0559050 + 0.998436i \(0.482196\pi\)
\(398\) −0.382468 + 22.7721i −0.0191714 + 1.14146i
\(399\) 0 0
\(400\) −19.1394 + 5.54280i −0.956969 + 0.277140i
\(401\) 6.01001 + 34.0844i 0.300125 + 1.70210i 0.645607 + 0.763670i \(0.276605\pi\)
−0.345481 + 0.938426i \(0.612284\pi\)
\(402\) 0 0
\(403\) −4.22574 + 5.03605i −0.210499 + 0.250863i
\(404\) −4.45182 13.6401i −0.221486 0.678618i
\(405\) 0 0
\(406\) −0.0735152 0.462184i −0.00364850 0.0229378i
\(407\) −18.4568 15.4871i −0.914869 0.767667i
\(408\) 0 0
\(409\) −0.701192 3.97666i −0.0346717 0.196633i 0.962552 0.271097i \(-0.0873865\pi\)
−0.997224 + 0.0744641i \(0.976275\pi\)
\(410\) −0.0570436 + 0.294501i −0.00281718 + 0.0145443i
\(411\) 0 0
\(412\) −2.23783 15.7720i −0.110250 0.777032i
\(413\) −11.6160 6.70650i −0.571586 0.330005i
\(414\) 0 0
\(415\) 0.0919196 + 0.159209i 0.00451216 + 0.00781529i
\(416\) 5.06682 + 2.34239i 0.248421 + 0.114845i
\(417\) 0 0
\(418\) −12.5616 + 14.4698i −0.614410 + 0.707739i
\(419\) 7.00112 + 8.34360i 0.342027 + 0.407612i 0.909449 0.415815i \(-0.136504\pi\)
−0.567422 + 0.823427i \(0.692059\pi\)
\(420\) 0 0
\(421\) −1.92901 5.29990i −0.0940141 0.258302i 0.883768 0.467925i \(-0.154998\pi\)
−0.977782 + 0.209624i \(0.932776\pi\)
\(422\) 20.8077 16.8725i 1.01290 0.821339i
\(423\) 0 0
\(424\) −14.3755 0.724873i −0.698134 0.0352030i
\(425\) −0.759843 + 4.30928i −0.0368578 + 0.209031i
\(426\) 0 0
\(427\) −6.23884 + 17.1411i −0.301919 + 0.829514i
\(428\) 34.4536 18.3776i 1.66538 0.888316i
\(429\) 0 0
\(430\) 0.536255 + 0.321733i 0.0258605 + 0.0155154i
\(431\) 12.2633 0.590701 0.295351 0.955389i \(-0.404564\pi\)
0.295351 + 0.955389i \(0.404564\pi\)
\(432\) 0 0
\(433\) −34.7890 −1.67185 −0.835927 0.548840i \(-0.815070\pi\)
−0.835927 + 0.548840i \(0.815070\pi\)
\(434\) 11.7306 + 7.03791i 0.563085 + 0.337830i
\(435\) 0 0
\(436\) −9.81996 + 5.23799i −0.470291 + 0.250854i
\(437\) 8.85888 24.3396i 0.423778 1.16432i
\(438\) 0 0
\(439\) 3.29026 18.6600i 0.157036 0.890594i −0.799865 0.600180i \(-0.795096\pi\)
0.956901 0.290414i \(-0.0937931\pi\)
\(440\) 0.0437456 0.867550i 0.00208549 0.0413588i
\(441\) 0 0
\(442\) 0.952145 0.772072i 0.0452889 0.0367237i
\(443\) 8.57202 + 23.5514i 0.407269 + 1.11896i 0.958620 + 0.284689i \(0.0918904\pi\)
−0.551351 + 0.834274i \(0.685887\pi\)
\(444\) 0 0
\(445\) −0.560157 0.667569i −0.0265540 0.0316458i
\(446\) −10.8308 + 12.4760i −0.512851 + 0.590754i
\(447\) 0 0
\(448\) 3.15749 11.1782i 0.149177 0.528120i
\(449\) −2.07187 3.58859i −0.0977777 0.169356i 0.812987 0.582282i \(-0.197840\pi\)
−0.910765 + 0.412926i \(0.864507\pi\)
\(450\) 0 0
\(451\) 3.04223 + 1.75643i 0.143253 + 0.0827072i
\(452\) −3.44669 24.2920i −0.162119 1.14260i
\(453\) 0 0
\(454\) 0.487386 2.51624i 0.0228742 0.118093i
\(455\) 0.0338802 + 0.192144i 0.00158833 + 0.00900785i
\(456\) 0 0
\(457\) 11.4954 + 9.64582i 0.537734 + 0.451213i 0.870762 0.491704i \(-0.163626\pi\)
−0.333028 + 0.942917i \(0.608070\pi\)
\(458\) 2.72563 + 17.1358i 0.127360 + 0.800703i
\(459\) 0 0
\(460\) 0.364319 + 1.11625i 0.0169864 + 0.0520452i
\(461\) 2.36115 2.81391i 0.109970 0.131057i −0.708252 0.705960i \(-0.750516\pi\)
0.818221 + 0.574903i \(0.194960\pi\)
\(462\) 0 0
\(463\) −1.02545 5.81561i −0.0476566 0.270274i 0.951663 0.307143i \(-0.0993729\pi\)
−0.999320 + 0.0368684i \(0.988262\pi\)
\(464\) 0.253599 + 0.875681i 0.0117730 + 0.0406525i
\(465\) 0 0
\(466\) 0.0200220 1.19211i 0.000927501 0.0552233i
\(467\) −4.79342 2.76748i −0.221813 0.128064i 0.384976 0.922926i \(-0.374210\pi\)
−0.606789 + 0.794863i \(0.707543\pi\)
\(468\) 0 0
\(469\) −11.5421 + 6.66381i −0.532962 + 0.307706i
\(470\) −0.735580 1.32496i −0.0339298 0.0611159i
\(471\) 0 0
\(472\) 24.0719 + 10.1618i 1.10800 + 0.467733i
\(473\) 5.61003 4.70737i 0.257949 0.216445i
\(474\) 0 0
\(475\) −10.2360 28.1231i −0.469659 1.29038i
\(476\) −1.89787 1.70432i −0.0869888 0.0781176i
\(477\) 0 0
\(478\) 5.46596 14.2674i 0.250007 0.652577i
\(479\) −1.43530 + 8.13997i −0.0655804 + 0.371925i 0.934300 + 0.356487i \(0.116025\pi\)
−0.999881 + 0.0154382i \(0.995086\pi\)
\(480\) 0 0
\(481\) −9.90631 3.60560i −0.451689 0.164401i
\(482\) −4.12841 11.9642i −0.188044 0.544952i
\(483\) 0 0
\(484\) 10.9722 + 4.41623i 0.498736 + 0.200738i
\(485\) 0.113009i 0.00513145i
\(486\) 0 0
\(487\) 16.8387 0.763033 0.381517 0.924362i \(-0.375402\pi\)
0.381517 + 0.924362i \(0.375402\pi\)
\(488\) 7.92494 34.6392i 0.358745 1.56804i
\(489\) 0 0
\(490\) −0.890561 + 0.307302i −0.0402314 + 0.0138825i
\(491\) 11.2492 30.9069i 0.507669 1.39481i −0.375967 0.926633i \(-0.622689\pi\)
0.883636 0.468175i \(-0.155088\pi\)
\(492\) 0 0
\(493\) 0.197162 + 0.0347650i 0.00887973 + 0.00156574i
\(494\) −2.99943 + 7.82921i −0.134951 + 0.352253i
\(495\) 0 0
\(496\) −24.3733 10.7747i −1.09439 0.483800i
\(497\) −16.1818 + 5.88968i −0.725851 + 0.264188i
\(498\) 0 0
\(499\) 5.09730 + 6.07473i 0.228187 + 0.271942i 0.867974 0.496610i \(-0.165422\pi\)
−0.639787 + 0.768552i \(0.720978\pi\)
\(500\) 2.30731 + 1.43754i 0.103186 + 0.0642887i
\(501\) 0 0
\(502\) −5.14366 9.26499i −0.229573 0.413517i
\(503\) −20.9414 36.2716i −0.933731 1.61727i −0.776881 0.629647i \(-0.783200\pi\)
−0.156850 0.987622i \(-0.550134\pi\)
\(504\) 0 0
\(505\) −0.488473 + 0.846060i −0.0217368 + 0.0376492i
\(506\) 13.7485 + 0.230913i 0.611197 + 0.0102653i
\(507\) 0 0
\(508\) −16.5952 0.557607i −0.736295 0.0247398i
\(509\) 1.32565 0.233747i 0.0587583 0.0103607i −0.144192 0.989550i \(-0.546058\pi\)
0.202950 + 0.979189i \(0.434947\pi\)
\(510\) 0 0
\(511\) 10.8638 + 9.11578i 0.480584 + 0.403258i
\(512\) −3.40702 + 22.3694i −0.150570 + 0.988599i
\(513\) 0 0
\(514\) −23.2591 + 3.69961i −1.02592 + 0.163183i
\(515\) −0.697200 + 0.830890i −0.0307223 + 0.0366134i
\(516\) 0 0
\(517\) −17.4772 + 3.08170i −0.768645 + 0.135533i
\(518\) −4.17152 + 21.5364i −0.183286 + 0.946256i
\(519\) 0 0
\(520\) −0.111842 0.363247i −0.00490460 0.0159294i
\(521\) −13.6363 + 23.6187i −0.597416 + 1.03475i 0.395785 + 0.918343i \(0.370473\pi\)
−0.993201 + 0.116412i \(0.962861\pi\)
\(522\) 0 0
\(523\) 26.9016 15.5317i 1.17633 0.679152i 0.221164 0.975237i \(-0.429014\pi\)
0.955162 + 0.296085i \(0.0956811\pi\)
\(524\) −20.4521 26.1064i −0.893453 1.14046i
\(525\) 0 0
\(526\) −17.1449 + 19.7493i −0.747555 + 0.861109i
\(527\) −4.48298 + 3.76167i −0.195282 + 0.163861i
\(528\) 0 0
\(529\) 4.14676 1.50930i 0.180294 0.0656217i
\(530\) 0.617266 + 0.761233i 0.0268123 + 0.0330659i
\(531\) 0 0
\(532\) 17.0698 + 3.60477i 0.740069 + 0.156287i
\(533\) 1.51369 + 0.266904i 0.0655651 + 0.0115609i
\(534\) 0 0
\(535\) −2.49841 0.909349i −0.108016 0.0393146i
\(536\) 20.7036 15.6656i 0.894260 0.676651i
\(537\) 0 0
\(538\) 18.4198 30.7015i 0.794133 1.32364i
\(539\) 11.0324i 0.475199i
\(540\) 0 0
\(541\) 20.2507i 0.870645i 0.900274 + 0.435323i \(0.143366\pi\)
−0.900274 + 0.435323i \(0.856634\pi\)
\(542\) −20.1585 12.0944i −0.865883 0.519498i
\(543\) 0 0
\(544\) 4.07977 + 2.83669i 0.174919 + 0.121622i
\(545\) 0.712098 + 0.259182i 0.0305029 + 0.0111022i
\(546\) 0 0
\(547\) −13.5248 2.38478i −0.578278 0.101966i −0.123144 0.992389i \(-0.539298\pi\)
−0.455134 + 0.890423i \(0.650409\pi\)
\(548\) 3.34700 15.8491i 0.142977 0.677042i
\(549\) 0 0
\(550\) 12.3407 10.0068i 0.526208 0.426689i
\(551\) −1.28671 + 0.468325i −0.0548158 + 0.0199513i
\(552\) 0 0
\(553\) −7.97465 + 6.69153i −0.339117 + 0.284553i
\(554\) −18.9327 16.4360i −0.804372 0.698299i
\(555\) 0 0
\(556\) 4.71307 + 6.01609i 0.199879 + 0.255139i
\(557\) −8.93296 + 5.15745i −0.378502 + 0.218528i −0.677166 0.735830i \(-0.736792\pi\)
0.298665 + 0.954358i \(0.403459\pi\)
\(558\) 0 0
\(559\) 1.60216 2.77502i 0.0677640 0.117371i
\(560\) −0.709929 + 0.348576i −0.0300000 + 0.0147300i
\(561\) 0 0
\(562\) −22.7522 4.40701i −0.959743 0.185898i
\(563\) −3.14086 + 0.553818i −0.132371 + 0.0233406i −0.239441 0.970911i \(-0.576964\pi\)
0.107070 + 0.994251i \(0.465853\pi\)
\(564\) 0 0
\(565\) −1.07382 + 1.27973i −0.0451761 + 0.0538388i
\(566\) −4.08898 25.7071i −0.171873 1.08055i
\(567\) 0 0
\(568\) 29.8591 15.2884i 1.25286 0.641488i
\(569\) 7.37287 + 6.18657i 0.309087 + 0.259355i 0.784114 0.620616i \(-0.213118\pi\)
−0.475028 + 0.879971i \(0.657562\pi\)
\(570\) 0 0
\(571\) 6.25643 1.10318i 0.261823 0.0461665i −0.0411954 0.999151i \(-0.513117\pi\)
0.303019 + 0.952985i \(0.402005\pi\)
\(572\) −4.44838 0.149467i −0.185996 0.00624955i
\(573\) 0 0
\(574\) 0.0537108 3.19793i 0.00224185 0.133479i
\(575\) −10.7382 + 18.5991i −0.447815 + 0.775638i
\(576\) 0 0
\(577\) 16.7124 + 28.9468i 0.695748 + 1.20507i 0.969928 + 0.243393i \(0.0782604\pi\)
−0.274179 + 0.961679i \(0.588406\pi\)
\(578\) −20.0655 + 11.1398i −0.834617 + 0.463355i
\(579\) 0 0
\(580\) 0.0328247 0.0526849i 0.00136297 0.00218762i
\(581\) −1.25995 1.50155i −0.0522714 0.0622947i
\(582\) 0 0
\(583\) 10.7848 3.92533i 0.446659 0.162571i
\(584\) −23.1990 15.0004i −0.959979 0.620722i
\(585\) 0 0
\(586\) −37.1703 14.2402i −1.53549 0.588258i
\(587\) 11.4100 + 2.01190i 0.470943 + 0.0830399i 0.404083 0.914722i \(-0.367591\pi\)
0.0668600 + 0.997762i \(0.478702\pi\)
\(588\) 0 0
\(589\) 13.6895 37.6117i 0.564067 1.54976i
\(590\) −0.580319 1.68177i −0.0238914 0.0692372i
\(591\) 0 0
\(592\) 2.86847 42.6368i 0.117893 1.75236i
\(593\) 11.5506 0.474326 0.237163 0.971470i \(-0.423782\pi\)
0.237163 + 0.971470i \(0.423782\pi\)
\(594\) 0 0
\(595\) 0.173681i 0.00712023i
\(596\) −16.6715 + 41.4205i −0.682890 + 1.69665i
\(597\) 0 0
\(598\) 5.68738 1.96252i 0.232574 0.0802534i
\(599\) −27.1047 9.86532i −1.10747 0.403086i −0.277405 0.960753i \(-0.589474\pi\)
−0.830065 + 0.557667i \(0.811697\pi\)
\(600\) 0 0
\(601\) −1.58173 + 8.97043i −0.0645201 + 0.365911i 0.935404 + 0.353581i \(0.115036\pi\)
−0.999924 + 0.0123304i \(0.996075\pi\)
\(602\) −6.22647 2.38541i −0.253772 0.0972220i
\(603\) 0 0
\(604\) −28.3549 25.4632i −1.15374 1.03608i
\(605\) −0.275437 0.756758i −0.0111981 0.0307666i
\(606\) 0 0
\(607\) 22.8418 19.1665i 0.927119 0.777945i −0.0481792 0.998839i \(-0.515342\pi\)
0.975298 + 0.220894i \(0.0708974\pi\)
\(608\) −33.8660 2.85041i −1.37345 0.115599i
\(609\) 0 0
\(610\) −2.11534 + 1.17438i −0.0856477 + 0.0475492i
\(611\) −6.72472 + 3.88252i −0.272053 + 0.157070i
\(612\) 0 0
\(613\) 2.09252 + 1.20812i 0.0845161 + 0.0487954i 0.541662 0.840596i \(-0.317795\pi\)
−0.457146 + 0.889391i \(0.651128\pi\)
\(614\) −23.1780 0.389285i −0.935386 0.0157103i
\(615\) 0 0
\(616\) 1.14690 + 9.19045i 0.0462101 + 0.370294i
\(617\) 6.36070 + 36.0733i 0.256072 + 1.45226i 0.793305 + 0.608824i \(0.208359\pi\)
−0.537233 + 0.843434i \(0.680530\pi\)
\(618\) 0 0
\(619\) −19.5701 + 23.3228i −0.786590 + 0.937421i −0.999211 0.0397133i \(-0.987356\pi\)
0.212621 + 0.977135i \(0.431800\pi\)
\(620\) 0.562977 + 1.72492i 0.0226097 + 0.0692745i
\(621\) 0 0
\(622\) −42.9471 + 6.83119i −1.72202 + 0.273906i
\(623\) 7.11775 + 5.97250i 0.285167 + 0.239283i
\(624\) 0 0
\(625\) 4.29296 + 24.3466i 0.171718 + 0.973864i
\(626\) 30.4501 + 5.89806i 1.21703 + 0.235734i
\(627\) 0 0
\(628\) 17.0105 2.41356i 0.678795 0.0963114i
\(629\) −8.12706 4.69216i −0.324047 0.187089i
\(630\) 0 0
\(631\) −19.0463 32.9892i −0.758221 1.31328i −0.943757 0.330640i \(-0.892735\pi\)
0.185536 0.982637i \(-0.440598\pi\)
\(632\) 13.8011 14.8586i 0.548976 0.591045i
\(633\) 0 0
\(634\) 28.9398 + 25.1235i 1.14935 + 0.997781i
\(635\) 0.726725 + 0.866078i 0.0288392 + 0.0343692i
\(636\) 0 0
\(637\) 1.65099 + 4.53606i 0.0654147 + 0.179725i
\(638\) −0.457837 0.564620i −0.0181260 0.0223535i
\(639\) 0 0
\(640\) 1.28823 0.845063i 0.0509216 0.0334041i
\(641\) −3.09962 + 17.5788i −0.122427 + 0.694321i 0.860375 + 0.509661i \(0.170229\pi\)
−0.982803 + 0.184659i \(0.940882\pi\)
\(642\) 0 0
\(643\) 3.02218 8.30337i 0.119183 0.327453i −0.865728 0.500515i \(-0.833144\pi\)
0.984911 + 0.173062i \(0.0553662\pi\)
\(644\) −5.89212 11.0463i −0.232182 0.435285i
\(645\) 0 0
\(646\) −3.83969 + 6.39987i −0.151071 + 0.251800i
\(647\) −20.3838 −0.801371 −0.400686 0.916216i \(-0.631228\pi\)
−0.400686 + 0.916216i \(0.631228\pi\)
\(648\) 0 0
\(649\) −20.8340 −0.817804
\(650\) 3.57646 5.96114i 0.140280 0.233815i
\(651\) 0 0
\(652\) 17.7379 9.46143i 0.694669 0.370538i
\(653\) 6.26659 17.2173i 0.245230 0.673765i −0.754615 0.656168i \(-0.772176\pi\)
0.999845 0.0175970i \(-0.00560160\pi\)
\(654\) 0 0
\(655\) −0.392110 + 2.22376i −0.0153210 + 0.0868897i
\(656\) 0.667609 + 6.19466i 0.0260657 + 0.241861i
\(657\) 0 0
\(658\) 10.1769 + 12.5505i 0.396736 + 0.489268i
\(659\) −1.95819 5.38009i −0.0762803 0.209579i 0.895691 0.444676i \(-0.146681\pi\)
−0.971972 + 0.235098i \(0.924459\pi\)
\(660\) 0 0
\(661\) −15.7491 18.7691i −0.612569 0.730032i 0.367204 0.930140i \(-0.380315\pi\)
−0.979774 + 0.200109i \(0.935871\pi\)
\(662\) 15.3814 + 13.3531i 0.597816 + 0.518981i
\(663\) 0 0
\(664\) 2.79773 + 2.59860i 0.108573 + 0.100845i
\(665\) −0.593945 1.02874i −0.0230322 0.0398929i
\(666\) 0 0
\(667\) 0.850963 + 0.491304i 0.0329494 + 0.0190234i
\(668\) −4.46884 31.4960i −0.172905 1.21862i
\(669\) 0 0
\(670\) −1.73549 0.336158i −0.0670479 0.0129869i
\(671\) 4.92003 + 27.9029i 0.189936 + 1.07718i
\(672\) 0 0
\(673\) −19.5576 16.4108i −0.753889 0.632588i 0.182639 0.983180i \(-0.441536\pi\)
−0.936528 + 0.350592i \(0.885980\pi\)
\(674\) 22.1627 3.52521i 0.853675 0.135786i
\(675\) 0 0
\(676\) 22.8655 7.46280i 0.879442 0.287031i
\(677\) −14.0009 + 16.6857i −0.538100 + 0.641283i −0.964761 0.263129i \(-0.915245\pi\)
0.426660 + 0.904412i \(0.359690\pi\)
\(678\) 0 0
\(679\) 0.209232 + 1.18661i 0.00802959 + 0.0455380i
\(680\) −0.0418969 0.335731i −0.00160667 0.0128747i
\(681\) 0 0
\(682\) 21.2454 + 0.356827i 0.813530 + 0.0136636i
\(683\) −24.8360 14.3391i −0.950322 0.548669i −0.0571411 0.998366i \(-0.518198\pi\)
−0.893181 + 0.449697i \(0.851532\pi\)
\(684\) 0 0
\(685\) −0.955179 + 0.551473i −0.0364955 + 0.0210707i
\(686\) 21.3489 11.8523i 0.815105 0.452523i
\(687\) 0 0
\(688\) 12.6114 + 3.10906i 0.480804 + 0.118532i
\(689\) 3.84682 3.22787i 0.146552 0.122972i
\(690\) 0 0
\(691\) 10.5292 + 28.9287i 0.400549 + 1.10050i 0.962014 + 0.273000i \(0.0880158\pi\)
−0.561465 + 0.827501i \(0.689762\pi\)
\(692\) 27.0534 30.1257i 1.02842 1.14521i
\(693\) 0 0
\(694\) 19.3482 + 7.41246i 0.734449 + 0.281373i
\(695\) 0.0903596 0.512455i 0.00342754 0.0194385i
\(696\) 0 0
\(697\) 1.28572 + 0.467965i 0.0487003 + 0.0177255i
\(698\) −10.8512 + 3.74436i −0.410723 + 0.141726i
\(699\) 0 0
\(700\) −13.4194 5.40122i −0.507207 0.204147i
\(701\) 41.7650i 1.57744i 0.614751 + 0.788722i \(0.289257\pi\)
−0.614751 + 0.788722i \(0.710743\pi\)
\(702\) 0 0
\(703\) 64.1840 2.42075
\(704\) −4.43400 17.4887i −0.167113 0.659132i
\(705\) 0 0
\(706\) −5.54446 16.0679i −0.208668 0.604722i
\(707\) 3.56262 9.78821i 0.133986 0.368123i
\(708\) 0 0
\(709\) 11.9516 + 2.10739i 0.448852 + 0.0791446i 0.393505 0.919323i \(-0.371262\pi\)
0.0553467 + 0.998467i \(0.482374\pi\)
\(710\) −2.13290 0.817129i −0.0800462 0.0306663i
\(711\) 0 0
\(712\) −15.1996 9.82802i −0.569628 0.368321i
\(713\) −26.9903 + 9.82365i −1.01079 + 0.367899i
\(714\) 0 0
\(715\) 0.194800 + 0.232153i 0.00728510 + 0.00868205i
\(716\) 37.5037 + 23.3662i 1.40158 + 0.873236i
\(717\) 0 0
\(718\) −15.6390 + 8.68230i −0.583640 + 0.324020i
\(719\) 9.22099 + 15.9712i 0.343885 + 0.595626i 0.985151 0.171693i \(-0.0549236\pi\)
−0.641266 + 0.767319i \(0.721590\pi\)
\(720\) 0 0
\(721\) 5.78238 10.0154i 0.215347 0.372992i
\(722\) 0.405981 24.1720i 0.0151090 0.899590i
\(723\) 0 0
\(724\) 1.18297 35.2069i 0.0439646 1.30845i
\(725\) 1.11810 0.197152i 0.0415253 0.00732204i
\(726\) 0 0
\(727\) −13.7551 11.5419i −0.510147 0.428065i 0.351034 0.936363i \(-0.385830\pi\)
−0.861181 + 0.508298i \(0.830275\pi\)
\(728\) 1.84691 + 3.60710i 0.0684509 + 0.133688i
\(729\) 0 0
\(730\) 0.295482 + 1.85767i 0.0109363 + 0.0687555i
\(731\) 1.83349 2.18507i 0.0678142 0.0808178i
\(732\) 0 0
\(733\) −7.91675 + 1.39594i −0.292412 + 0.0515601i −0.317930 0.948114i \(-0.602988\pi\)
0.0255180 + 0.999674i \(0.491877\pi\)
\(734\) −22.3718 4.33332i −0.825757 0.159946i
\(735\) 0 0
\(736\) 14.0543 + 19.9315i 0.518049 + 0.734684i
\(737\) −10.3507 + 17.9279i −0.381272 + 0.660382i
\(738\) 0 0
\(739\) 6.23912 3.60216i 0.229510 0.132508i −0.380836 0.924643i \(-0.624364\pi\)
0.610346 + 0.792135i \(0.291030\pi\)
\(740\) −2.29047 + 1.79438i −0.0841992 + 0.0659626i
\(741\) 0 0
\(742\) −7.89083 6.85026i −0.289681 0.251481i
\(743\) 28.1102 23.5873i 1.03126 0.865334i 0.0402635 0.999189i \(-0.487180\pi\)
0.991001 + 0.133856i \(0.0427358\pi\)
\(744\) 0 0
\(745\) 2.85679 1.03979i 0.104665 0.0380949i
\(746\) 18.8798 15.3092i 0.691238 0.560509i
\(747\) 0 0
\(748\) −3.87659 0.818653i −0.141742 0.0299329i
\(749\) 27.9175 + 4.92261i 1.02008 + 0.179868i
\(750\) 0 0
\(751\) 34.3650 + 12.5079i 1.25400 + 0.456418i 0.881751 0.471716i \(-0.156365\pi\)
0.372247 + 0.928134i \(0.378587\pi\)
\(752\) −22.6997 21.8055i −0.827774 0.795163i
\(753\) 0 0
\(754\) −0.272739 0.163633i −0.00993257 0.00595918i
\(755\) 2.59486i 0.0944365i
\(756\) 0 0
\(757\) 36.5128i 1.32708i −0.748140 0.663541i \(-0.769053\pi\)
0.748140 0.663541i \(-0.230947\pi\)
\(758\) −9.35525 + 15.5930i −0.339798 + 0.566365i
\(759\) 0 0
\(760\) 1.39628 + 1.84531i 0.0506482 + 0.0669366i
\(761\) 4.63196 + 1.68589i 0.167908 + 0.0611136i 0.424607 0.905378i \(-0.360412\pi\)
−0.256698 + 0.966492i \(0.582635\pi\)
\(762\) 0 0
\(763\) −7.95705 1.40304i −0.288065 0.0507935i
\(764\) −3.88483 + 18.3959i −0.140548 + 0.665542i
\(765\) 0 0
\(766\) 4.39162 + 5.41589i 0.158676 + 0.195684i
\(767\) −8.56606 + 3.11779i −0.309303 + 0.112577i
\(768\) 0 0
\(769\) 37.4770 31.4469i 1.35145 1.13400i 0.372932 0.927858i \(-0.378352\pi\)
0.978521 0.206146i \(-0.0660921\pi\)
\(770\) 0.413409 0.476207i 0.0148982 0.0171613i
\(771\) 0 0
\(772\) 11.6614 9.13568i 0.419703 0.328800i
\(773\) −8.17747 + 4.72126i −0.294123 + 0.169812i −0.639800 0.768542i \(-0.720983\pi\)
0.345677 + 0.938354i \(0.387649\pi\)
\(774\) 0 0
\(775\) −16.5936 + 28.7410i −0.596061 + 1.03241i
\(776\) −0.690697 2.24329i −0.0247946 0.0805293i
\(777\) 0 0
\(778\) −4.28996 + 22.1479i −0.153803 + 0.794040i
\(779\) −9.21589 + 1.62501i −0.330194 + 0.0582220i
\(780\) 0 0
\(781\) −17.1931 + 20.4899i −0.615216 + 0.733186i
\(782\) 5.28923 0.841308i 0.189143 0.0300851i
\(783\) 0 0
\(784\) −15.8000 + 11.5431i −0.564284 + 0.412255i
\(785\) −0.896137 0.751949i −0.0319845 0.0268382i
\(786\) 0 0
\(787\) −15.6553 + 2.76045i −0.558050 + 0.0983993i −0.445558 0.895253i \(-0.646995\pi\)
−0.112493 + 0.993653i \(0.535883\pi\)
\(788\) −1.22337 + 36.4094i −0.0435807 + 1.29703i
\(789\) 0 0
\(790\) −1.38059 0.0231877i −0.0491192 0.000824980i
\(791\) 8.90599 15.4256i 0.316661 0.548472i
\(792\) 0 0
\(793\) 6.19857 + 10.7362i 0.220118 + 0.381255i
\(794\) −14.9802 26.9830i −0.531627 0.957591i
\(795\) 0 0
\(796\) 17.0322 27.3374i 0.603690 0.968948i
\(797\) −9.18613 10.9476i −0.325389 0.387784i 0.578406 0.815749i \(-0.303675\pi\)
−0.903795 + 0.427965i \(0.859231\pi\)
\(798\) 0 0
\(799\) −6.49541 + 2.36413i −0.229791 + 0.0836371i
\(800\) 27.2431 + 7.20358i 0.963188 + 0.254685i
\(801\) 0 0
\(802\) 17.5106 45.7068i 0.618322 1.61396i
\(803\) 21.6932 + 3.82509i 0.765536 + 0.134985i
\(804\) 0 0
\(805\) −0.291550 + 0.801026i −0.0102758 + 0.0282325i
\(806\) 8.78865 3.03266i 0.309567 0.106821i
\(807\) 0 0
\(808\) −4.52545 + 19.7803i −0.159205 + 0.695869i
\(809\) −2.71159 −0.0953343 −0.0476672 0.998863i \(-0.515179\pi\)
−0.0476672 + 0.998863i \(0.515179\pi\)
\(810\) 0 0
\(811\) 38.7762i 1.36162i 0.732462 + 0.680808i \(0.238371\pi\)
−0.732462 + 0.680808i \(0.761629\pi\)
\(812\) −0.247121 + 0.613977i −0.00867226 + 0.0215464i
\(813\) 0 0
\(814\) 11.1145 + 32.2098i 0.389563 + 1.12895i
\(815\) −1.28627 0.468164i −0.0450561 0.0163991i
\(816\) 0 0
\(817\) −3.38771 + 19.2126i −0.118521 + 0.672165i
\(818\) −2.04298 + 5.33266i −0.0714312 + 0.186452i
\(819\) 0 0
\(820\) 0.283448 0.315637i 0.00989842 0.0110225i
\(821\) 12.6956 + 34.8810i 0.443081 + 1.21736i 0.937455 + 0.348106i \(0.113175\pi\)
−0.494374 + 0.869249i \(0.664603\pi\)
\(822\) 0 0
\(823\) −16.3072 + 13.6834i −0.568433 + 0.476972i −0.881126 0.472882i \(-0.843214\pi\)
0.312692 + 0.949854i \(0.398769\pi\)
\(824\) −8.76151 + 20.7549i −0.305222 + 0.723030i
\(825\) 0 0
\(826\) 9.20722 + 16.5845i 0.320360 + 0.577047i
\(827\) 7.73838 4.46776i 0.269090 0.155359i −0.359384 0.933190i \(-0.617013\pi\)
0.628474 + 0.777831i \(0.283680\pi\)
\(828\) 0 0
\(829\) 19.4960 + 11.2560i 0.677124 + 0.390938i 0.798771 0.601636i \(-0.205484\pi\)
−0.121647 + 0.992573i \(0.538817\pi\)
\(830\) 0.00436601 0.259951i 0.000151546 0.00902304i
\(831\) 0 0
\(832\) −4.44026 6.52710i −0.153938 0.226287i
\(833\) 0.746175 + 4.23177i 0.0258534 + 0.146622i
\(834\) 0 0
\(835\) −1.39228 + 1.65925i −0.0481817 + 0.0574207i
\(836\) 25.7613 8.40793i 0.890973 0.290794i
\(837\) 0 0
\(838\) −2.41964 15.2121i −0.0835852 0.525493i
\(839\) 0.793395 + 0.665737i 0.0273910 + 0.0229838i 0.656380 0.754430i \(-0.272087\pi\)
−0.628989 + 0.777414i \(0.716531\pi\)
\(840\) 0 0
\(841\) 5.02678 + 28.5083i 0.173337 + 0.983044i
\(842\) −1.51677 + 7.83068i −0.0522714 + 0.269863i
\(843\) 0 0
\(844\) −37.5094 + 5.32206i −1.29113 + 0.183193i
\(845\) −1.41829 0.818851i −0.0487907 0.0281693i
\(846\) 0 0
\(847\) 4.29326 + 7.43615i 0.147518 + 0.255509i
\(848\) 16.9057 + 11.3383i 0.580544 + 0.389358i
\(849\) 0 0
\(850\) 4.05678 4.67302i 0.139147 0.160283i
\(851\) −29.6060 35.2830i −1.01488 1.20949i
\(852\) 0 0
\(853\) 8.12987 + 22.3366i 0.278361 + 0.764792i 0.997549 + 0.0699754i \(0.0222921\pi\)
−0.719187 + 0.694816i \(0.755486\pi\)
\(854\) 20.0372 16.2477i 0.685660 0.555985i
\(855\) 0 0
\(856\) −55.1529 2.78105i −1.88509 0.0950542i
\(857\) −4.07463 + 23.1084i −0.139187 + 0.789367i 0.832666 + 0.553776i \(0.186814\pi\)
−0.971852 + 0.235591i \(0.924297\pi\)
\(858\) 0 0
\(859\) 11.7827 32.3728i 0.402022 1.10455i −0.559264 0.828990i \(-0.688916\pi\)
0.961285 0.275555i \(-0.0888618\pi\)
\(860\) −0.416230 0.780331i −0.0141933 0.0266091i
\(861\) 0 0
\(862\) −14.8716 8.92244i −0.506530 0.303900i
\(863\) 26.5038 0.902199 0.451100 0.892474i \(-0.351032\pi\)
0.451100 + 0.892474i \(0.351032\pi\)
\(864\) 0 0
\(865\) −2.75691 −0.0937378
\(866\) 42.1886 + 25.3116i 1.43363 + 0.860124i
\(867\) 0 0
\(868\) −9.10502 17.0697i −0.309045 0.579384i
\(869\) −5.53038 + 15.1946i −0.187605 + 0.515442i
\(870\) 0 0
\(871\) −1.57287 + 8.92017i −0.0532946 + 0.302248i
\(872\) 15.7197 + 0.792654i 0.532335 + 0.0268427i
\(873\) 0 0
\(874\) −28.4520 + 23.0710i −0.962403 + 0.780390i
\(875\) 0.674995 + 1.85453i 0.0228190 + 0.0626947i
\(876\) 0 0
\(877\) −12.6506 15.0765i −0.427182 0.509096i 0.508925 0.860811i \(-0.330043\pi\)
−0.936107 + 0.351715i \(0.885599\pi\)
\(878\) −17.5666 + 20.2350i −0.592845 + 0.682900i
\(879\) 0 0
\(880\) −0.684257 + 1.02025i −0.0230663 + 0.0343925i
\(881\) 0.970676 + 1.68126i 0.0327029 + 0.0566431i 0.881914 0.471411i \(-0.156255\pi\)
−0.849211 + 0.528054i \(0.822922\pi\)
\(882\) 0 0
\(883\) 3.58570 + 2.07021i 0.120669 + 0.0696680i 0.559119 0.829087i \(-0.311139\pi\)
−0.438451 + 0.898755i \(0.644473\pi\)
\(884\) −1.71640 + 0.243534i −0.0577289 + 0.00819092i
\(885\) 0 0
\(886\) 6.74015 34.7976i 0.226440 1.16905i
\(887\) −4.24470 24.0729i −0.142523 0.808289i −0.969323 0.245792i \(-0.920952\pi\)
0.826799 0.562497i \(-0.190159\pi\)
\(888\) 0 0
\(889\) −9.23429 7.74849i −0.309708 0.259876i
\(890\) 0.193595 + 1.21712i 0.00648932 + 0.0407978i
\(891\) 0 0
\(892\) 22.2116 7.24940i 0.743700 0.242728i
\(893\) 30.3887 36.2158i 1.01692 1.21192i
\(894\) 0 0
\(895\) −0.522445 2.96293i −0.0174634 0.0990399i
\(896\) −11.9620 + 11.2585i −0.399624 + 0.376119i
\(897\) 0 0
\(898\) −0.0984100 + 5.85932i −0.00328398 + 0.195528i
\(899\) 1.31498 + 0.759206i 0.0438572 + 0.0253209i
\(900\) 0 0
\(901\) 3.87129 2.23509i 0.128971 0.0744617i
\(902\) −2.41137 4.34347i −0.0802898 0.144622i
\(903\) 0 0
\(904\) −13.4944 + 31.9666i −0.448818 + 1.06319i
\(905\) −1.83739 + 1.54175i −0.0610768 + 0.0512495i
\(906\) 0 0
\(907\) 19.8264 + 54.4726i 0.658325 + 1.80873i 0.584393 + 0.811471i \(0.301333\pi\)
0.0739328 + 0.997263i \(0.476445\pi\)
\(908\) −2.42181 + 2.69683i −0.0803704 + 0.0894975i
\(909\) 0 0
\(910\) 0.0987126 0.257663i 0.00327229 0.00854144i
\(911\) −1.13796 + 6.45371i −0.0377024 + 0.213821i −0.997839 0.0657114i \(-0.979068\pi\)
0.960136 + 0.279532i \(0.0901794\pi\)
\(912\) 0 0
\(913\) −2.86099 1.04132i −0.0946850 0.0344625i
\(914\) −6.92245 20.0613i −0.228974 0.663568i
\(915\) 0 0
\(916\) 9.16220 22.7636i 0.302728 0.752131i
\(917\) 24.0760i 0.795059i
\(918\) 0 0
\(919\) −17.7731 −0.586281 −0.293140 0.956069i \(-0.594700\pi\)
−0.293140 + 0.956069i \(0.594700\pi\)
\(920\) 0.370344 1.61874i 0.0122099 0.0533682i
\(921\) 0 0
\(922\) −4.91069 + 1.69451i −0.161725 + 0.0558057i
\(923\) −4.00277 + 10.9975i −0.131753 + 0.361988i
\(924\) 0 0
\(925\) −52.4099 9.24128i −1.72323 0.303851i
\(926\) −2.98773 + 7.79866i −0.0981828 + 0.256280i
\(927\) 0 0
\(928\) 0.329584 1.24645i 0.0108191 0.0409167i
\(929\) 53.7456 19.5618i 1.76333 0.641801i 0.763344 0.645993i \(-0.223556\pi\)
0.999991 + 0.00419109i \(0.00133407\pi\)
\(930\) 0 0
\(931\) −18.8913 22.5138i −0.619137 0.737859i
\(932\) −0.891627 + 1.43110i −0.0292062 + 0.0468771i
\(933\) 0 0
\(934\) 3.79942 + 6.84369i 0.124321 + 0.223932i
\(935\) 0.134886 + 0.233630i 0.00441126 + 0.00764052i
\(936\) 0 0
\(937\) 13.7103 23.7470i 0.447897 0.775780i −0.550352 0.834933i \(-0.685507\pi\)
0.998249 + 0.0591527i \(0.0188399\pi\)
\(938\) 18.8454 + 0.316518i 0.615325 + 0.0103347i
\(939\) 0 0
\(940\) −0.0719709 + 2.14197i −0.00234743 + 0.0698632i
\(941\) −47.0141 + 8.28985i −1.53261 + 0.270241i −0.875376 0.483442i \(-0.839386\pi\)
−0.657238 + 0.753683i \(0.728275\pi\)
\(942\) 0 0
\(943\) 5.14428 + 4.31656i 0.167521 + 0.140567i
\(944\) −21.7985 29.8372i −0.709480 0.971118i
\(945\) 0 0
\(946\) −10.2282 + 1.62691i −0.332549 + 0.0528953i
\(947\) 9.31764 11.1043i 0.302783 0.360842i −0.593103 0.805126i \(-0.702097\pi\)
0.895886 + 0.444284i \(0.146542\pi\)
\(948\) 0 0
\(949\) 9.49177 1.67365i 0.308116 0.0543291i
\(950\) −8.04851 + 41.5523i −0.261128 + 1.34813i
\(951\) 0 0
\(952\) 1.06152 + 3.44767i 0.0344041 + 0.111740i
\(953\) 17.4033 30.1434i 0.563749 0.976442i −0.433416 0.901194i \(-0.642692\pi\)
0.997165 0.0752476i \(-0.0239747\pi\)
\(954\) 0 0
\(955\) 1.10867 0.640089i 0.0358756 0.0207128i
\(956\) −17.0092 + 13.3252i −0.550116 + 0.430967i
\(957\) 0 0
\(958\) 7.66301 8.82704i 0.247581 0.285189i
\(959\) 9.00855 7.55907i 0.290901 0.244095i
\(960\) 0 0
\(961\) −12.5773 + 4.57775i −0.405718 + 0.147669i
\(962\) 9.39001 + 11.5801i 0.302746 + 0.373357i
\(963\) 0 0
\(964\) −3.69829 + 17.5126i −0.119114 + 0.564044i
\(965\) −0.993327 0.175150i −0.0319763 0.00563829i
\(966\) 0 0
\(967\) −7.31794 2.66351i −0.235329 0.0856527i 0.221664 0.975123i \(-0.428851\pi\)
−0.456993 + 0.889470i \(0.651073\pi\)
\(968\) −10.0928 13.3386i −0.324395 0.428720i
\(969\) 0 0
\(970\) −0.0822221 + 0.137045i −0.00263999 + 0.00440026i
\(971\) 2.23282i 0.0716547i 0.999358 + 0.0358273i \(0.0114066\pi\)
−0.999358 + 0.0358273i \(0.988593\pi\)
\(972\) 0 0
\(973\) 5.54818i 0.177867i
\(974\) −20.4202 12.2514i −0.654306 0.392560i
\(975\) 0 0
\(976\) −34.8131 + 36.2409i −1.11434 + 1.16004i
\(977\) −42.2729 15.3861i −1.35243 0.492244i −0.438725 0.898621i \(-0.644570\pi\)
−0.913706 + 0.406377i \(0.866792\pi\)
\(978\) 0 0
\(979\) 14.2130 + 2.50614i 0.454250 + 0.0800965i
\(980\) 1.30357 + 0.275285i 0.0416409 + 0.00879366i
\(981\) 0 0
\(982\) −36.1289 + 29.2961i −1.15292 + 0.934876i
\(983\) 11.4136 4.15422i 0.364038 0.132499i −0.153523 0.988145i \(-0.549062\pi\)
0.517562 + 0.855646i \(0.326840\pi\)
\(984\) 0 0
\(985\) 1.90014 1.59441i 0.0605436 0.0508021i
\(986\) −0.213804 0.185609i −0.00680890 0.00591101i
\(987\) 0 0
\(988\) 9.33374 7.31216i 0.296946 0.232631i
\(989\) 12.1241 6.99988i 0.385525 0.222583i
\(990\) 0 0
\(991\) −24.4431 + 42.3367i −0.776462 + 1.34487i 0.157508 + 0.987518i \(0.449654\pi\)
−0.933969 + 0.357353i \(0.883679\pi\)
\(992\) 21.7180 + 30.7999i 0.689547 + 0.977897i
\(993\) 0 0
\(994\) 23.9088 + 4.63103i 0.758340 + 0.146887i
\(995\) −2.15976 + 0.380823i −0.0684689 + 0.0120729i
\(996\) 0 0
\(997\) 3.84922 4.58733i 0.121906 0.145282i −0.701639 0.712532i \(-0.747548\pi\)
0.823546 + 0.567250i \(0.191993\pi\)
\(998\) −1.76167 11.0755i −0.0557647 0.350588i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.613.6 204
3.2 odd 2 216.2.t.a.205.29 yes 204
8.5 even 2 inner 648.2.t.a.613.9 204
12.11 even 2 864.2.bf.a.529.11 204
24.5 odd 2 216.2.t.a.205.26 yes 204
24.11 even 2 864.2.bf.a.529.24 204
27.5 odd 18 216.2.t.a.157.26 204
27.22 even 9 inner 648.2.t.a.37.9 204
108.59 even 18 864.2.bf.a.49.24 204
216.5 odd 18 216.2.t.a.157.29 yes 204
216.59 even 18 864.2.bf.a.49.11 204
216.157 even 18 inner 648.2.t.a.37.6 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.26 204 27.5 odd 18
216.2.t.a.157.29 yes 204 216.5 odd 18
216.2.t.a.205.26 yes 204 24.5 odd 2
216.2.t.a.205.29 yes 204 3.2 odd 2
648.2.t.a.37.6 204 216.157 even 18 inner
648.2.t.a.37.9 204 27.22 even 9 inner
648.2.t.a.613.6 204 1.1 even 1 trivial
648.2.t.a.613.9 204 8.5 even 2 inner
864.2.bf.a.49.11 204 216.59 even 18
864.2.bf.a.49.24 204 108.59 even 18
864.2.bf.a.529.11 204 12.11 even 2
864.2.bf.a.529.24 204 24.11 even 2