Properties

Label 648.2.t.a.613.3
Level $648$
Weight $2$
Character 648.613
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 613.3
Character \(\chi\) \(=\) 648.613
Dual form 648.2.t.a.37.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39256 + 0.246516i) q^{2} +(1.87846 - 0.686578i) q^{4} +(-0.355965 + 0.978005i) q^{5} +(-0.272085 + 1.54307i) q^{7} +(-2.44662 + 1.41917i) q^{8} +(0.254609 - 1.44968i) q^{10} +(-1.44773 - 3.97760i) q^{11} +(-4.33941 - 5.17151i) q^{13} +(-0.00149657 - 2.21590i) q^{14} +(3.05722 - 2.57942i) q^{16} +(0.494959 + 0.857294i) q^{17} +(2.70129 + 1.55959i) q^{19} +(0.00281166 + 2.08154i) q^{20} +(2.99660 + 5.18217i) q^{22} +(-1.17888 - 6.68573i) q^{23} +(3.00044 + 2.51767i) q^{25} +(7.31776 + 6.13191i) q^{26} +(0.548339 + 3.08541i) q^{28} +(2.84964 - 3.39607i) q^{29} +(-0.409166 - 2.32049i) q^{31} +(-3.62150 + 4.34566i) q^{32} +(-0.900598 - 1.07182i) q^{34} +(-1.41228 - 0.815381i) q^{35} +(-3.19157 + 1.84266i) q^{37} +(-4.14618 - 1.50592i) q^{38} +(-0.517049 - 2.89798i) q^{40} +(2.44191 - 2.04900i) q^{41} +(-3.71087 - 10.1955i) q^{43} +(-5.45044 - 6.47779i) q^{44} +(3.28980 + 9.01969i) q^{46} +(0.155220 - 0.880296i) q^{47} +(4.27080 + 1.55445i) q^{49} +(-4.79894 - 2.76635i) q^{50} +(-11.7021 - 6.73512i) q^{52} +5.00251i q^{53} +4.40546 q^{55} +(-1.52420 - 4.16145i) q^{56} +(-3.13112 + 5.43173i) q^{58} +(3.85475 - 10.5908i) q^{59} +(-5.41575 - 0.954943i) q^{61} +(1.14183 + 3.13057i) q^{62} +(3.97189 - 6.94436i) q^{64} +(6.60244 - 2.40309i) q^{65} +(-0.467287 - 0.556891i) q^{67} +(1.51836 + 1.27056i) q^{68} +(2.16769 + 0.787319i) q^{70} +(2.52073 + 4.36603i) q^{71} +(7.01816 - 12.1558i) q^{73} +(3.99022 - 3.35279i) q^{74} +(6.14505 + 1.07498i) q^{76} +(6.53164 - 1.15170i) q^{77} +(-6.78017 - 5.68924i) q^{79} +(1.43442 + 3.90816i) q^{80} +(-2.89539 + 3.45533i) q^{82} +(4.03223 - 4.80543i) q^{83} +(-1.01463 + 0.178906i) q^{85} +(7.68099 + 13.2831i) q^{86} +(9.18695 + 7.67710i) q^{88} +(-4.02279 + 6.96768i) q^{89} +(9.16071 - 5.28894i) q^{91} +(-6.80475 - 11.7495i) q^{92} +(0.000853769 + 1.26413i) q^{94} +(-2.48685 + 2.08672i) q^{95} +(-10.1365 + 3.68937i) q^{97} +(-6.33056 - 1.11184i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39256 + 0.246516i −0.984690 + 0.174313i
\(3\) 0 0
\(4\) 1.87846 0.686578i 0.939230 0.343289i
\(5\) −0.355965 + 0.978005i −0.159192 + 0.437377i −0.993488 0.113941i \(-0.963653\pi\)
0.834295 + 0.551318i \(0.185875\pi\)
\(6\) 0 0
\(7\) −0.272085 + 1.54307i −0.102839 + 0.583227i 0.889223 + 0.457474i \(0.151246\pi\)
−0.992062 + 0.125753i \(0.959865\pi\)
\(8\) −2.44662 + 1.41917i −0.865011 + 0.501754i
\(9\) 0 0
\(10\) 0.254609 1.44968i 0.0805145 0.458430i
\(11\) −1.44773 3.97760i −0.436507 1.19929i −0.941750 0.336315i \(-0.890819\pi\)
0.505243 0.862977i \(-0.331403\pi\)
\(12\) 0 0
\(13\) −4.33941 5.17151i −1.20354 1.43432i −0.871039 0.491214i \(-0.836553\pi\)
−0.332497 0.943104i \(-0.607891\pi\)
\(14\) −0.00149657 2.21590i −0.000399976 0.592224i
\(15\) 0 0
\(16\) 3.05722 2.57942i 0.764305 0.644855i
\(17\) 0.494959 + 0.857294i 0.120045 + 0.207924i 0.919785 0.392422i \(-0.128363\pi\)
−0.799740 + 0.600346i \(0.795029\pi\)
\(18\) 0 0
\(19\) 2.70129 + 1.55959i 0.619719 + 0.357795i 0.776759 0.629797i \(-0.216862\pi\)
−0.157041 + 0.987592i \(0.550195\pi\)
\(20\) 0.00281166 + 2.08154i 0.000628707 + 0.465447i
\(21\) 0 0
\(22\) 2.99660 + 5.18217i 0.638876 + 1.10484i
\(23\) −1.17888 6.68573i −0.245812 1.39407i −0.818598 0.574367i \(-0.805248\pi\)
0.572786 0.819705i \(-0.305863\pi\)
\(24\) 0 0
\(25\) 3.00044 + 2.51767i 0.600088 + 0.503533i
\(26\) 7.31776 + 6.13191i 1.43513 + 1.20257i
\(27\) 0 0
\(28\) 0.548339 + 3.08541i 0.103626 + 0.583088i
\(29\) 2.84964 3.39607i 0.529166 0.630635i −0.433557 0.901126i \(-0.642742\pi\)
0.962722 + 0.270491i \(0.0871861\pi\)
\(30\) 0 0
\(31\) −0.409166 2.32049i −0.0734883 0.416773i −0.999252 0.0386704i \(-0.987688\pi\)
0.925764 0.378103i \(-0.123423\pi\)
\(32\) −3.62150 + 4.34566i −0.640197 + 0.768211i
\(33\) 0 0
\(34\) −0.900598 1.07182i −0.154451 0.183816i
\(35\) −1.41228 0.815381i −0.238719 0.137825i
\(36\) 0 0
\(37\) −3.19157 + 1.84266i −0.524691 + 0.302931i −0.738852 0.673868i \(-0.764632\pi\)
0.214161 + 0.976798i \(0.431298\pi\)
\(38\) −4.14618 1.50592i −0.672599 0.244292i
\(39\) 0 0
\(40\) −0.517049 2.89798i −0.0817526 0.458211i
\(41\) 2.44191 2.04900i 0.381362 0.320000i −0.431875 0.901933i \(-0.642148\pi\)
0.813237 + 0.581933i \(0.197703\pi\)
\(42\) 0 0
\(43\) −3.71087 10.1955i −0.565903 1.55481i −0.810841 0.585267i \(-0.800990\pi\)
0.244938 0.969539i \(-0.421233\pi\)
\(44\) −5.45044 6.47779i −0.821684 0.976563i
\(45\) 0 0
\(46\) 3.28980 + 9.01969i 0.485054 + 1.32988i
\(47\) 0.155220 0.880296i 0.0226411 0.128404i −0.971392 0.237481i \(-0.923678\pi\)
0.994033 + 0.109077i \(0.0347894\pi\)
\(48\) 0 0
\(49\) 4.27080 + 1.55445i 0.610115 + 0.222064i
\(50\) −4.79894 2.76635i −0.678673 0.391221i
\(51\) 0 0
\(52\) −11.7021 6.73512i −1.62278 0.933994i
\(53\) 5.00251i 0.687148i 0.939126 + 0.343574i \(0.111638\pi\)
−0.939126 + 0.343574i \(0.888362\pi\)
\(54\) 0 0
\(55\) 4.40546 0.594032
\(56\) −1.52420 4.16145i −0.203680 0.556097i
\(57\) 0 0
\(58\) −3.13112 + 5.43173i −0.411136 + 0.713221i
\(59\) 3.85475 10.5908i 0.501846 1.37881i −0.387625 0.921817i \(-0.626704\pi\)
0.889470 0.456993i \(-0.151073\pi\)
\(60\) 0 0
\(61\) −5.41575 0.954943i −0.693416 0.122268i −0.184177 0.982893i \(-0.558962\pi\)
−0.509239 + 0.860625i \(0.670073\pi\)
\(62\) 1.14183 + 3.13057i 0.145012 + 0.397582i
\(63\) 0 0
\(64\) 3.97189 6.94436i 0.496487 0.868044i
\(65\) 6.60244 2.40309i 0.818932 0.298067i
\(66\) 0 0
\(67\) −0.467287 0.556891i −0.0570882 0.0680351i 0.736745 0.676171i \(-0.236362\pi\)
−0.793833 + 0.608136i \(0.791918\pi\)
\(68\) 1.51836 + 1.27056i 0.184128 + 0.154078i
\(69\) 0 0
\(70\) 2.16769 + 0.787319i 0.259089 + 0.0941026i
\(71\) 2.52073 + 4.36603i 0.299155 + 0.518152i 0.975943 0.218026i \(-0.0699618\pi\)
−0.676788 + 0.736178i \(0.736628\pi\)
\(72\) 0 0
\(73\) 7.01816 12.1558i 0.821413 1.42273i −0.0832165 0.996531i \(-0.526519\pi\)
0.904630 0.426198i \(-0.140147\pi\)
\(74\) 3.99022 3.35279i 0.463854 0.389753i
\(75\) 0 0
\(76\) 6.14505 + 1.07498i 0.704885 + 0.123309i
\(77\) 6.53164 1.15170i 0.744349 0.131249i
\(78\) 0 0
\(79\) −6.78017 5.68924i −0.762829 0.640090i 0.176032 0.984384i \(-0.443674\pi\)
−0.938862 + 0.344295i \(0.888118\pi\)
\(80\) 1.43442 + 3.90816i 0.160373 + 0.436946i
\(81\) 0 0
\(82\) −2.89539 + 3.45533i −0.319743 + 0.381578i
\(83\) 4.03223 4.80543i 0.442595 0.527464i −0.497917 0.867225i \(-0.665902\pi\)
0.940512 + 0.339760i \(0.110346\pi\)
\(84\) 0 0
\(85\) −1.01463 + 0.178906i −0.110052 + 0.0194051i
\(86\) 7.68099 + 13.2831i 0.828262 + 1.43236i
\(87\) 0 0
\(88\) 9.18695 + 7.67710i 0.979332 + 0.818382i
\(89\) −4.02279 + 6.96768i −0.426415 + 0.738573i −0.996551 0.0829775i \(-0.973557\pi\)
0.570136 + 0.821550i \(0.306890\pi\)
\(90\) 0 0
\(91\) 9.16071 5.28894i 0.960303 0.554431i
\(92\) −6.80475 11.7495i −0.709444 1.22497i
\(93\) 0 0
\(94\) 0.000853769 1.26413i 8.80595e−5 0.130385i
\(95\) −2.48685 + 2.08672i −0.255146 + 0.214093i
\(96\) 0 0
\(97\) −10.1365 + 3.68937i −1.02920 + 0.374599i −0.800777 0.598963i \(-0.795580\pi\)
−0.228425 + 0.973561i \(0.573358\pi\)
\(98\) −6.33056 1.11184i −0.639483 0.112313i
\(99\) 0 0
\(100\) 7.36478 + 2.66930i 0.736478 + 0.266930i
\(101\) −6.50659 1.14729i −0.647430 0.114159i −0.159716 0.987163i \(-0.551058\pi\)
−0.487714 + 0.873004i \(0.662169\pi\)
\(102\) 0 0
\(103\) −14.9315 5.43464i −1.47125 0.535491i −0.522809 0.852450i \(-0.675116\pi\)
−0.948439 + 0.316959i \(0.897338\pi\)
\(104\) 17.9562 + 6.49433i 1.76075 + 0.636822i
\(105\) 0 0
\(106\) −1.23320 6.96631i −0.119779 0.676628i
\(107\) 3.85513i 0.372689i −0.982484 0.186345i \(-0.940336\pi\)
0.982484 0.186345i \(-0.0596641\pi\)
\(108\) 0 0
\(109\) 3.32803i 0.318767i 0.987217 + 0.159384i \(0.0509507\pi\)
−0.987217 + 0.159384i \(0.949049\pi\)
\(110\) −6.13487 + 1.08602i −0.584937 + 0.103548i
\(111\) 0 0
\(112\) 3.14841 + 5.41934i 0.297497 + 0.512079i
\(113\) −7.85208 2.85792i −0.738662 0.268851i −0.0548351 0.998495i \(-0.517463\pi\)
−0.683827 + 0.729645i \(0.739686\pi\)
\(114\) 0 0
\(115\) 6.95832 + 1.22694i 0.648867 + 0.114413i
\(116\) 3.02127 8.33589i 0.280518 0.773968i
\(117\) 0 0
\(118\) −2.75717 + 15.6987i −0.253818 + 1.44518i
\(119\) −1.45754 + 0.530501i −0.133612 + 0.0486309i
\(120\) 0 0
\(121\) −5.29891 + 4.44632i −0.481719 + 0.404211i
\(122\) 7.77718 0.00525255i 0.704112 0.000475544i
\(123\) 0 0
\(124\) −2.36180 4.07803i −0.212096 0.366218i
\(125\) −8.03702 + 4.64017i −0.718853 + 0.415030i
\(126\) 0 0
\(127\) 1.83012 3.16986i 0.162397 0.281280i −0.773331 0.634003i \(-0.781411\pi\)
0.935728 + 0.352723i \(0.114744\pi\)
\(128\) −3.81921 + 10.6496i −0.337574 + 0.941299i
\(129\) 0 0
\(130\) −8.60191 + 4.97406i −0.754437 + 0.436254i
\(131\) −9.66082 + 1.70346i −0.844070 + 0.148832i −0.578930 0.815378i \(-0.696529\pi\)
−0.265140 + 0.964210i \(0.585418\pi\)
\(132\) 0 0
\(133\) −3.14155 + 3.74395i −0.272407 + 0.324641i
\(134\) 0.788009 + 0.660312i 0.0680736 + 0.0570423i
\(135\) 0 0
\(136\) −2.42762 1.39504i −0.208167 0.119624i
\(137\) 16.9231 + 14.2001i 1.44583 + 1.21320i 0.935550 + 0.353193i \(0.114904\pi\)
0.510284 + 0.860006i \(0.329540\pi\)
\(138\) 0 0
\(139\) −4.68849 + 0.826707i −0.397672 + 0.0701203i −0.368908 0.929466i \(-0.620268\pi\)
−0.0287641 + 0.999586i \(0.509157\pi\)
\(140\) −3.21274 0.562019i −0.271526 0.0474992i
\(141\) 0 0
\(142\) −4.58657 5.45856i −0.384896 0.458073i
\(143\) −14.2879 + 24.7474i −1.19482 + 2.06948i
\(144\) 0 0
\(145\) 2.30701 + 3.99585i 0.191586 + 0.331837i
\(146\) −6.77662 + 18.6578i −0.560837 + 1.54413i
\(147\) 0 0
\(148\) −4.73011 + 5.65262i −0.388813 + 0.464642i
\(149\) 14.7916 + 17.6280i 1.21178 + 1.44414i 0.861700 + 0.507418i \(0.169400\pi\)
0.350076 + 0.936721i \(0.386156\pi\)
\(150\) 0 0
\(151\) 18.6779 6.79819i 1.51998 0.553229i 0.558840 0.829276i \(-0.311247\pi\)
0.961144 + 0.276047i \(0.0890245\pi\)
\(152\) −8.82236 + 0.0178754i −0.715588 + 0.00144988i
\(153\) 0 0
\(154\) −8.81180 + 3.21397i −0.710075 + 0.258989i
\(155\) 2.41510 + 0.425848i 0.193986 + 0.0342049i
\(156\) 0 0
\(157\) −1.67263 + 4.59552i −0.133491 + 0.366762i −0.988371 0.152063i \(-0.951408\pi\)
0.854880 + 0.518825i \(0.173631\pi\)
\(158\) 10.8443 + 6.25120i 0.862727 + 0.497319i
\(159\) 0 0
\(160\) −2.96095 5.08875i −0.234083 0.402301i
\(161\) 10.6373 0.838339
\(162\) 0 0
\(163\) 4.18081i 0.327466i 0.986505 + 0.163733i \(0.0523536\pi\)
−0.986505 + 0.163733i \(0.947646\pi\)
\(164\) 3.18022 5.52553i 0.248334 0.431471i
\(165\) 0 0
\(166\) −4.43052 + 7.68587i −0.343875 + 0.596539i
\(167\) −5.72775 2.08473i −0.443227 0.161321i 0.110759 0.993847i \(-0.464672\pi\)
−0.553986 + 0.832526i \(0.686894\pi\)
\(168\) 0 0
\(169\) −5.65659 + 32.0801i −0.435122 + 2.46770i
\(170\) 1.36883 0.499259i 0.104984 0.0382914i
\(171\) 0 0
\(172\) −13.9708 16.6041i −1.06526 1.26605i
\(173\) 0.453627 + 1.24633i 0.0344886 + 0.0947567i 0.955742 0.294207i \(-0.0950554\pi\)
−0.921253 + 0.388964i \(0.872833\pi\)
\(174\) 0 0
\(175\) −4.70132 + 3.94488i −0.355386 + 0.298205i
\(176\) −14.6859 8.42611i −1.10699 0.635142i
\(177\) 0 0
\(178\) 3.88434 10.6946i 0.291144 0.801595i
\(179\) 9.68622 5.59234i 0.723982 0.417991i −0.0922343 0.995737i \(-0.529401\pi\)
0.816217 + 0.577746i \(0.196068\pi\)
\(180\) 0 0
\(181\) 3.21058 + 1.85363i 0.238641 + 0.137779i 0.614552 0.788876i \(-0.289337\pi\)
−0.375911 + 0.926656i \(0.622670\pi\)
\(182\) −11.4530 + 9.62344i −0.848956 + 0.713337i
\(183\) 0 0
\(184\) 12.3725 + 14.6844i 0.912111 + 1.08255i
\(185\) −0.666039 3.77730i −0.0489682 0.277712i
\(186\) 0 0
\(187\) 2.69341 3.20988i 0.196961 0.234730i
\(188\) −0.312818 1.76017i −0.0228146 0.128374i
\(189\) 0 0
\(190\) 2.94869 3.51893i 0.213920 0.255290i
\(191\) −13.8306 11.6053i −1.00075 0.839729i −0.0136618 0.999907i \(-0.504349\pi\)
−0.987088 + 0.160178i \(0.948793\pi\)
\(192\) 0 0
\(193\) 0.770660 + 4.37063i 0.0554733 + 0.314605i 0.999900 0.0141163i \(-0.00449352\pi\)
−0.944427 + 0.328721i \(0.893382\pi\)
\(194\) 13.2062 7.63648i 0.948148 0.548268i
\(195\) 0 0
\(196\) 9.08978 0.0122781i 0.649270 0.000877008i
\(197\) −14.1519 8.17063i −1.00828 0.582133i −0.0975957 0.995226i \(-0.531115\pi\)
−0.910689 + 0.413093i \(0.864449\pi\)
\(198\) 0 0
\(199\) −0.458824 0.794707i −0.0325252 0.0563353i 0.849305 0.527903i \(-0.177022\pi\)
−0.881830 + 0.471568i \(0.843688\pi\)
\(200\) −10.9139 1.90163i −0.771732 0.134465i
\(201\) 0 0
\(202\) 9.34365 0.00631052i 0.657417 0.000444006i
\(203\) 4.46504 + 5.32123i 0.313385 + 0.373477i
\(204\) 0 0
\(205\) 1.13470 + 3.11757i 0.0792511 + 0.217741i
\(206\) 22.1328 + 3.88720i 1.54207 + 0.270834i
\(207\) 0 0
\(208\) −26.6060 4.61728i −1.84480 0.320151i
\(209\) 2.29270 13.0025i 0.158589 0.899403i
\(210\) 0 0
\(211\) −2.09734 + 5.76240i −0.144387 + 0.396700i −0.990714 0.135964i \(-0.956587\pi\)
0.846327 + 0.532664i \(0.178809\pi\)
\(212\) 3.43462 + 9.39702i 0.235891 + 0.645390i
\(213\) 0 0
\(214\) 0.950351 + 5.36850i 0.0649647 + 0.366983i
\(215\) 11.2922 0.770124
\(216\) 0 0
\(217\) 3.69202 0.250631
\(218\) −0.820412 4.63448i −0.0555653 0.313887i
\(219\) 0 0
\(220\) 8.27547 3.02469i 0.557932 0.203925i
\(221\) 2.28567 6.27983i 0.153751 0.422427i
\(222\) 0 0
\(223\) −3.72326 + 21.1156i −0.249328 + 1.41401i 0.560896 + 0.827887i \(0.310457\pi\)
−0.810223 + 0.586121i \(0.800654\pi\)
\(224\) −5.72031 6.77063i −0.382204 0.452382i
\(225\) 0 0
\(226\) 11.6390 + 2.04417i 0.774217 + 0.135976i
\(227\) 6.36438 + 17.4860i 0.422419 + 1.16059i 0.950319 + 0.311279i \(0.100757\pi\)
−0.527900 + 0.849307i \(0.677020\pi\)
\(228\) 0 0
\(229\) 5.70813 + 6.80268i 0.377204 + 0.449534i 0.920930 0.389729i \(-0.127431\pi\)
−0.543726 + 0.839263i \(0.682987\pi\)
\(230\) −9.99235 + 0.00674864i −0.658876 + 0.000444992i
\(231\) 0 0
\(232\) −2.15238 + 12.3530i −0.141310 + 0.811017i
\(233\) −9.39731 16.2766i −0.615638 1.06632i −0.990272 0.139144i \(-0.955565\pi\)
0.374634 0.927173i \(-0.377768\pi\)
\(234\) 0 0
\(235\) 0.805681 + 0.465160i 0.0525568 + 0.0303437i
\(236\) −0.0304476 22.5411i −0.00198197 1.46730i
\(237\) 0 0
\(238\) 1.89894 1.09806i 0.123090 0.0711768i
\(239\) −3.56653 20.2268i −0.230700 1.30836i −0.851483 0.524382i \(-0.824297\pi\)
0.620784 0.783982i \(-0.286815\pi\)
\(240\) 0 0
\(241\) −10.5529 8.85497i −0.679775 0.570399i 0.236166 0.971713i \(-0.424109\pi\)
−0.915941 + 0.401314i \(0.868554\pi\)
\(242\) 6.28298 7.49804i 0.403885 0.481992i
\(243\) 0 0
\(244\) −10.8289 + 1.92451i −0.693250 + 0.123204i
\(245\) −3.04051 + 3.62354i −0.194251 + 0.231499i
\(246\) 0 0
\(247\) −3.65657 20.7374i −0.232662 1.31949i
\(248\) 4.29426 + 5.09669i 0.272686 + 0.323640i
\(249\) 0 0
\(250\) 10.0482 8.44298i 0.635502 0.533981i
\(251\) 0.419101 + 0.241968i 0.0264534 + 0.0152729i 0.513168 0.858288i \(-0.328472\pi\)
−0.486715 + 0.873561i \(0.661805\pi\)
\(252\) 0 0
\(253\) −24.8865 + 14.3682i −1.56460 + 0.903323i
\(254\) −1.76713 + 4.86538i −0.110880 + 0.305281i
\(255\) 0 0
\(256\) 2.69320 15.7717i 0.168325 0.985732i
\(257\) −13.5896 + 11.4030i −0.847695 + 0.711300i −0.959281 0.282454i \(-0.908851\pi\)
0.111586 + 0.993755i \(0.464407\pi\)
\(258\) 0 0
\(259\) −1.97497 5.42619i −0.122719 0.337167i
\(260\) 10.7525 9.04720i 0.666842 0.561084i
\(261\) 0 0
\(262\) 13.0334 4.75373i 0.805204 0.293686i
\(263\) −1.39832 + 7.93029i −0.0862243 + 0.489002i 0.910861 + 0.412712i \(0.135419\pi\)
−0.997086 + 0.0762899i \(0.975693\pi\)
\(264\) 0 0
\(265\) −4.89249 1.78072i −0.300543 0.109389i
\(266\) 3.45185 5.98812i 0.211647 0.367155i
\(267\) 0 0
\(268\) −1.26013 0.725268i −0.0769747 0.0443028i
\(269\) 6.56538i 0.400298i 0.979765 + 0.200149i \(0.0641426\pi\)
−0.979765 + 0.200149i \(0.935857\pi\)
\(270\) 0 0
\(271\) 10.8623 0.659839 0.329919 0.944009i \(-0.392978\pi\)
0.329919 + 0.944009i \(0.392978\pi\)
\(272\) 3.72452 + 1.34423i 0.225832 + 0.0815059i
\(273\) 0 0
\(274\) −27.0670 15.6028i −1.63518 0.942597i
\(275\) 5.67046 15.5795i 0.341941 0.939476i
\(276\) 0 0
\(277\) 31.2235 + 5.50555i 1.87604 + 0.330796i 0.990907 0.134546i \(-0.0429575\pi\)
0.885131 + 0.465342i \(0.154069\pi\)
\(278\) 6.32521 2.30703i 0.379361 0.138366i
\(279\) 0 0
\(280\) 4.61248 0.00934555i 0.275649 0.000558503i
\(281\) 18.4488 6.71481i 1.10056 0.400572i 0.273039 0.962003i \(-0.411971\pi\)
0.827523 + 0.561431i \(0.189749\pi\)
\(282\) 0 0
\(283\) 12.6768 + 15.1076i 0.753556 + 0.898053i 0.997422 0.0717558i \(-0.0228602\pi\)
−0.243866 + 0.969809i \(0.578416\pi\)
\(284\) 7.73270 + 6.47073i 0.458851 + 0.383967i
\(285\) 0 0
\(286\) 13.7962 37.9845i 0.815785 2.24607i
\(287\) 2.49735 + 4.32554i 0.147414 + 0.255329i
\(288\) 0 0
\(289\) 8.01003 13.8738i 0.471178 0.816105i
\(290\) −4.19769 4.99576i −0.246497 0.293361i
\(291\) 0 0
\(292\) 4.83741 27.6527i 0.283088 1.61825i
\(293\) −26.1866 + 4.61741i −1.52984 + 0.269752i −0.874292 0.485401i \(-0.838674\pi\)
−0.655549 + 0.755153i \(0.727563\pi\)
\(294\) 0 0
\(295\) 8.98574 + 7.53993i 0.523170 + 0.438992i
\(296\) 5.19351 9.03767i 0.301867 0.525304i
\(297\) 0 0
\(298\) −24.9438 20.9017i −1.44496 1.21080i
\(299\) −29.4597 + 35.1087i −1.70370 + 2.03039i
\(300\) 0 0
\(301\) 16.7421 2.95209i 0.965001 0.170156i
\(302\) −24.3342 + 14.0713i −1.40028 + 0.809712i
\(303\) 0 0
\(304\) 12.2813 2.19975i 0.704380 0.126164i
\(305\) 2.86175 4.95671i 0.163864 0.283820i
\(306\) 0 0
\(307\) 20.0407 11.5705i 1.14379 0.660365i 0.196420 0.980520i \(-0.437068\pi\)
0.947365 + 0.320155i \(0.103735\pi\)
\(308\) 11.4787 6.64791i 0.654059 0.378800i
\(309\) 0 0
\(310\) −3.46816 + 0.00234233i −0.196978 + 0.000133035i
\(311\) 18.6806 15.6749i 1.05928 0.888842i 0.0652424 0.997869i \(-0.479218\pi\)
0.994039 + 0.109027i \(0.0347735\pi\)
\(312\) 0 0
\(313\) 24.2156 8.81377i 1.36875 0.498184i 0.450000 0.893028i \(-0.351424\pi\)
0.918748 + 0.394845i \(0.129202\pi\)
\(314\) 1.19637 6.81188i 0.0675153 0.384417i
\(315\) 0 0
\(316\) −16.6424 6.03189i −0.936208 0.339320i
\(317\) 18.1371 + 3.19806i 1.01868 + 0.179621i 0.657960 0.753053i \(-0.271420\pi\)
0.360721 + 0.932674i \(0.382531\pi\)
\(318\) 0 0
\(319\) −17.6337 6.41816i −0.987300 0.359348i
\(320\) 5.37776 + 6.35648i 0.300626 + 0.355338i
\(321\) 0 0
\(322\) −14.8131 + 2.62227i −0.825504 + 0.146134i
\(323\) 3.08773i 0.171806i
\(324\) 0 0
\(325\) 26.4420i 1.46674i
\(326\) −1.03064 5.82204i −0.0570817 0.322453i
\(327\) 0 0
\(328\) −3.06652 + 8.47862i −0.169320 + 0.468153i
\(329\) 1.31613 + 0.479031i 0.0725605 + 0.0264099i
\(330\) 0 0
\(331\) −15.2370 2.68670i −0.837502 0.147674i −0.261583 0.965181i \(-0.584245\pi\)
−0.575919 + 0.817507i \(0.695356\pi\)
\(332\) 4.27508 11.7952i 0.234626 0.647348i
\(333\) 0 0
\(334\) 8.49017 + 1.49113i 0.464561 + 0.0815912i
\(335\) 0.710980 0.258776i 0.0388450 0.0141384i
\(336\) 0 0
\(337\) 9.32566 7.82516i 0.508001 0.426264i −0.352424 0.935840i \(-0.614643\pi\)
0.860425 + 0.509577i \(0.170198\pi\)
\(338\) −0.0311134 46.0680i −0.00169235 2.50577i
\(339\) 0 0
\(340\) −1.78310 + 1.03269i −0.0967022 + 0.0560053i
\(341\) −8.63764 + 4.98695i −0.467755 + 0.270058i
\(342\) 0 0
\(343\) −9.04472 + 15.6659i −0.488369 + 0.845880i
\(344\) 23.5483 + 19.6782i 1.26964 + 1.06098i
\(345\) 0 0
\(346\) −0.938945 1.62377i −0.0504780 0.0872942i
\(347\) −23.2143 + 4.09332i −1.24621 + 0.219741i −0.757576 0.652747i \(-0.773616\pi\)
−0.488636 + 0.872488i \(0.662505\pi\)
\(348\) 0 0
\(349\) −14.7087 + 17.5291i −0.787338 + 0.938312i −0.999240 0.0389784i \(-0.987590\pi\)
0.211902 + 0.977291i \(0.432034\pi\)
\(350\) 5.57441 6.65244i 0.297965 0.355588i
\(351\) 0 0
\(352\) 22.5282 + 8.11356i 1.20076 + 0.432454i
\(353\) −0.541929 0.454733i −0.0288440 0.0242030i 0.628252 0.778010i \(-0.283771\pi\)
−0.657096 + 0.753807i \(0.728215\pi\)
\(354\) 0 0
\(355\) −5.16729 + 0.911132i −0.274251 + 0.0483579i
\(356\) −2.77279 + 15.8505i −0.146958 + 0.840073i
\(357\) 0 0
\(358\) −12.1101 + 10.1755i −0.640037 + 0.537792i
\(359\) 5.07907 8.79721i 0.268063 0.464299i −0.700298 0.713850i \(-0.746950\pi\)
0.968362 + 0.249551i \(0.0802831\pi\)
\(360\) 0 0
\(361\) −4.63535 8.02867i −0.243966 0.422561i
\(362\) −4.92789 1.78984i −0.259004 0.0940717i
\(363\) 0 0
\(364\) 13.5767 16.2246i 0.711615 0.850400i
\(365\) 9.39023 + 11.1908i 0.491507 + 0.585755i
\(366\) 0 0
\(367\) −1.79478 + 0.653245i −0.0936866 + 0.0340991i −0.388438 0.921475i \(-0.626985\pi\)
0.294752 + 0.955574i \(0.404763\pi\)
\(368\) −20.8494 17.3989i −1.08685 0.906983i
\(369\) 0 0
\(370\) 1.85867 + 5.09593i 0.0966274 + 0.264925i
\(371\) −7.71925 1.36111i −0.400763 0.0706654i
\(372\) 0 0
\(373\) 11.8307 32.5046i 0.612571 1.68303i −0.111899 0.993720i \(-0.535693\pi\)
0.724470 0.689306i \(-0.242084\pi\)
\(374\) −2.95945 + 5.13392i −0.153030 + 0.265469i
\(375\) 0 0
\(376\) 0.869528 + 2.37403i 0.0448425 + 0.122431i
\(377\) −29.9286 −1.54140
\(378\) 0 0
\(379\) 27.1937i 1.39685i 0.715685 + 0.698423i \(0.246114\pi\)
−0.715685 + 0.698423i \(0.753886\pi\)
\(380\) −3.23876 + 5.62723i −0.166145 + 0.288671i
\(381\) 0 0
\(382\) 22.1209 + 12.7516i 1.13180 + 0.652429i
\(383\) 5.67775 + 2.06653i 0.290120 + 0.105595i 0.482980 0.875631i \(-0.339554\pi\)
−0.192861 + 0.981226i \(0.561777\pi\)
\(384\) 0 0
\(385\) −1.19866 + 6.79794i −0.0610894 + 0.346455i
\(386\) −2.15062 5.89639i −0.109464 0.300118i
\(387\) 0 0
\(388\) −16.5079 + 13.8898i −0.838062 + 0.705148i
\(389\) −3.99747 10.9830i −0.202680 0.556858i 0.796156 0.605091i \(-0.206863\pi\)
−0.998836 + 0.0482330i \(0.984641\pi\)
\(390\) 0 0
\(391\) 5.14814 4.31980i 0.260353 0.218462i
\(392\) −12.6551 + 2.25788i −0.639177 + 0.114040i
\(393\) 0 0
\(394\) 21.7217 + 7.88943i 1.09432 + 0.397464i
\(395\) 7.97761 4.60588i 0.401397 0.231747i
\(396\) 0 0
\(397\) −2.31327 1.33556i −0.116099 0.0670301i 0.440826 0.897593i \(-0.354686\pi\)
−0.556925 + 0.830563i \(0.688019\pi\)
\(398\) 0.834849 + 0.993571i 0.0418472 + 0.0498032i
\(399\) 0 0
\(400\) 15.6671 0.0423251i 0.783356 0.00211626i
\(401\) 2.15776 + 12.2372i 0.107753 + 0.611099i 0.990085 + 0.140470i \(0.0448615\pi\)
−0.882332 + 0.470628i \(0.844027\pi\)
\(402\) 0 0
\(403\) −10.2249 + 12.1856i −0.509339 + 0.607007i
\(404\) −13.0101 + 2.31215i −0.647275 + 0.115034i
\(405\) 0 0
\(406\) −7.52962 6.30944i −0.373689 0.313132i
\(407\) 11.9499 + 10.0271i 0.592334 + 0.497027i
\(408\) 0 0
\(409\) −0.895032 5.07598i −0.0442565 0.250991i 0.954651 0.297728i \(-0.0962288\pi\)
−0.998907 + 0.0467370i \(0.985118\pi\)
\(410\) −2.34868 4.06169i −0.115993 0.200592i
\(411\) 0 0
\(412\) −31.7796 + 0.0429266i −1.56567 + 0.00211484i
\(413\) 15.2936 + 8.82978i 0.752550 + 0.434485i
\(414\) 0 0
\(415\) 3.26440 + 5.65411i 0.160243 + 0.277549i
\(416\) 38.1888 0.128960i 1.87236 0.00632279i
\(417\) 0 0
\(418\) 0.0126107 + 18.6720i 0.000616810 + 0.913278i
\(419\) −1.84481 2.19856i −0.0901248 0.107407i 0.719097 0.694909i \(-0.244556\pi\)
−0.809222 + 0.587503i \(0.800111\pi\)
\(420\) 0 0
\(421\) 4.61049 + 12.6672i 0.224701 + 0.617362i 0.999897 0.0143594i \(-0.00457089\pi\)
−0.775195 + 0.631721i \(0.782349\pi\)
\(422\) 1.50016 8.54154i 0.0730264 0.415795i
\(423\) 0 0
\(424\) −7.09944 12.2392i −0.344779 0.594390i
\(425\) −0.673287 + 3.81840i −0.0326592 + 0.185220i
\(426\) 0 0
\(427\) 2.94709 8.09707i 0.142620 0.391845i
\(428\) −2.64685 7.24170i −0.127940 0.350041i
\(429\) 0 0
\(430\) −15.7251 + 2.78372i −0.758334 + 0.134243i
\(431\) −25.2153 −1.21458 −0.607290 0.794480i \(-0.707743\pi\)
−0.607290 + 0.794480i \(0.707743\pi\)
\(432\) 0 0
\(433\) −15.5658 −0.748046 −0.374023 0.927419i \(-0.622022\pi\)
−0.374023 + 0.927419i \(0.622022\pi\)
\(434\) −5.14137 + 0.910143i −0.246794 + 0.0436883i
\(435\) 0 0
\(436\) 2.28495 + 6.25156i 0.109429 + 0.299396i
\(437\) 7.24252 19.8987i 0.346457 0.951882i
\(438\) 0 0
\(439\) 5.53290 31.3787i 0.264071 1.49762i −0.507596 0.861595i \(-0.669466\pi\)
0.771667 0.636026i \(-0.219423\pi\)
\(440\) −10.7785 + 6.25211i −0.513844 + 0.298058i
\(441\) 0 0
\(442\) −1.63486 + 9.30851i −0.0777624 + 0.442761i
\(443\) −2.16330 5.94362i −0.102782 0.282390i 0.877634 0.479332i \(-0.159121\pi\)
−0.980415 + 0.196942i \(0.936899\pi\)
\(444\) 0 0
\(445\) −5.38246 6.41456i −0.255153 0.304079i
\(446\) −0.0204793 30.3227i −0.000969725 1.43582i
\(447\) 0 0
\(448\) 9.63496 + 8.01838i 0.455209 + 0.378833i
\(449\) 4.18149 + 7.24256i 0.197337 + 0.341797i 0.947664 0.319269i \(-0.103437\pi\)
−0.750327 + 0.661067i \(0.770104\pi\)
\(450\) 0 0
\(451\) −11.6853 6.74653i −0.550241 0.317682i
\(452\) −16.7120 + 0.0225739i −0.786067 + 0.00106179i
\(453\) 0 0
\(454\) −13.1734 22.7814i −0.618257 1.06918i
\(455\) 1.91172 + 10.8419i 0.0896228 + 0.508276i
\(456\) 0 0
\(457\) −21.5741 18.1028i −1.00919 0.846812i −0.0209605 0.999780i \(-0.506672\pi\)
−0.988231 + 0.152968i \(0.951117\pi\)
\(458\) −9.62589 8.06601i −0.449788 0.376900i
\(459\) 0 0
\(460\) 13.9133 2.47267i 0.648712 0.115289i
\(461\) 16.8013 20.0230i 0.782513 0.932563i −0.216531 0.976276i \(-0.569474\pi\)
0.999044 + 0.0437126i \(0.0139186\pi\)
\(462\) 0 0
\(463\) 3.84612 + 21.8124i 0.178744 + 1.01371i 0.933733 + 0.357971i \(0.116531\pi\)
−0.754988 + 0.655738i \(0.772358\pi\)
\(464\) −0.0479061 17.7330i −0.00222399 0.823233i
\(465\) 0 0
\(466\) 17.0988 + 20.3496i 0.792086 + 0.942678i
\(467\) 19.1663 + 11.0657i 0.886910 + 0.512058i 0.872930 0.487845i \(-0.162217\pi\)
0.0139792 + 0.999902i \(0.495550\pi\)
\(468\) 0 0
\(469\) 0.986466 0.569536i 0.0455508 0.0262987i
\(470\) −1.23663 0.449151i −0.0570415 0.0207178i
\(471\) 0 0
\(472\) 5.59913 + 31.3823i 0.257721 + 1.44449i
\(473\) −35.1815 + 29.5208i −1.61765 + 1.35737i
\(474\) 0 0
\(475\) 4.17853 + 11.4804i 0.191724 + 0.526757i
\(476\) −2.37370 + 1.99724i −0.108798 + 0.0915433i
\(477\) 0 0
\(478\) 9.95285 + 27.2879i 0.455233 + 1.24812i
\(479\) 2.06488 11.7105i 0.0943470 0.535068i −0.900599 0.434652i \(-0.856871\pi\)
0.994946 0.100416i \(-0.0320175\pi\)
\(480\) 0 0
\(481\) 23.3788 + 8.50920i 1.06598 + 0.387986i
\(482\) 16.8785 + 9.72963i 0.768796 + 0.443172i
\(483\) 0 0
\(484\) −6.90105 + 11.9903i −0.313684 + 0.545016i
\(485\) 11.2268i 0.509783i
\(486\) 0 0
\(487\) 22.1183 1.00228 0.501138 0.865367i \(-0.332915\pi\)
0.501138 + 0.865367i \(0.332915\pi\)
\(488\) 14.6055 5.34951i 0.661160 0.242161i
\(489\) 0 0
\(490\) 3.34084 5.79554i 0.150924 0.261816i
\(491\) −2.55319 + 7.01484i −0.115224 + 0.316575i −0.983877 0.178845i \(-0.942764\pi\)
0.868653 + 0.495421i \(0.164986\pi\)
\(492\) 0 0
\(493\) 4.32189 + 0.762066i 0.194648 + 0.0343217i
\(494\) 10.2041 + 27.9768i 0.459105 + 1.25874i
\(495\) 0 0
\(496\) −7.23644 6.03885i −0.324926 0.271153i
\(497\) −7.42295 + 2.70173i −0.332965 + 0.121189i
\(498\) 0 0
\(499\) −6.65452 7.93054i −0.297897 0.355020i 0.596246 0.802802i \(-0.296658\pi\)
−0.894143 + 0.447782i \(0.852214\pi\)
\(500\) −11.9114 + 14.2344i −0.532692 + 0.636582i
\(501\) 0 0
\(502\) −0.643273 0.233640i −0.0287107 0.0104279i
\(503\) 16.9435 + 29.3471i 0.755475 + 1.30852i 0.945138 + 0.326672i \(0.105927\pi\)
−0.189663 + 0.981849i \(0.560739\pi\)
\(504\) 0 0
\(505\) 3.43817 5.95508i 0.152997 0.264998i
\(506\) 31.1140 26.1436i 1.38319 1.16222i
\(507\) 0 0
\(508\) 1.26145 7.21098i 0.0559678 0.319935i
\(509\) −16.7517 + 2.95378i −0.742508 + 0.130924i −0.532090 0.846688i \(-0.678593\pi\)
−0.210417 + 0.977612i \(0.567482\pi\)
\(510\) 0 0
\(511\) 16.8478 + 14.1370i 0.745301 + 0.625382i
\(512\) 0.137538 + 22.6270i 0.00607838 + 0.999982i
\(513\) 0 0
\(514\) 16.1133 19.2295i 0.710728 0.848175i
\(515\) 10.6302 12.6686i 0.468423 0.558245i
\(516\) 0 0
\(517\) −3.72618 + 0.657026i −0.163877 + 0.0288960i
\(518\) 4.08791 + 7.06945i 0.179613 + 0.310614i
\(519\) 0 0
\(520\) −12.7433 + 15.2495i −0.558829 + 0.668733i
\(521\) 14.6553 25.3837i 0.642060 1.11208i −0.342912 0.939368i \(-0.611413\pi\)
0.984972 0.172714i \(-0.0552535\pi\)
\(522\) 0 0
\(523\) −3.33680 + 1.92651i −0.145908 + 0.0842402i −0.571177 0.820827i \(-0.693513\pi\)
0.425269 + 0.905067i \(0.360180\pi\)
\(524\) −16.9779 + 9.83280i −0.741683 + 0.429548i
\(525\) 0 0
\(526\) −0.00769131 11.3881i −0.000335357 0.496546i
\(527\) 1.78683 1.49932i 0.0778353 0.0653116i
\(528\) 0 0
\(529\) −21.6963 + 7.89682i −0.943319 + 0.343340i
\(530\) 7.25207 + 1.27369i 0.315010 + 0.0553254i
\(531\) 0 0
\(532\) −3.33075 + 9.18977i −0.144406 + 0.398427i
\(533\) −21.1929 3.73687i −0.917965 0.161862i
\(534\) 0 0
\(535\) 3.77033 + 1.37229i 0.163006 + 0.0593292i
\(536\) 1.93360 + 0.699339i 0.0835188 + 0.0302068i
\(537\) 0 0
\(538\) −1.61847 9.14269i −0.0697773 0.394170i
\(539\) 19.2380i 0.828638i
\(540\) 0 0
\(541\) 4.51542i 0.194133i −0.995278 0.0970665i \(-0.969054\pi\)
0.995278 0.0970665i \(-0.0309460\pi\)
\(542\) −15.1265 + 2.67774i −0.649737 + 0.115019i
\(543\) 0 0
\(544\) −5.51800 0.953770i −0.236582 0.0408926i
\(545\) −3.25483 1.18466i −0.139421 0.0507453i
\(546\) 0 0
\(547\) −12.3037 2.16948i −0.526069 0.0927602i −0.0956949 0.995411i \(-0.530507\pi\)
−0.430374 + 0.902651i \(0.641618\pi\)
\(548\) 41.5388 + 15.0554i 1.77445 + 0.643134i
\(549\) 0 0
\(550\) −4.05588 + 23.0932i −0.172943 + 0.984698i
\(551\) 12.9942 4.72950i 0.553572 0.201484i
\(552\) 0 0
\(553\) 10.6237 8.91435i 0.451766 0.379077i
\(554\) −44.8379 + 0.0302826i −1.90498 + 0.00128658i
\(555\) 0 0
\(556\) −8.23953 + 4.77195i −0.349434 + 0.202376i
\(557\) 3.03004 1.74940i 0.128387 0.0741243i −0.434431 0.900705i \(-0.643051\pi\)
0.562818 + 0.826581i \(0.309717\pi\)
\(558\) 0 0
\(559\) −36.6233 + 63.4335i −1.54900 + 2.68295i
\(560\) −6.42086 + 1.15007i −0.271331 + 0.0485991i
\(561\) 0 0
\(562\) −24.0358 + 13.8987i −1.01389 + 0.586282i
\(563\) −26.9436 + 4.75088i −1.13554 + 0.200226i −0.709653 0.704552i \(-0.751148\pi\)
−0.425885 + 0.904777i \(0.640037\pi\)
\(564\) 0 0
\(565\) 5.59013 6.66206i 0.235179 0.280275i
\(566\) −21.3775 17.9132i −0.898562 0.752949i
\(567\) 0 0
\(568\) −12.3634 7.10466i −0.518757 0.298105i
\(569\) −3.15771 2.64963i −0.132378 0.111078i 0.574195 0.818719i \(-0.305315\pi\)
−0.706573 + 0.707640i \(0.749760\pi\)
\(570\) 0 0
\(571\) 2.91629 0.514220i 0.122043 0.0215194i −0.112293 0.993675i \(-0.535820\pi\)
0.234336 + 0.972156i \(0.424708\pi\)
\(572\) −9.84825 + 56.2967i −0.411776 + 2.35389i
\(573\) 0 0
\(574\) −4.54404 5.40795i −0.189664 0.225724i
\(575\) 13.2953 23.0281i 0.554453 0.960340i
\(576\) 0 0
\(577\) −4.23106 7.32841i −0.176141 0.305086i 0.764414 0.644725i \(-0.223028\pi\)
−0.940556 + 0.339640i \(0.889695\pi\)
\(578\) −7.73436 + 21.2947i −0.321707 + 0.885743i
\(579\) 0 0
\(580\) 7.07708 + 5.92210i 0.293860 + 0.245902i
\(581\) 6.31802 + 7.52952i 0.262115 + 0.312377i
\(582\) 0 0
\(583\) 19.8980 7.24228i 0.824092 0.299945i
\(584\) 0.0804391 + 39.7006i 0.00332859 + 1.64282i
\(585\) 0 0
\(586\) 35.3283 12.8855i 1.45940 0.532294i
\(587\) 45.4714 + 8.01784i 1.87681 + 0.330932i 0.991079 0.133275i \(-0.0425493\pi\)
0.885727 + 0.464206i \(0.153660\pi\)
\(588\) 0 0
\(589\) 2.51375 6.90646i 0.103577 0.284576i
\(590\) −14.3719 8.28470i −0.591683 0.341076i
\(591\) 0 0
\(592\) −5.00436 + 13.8658i −0.205678 + 0.569881i
\(593\) −22.0816 −0.906784 −0.453392 0.891311i \(-0.649786\pi\)
−0.453392 + 0.891311i \(0.649786\pi\)
\(594\) 0 0
\(595\) 1.61432i 0.0661807i
\(596\) 39.8884 + 22.9578i 1.63389 + 0.940389i
\(597\) 0 0
\(598\) 32.3696 56.1533i 1.32369 2.29628i
\(599\) 23.2555 + 8.46431i 0.950194 + 0.345842i 0.770184 0.637822i \(-0.220165\pi\)
0.180010 + 0.983665i \(0.442387\pi\)
\(600\) 0 0
\(601\) 2.55983 14.5175i 0.104418 0.592182i −0.887034 0.461705i \(-0.847238\pi\)
0.991451 0.130477i \(-0.0416509\pi\)
\(602\) −22.5867 + 8.23818i −0.920567 + 0.335763i
\(603\) 0 0
\(604\) 30.4181 25.5939i 1.23770 1.04140i
\(605\) −2.46229 6.76510i −0.100107 0.275040i
\(606\) 0 0
\(607\) −23.2768 + 19.5315i −0.944775 + 0.792761i −0.978410 0.206674i \(-0.933736\pi\)
0.0336346 + 0.999434i \(0.489292\pi\)
\(608\) −16.5602 + 6.09082i −0.671604 + 0.247015i
\(609\) 0 0
\(610\) −2.76326 + 7.60799i −0.111881 + 0.308038i
\(611\) −5.22602 + 3.01724i −0.211422 + 0.122065i
\(612\) 0 0
\(613\) 8.97166 + 5.17979i 0.362362 + 0.209210i 0.670116 0.742256i \(-0.266244\pi\)
−0.307754 + 0.951466i \(0.599578\pi\)
\(614\) −25.0556 + 21.0530i −1.01116 + 0.849631i
\(615\) 0 0
\(616\) −14.3460 + 12.0873i −0.578015 + 0.487012i
\(617\) −2.09885 11.9032i −0.0844965 0.479204i −0.997464 0.0711715i \(-0.977326\pi\)
0.912968 0.408032i \(-0.133785\pi\)
\(618\) 0 0
\(619\) −1.25371 + 1.49411i −0.0503908 + 0.0600535i −0.790651 0.612267i \(-0.790258\pi\)
0.740260 + 0.672320i \(0.234702\pi\)
\(620\) 4.82905 0.858220i 0.193939 0.0344669i
\(621\) 0 0
\(622\) −22.1498 + 26.4334i −0.888127 + 1.05988i
\(623\) −9.65710 8.10327i −0.386904 0.324651i
\(624\) 0 0
\(625\) 1.72350 + 9.77447i 0.0689401 + 0.390979i
\(626\) −31.5490 + 18.2433i −1.26095 + 0.729147i
\(627\) 0 0
\(628\) 0.0132116 + 9.78089i 0.000527202 + 0.390300i
\(629\) −3.15939 1.82408i −0.125973 0.0727307i
\(630\) 0 0
\(631\) −6.64702 11.5130i −0.264614 0.458325i 0.702849 0.711340i \(-0.251911\pi\)
−0.967462 + 0.253015i \(0.918578\pi\)
\(632\) 24.6625 + 4.29716i 0.981023 + 0.170932i
\(633\) 0 0
\(634\) −26.0454 + 0.0175906i −1.03440 + 0.000698610i
\(635\) 2.44868 + 2.91823i 0.0971730 + 0.115806i
\(636\) 0 0
\(637\) −10.4939 28.8319i −0.415785 1.14236i
\(638\) 26.1383 + 4.59068i 1.03482 + 0.181747i
\(639\) 0 0
\(640\) −9.05584 7.52609i −0.357964 0.297495i
\(641\) −4.99251 + 28.3139i −0.197192 + 1.11833i 0.712069 + 0.702109i \(0.247758\pi\)
−0.909262 + 0.416225i \(0.863353\pi\)
\(642\) 0 0
\(643\) −12.8078 + 35.1891i −0.505090 + 1.38772i 0.381157 + 0.924510i \(0.375526\pi\)
−0.886247 + 0.463213i \(0.846697\pi\)
\(644\) 19.9818 7.30336i 0.787393 0.287793i
\(645\) 0 0
\(646\) −0.761176 4.29986i −0.0299481 0.169176i
\(647\) 23.8383 0.937182 0.468591 0.883415i \(-0.344762\pi\)
0.468591 + 0.883415i \(0.344762\pi\)
\(648\) 0 0
\(649\) −47.7068 −1.87266
\(650\) 6.51838 + 36.8221i 0.255672 + 1.44428i
\(651\) 0 0
\(652\) 2.87045 + 7.85348i 0.112416 + 0.307566i
\(653\) 16.8138 46.1955i 0.657974 1.80777i 0.0720526 0.997401i \(-0.477045\pi\)
0.585921 0.810368i \(-0.300733\pi\)
\(654\) 0 0
\(655\) 1.77292 10.0547i 0.0692736 0.392870i
\(656\) 2.18021 12.5630i 0.0851229 0.490501i
\(657\) 0 0
\(658\) −1.95088 0.342634i −0.0760532 0.0133573i
\(659\) 9.01137 + 24.7585i 0.351033 + 0.964456i 0.982039 + 0.188678i \(0.0604202\pi\)
−0.631006 + 0.775778i \(0.717358\pi\)
\(660\) 0 0
\(661\) 0.937603 + 1.11739i 0.0364685 + 0.0434615i 0.783970 0.620798i \(-0.213191\pi\)
−0.747502 + 0.664260i \(0.768747\pi\)
\(662\) 21.8808 0.0147779i 0.850422 0.000574358i
\(663\) 0 0
\(664\) −3.04560 + 17.4795i −0.118192 + 0.678336i
\(665\) −2.54332 4.40516i −0.0986258 0.170825i
\(666\) 0 0
\(667\) −26.0646 15.0484i −1.00923 0.582677i
\(668\) −12.1907 + 0.0164667i −0.471672 + 0.000637115i
\(669\) 0 0
\(670\) −0.926292 + 0.535629i −0.0357858 + 0.0206932i
\(671\) 4.04215 + 22.9242i 0.156046 + 0.884979i
\(672\) 0 0
\(673\) 14.2562 + 11.9623i 0.549534 + 0.461114i 0.874783 0.484514i \(-0.161004\pi\)
−0.325249 + 0.945628i \(0.605448\pi\)
\(674\) −11.0575 + 13.1959i −0.425920 + 0.508289i
\(675\) 0 0
\(676\) 11.3998 + 64.1448i 0.438455 + 2.46711i
\(677\) 2.04257 2.43424i 0.0785022 0.0935553i −0.725364 0.688366i \(-0.758328\pi\)
0.803866 + 0.594810i \(0.202773\pi\)
\(678\) 0 0
\(679\) −2.93499 16.6451i −0.112634 0.638782i
\(680\) 2.22850 1.87764i 0.0854593 0.0720044i
\(681\) 0 0
\(682\) 10.7991 9.07395i 0.413519 0.347460i
\(683\) 7.95770 + 4.59438i 0.304493 + 0.175799i 0.644459 0.764639i \(-0.277082\pi\)
−0.339967 + 0.940437i \(0.610416\pi\)
\(684\) 0 0
\(685\) −19.9118 + 11.4961i −0.760792 + 0.439243i
\(686\) 8.73343 24.0454i 0.333444 0.918059i
\(687\) 0 0
\(688\) −37.6435 21.5981i −1.43515 0.823421i
\(689\) 25.8705 21.7080i 0.985589 0.827008i
\(690\) 0 0
\(691\) −6.14708 16.8890i −0.233846 0.642487i 0.766154 0.642657i \(-0.222168\pi\)
−1.00000 0.000170287i \(0.999946\pi\)
\(692\) 1.70782 + 2.02973i 0.0649217 + 0.0771588i
\(693\) 0 0
\(694\) 31.3184 11.4229i 1.18883 0.433608i
\(695\) 0.860413 4.87964i 0.0326373 0.185095i
\(696\) 0 0
\(697\) 2.96524 + 1.07926i 0.112316 + 0.0408799i
\(698\) 16.1615 28.0363i 0.611723 1.06119i
\(699\) 0 0
\(700\) −6.12277 + 10.6381i −0.231419 + 0.402083i
\(701\) 19.1567i 0.723538i −0.932268 0.361769i \(-0.882173\pi\)
0.932268 0.361769i \(-0.117827\pi\)
\(702\) 0 0
\(703\) −11.4952 −0.433548
\(704\) −33.3721 5.74506i −1.25776 0.216525i
\(705\) 0 0
\(706\) 0.866769 + 0.499649i 0.0326213 + 0.0188045i
\(707\) 3.54070 9.72798i 0.133162 0.365858i
\(708\) 0 0
\(709\) −9.23990 1.62924i −0.347012 0.0611875i −0.00257396 0.999997i \(-0.500819\pi\)
−0.344438 + 0.938809i \(0.611930\pi\)
\(710\) 6.97116 2.54263i 0.261623 0.0954231i
\(711\) 0 0
\(712\) −0.0461075 22.7563i −0.00172795 0.852828i
\(713\) −15.0318 + 5.47115i −0.562947 + 0.204896i
\(714\) 0 0
\(715\) −19.1171 22.7829i −0.714938 0.852031i
\(716\) 14.3556 17.1553i 0.536494 0.641125i
\(717\) 0 0
\(718\) −4.90427 + 13.5027i −0.183026 + 0.503918i
\(719\) −10.7417 18.6051i −0.400596 0.693853i 0.593202 0.805054i \(-0.297864\pi\)
−0.993798 + 0.111201i \(0.964530\pi\)
\(720\) 0 0
\(721\) 12.4487 21.5618i 0.463614 0.803003i
\(722\) 8.43421 + 10.0377i 0.313889 + 0.373566i
\(723\) 0 0
\(724\) 7.30361 + 1.27765i 0.271437 + 0.0474836i
\(725\) 17.1004 3.01526i 0.635092 0.111984i
\(726\) 0 0
\(727\) −22.5451 18.9176i −0.836151 0.701614i 0.120543 0.992708i \(-0.461536\pi\)
−0.956694 + 0.291094i \(0.905981\pi\)
\(728\) −14.9068 + 25.9406i −0.552484 + 0.961424i
\(729\) 0 0
\(730\) −15.8352 13.2691i −0.586087 0.491111i
\(731\) 6.90385 8.22768i 0.255348 0.304312i
\(732\) 0 0
\(733\) 43.1488 7.60829i 1.59374 0.281019i 0.694835 0.719170i \(-0.255478\pi\)
0.898901 + 0.438151i \(0.144366\pi\)
\(734\) 2.33830 1.35213i 0.0863083 0.0499079i
\(735\) 0 0
\(736\) 33.3232 + 19.0894i 1.22831 + 0.703645i
\(737\) −1.53859 + 2.66491i −0.0566746 + 0.0981632i
\(738\) 0 0
\(739\) 21.9574 12.6771i 0.807716 0.466335i −0.0384462 0.999261i \(-0.512241\pi\)
0.846162 + 0.532926i \(0.178907\pi\)
\(740\) −3.84454 6.63821i −0.141328 0.244025i
\(741\) 0 0
\(742\) 11.0851 0.00748664i 0.406946 0.000274843i
\(743\) 3.44991 2.89482i 0.126565 0.106201i −0.577308 0.816526i \(-0.695897\pi\)
0.703873 + 0.710326i \(0.251452\pi\)
\(744\) 0 0
\(745\) −22.5055 + 8.19135i −0.824539 + 0.300108i
\(746\) −8.46209 + 48.1812i −0.309819 + 1.76404i
\(747\) 0 0
\(748\) 2.85562 7.87886i 0.104412 0.288080i
\(749\) 5.94874 + 1.04892i 0.217362 + 0.0383268i
\(750\) 0 0
\(751\) 36.9941 + 13.4647i 1.34993 + 0.491335i 0.912927 0.408124i \(-0.133817\pi\)
0.437006 + 0.899459i \(0.356039\pi\)
\(752\) −1.79611 3.09163i −0.0654974 0.112740i
\(753\) 0 0
\(754\) 41.6774 7.37788i 1.51780 0.268687i
\(755\) 20.6870i 0.752876i
\(756\) 0 0
\(757\) 33.7213i 1.22562i −0.790229 0.612811i \(-0.790039\pi\)
0.790229 0.612811i \(-0.209961\pi\)
\(758\) −6.70368 37.8689i −0.243489 1.37546i
\(759\) 0 0
\(760\) 3.12297 8.63468i 0.113282 0.313213i
\(761\) 34.7776 + 12.6580i 1.26069 + 0.458852i 0.883999 0.467489i \(-0.154841\pi\)
0.376687 + 0.926341i \(0.377063\pi\)
\(762\) 0 0
\(763\) −5.13539 0.905508i −0.185914 0.0327816i
\(764\) −33.9482 12.3042i −1.22820 0.445152i
\(765\) 0 0
\(766\) −8.41606 1.47812i −0.304085 0.0534066i
\(767\) −71.4980 + 26.0231i −2.58164 + 0.939641i
\(768\) 0 0
\(769\) −4.44297 + 3.72810i −0.160218 + 0.134439i −0.719372 0.694625i \(-0.755570\pi\)
0.559154 + 0.829064i \(0.311126\pi\)
\(770\) −0.00659309 9.76205i −0.000237599 0.351800i
\(771\) 0 0
\(772\) 4.44843 + 7.68093i 0.160103 + 0.276443i
\(773\) 36.8149 21.2551i 1.32414 0.764492i 0.339753 0.940515i \(-0.389656\pi\)
0.984386 + 0.176022i \(0.0563231\pi\)
\(774\) 0 0
\(775\) 4.61456 7.99264i 0.165760 0.287104i
\(776\) 19.5642 23.4119i 0.702314 0.840438i
\(777\) 0 0
\(778\) 8.27420 + 14.3090i 0.296644 + 0.513003i
\(779\) 9.79190 1.72658i 0.350831 0.0618610i
\(780\) 0 0
\(781\) 13.7170 16.3473i 0.490833 0.584951i
\(782\) −6.10421 + 7.28470i −0.218286 + 0.260500i
\(783\) 0 0
\(784\) 17.0664 6.26391i 0.609513 0.223711i
\(785\) −3.89904 3.27169i −0.139163 0.116771i
\(786\) 0 0
\(787\) −16.8983 + 2.97963i −0.602359 + 0.106212i −0.466508 0.884517i \(-0.654488\pi\)
−0.135851 + 0.990729i \(0.543377\pi\)
\(788\) −32.1936 5.63178i −1.14685 0.200624i
\(789\) 0 0
\(790\) −9.97390 + 8.38058i −0.354855 + 0.298168i
\(791\) 6.54642 11.3387i 0.232764 0.403159i
\(792\) 0 0
\(793\) 18.5627 + 32.1515i 0.659179 + 1.14173i
\(794\) 3.55060 + 1.28960i 0.126006 + 0.0457662i
\(795\) 0 0
\(796\) −1.40751 1.17781i −0.0498879 0.0417462i
\(797\) 4.53298 + 5.40220i 0.160567 + 0.191356i 0.840329 0.542076i \(-0.182362\pi\)
−0.679763 + 0.733432i \(0.737917\pi\)
\(798\) 0 0
\(799\) 0.831499 0.302641i 0.0294163 0.0107067i
\(800\) −21.8070 + 3.92114i −0.770994 + 0.138633i
\(801\) 0 0
\(802\) −6.02149 16.5092i −0.212626 0.582960i
\(803\) −58.5114 10.3171i −2.06482 0.364084i
\(804\) 0 0
\(805\) −3.78652 + 10.4034i −0.133457 + 0.366670i
\(806\) 11.2349 19.4898i 0.395732 0.686499i
\(807\) 0 0
\(808\) 17.5473 6.42700i 0.617313 0.226101i
\(809\) 34.2649 1.20469 0.602345 0.798236i \(-0.294233\pi\)
0.602345 + 0.798236i \(0.294233\pi\)
\(810\) 0 0
\(811\) 5.06146i 0.177732i −0.996044 0.0888659i \(-0.971676\pi\)
0.996044 0.0888659i \(-0.0283243\pi\)
\(812\) 12.0408 + 6.93012i 0.422551 + 0.243199i
\(813\) 0 0
\(814\) −19.1128 11.0176i −0.669904 0.386166i
\(815\) −4.08885 1.48822i −0.143226 0.0521301i
\(816\) 0 0
\(817\) 5.87673 33.3286i 0.205601 1.16602i
\(818\) 2.49770 + 6.84797i 0.0873300 + 0.239434i
\(819\) 0 0
\(820\) 4.27195 + 5.07717i 0.149183 + 0.177302i
\(821\) −5.19050 14.2608i −0.181150 0.497705i 0.815568 0.578661i \(-0.196425\pi\)
−0.996718 + 0.0809566i \(0.974202\pi\)
\(822\) 0 0
\(823\) 22.8496 19.1731i 0.796487 0.668332i −0.150855 0.988556i \(-0.548203\pi\)
0.947342 + 0.320224i \(0.103758\pi\)
\(824\) 44.2445 7.89396i 1.54133 0.274999i
\(825\) 0 0
\(826\) −23.4740 8.52589i −0.816765 0.296654i
\(827\) 7.24554 4.18322i 0.251952 0.145465i −0.368706 0.929546i \(-0.620199\pi\)
0.620658 + 0.784082i \(0.286866\pi\)
\(828\) 0 0
\(829\) 26.4946 + 15.2967i 0.920196 + 0.531276i 0.883698 0.468058i \(-0.155046\pi\)
0.0364987 + 0.999334i \(0.488380\pi\)
\(830\) −5.93971 7.06897i −0.206170 0.245368i
\(831\) 0 0
\(832\) −53.1485 + 9.59374i −1.84259 + 0.332603i
\(833\) 0.781255 + 4.43072i 0.0270689 + 0.153515i
\(834\) 0 0
\(835\) 4.07776 4.85968i 0.141117 0.168176i
\(836\) −4.62051 25.9988i −0.159804 0.899188i
\(837\) 0 0
\(838\) 3.11099 + 2.60685i 0.107467 + 0.0900522i
\(839\) −5.60536 4.70346i −0.193519 0.162381i 0.540880 0.841100i \(-0.318091\pi\)
−0.734399 + 0.678718i \(0.762536\pi\)
\(840\) 0 0
\(841\) 1.62295 + 9.20422i 0.0559639 + 0.317387i
\(842\) −9.54306 16.5033i −0.328876 0.568742i
\(843\) 0 0
\(844\) 0.0165663 + 12.2644i 0.000570236 + 0.422159i
\(845\) −29.3610 16.9516i −1.01005 0.583151i
\(846\) 0 0
\(847\) −5.41924 9.38639i −0.186207 0.322520i
\(848\) 12.9036 + 15.2938i 0.443111 + 0.525191i
\(849\) 0 0
\(850\) −0.00370334 5.48333i −0.000127023 0.188077i
\(851\) 16.0820 + 19.1657i 0.551283 + 0.656993i
\(852\) 0 0
\(853\) 15.5473 + 42.7160i 0.532331 + 1.46257i 0.856290 + 0.516496i \(0.172764\pi\)
−0.323959 + 0.946071i \(0.605014\pi\)
\(854\) −2.10795 + 12.0022i −0.0721326 + 0.410706i
\(855\) 0 0
\(856\) 5.47109 + 9.43203i 0.186998 + 0.322380i
\(857\) 3.84017 21.7787i 0.131178 0.743946i −0.846268 0.532758i \(-0.821156\pi\)
0.977445 0.211188i \(-0.0677333\pi\)
\(858\) 0 0
\(859\) −10.5655 + 29.0285i −0.360491 + 0.990441i 0.618365 + 0.785891i \(0.287795\pi\)
−0.978856 + 0.204550i \(0.934427\pi\)
\(860\) 21.2120 7.75300i 0.723324 0.264375i
\(861\) 0 0
\(862\) 35.1139 6.21599i 1.19598 0.211717i
\(863\) 27.4661 0.934956 0.467478 0.884005i \(-0.345163\pi\)
0.467478 + 0.884005i \(0.345163\pi\)
\(864\) 0 0
\(865\) −1.38039 −0.0469348
\(866\) 21.6764 3.83723i 0.736594 0.130394i
\(867\) 0 0
\(868\) 6.93531 2.53486i 0.235400 0.0860388i
\(869\) −12.8137 + 35.2053i −0.434675 + 1.19426i
\(870\) 0 0
\(871\) −0.852216 + 4.83316i −0.0288762 + 0.163765i
\(872\) −4.72305 8.14241i −0.159943 0.275737i
\(873\) 0 0
\(874\) −5.18032 + 29.4955i −0.175227 + 0.997701i
\(875\) −4.97337 13.6642i −0.168131 0.461935i
\(876\) 0 0
\(877\) −7.68788 9.16206i −0.259601 0.309381i 0.620463 0.784236i \(-0.286945\pi\)
−0.880064 + 0.474855i \(0.842500\pi\)
\(878\) 0.0304331 + 45.0607i 0.00102707 + 1.52072i
\(879\) 0 0
\(880\) 13.4685 11.3635i 0.454021 0.383064i
\(881\) −18.8243 32.6046i −0.634205 1.09848i −0.986683 0.162655i \(-0.947994\pi\)
0.352478 0.935820i \(-0.385339\pi\)
\(882\) 0 0
\(883\) −19.8345 11.4515i −0.667485 0.385373i 0.127638 0.991821i \(-0.459261\pi\)
−0.795123 + 0.606448i \(0.792594\pi\)
\(884\) −0.0180539 13.3657i −0.000607217 0.449537i
\(885\) 0 0
\(886\) 4.47773 + 7.74358i 0.150432 + 0.260151i
\(887\) −0.995710 5.64695i −0.0334327 0.189606i 0.963518 0.267645i \(-0.0862454\pi\)
−0.996950 + 0.0780387i \(0.975134\pi\)
\(888\) 0 0
\(889\) 4.39338 + 3.68648i 0.147349 + 0.123641i
\(890\) 9.07670 + 7.60581i 0.304252 + 0.254947i
\(891\) 0 0
\(892\) 7.50355 + 42.2212i 0.251237 + 1.41367i
\(893\) 1.79219 2.13585i 0.0599735 0.0714737i
\(894\) 0 0
\(895\) 2.02139 + 11.4639i 0.0675675 + 0.383194i
\(896\) −15.3939 8.79092i −0.514275 0.293684i
\(897\) 0 0
\(898\) −7.60840 9.05491i −0.253895 0.302166i
\(899\) −9.04655 5.22303i −0.301719 0.174198i
\(900\) 0 0
\(901\) −4.28862 + 2.47604i −0.142875 + 0.0824888i
\(902\) 17.9357 + 6.51434i 0.597193 + 0.216904i
\(903\) 0 0
\(904\) 23.2669 4.15122i 0.773847 0.138067i
\(905\) −2.95572 + 2.48014i −0.0982513 + 0.0824426i
\(906\) 0 0
\(907\) −8.42248 23.1406i −0.279664 0.768370i −0.997401 0.0720557i \(-0.977044\pi\)
0.717737 0.696315i \(-0.245178\pi\)
\(908\) 23.9607 + 28.4771i 0.795165 + 0.945045i
\(909\) 0 0
\(910\) −5.33489 14.6267i −0.176850 0.484872i
\(911\) −6.32793 + 35.8875i −0.209654 + 1.18901i 0.680293 + 0.732940i \(0.261853\pi\)
−0.889947 + 0.456065i \(0.849259\pi\)
\(912\) 0 0
\(913\) −24.9517 9.08166i −0.825780 0.300559i
\(914\) 34.5058 + 19.8909i 1.14135 + 0.657932i
\(915\) 0 0
\(916\) 15.3931 + 8.85948i 0.508601 + 0.292726i
\(917\) 15.3708i 0.507590i
\(918\) 0 0
\(919\) 27.8245 0.917845 0.458923 0.888476i \(-0.348236\pi\)
0.458923 + 0.888476i \(0.348236\pi\)
\(920\) −18.7656 + 6.87321i −0.618684 + 0.226603i
\(921\) 0 0
\(922\) −18.4608 + 32.0250i −0.607975 + 1.05469i
\(923\) 11.6405 31.9819i 0.383151 1.05270i
\(924\) 0 0
\(925\) −14.2153 2.50654i −0.467397 0.0824146i
\(926\) −10.7331 29.4270i −0.352711 0.967032i
\(927\) 0 0
\(928\) 4.43818 + 24.6825i 0.145690 + 0.810241i
\(929\) −14.0864 + 5.12703i −0.462160 + 0.168212i −0.562598 0.826731i \(-0.690198\pi\)
0.100438 + 0.994943i \(0.467976\pi\)
\(930\) 0 0
\(931\) 9.11238 + 10.8597i 0.298646 + 0.355913i
\(932\) −28.8276 24.1230i −0.944281 0.790174i
\(933\) 0 0
\(934\) −29.4181 10.6848i −0.962590 0.349618i
\(935\) 2.18052 + 3.77677i 0.0713106 + 0.123514i
\(936\) 0 0
\(937\) −9.57278 + 16.5805i −0.312729 + 0.541663i −0.978952 0.204090i \(-0.934577\pi\)
0.666223 + 0.745753i \(0.267910\pi\)
\(938\) −1.23332 + 1.03629i −0.0402692 + 0.0338362i
\(939\) 0 0
\(940\) 1.83281 + 0.320621i 0.0597796 + 0.0104575i
\(941\) −36.4053 + 6.41923i −1.18678 + 0.209261i −0.731975 0.681331i \(-0.761401\pi\)
−0.454803 + 0.890592i \(0.650290\pi\)
\(942\) 0 0
\(943\) −16.5778 13.9104i −0.539847 0.452985i
\(944\) −15.5334 42.3216i −0.505569 1.37745i
\(945\) 0 0
\(946\) 41.7151 49.7823i 1.35627 1.61856i
\(947\) 16.0406 19.1164i 0.521248 0.621199i −0.439627 0.898180i \(-0.644890\pi\)
0.960875 + 0.276981i \(0.0893340\pi\)
\(948\) 0 0
\(949\) −93.3185 + 16.4546i −3.02925 + 0.534138i
\(950\) −8.64896 14.9571i −0.280609 0.485273i
\(951\) 0 0
\(952\) 2.81317 3.36643i 0.0911753 0.109107i
\(953\) 7.31014 12.6615i 0.236799 0.410147i −0.722995 0.690853i \(-0.757235\pi\)
0.959794 + 0.280706i \(0.0905685\pi\)
\(954\) 0 0
\(955\) 16.2733 9.39537i 0.526590 0.304027i
\(956\) −20.5869 35.5465i −0.665827 1.14966i
\(957\) 0 0
\(958\) 0.0113577 + 16.8167i 0.000366949 + 0.543322i
\(959\) −26.5164 + 22.2499i −0.856258 + 0.718486i
\(960\) 0 0
\(961\) 23.9132 8.70369i 0.771393 0.280764i
\(962\) −34.6542 6.08633i −1.11729 0.196231i
\(963\) 0 0
\(964\) −25.9029 9.38828i −0.834276 0.302376i
\(965\) −4.54883 0.802081i −0.146432 0.0258199i
\(966\) 0 0
\(967\) 48.8192 + 17.7687i 1.56992 + 0.571404i 0.972981 0.230884i \(-0.0741619\pi\)
0.596937 + 0.802288i \(0.296384\pi\)
\(968\) 6.65433 18.3985i 0.213878 0.591351i
\(969\) 0 0
\(970\) 2.76759 + 15.6340i 0.0888619 + 0.501978i
\(971\) 20.4952i 0.657724i 0.944378 + 0.328862i \(0.106665\pi\)
−0.944378 + 0.328862i \(0.893335\pi\)
\(972\) 0 0
\(973\) 7.45961i 0.239144i
\(974\) −30.8011 + 5.45252i −0.986932 + 0.174710i
\(975\) 0 0
\(976\) −19.0203 + 11.0500i −0.608826 + 0.353702i
\(977\) 7.72505 + 2.81169i 0.247146 + 0.0899539i 0.462623 0.886555i \(-0.346908\pi\)
−0.215477 + 0.976509i \(0.569131\pi\)
\(978\) 0 0
\(979\) 33.5386 + 5.91376i 1.07190 + 0.189004i
\(980\) −3.22363 + 8.89422i −0.102975 + 0.284116i
\(981\) 0 0
\(982\) 1.82621 10.3980i 0.0582767 0.331814i
\(983\) 22.5289 8.19984i 0.718559 0.261534i 0.0432453 0.999064i \(-0.486230\pi\)
0.675314 + 0.737530i \(0.264008\pi\)
\(984\) 0 0
\(985\) 13.0285 10.9322i 0.415123 0.348330i
\(986\) −6.20636 + 0.00419165i −0.197651 + 0.000133489i
\(987\) 0 0
\(988\) −21.1066 36.4439i −0.671491 1.15944i
\(989\) −63.7900 + 36.8292i −2.02840 + 1.17110i
\(990\) 0 0
\(991\) 8.43544 14.6106i 0.267960 0.464121i −0.700375 0.713776i \(-0.746984\pi\)
0.968335 + 0.249654i \(0.0803170\pi\)
\(992\) 11.5659 + 6.62558i 0.367217 + 0.210362i
\(993\) 0 0
\(994\) 9.67090 5.59221i 0.306742 0.177374i
\(995\) 0.940553 0.165845i 0.0298175 0.00525763i
\(996\) 0 0
\(997\) 21.3234 25.4122i 0.675317 0.804812i −0.314180 0.949363i \(-0.601730\pi\)
0.989497 + 0.144552i \(0.0461740\pi\)
\(998\) 11.2218 + 9.40333i 0.355221 + 0.297657i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.613.3 204
3.2 odd 2 216.2.t.a.205.32 yes 204
8.5 even 2 inner 648.2.t.a.613.17 204
12.11 even 2 864.2.bf.a.529.20 204
24.5 odd 2 216.2.t.a.205.18 yes 204
24.11 even 2 864.2.bf.a.529.15 204
27.5 odd 18 216.2.t.a.157.18 204
27.22 even 9 inner 648.2.t.a.37.17 204
108.59 even 18 864.2.bf.a.49.15 204
216.5 odd 18 216.2.t.a.157.32 yes 204
216.59 even 18 864.2.bf.a.49.20 204
216.157 even 18 inner 648.2.t.a.37.3 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.18 204 27.5 odd 18
216.2.t.a.157.32 yes 204 216.5 odd 18
216.2.t.a.205.18 yes 204 24.5 odd 2
216.2.t.a.205.32 yes 204 3.2 odd 2
648.2.t.a.37.3 204 216.157 even 18 inner
648.2.t.a.37.17 204 27.22 even 9 inner
648.2.t.a.613.3 204 1.1 even 1 trivial
648.2.t.a.613.17 204 8.5 even 2 inner
864.2.bf.a.49.15 204 108.59 even 18
864.2.bf.a.49.20 204 216.59 even 18
864.2.bf.a.529.15 204 24.11 even 2
864.2.bf.a.529.20 204 12.11 even 2