Properties

Label 648.2.t.a.613.23
Level $648$
Weight $2$
Character 648.613
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 613.23
Character \(\chi\) \(=\) 648.613
Dual form 648.2.t.a.37.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.654194 - 1.25381i) q^{2} +(-1.14406 - 1.64047i) q^{4} +(-1.15428 + 3.17134i) q^{5} +(0.593321 - 3.36489i) q^{7} +(-2.80526 + 0.361244i) q^{8} +(3.22113 + 3.52191i) q^{10} +(-0.197048 - 0.541384i) q^{11} +(-4.30199 - 5.12691i) q^{13} +(-3.83077 - 2.94520i) q^{14} +(-1.38226 + 3.75358i) q^{16} +(-1.15893 - 2.00733i) q^{17} +(0.353289 + 0.203971i) q^{19} +(6.52304 - 1.73466i) q^{20} +(-0.807698 - 0.107111i) q^{22} +(-1.15186 - 6.53250i) q^{23} +(-4.89486 - 4.10727i) q^{25} +(-9.24249 + 2.03986i) q^{26} +(-6.19878 + 2.87631i) q^{28} +(-2.24644 + 2.67721i) q^{29} +(-0.382945 - 2.17179i) q^{31} +(3.80200 + 4.18865i) q^{32} +(-3.27497 + 0.139892i) q^{34} +(9.98637 + 5.76564i) q^{35} +(1.05249 - 0.607656i) q^{37} +(0.486860 - 0.309519i) q^{38} +(2.09242 - 9.31343i) q^{40} +(-5.09057 + 4.27150i) q^{41} +(-0.442145 - 1.21478i) q^{43} +(-0.662688 + 0.942626i) q^{44} +(-8.94402 - 2.82932i) q^{46} +(0.547022 - 3.10232i) q^{47} +(-4.39261 - 1.59878i) q^{49} +(-8.35191 + 3.45024i) q^{50} +(-3.48879 + 12.9228i) q^{52} -9.35460i q^{53} +1.94436 q^{55} +(-0.448874 + 9.65374i) q^{56} +(1.88709 + 4.56802i) q^{58} +(-3.00302 + 8.25072i) q^{59} +(4.67459 + 0.824257i) q^{61} +(-2.97352 - 0.940634i) q^{62} +(7.73901 - 2.02677i) q^{64} +(21.2249 - 7.72523i) q^{65} +(9.67062 + 11.5250i) q^{67} +(-1.96707 + 4.19769i) q^{68} +(13.7620 - 8.74913i) q^{70} +(3.92323 + 6.79524i) q^{71} +(0.641809 - 1.11165i) q^{73} +(-0.0733489 - 1.71715i) q^{74} +(-0.0695752 - 0.812914i) q^{76} +(-1.93861 + 0.341829i) q^{77} +(3.84081 + 3.22282i) q^{79} +(-10.3084 - 8.71628i) q^{80} +(2.02541 + 9.17698i) q^{82} +(6.67152 - 7.95081i) q^{83} +(7.70366 - 1.35836i) q^{85} +(-1.81235 - 0.240341i) q^{86} +(0.748343 + 1.44754i) q^{88} +(2.86501 - 4.96234i) q^{89} +(-19.8040 + 11.4338i) q^{91} +(-9.39855 + 9.36314i) q^{92} +(-3.53185 - 2.71538i) q^{94} +(-1.05466 + 0.884962i) q^{95} +(10.5548 - 3.84165i) q^{97} +(-4.87818 + 4.46157i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.654194 1.25381i 0.462585 0.886575i
\(3\) 0 0
\(4\) −1.14406 1.64047i −0.572030 0.820233i
\(5\) −1.15428 + 3.17134i −0.516208 + 1.41827i 0.358460 + 0.933545i \(0.383302\pi\)
−0.874667 + 0.484723i \(0.838920\pi\)
\(6\) 0 0
\(7\) 0.593321 3.36489i 0.224254 1.27181i −0.639851 0.768499i \(-0.721004\pi\)
0.864106 0.503311i \(-0.167885\pi\)
\(8\) −2.80526 + 0.361244i −0.991810 + 0.127719i
\(9\) 0 0
\(10\) 3.22113 + 3.52191i 1.01861 + 1.11373i
\(11\) −0.197048 0.541384i −0.0594121 0.163233i 0.906435 0.422344i \(-0.138793\pi\)
−0.965848 + 0.259111i \(0.916570\pi\)
\(12\) 0 0
\(13\) −4.30199 5.12691i −1.19316 1.42195i −0.881779 0.471664i \(-0.843654\pi\)
−0.311379 0.950286i \(-0.600791\pi\)
\(14\) −3.83077 2.94520i −1.02382 0.787139i
\(15\) 0 0
\(16\) −1.38226 + 3.75358i −0.345564 + 0.938395i
\(17\) −1.15893 2.00733i −0.281082 0.486849i 0.690569 0.723266i \(-0.257360\pi\)
−0.971652 + 0.236417i \(0.924027\pi\)
\(18\) 0 0
\(19\) 0.353289 + 0.203971i 0.0810500 + 0.0467943i 0.539977 0.841680i \(-0.318433\pi\)
−0.458927 + 0.888474i \(0.651766\pi\)
\(20\) 6.52304 1.73466i 1.45860 0.387881i
\(21\) 0 0
\(22\) −0.807698 0.107111i −0.172202 0.0228361i
\(23\) −1.15186 6.53250i −0.240178 1.36212i −0.831429 0.555631i \(-0.812477\pi\)
0.591250 0.806488i \(-0.298635\pi\)
\(24\) 0 0
\(25\) −4.89486 4.10727i −0.978971 0.821454i
\(26\) −9.24249 + 2.03986i −1.81260 + 0.400050i
\(27\) 0 0
\(28\) −6.19878 + 2.87631i −1.17146 + 0.543572i
\(29\) −2.24644 + 2.67721i −0.417154 + 0.497145i −0.933171 0.359434i \(-0.882970\pi\)
0.516016 + 0.856579i \(0.327414\pi\)
\(30\) 0 0
\(31\) −0.382945 2.17179i −0.0687790 0.390065i −0.999692 0.0248236i \(-0.992098\pi\)
0.930913 0.365241i \(-0.119014\pi\)
\(32\) 3.80200 + 4.18865i 0.672104 + 0.740456i
\(33\) 0 0
\(34\) −3.27497 + 0.139892i −0.561653 + 0.0239913i
\(35\) 9.98637 + 5.76564i 1.68801 + 0.974570i
\(36\) 0 0
\(37\) 1.05249 0.607656i 0.173028 0.0998980i −0.410985 0.911642i \(-0.634815\pi\)
0.584013 + 0.811744i \(0.301482\pi\)
\(38\) 0.486860 0.309519i 0.0789792 0.0502106i
\(39\) 0 0
\(40\) 2.09242 9.31343i 0.330840 1.47258i
\(41\) −5.09057 + 4.27150i −0.795014 + 0.667096i −0.946981 0.321290i \(-0.895884\pi\)
0.151967 + 0.988386i \(0.451439\pi\)
\(42\) 0 0
\(43\) −0.442145 1.21478i −0.0674265 0.185253i 0.901403 0.432981i \(-0.142538\pi\)
−0.968830 + 0.247728i \(0.920316\pi\)
\(44\) −0.662688 + 0.942626i −0.0999040 + 0.142106i
\(45\) 0 0
\(46\) −8.94402 2.82932i −1.31872 0.417160i
\(47\) 0.547022 3.10232i 0.0797914 0.452520i −0.918568 0.395263i \(-0.870654\pi\)
0.998359 0.0572567i \(-0.0182354\pi\)
\(48\) 0 0
\(49\) −4.39261 1.59878i −0.627516 0.228397i
\(50\) −8.35191 + 3.45024i −1.18114 + 0.487938i
\(51\) 0 0
\(52\) −3.48879 + 12.9228i −0.483809 + 1.79206i
\(53\) 9.35460i 1.28495i −0.766305 0.642477i \(-0.777907\pi\)
0.766305 0.642477i \(-0.222093\pi\)
\(54\) 0 0
\(55\) 1.94436 0.262178
\(56\) −0.448874 + 9.65374i −0.0599833 + 1.29004i
\(57\) 0 0
\(58\) 1.88709 + 4.56802i 0.247787 + 0.599810i
\(59\) −3.00302 + 8.25072i −0.390959 + 1.07415i 0.575605 + 0.817728i \(0.304767\pi\)
−0.966564 + 0.256424i \(0.917456\pi\)
\(60\) 0 0
\(61\) 4.67459 + 0.824257i 0.598520 + 0.105535i 0.464697 0.885470i \(-0.346163\pi\)
0.133824 + 0.991005i \(0.457274\pi\)
\(62\) −2.97352 0.940634i −0.377638 0.119461i
\(63\) 0 0
\(64\) 7.73901 2.02677i 0.967376 0.253346i
\(65\) 21.2249 7.72523i 2.63262 0.958196i
\(66\) 0 0
\(67\) 9.67062 + 11.5250i 1.18145 + 1.40800i 0.892731 + 0.450589i \(0.148786\pi\)
0.288723 + 0.957413i \(0.406769\pi\)
\(68\) −1.96707 + 4.19769i −0.238542 + 0.509045i
\(69\) 0 0
\(70\) 13.7620 8.74913i 1.64488 1.04572i
\(71\) 3.92323 + 6.79524i 0.465602 + 0.806446i 0.999228 0.0392740i \(-0.0125045\pi\)
−0.533627 + 0.845720i \(0.679171\pi\)
\(72\) 0 0
\(73\) 0.641809 1.11165i 0.0751180 0.130108i −0.826020 0.563641i \(-0.809400\pi\)
0.901138 + 0.433533i \(0.142733\pi\)
\(74\) −0.0733489 1.71715i −0.00852664 0.199614i
\(75\) 0 0
\(76\) −0.0695752 0.812914i −0.00798082 0.0932476i
\(77\) −1.93861 + 0.341829i −0.220925 + 0.0389551i
\(78\) 0 0
\(79\) 3.84081 + 3.22282i 0.432125 + 0.362596i 0.832753 0.553645i \(-0.186764\pi\)
−0.400628 + 0.916241i \(0.631208\pi\)
\(80\) −10.3084 8.71628i −1.15251 0.974510i
\(81\) 0 0
\(82\) 2.02541 + 9.17698i 0.223669 + 1.01343i
\(83\) 6.67152 7.95081i 0.732295 0.872715i −0.263468 0.964668i \(-0.584866\pi\)
0.995763 + 0.0919529i \(0.0293109\pi\)
\(84\) 0 0
\(85\) 7.70366 1.35836i 0.835580 0.147335i
\(86\) −1.81235 0.240341i −0.195431 0.0259166i
\(87\) 0 0
\(88\) 0.748343 + 1.44754i 0.0797736 + 0.154309i
\(89\) 2.86501 4.96234i 0.303690 0.526007i −0.673278 0.739389i \(-0.735114\pi\)
0.976969 + 0.213382i \(0.0684478\pi\)
\(90\) 0 0
\(91\) −19.8040 + 11.4338i −2.07602 + 1.19859i
\(92\) −9.39855 + 9.36314i −0.979866 + 0.976175i
\(93\) 0 0
\(94\) −3.53185 2.71538i −0.364282 0.280070i
\(95\) −1.05466 + 0.884962i −0.108205 + 0.0907952i
\(96\) 0 0
\(97\) 10.5548 3.84165i 1.07168 0.390061i 0.254877 0.966974i \(-0.417965\pi\)
0.816806 + 0.576913i \(0.195743\pi\)
\(98\) −4.87818 + 4.46157i −0.492771 + 0.450687i
\(99\) 0 0
\(100\) −1.13784 + 12.7288i −0.113784 + 1.27288i
\(101\) −12.2411 2.15844i −1.21804 0.214773i −0.472557 0.881300i \(-0.656669\pi\)
−0.745481 + 0.666527i \(0.767780\pi\)
\(102\) 0 0
\(103\) −14.8537 5.40632i −1.46358 0.532701i −0.517233 0.855844i \(-0.673038\pi\)
−0.946350 + 0.323144i \(0.895260\pi\)
\(104\) 13.9203 + 12.8283i 1.36500 + 1.25792i
\(105\) 0 0
\(106\) −11.7289 6.11973i −1.13921 0.594401i
\(107\) 2.44491i 0.236359i −0.992992 0.118179i \(-0.962294\pi\)
0.992992 0.118179i \(-0.0377058\pi\)
\(108\) 0 0
\(109\) 16.2522i 1.55668i −0.627843 0.778340i \(-0.716062\pi\)
0.627843 0.778340i \(-0.283938\pi\)
\(110\) 1.27199 2.43785i 0.121280 0.232440i
\(111\) 0 0
\(112\) 11.8103 + 6.87822i 1.11597 + 0.649931i
\(113\) 11.4376 + 4.16294i 1.07596 + 0.391617i 0.818402 0.574646i \(-0.194860\pi\)
0.257556 + 0.966263i \(0.417083\pi\)
\(114\) 0 0
\(115\) 22.0464 + 3.88737i 2.05583 + 0.362499i
\(116\) 6.96193 + 0.622331i 0.646399 + 0.0577820i
\(117\) 0 0
\(118\) 8.38025 + 9.16278i 0.771464 + 0.843502i
\(119\) −7.44207 + 2.70869i −0.682213 + 0.248305i
\(120\) 0 0
\(121\) 8.17222 6.85731i 0.742929 0.623392i
\(122\) 4.09155 5.32181i 0.370432 0.481814i
\(123\) 0 0
\(124\) −3.12463 + 3.11286i −0.280600 + 0.279543i
\(125\) 4.06195 2.34517i 0.363312 0.209758i
\(126\) 0 0
\(127\) −4.79341 + 8.30243i −0.425346 + 0.736722i −0.996453 0.0841546i \(-0.973181\pi\)
0.571106 + 0.820876i \(0.306514\pi\)
\(128\) 2.52164 11.0291i 0.222883 0.974845i
\(129\) 0 0
\(130\) 4.19927 31.6657i 0.368300 2.77726i
\(131\) 0.406480 0.0716734i 0.0355143 0.00626213i −0.155863 0.987779i \(-0.549816\pi\)
0.191377 + 0.981517i \(0.438705\pi\)
\(132\) 0 0
\(133\) 0.895956 1.06776i 0.0776892 0.0925864i
\(134\) 20.7766 4.58549i 1.79482 0.396126i
\(135\) 0 0
\(136\) 3.97625 + 5.21243i 0.340960 + 0.446962i
\(137\) −12.0727 10.1302i −1.03144 0.865480i −0.0404177 0.999183i \(-0.512869\pi\)
−0.991021 + 0.133703i \(0.957313\pi\)
\(138\) 0 0
\(139\) −2.17442 + 0.383409i −0.184432 + 0.0325204i −0.265101 0.964221i \(-0.585405\pi\)
0.0806691 + 0.996741i \(0.474294\pi\)
\(140\) −1.96667 22.9785i −0.166214 1.94204i
\(141\) 0 0
\(142\) 11.0865 0.473565i 0.930356 0.0397407i
\(143\) −1.92793 + 3.33928i −0.161222 + 0.279244i
\(144\) 0 0
\(145\) −5.89733 10.2145i −0.489747 0.848267i
\(146\) −0.973920 1.53194i −0.0806022 0.126784i
\(147\) 0 0
\(148\) −2.20095 1.03138i −0.180917 0.0847790i
\(149\) −4.40044 5.24424i −0.360498 0.429625i 0.555060 0.831810i \(-0.312695\pi\)
−0.915558 + 0.402186i \(0.868251\pi\)
\(150\) 0 0
\(151\) 11.0866 4.03519i 0.902213 0.328379i 0.151074 0.988522i \(-0.451727\pi\)
0.751139 + 0.660144i \(0.229505\pi\)
\(152\) −1.06475 0.444570i −0.0863628 0.0360594i
\(153\) 0 0
\(154\) −0.839641 + 2.65427i −0.0676602 + 0.213887i
\(155\) 7.32952 + 1.29239i 0.588721 + 0.103807i
\(156\) 0 0
\(157\) −4.12184 + 11.3247i −0.328959 + 0.903808i 0.659417 + 0.751778i \(0.270803\pi\)
−0.988376 + 0.152030i \(0.951419\pi\)
\(158\) 6.55343 2.70728i 0.521363 0.215380i
\(159\) 0 0
\(160\) −17.6722 + 7.22258i −1.39711 + 0.570995i
\(161\) −22.6646 −1.78622
\(162\) 0 0
\(163\) 13.3972i 1.04935i −0.851303 0.524675i \(-0.824187\pi\)
0.851303 0.524675i \(-0.175813\pi\)
\(164\) 12.8312 + 3.46407i 1.00195 + 0.270498i
\(165\) 0 0
\(166\) −5.60430 13.5662i −0.434978 1.05294i
\(167\) 6.36473 + 2.31657i 0.492517 + 0.179262i 0.576325 0.817220i \(-0.304486\pi\)
−0.0838081 + 0.996482i \(0.526708\pi\)
\(168\) 0 0
\(169\) −5.52068 + 31.3093i −0.424668 + 2.40841i
\(170\) 3.33657 10.5475i 0.255903 0.808959i
\(171\) 0 0
\(172\) −1.48697 + 2.11511i −0.113380 + 0.161275i
\(173\) 0.576454 + 1.58380i 0.0438270 + 0.120414i 0.959675 0.281111i \(-0.0907028\pi\)
−0.915848 + 0.401524i \(0.868481\pi\)
\(174\) 0 0
\(175\) −16.7247 + 14.0337i −1.26427 + 1.06085i
\(176\) 2.30450 + 0.00869789i 0.173708 + 0.000655628i
\(177\) 0 0
\(178\) −4.34754 6.83850i −0.325862 0.512568i
\(179\) 10.3190 5.95768i 0.771279 0.445298i −0.0620517 0.998073i \(-0.519764\pi\)
0.833331 + 0.552775i \(0.186431\pi\)
\(180\) 0 0
\(181\) −14.3027 8.25769i −1.06311 0.613789i −0.136822 0.990596i \(-0.543689\pi\)
−0.926292 + 0.376806i \(0.877022\pi\)
\(182\) 1.38015 + 32.3103i 0.102304 + 2.39500i
\(183\) 0 0
\(184\) 5.59109 + 17.9093i 0.412180 + 1.32029i
\(185\) 0.712223 + 4.03922i 0.0523636 + 0.296969i
\(186\) 0 0
\(187\) −0.858372 + 1.02297i −0.0627703 + 0.0748068i
\(188\) −5.71507 + 2.65186i −0.416815 + 0.193407i
\(189\) 0 0
\(190\) 0.419620 + 1.90127i 0.0304424 + 0.137933i
\(191\) 10.1267 + 8.49734i 0.732745 + 0.614846i 0.930878 0.365329i \(-0.119044\pi\)
−0.198134 + 0.980175i \(0.563488\pi\)
\(192\) 0 0
\(193\) −0.0307325 0.174293i −0.00221218 0.0125459i 0.983682 0.179918i \(-0.0575831\pi\)
−0.985894 + 0.167372i \(0.946472\pi\)
\(194\) 2.08824 15.7469i 0.149927 1.13056i
\(195\) 0 0
\(196\) 2.40266 + 9.03503i 0.171619 + 0.645359i
\(197\) −0.841221 0.485679i −0.0599345 0.0346032i 0.469733 0.882808i \(-0.344350\pi\)
−0.529668 + 0.848205i \(0.677683\pi\)
\(198\) 0 0
\(199\) 2.04926 + 3.54942i 0.145268 + 0.251612i 0.929473 0.368890i \(-0.120262\pi\)
−0.784205 + 0.620502i \(0.786929\pi\)
\(200\) 15.2151 + 9.75374i 1.07587 + 0.689693i
\(201\) 0 0
\(202\) −10.7143 + 13.9360i −0.753858 + 0.980530i
\(203\) 7.67565 + 9.14748i 0.538725 + 0.642027i
\(204\) 0 0
\(205\) −7.67047 21.0745i −0.535729 1.47190i
\(206\) −16.4957 + 15.0869i −1.14931 + 1.05116i
\(207\) 0 0
\(208\) 25.1907 9.06115i 1.74666 0.628278i
\(209\) 0.0408121 0.231457i 0.00282303 0.0160102i
\(210\) 0 0
\(211\) −1.28341 + 3.52613i −0.0883534 + 0.242749i −0.975998 0.217781i \(-0.930118\pi\)
0.887644 + 0.460530i \(0.152340\pi\)
\(212\) −15.3459 + 10.7022i −1.05396 + 0.735031i
\(213\) 0 0
\(214\) −3.06545 1.59945i −0.209550 0.109336i
\(215\) 4.36285 0.297544
\(216\) 0 0
\(217\) −7.53504 −0.511512
\(218\) −20.3771 10.6321i −1.38011 0.720097i
\(219\) 0 0
\(220\) −2.22447 3.18966i −0.149973 0.215047i
\(221\) −5.30569 + 14.5773i −0.356899 + 0.980572i
\(222\) 0 0
\(223\) 0.680991 3.86209i 0.0456025 0.258625i −0.953480 0.301457i \(-0.902527\pi\)
0.999082 + 0.0428323i \(0.0136381\pi\)
\(224\) 16.3502 10.3081i 1.09244 0.688738i
\(225\) 0 0
\(226\) 12.7019 11.6171i 0.844920 0.772761i
\(227\) −4.04735 11.1200i −0.268632 0.738061i −0.998514 0.0544879i \(-0.982647\pi\)
0.729882 0.683573i \(-0.239575\pi\)
\(228\) 0 0
\(229\) 6.81207 + 8.11831i 0.450154 + 0.536473i 0.942624 0.333857i \(-0.108350\pi\)
−0.492470 + 0.870330i \(0.663906\pi\)
\(230\) 19.2966 25.0988i 1.27238 1.65496i
\(231\) 0 0
\(232\) 5.33474 8.32179i 0.350243 0.546352i
\(233\) 0.565006 + 0.978619i 0.0370148 + 0.0641115i 0.883939 0.467602i \(-0.154882\pi\)
−0.846925 + 0.531713i \(0.821548\pi\)
\(234\) 0 0
\(235\) 9.20711 + 5.31572i 0.600605 + 0.346760i
\(236\) 16.9707 4.51296i 1.10470 0.293769i
\(237\) 0 0
\(238\) −1.47239 + 11.1029i −0.0954406 + 0.719695i
\(239\) −1.00787 5.71591i −0.0651936 0.369731i −0.999898 0.0143045i \(-0.995447\pi\)
0.934704 0.355427i \(-0.115665\pi\)
\(240\) 0 0
\(241\) 22.5974 + 18.9615i 1.45563 + 1.22142i 0.928342 + 0.371728i \(0.121235\pi\)
0.527286 + 0.849688i \(0.323210\pi\)
\(242\) −3.25151 14.7324i −0.209015 0.947034i
\(243\) 0 0
\(244\) −3.99585 8.61151i −0.255808 0.551295i
\(245\) 10.1406 12.0851i 0.647857 0.772086i
\(246\) 0 0
\(247\) −0.474102 2.68876i −0.0301664 0.171082i
\(248\) 1.85881 + 5.95410i 0.118034 + 0.378086i
\(249\) 0 0
\(250\) −0.283080 6.62709i −0.0179036 0.419134i
\(251\) −5.20730 3.00644i −0.328682 0.189765i 0.326574 0.945172i \(-0.394106\pi\)
−0.655256 + 0.755407i \(0.727439\pi\)
\(252\) 0 0
\(253\) −3.30962 + 1.91081i −0.208074 + 0.120132i
\(254\) 7.27381 + 11.4414i 0.456400 + 0.717898i
\(255\) 0 0
\(256\) −12.1787 10.3768i −0.761171 0.648552i
\(257\) −19.8936 + 16.6927i −1.24093 + 1.04126i −0.243480 + 0.969906i \(0.578289\pi\)
−0.997451 + 0.0713589i \(0.977266\pi\)
\(258\) 0 0
\(259\) −1.42023 3.90205i −0.0882489 0.242462i
\(260\) −36.9555 25.9806i −2.29188 1.61125i
\(261\) 0 0
\(262\) 0.176052 0.556535i 0.0108766 0.0343829i
\(263\) 2.41565 13.6998i 0.148956 0.844769i −0.815150 0.579250i \(-0.803346\pi\)
0.964106 0.265519i \(-0.0855433\pi\)
\(264\) 0 0
\(265\) 29.6667 + 10.7978i 1.82241 + 0.663303i
\(266\) −0.752633 1.82188i −0.0461469 0.111706i
\(267\) 0 0
\(268\) 7.84260 29.0496i 0.479063 1.77449i
\(269\) 3.89404i 0.237424i −0.992929 0.118712i \(-0.962123\pi\)
0.992929 0.118712i \(-0.0378765\pi\)
\(270\) 0 0
\(271\) 27.1005 1.64624 0.823119 0.567869i \(-0.192232\pi\)
0.823119 + 0.567869i \(0.192232\pi\)
\(272\) 9.13662 1.57550i 0.553989 0.0955287i
\(273\) 0 0
\(274\) −20.5992 + 8.50969i −1.24444 + 0.514089i
\(275\) −1.25909 + 3.45933i −0.0759261 + 0.208605i
\(276\) 0 0
\(277\) 7.05421 + 1.24385i 0.423847 + 0.0747356i 0.381503 0.924368i \(-0.375407\pi\)
0.0423435 + 0.999103i \(0.486518\pi\)
\(278\) −0.941775 + 2.97713i −0.0564839 + 0.178556i
\(279\) 0 0
\(280\) −30.0972 12.5666i −1.79865 0.750998i
\(281\) 0.728892 0.265295i 0.0434820 0.0158262i −0.320188 0.947354i \(-0.603746\pi\)
0.363670 + 0.931528i \(0.381524\pi\)
\(282\) 0 0
\(283\) −0.982704 1.17114i −0.0584157 0.0696171i 0.736045 0.676932i \(-0.236691\pi\)
−0.794461 + 0.607315i \(0.792247\pi\)
\(284\) 6.65895 14.2101i 0.395136 0.843213i
\(285\) 0 0
\(286\) 2.92556 + 4.60179i 0.172992 + 0.272109i
\(287\) 11.3528 + 19.6636i 0.670134 + 1.16071i
\(288\) 0 0
\(289\) 5.81375 10.0697i 0.341985 0.592336i
\(290\) −16.6650 + 0.711855i −0.978601 + 0.0418016i
\(291\) 0 0
\(292\) −2.55788 + 0.218923i −0.149689 + 0.0128115i
\(293\) −15.6621 + 2.76164i −0.914987 + 0.161337i −0.611267 0.791424i \(-0.709340\pi\)
−0.303720 + 0.952761i \(0.598229\pi\)
\(294\) 0 0
\(295\) −22.6996 19.0472i −1.32162 1.10897i
\(296\) −2.73300 + 2.08484i −0.158853 + 0.121179i
\(297\) 0 0
\(298\) −9.45399 + 2.08654i −0.547655 + 0.120870i
\(299\) −28.5363 + 34.0082i −1.65029 + 1.96674i
\(300\) 0 0
\(301\) −4.34995 + 0.767013i −0.250727 + 0.0442099i
\(302\) 2.19344 16.5402i 0.126218 0.951783i
\(303\) 0 0
\(304\) −1.25396 + 1.04416i −0.0719195 + 0.0598865i
\(305\) −8.00977 + 13.8733i −0.458638 + 0.794385i
\(306\) 0 0
\(307\) −0.370582 + 0.213955i −0.0211502 + 0.0122111i −0.510538 0.859855i \(-0.670554\pi\)
0.489388 + 0.872066i \(0.337220\pi\)
\(308\) 2.77865 + 2.78915i 0.158328 + 0.158927i
\(309\) 0 0
\(310\) 6.41534 8.34432i 0.364367 0.473925i
\(311\) −8.46179 + 7.10028i −0.479824 + 0.402620i −0.850363 0.526197i \(-0.823617\pi\)
0.370539 + 0.928817i \(0.379173\pi\)
\(312\) 0 0
\(313\) −26.1193 + 9.50664i −1.47635 + 0.537347i −0.949817 0.312807i \(-0.898731\pi\)
−0.526533 + 0.850155i \(0.676508\pi\)
\(314\) 11.5025 + 12.5765i 0.649121 + 0.709735i
\(315\) 0 0
\(316\) 0.892817 9.98782i 0.0502249 0.561859i
\(317\) −3.46040 0.610163i −0.194356 0.0342701i 0.0756229 0.997136i \(-0.475905\pi\)
−0.269979 + 0.962866i \(0.587017\pi\)
\(318\) 0 0
\(319\) 1.89205 + 0.688651i 0.105935 + 0.0385571i
\(320\) −2.50535 + 26.8825i −0.140053 + 1.50278i
\(321\) 0 0
\(322\) −14.8270 + 28.4170i −0.826278 + 1.58362i
\(323\) 0.945557i 0.0526122i
\(324\) 0 0
\(325\) 42.7649i 2.37217i
\(326\) −16.7975 8.76438i −0.930327 0.485414i
\(327\) 0 0
\(328\) 12.7373 13.8216i 0.703302 0.763171i
\(329\) −10.1144 3.68134i −0.557625 0.202959i
\(330\) 0 0
\(331\) −17.1533 3.02459i −0.942832 0.166247i −0.318956 0.947770i \(-0.603332\pi\)
−0.623876 + 0.781523i \(0.714443\pi\)
\(332\) −20.6757 1.84821i −1.13472 0.101434i
\(333\) 0 0
\(334\) 7.06830 6.46465i 0.386760 0.353730i
\(335\) −47.7123 + 17.3659i −2.60680 + 0.948798i
\(336\) 0 0
\(337\) −2.18023 + 1.82943i −0.118765 + 0.0996554i −0.700236 0.713912i \(-0.746922\pi\)
0.581471 + 0.813567i \(0.302477\pi\)
\(338\) 35.6442 + 27.4043i 1.93879 + 1.49060i
\(339\) 0 0
\(340\) −11.0418 11.0835i −0.598825 0.601090i
\(341\) −1.10031 + 0.635266i −0.0595853 + 0.0344016i
\(342\) 0 0
\(343\) 3.97285 6.88117i 0.214514 0.371548i
\(344\) 1.67917 + 3.24806i 0.0905346 + 0.175124i
\(345\) 0 0
\(346\) 2.36289 + 0.313348i 0.127029 + 0.0168457i
\(347\) 25.7859 4.54675i 1.38426 0.244082i 0.568599 0.822615i \(-0.307486\pi\)
0.815659 + 0.578533i \(0.196374\pi\)
\(348\) 0 0
\(349\) 3.27963 3.90851i 0.175555 0.209218i −0.671091 0.741375i \(-0.734174\pi\)
0.846646 + 0.532157i \(0.178618\pi\)
\(350\) 6.65433 + 30.1504i 0.355689 + 1.61160i
\(351\) 0 0
\(352\) 1.51850 2.88371i 0.0809361 0.153702i
\(353\) 11.4022 + 9.56754i 0.606875 + 0.509229i 0.893647 0.448770i \(-0.148138\pi\)
−0.286772 + 0.957999i \(0.592582\pi\)
\(354\) 0 0
\(355\) −26.0785 + 4.59835i −1.38410 + 0.244055i
\(356\) −11.4183 + 0.977262i −0.605168 + 0.0517948i
\(357\) 0 0
\(358\) −0.719139 16.8355i −0.0380077 0.889785i
\(359\) 7.74329 13.4118i 0.408675 0.707846i −0.586066 0.810263i \(-0.699324\pi\)
0.994742 + 0.102417i \(0.0326575\pi\)
\(360\) 0 0
\(361\) −9.41679 16.3104i −0.495621 0.858440i
\(362\) −19.7103 + 12.5307i −1.03595 + 0.658600i
\(363\) 0 0
\(364\) 41.4137 + 19.4068i 2.17067 + 1.01719i
\(365\) 2.78459 + 3.31854i 0.145752 + 0.173700i
\(366\) 0 0
\(367\) 24.0744 8.76237i 1.25667 0.457392i 0.374023 0.927419i \(-0.377978\pi\)
0.882652 + 0.470027i \(0.155756\pi\)
\(368\) 26.1124 + 4.70601i 1.36120 + 0.245318i
\(369\) 0 0
\(370\) 5.53032 + 1.74944i 0.287508 + 0.0909492i
\(371\) −31.4772 5.55028i −1.63422 0.288156i
\(372\) 0 0
\(373\) −4.86012 + 13.3531i −0.251648 + 0.691396i 0.747970 + 0.663733i \(0.231029\pi\)
−0.999617 + 0.0276634i \(0.991193\pi\)
\(374\) 0.721061 + 1.74545i 0.0372852 + 0.0902551i
\(375\) 0 0
\(376\) −0.413847 + 8.90043i −0.0213425 + 0.459004i
\(377\) 23.3900 1.20465
\(378\) 0 0
\(379\) 1.93137i 0.0992080i −0.998769 0.0496040i \(-0.984204\pi\)
0.998769 0.0496040i \(-0.0157959\pi\)
\(380\) 2.65834 + 0.717680i 0.136370 + 0.0368162i
\(381\) 0 0
\(382\) 17.2789 7.13805i 0.884064 0.365214i
\(383\) −12.4377 4.52695i −0.635537 0.231317i 0.00410258 0.999992i \(-0.498694\pi\)
−0.639639 + 0.768675i \(0.720916\pi\)
\(384\) 0 0
\(385\) 1.15363 6.54257i 0.0587945 0.333440i
\(386\) −0.238634 0.0754888i −0.0121462 0.00384228i
\(387\) 0 0
\(388\) −18.3775 12.9198i −0.932975 0.655903i
\(389\) −8.22522 22.5986i −0.417035 1.14579i −0.953374 0.301792i \(-0.902415\pi\)
0.536339 0.844003i \(-0.319807\pi\)
\(390\) 0 0
\(391\) −11.7780 + 9.88288i −0.595637 + 0.499799i
\(392\) 12.9000 + 2.89819i 0.651548 + 0.146381i
\(393\) 0 0
\(394\) −1.15927 + 0.736999i −0.0584032 + 0.0371295i
\(395\) −14.6540 + 8.46051i −0.737325 + 0.425695i
\(396\) 0 0
\(397\) −28.6833 16.5603i −1.43957 0.831137i −0.441752 0.897137i \(-0.645643\pi\)
−0.997820 + 0.0659997i \(0.978976\pi\)
\(398\) 5.79090 0.247362i 0.290272 0.0123991i
\(399\) 0 0
\(400\) 22.1829 12.6959i 1.10915 0.634796i
\(401\) −1.94567 11.0344i −0.0971620 0.551033i −0.994063 0.108802i \(-0.965298\pi\)
0.896901 0.442231i \(-0.145813\pi\)
\(402\) 0 0
\(403\) −9.48715 + 11.3063i −0.472588 + 0.563209i
\(404\) 10.4637 + 22.5505i 0.520590 + 1.12193i
\(405\) 0 0
\(406\) 16.4905 3.63954i 0.818412 0.180627i
\(407\) −0.536366 0.450065i −0.0265867 0.0223089i
\(408\) 0 0
\(409\) 1.95004 + 11.0592i 0.0964233 + 0.546844i 0.994302 + 0.106601i \(0.0339966\pi\)
−0.897879 + 0.440243i \(0.854892\pi\)
\(410\) −31.4413 4.16950i −1.55277 0.205917i
\(411\) 0 0
\(412\) 8.12468 + 30.5522i 0.400274 + 1.50520i
\(413\) 25.9810 + 15.0001i 1.27844 + 0.738109i
\(414\) 0 0
\(415\) 17.5140 + 30.3351i 0.859728 + 1.48909i
\(416\) 5.11871 37.5120i 0.250966 1.83918i
\(417\) 0 0
\(418\) −0.263503 0.202589i −0.0128884 0.00990893i
\(419\) −8.95678 10.6743i −0.437567 0.521472i 0.501522 0.865145i \(-0.332774\pi\)
−0.939090 + 0.343672i \(0.888329\pi\)
\(420\) 0 0
\(421\) −4.06687 11.1736i −0.198207 0.544570i 0.800276 0.599632i \(-0.204686\pi\)
−0.998483 + 0.0550623i \(0.982464\pi\)
\(422\) 3.58149 + 3.91592i 0.174344 + 0.190624i
\(423\) 0 0
\(424\) 3.37930 + 26.2421i 0.164113 + 1.27443i
\(425\) −2.57184 + 14.5856i −0.124753 + 0.707507i
\(426\) 0 0
\(427\) 5.54707 15.2404i 0.268442 0.737537i
\(428\) −4.01080 + 2.79713i −0.193869 + 0.135204i
\(429\) 0 0
\(430\) 2.85415 5.47017i 0.137640 0.263795i
\(431\) 28.2506 1.36079 0.680393 0.732848i \(-0.261809\pi\)
0.680393 + 0.732848i \(0.261809\pi\)
\(432\) 0 0
\(433\) −27.8524 −1.33850 −0.669251 0.743036i \(-0.733385\pi\)
−0.669251 + 0.743036i \(0.733385\pi\)
\(434\) −4.92938 + 9.44748i −0.236618 + 0.453494i
\(435\) 0 0
\(436\) −26.6612 + 18.5935i −1.27684 + 0.890467i
\(437\) 0.925505 2.54280i 0.0442729 0.121639i
\(438\) 0 0
\(439\) −2.13242 + 12.0935i −0.101775 + 0.577193i 0.890685 + 0.454621i \(0.150225\pi\)
−0.992460 + 0.122572i \(0.960886\pi\)
\(440\) −5.45445 + 0.702390i −0.260031 + 0.0334851i
\(441\) 0 0
\(442\) 14.8061 + 16.1887i 0.704254 + 0.770016i
\(443\) −7.22670 19.8552i −0.343351 0.943348i −0.984415 0.175861i \(-0.943729\pi\)
0.641064 0.767487i \(-0.278493\pi\)
\(444\) 0 0
\(445\) 12.4303 + 14.8138i 0.589252 + 0.702243i
\(446\) −4.39681 3.38039i −0.208195 0.160066i
\(447\) 0 0
\(448\) −2.22815 27.2434i −0.105270 1.28713i
\(449\) −13.8708 24.0249i −0.654604 1.13381i −0.981993 0.188917i \(-0.939502\pi\)
0.327389 0.944890i \(-0.393831\pi\)
\(450\) 0 0
\(451\) 3.31561 + 1.91427i 0.156126 + 0.0901393i
\(452\) −6.25612 23.5256i −0.294263 1.10655i
\(453\) 0 0
\(454\) −16.5901 2.20005i −0.778611 0.103254i
\(455\) −13.4014 76.0030i −0.628266 3.56307i
\(456\) 0 0
\(457\) −26.0906 21.8926i −1.22047 1.02409i −0.998800 0.0489720i \(-0.984405\pi\)
−0.221668 0.975122i \(-0.571150\pi\)
\(458\) 14.6352 3.23006i 0.683858 0.150931i
\(459\) 0 0
\(460\) −18.8452 40.6137i −0.878664 1.89362i
\(461\) −8.93591 + 10.6494i −0.416187 + 0.495992i −0.932884 0.360176i \(-0.882717\pi\)
0.516698 + 0.856168i \(0.327161\pi\)
\(462\) 0 0
\(463\) 3.22751 + 18.3041i 0.149995 + 0.850665i 0.963220 + 0.268715i \(0.0865991\pi\)
−0.813224 + 0.581950i \(0.802290\pi\)
\(464\) −6.94395 12.1328i −0.322365 0.563251i
\(465\) 0 0
\(466\) 1.59662 0.0682007i 0.0739621 0.00315934i
\(467\) −8.34116 4.81577i −0.385983 0.222847i 0.294435 0.955671i \(-0.404868\pi\)
−0.680418 + 0.732824i \(0.738202\pi\)
\(468\) 0 0
\(469\) 44.5181 25.7026i 2.05566 1.18683i
\(470\) 12.6881 8.06641i 0.585260 0.372076i
\(471\) 0 0
\(472\) 5.44373 24.2303i 0.250568 1.11529i
\(473\) −0.570541 + 0.478741i −0.0262335 + 0.0220125i
\(474\) 0 0
\(475\) −0.891532 2.44946i −0.0409063 0.112389i
\(476\) 12.9577 + 9.10955i 0.593914 + 0.417536i
\(477\) 0 0
\(478\) −7.82598 2.47564i −0.357952 0.113233i
\(479\) −5.05443 + 28.6651i −0.230943 + 1.30974i 0.620049 + 0.784563i \(0.287113\pi\)
−0.850992 + 0.525179i \(0.823998\pi\)
\(480\) 0 0
\(481\) −7.64321 2.78190i −0.348500 0.126844i
\(482\) 38.5571 15.9283i 1.75623 0.725513i
\(483\) 0 0
\(484\) −20.5987 5.56108i −0.936304 0.252777i
\(485\) 37.9074i 1.72129i
\(486\) 0 0
\(487\) −13.1429 −0.595563 −0.297782 0.954634i \(-0.596247\pi\)
−0.297782 + 0.954634i \(0.596247\pi\)
\(488\) −13.4112 0.623587i −0.607098 0.0282285i
\(489\) 0 0
\(490\) −8.51842 20.6203i −0.384823 0.931530i
\(491\) 4.01945 11.0433i 0.181395 0.498379i −0.815352 0.578965i \(-0.803457\pi\)
0.996748 + 0.0805856i \(0.0256791\pi\)
\(492\) 0 0
\(493\) 7.97752 + 1.40665i 0.359289 + 0.0633524i
\(494\) −3.68134 1.16454i −0.165631 0.0523953i
\(495\) 0 0
\(496\) 8.68131 + 1.56456i 0.389802 + 0.0702507i
\(497\) 25.1930 9.16949i 1.13006 0.411308i
\(498\) 0 0
\(499\) −23.2598 27.7199i −1.04125 1.24091i −0.969911 0.243461i \(-0.921717\pi\)
−0.0713387 0.997452i \(-0.522727\pi\)
\(500\) −8.49427 3.98048i −0.379875 0.178012i
\(501\) 0 0
\(502\) −7.17608 + 4.56215i −0.320284 + 0.203619i
\(503\) −1.18773 2.05720i −0.0529581 0.0917261i 0.838331 0.545161i \(-0.183532\pi\)
−0.891289 + 0.453435i \(0.850198\pi\)
\(504\) 0 0
\(505\) 20.9748 36.3294i 0.933366 1.61664i
\(506\) 0.230650 + 5.39966i 0.0102536 + 0.240044i
\(507\) 0 0
\(508\) 19.1038 1.63504i 0.847594 0.0725434i
\(509\) 40.5051 7.14215i 1.79536 0.316570i 0.826269 0.563276i \(-0.190459\pi\)
0.969090 + 0.246706i \(0.0793482\pi\)
\(510\) 0 0
\(511\) −3.35977 2.81918i −0.148627 0.124713i
\(512\) −20.9778 + 8.48130i −0.927096 + 0.374824i
\(513\) 0 0
\(514\) 7.91515 + 35.8631i 0.349123 + 1.58185i
\(515\) 34.2906 40.8660i 1.51103 1.80077i
\(516\) 0 0
\(517\) −1.78734 + 0.315155i −0.0786069 + 0.0138605i
\(518\) −5.82153 0.772007i −0.255783 0.0339201i
\(519\) 0 0
\(520\) −56.7507 + 29.3387i −2.48868 + 1.28659i
\(521\) 5.21530 9.03316i 0.228486 0.395750i −0.728873 0.684649i \(-0.759956\pi\)
0.957360 + 0.288899i \(0.0932890\pi\)
\(522\) 0 0
\(523\) 14.6626 8.46543i 0.641149 0.370167i −0.143908 0.989591i \(-0.545967\pi\)
0.785057 + 0.619424i \(0.212634\pi\)
\(524\) −0.582615 0.584818i −0.0254516 0.0255479i
\(525\) 0 0
\(526\) −15.5966 11.9911i −0.680046 0.522838i
\(527\) −3.91569 + 3.28565i −0.170570 + 0.143125i
\(528\) 0 0
\(529\) −19.7338 + 7.18252i −0.857992 + 0.312283i
\(530\) 32.9461 30.1324i 1.43109 1.30887i
\(531\) 0 0
\(532\) −2.77665 0.248206i −0.120383 0.0107611i
\(533\) 43.7992 + 7.72298i 1.89715 + 0.334519i
\(534\) 0 0
\(535\) 7.75366 + 2.82210i 0.335220 + 0.122010i
\(536\) −31.2920 28.8372i −1.35161 1.24558i
\(537\) 0 0
\(538\) −4.88238 2.54746i −0.210494 0.109829i
\(539\) 2.69313i 0.116001i
\(540\) 0 0
\(541\) 29.4745i 1.26721i 0.773658 + 0.633603i \(0.218425\pi\)
−0.773658 + 0.633603i \(0.781575\pi\)
\(542\) 17.7290 33.9788i 0.761526 1.45951i
\(543\) 0 0
\(544\) 4.00175 12.4862i 0.171574 0.535343i
\(545\) 51.5414 + 18.7595i 2.20779 + 0.803570i
\(546\) 0 0
\(547\) 31.4846 + 5.55158i 1.34618 + 0.237369i 0.799850 0.600199i \(-0.204912\pi\)
0.546333 + 0.837568i \(0.316023\pi\)
\(548\) −2.80636 + 31.3944i −0.119882 + 1.34110i
\(549\) 0 0
\(550\) 3.51363 + 3.84173i 0.149822 + 0.163812i
\(551\) −1.33972 + 0.487617i −0.0570739 + 0.0207732i
\(552\) 0 0
\(553\) 13.1233 11.0117i 0.558059 0.468267i
\(554\) 6.17437 8.03090i 0.262324 0.341200i
\(555\) 0 0
\(556\) 3.11664 + 3.12842i 0.132175 + 0.132675i
\(557\) 7.19468 4.15385i 0.304849 0.176004i −0.339770 0.940508i \(-0.610349\pi\)
0.644619 + 0.764504i \(0.277016\pi\)
\(558\) 0 0
\(559\) −4.32598 + 7.49282i −0.182970 + 0.316913i
\(560\) −35.4455 + 29.5151i −1.49785 + 1.24724i
\(561\) 0 0
\(562\) 0.144209 1.08744i 0.00608307 0.0458710i
\(563\) −6.57453 + 1.15927i −0.277083 + 0.0488573i −0.310463 0.950585i \(-0.600484\pi\)
0.0333796 + 0.999443i \(0.489373\pi\)
\(564\) 0 0
\(565\) −26.4043 + 31.4674i −1.11084 + 1.32384i
\(566\) −2.11126 + 0.465966i −0.0887430 + 0.0195860i
\(567\) 0 0
\(568\) −13.4604 17.6452i −0.564787 0.740375i
\(569\) 24.2709 + 20.3657i 1.01749 + 0.853775i 0.989310 0.145827i \(-0.0465844\pi\)
0.0281798 + 0.999603i \(0.491029\pi\)
\(570\) 0 0
\(571\) 32.6020 5.74861i 1.36435 0.240572i 0.556936 0.830555i \(-0.311977\pi\)
0.807416 + 0.589983i \(0.200866\pi\)
\(572\) 7.68363 0.657622i 0.321269 0.0274966i
\(573\) 0 0
\(574\) 32.0813 1.37037i 1.33905 0.0571982i
\(575\) −21.1926 + 36.7066i −0.883791 + 1.53077i
\(576\) 0 0
\(577\) 15.0611 + 26.0866i 0.627001 + 1.08600i 0.988150 + 0.153490i \(0.0490512\pi\)
−0.361149 + 0.932508i \(0.617615\pi\)
\(578\) −8.82214 13.8769i −0.366953 0.577202i
\(579\) 0 0
\(580\) −10.0096 + 21.3603i −0.415627 + 0.886940i
\(581\) −22.7953 27.1663i −0.945707 1.12705i
\(582\) 0 0
\(583\) −5.06443 + 1.84330i −0.209747 + 0.0763418i
\(584\) −1.39887 + 3.35031i −0.0578855 + 0.138637i
\(585\) 0 0
\(586\) −6.78347 + 21.4438i −0.280222 + 0.885837i
\(587\) 15.0318 + 2.65051i 0.620427 + 0.109398i 0.475022 0.879974i \(-0.342440\pi\)
0.145406 + 0.989372i \(0.453551\pi\)
\(588\) 0 0
\(589\) 0.307693 0.845379i 0.0126783 0.0348332i
\(590\) −38.7314 + 16.0003i −1.59455 + 0.658721i
\(591\) 0 0
\(592\) 0.826072 + 4.79055i 0.0339513 + 0.196890i
\(593\) −27.1813 −1.11620 −0.558101 0.829773i \(-0.688470\pi\)
−0.558101 + 0.829773i \(0.688470\pi\)
\(594\) 0 0
\(595\) 26.7279i 1.09574i
\(596\) −3.56863 + 13.2185i −0.146177 + 0.541450i
\(597\) 0 0
\(598\) 23.9714 + 58.0269i 0.980264 + 2.37290i
\(599\) 39.7660 + 14.4737i 1.62480 + 0.591378i 0.984288 0.176573i \(-0.0565012\pi\)
0.640509 + 0.767951i \(0.278723\pi\)
\(600\) 0 0
\(601\) −0.648834 + 3.67972i −0.0264665 + 0.150099i −0.995177 0.0980937i \(-0.968726\pi\)
0.968711 + 0.248193i \(0.0798366\pi\)
\(602\) −1.88403 + 5.95577i −0.0767872 + 0.242739i
\(603\) 0 0
\(604\) −19.3033 13.5707i −0.785440 0.552183i
\(605\) 12.3139 + 33.8321i 0.500631 + 1.37547i
\(606\) 0 0
\(607\) 35.5497 29.8298i 1.44292 1.21075i 0.505370 0.862903i \(-0.331356\pi\)
0.937550 0.347850i \(-0.113088\pi\)
\(608\) 0.488837 + 2.25530i 0.0198250 + 0.0914647i
\(609\) 0 0
\(610\) 12.1545 + 19.1186i 0.492122 + 0.774088i
\(611\) −18.2586 + 10.5416i −0.738664 + 0.426468i
\(612\) 0 0
\(613\) 21.9670 + 12.6827i 0.887239 + 0.512248i 0.873038 0.487652i \(-0.162146\pi\)
0.0142005 + 0.999899i \(0.495480\pi\)
\(614\) 0.0258261 + 0.604606i 0.00104226 + 0.0243999i
\(615\) 0 0
\(616\) 5.31483 1.65923i 0.214141 0.0668524i
\(617\) −1.23909 7.02722i −0.0498838 0.282905i 0.949654 0.313300i \(-0.101435\pi\)
−0.999538 + 0.0303950i \(0.990323\pi\)
\(618\) 0 0
\(619\) 17.2889 20.6041i 0.694900 0.828149i −0.297039 0.954865i \(-0.595999\pi\)
0.991939 + 0.126716i \(0.0404437\pi\)
\(620\) −6.26528 13.5024i −0.251620 0.542269i
\(621\) 0 0
\(622\) 3.36672 + 15.2544i 0.134993 + 0.611646i
\(623\) −14.9979 12.5847i −0.600877 0.504196i
\(624\) 0 0
\(625\) −2.79914 15.8747i −0.111966 0.634989i
\(626\) −5.16761 + 38.9677i −0.206539 + 1.55746i
\(627\) 0 0
\(628\) 23.2934 6.19435i 0.929507 0.247182i
\(629\) −2.43953 1.40846i −0.0972705 0.0561592i
\(630\) 0 0
\(631\) −11.7466 20.3457i −0.467624 0.809949i 0.531691 0.846938i \(-0.321557\pi\)
−0.999316 + 0.0369893i \(0.988223\pi\)
\(632\) −11.9387 7.65340i −0.474897 0.304436i
\(633\) 0 0
\(634\) −3.02880 + 3.93951i −0.120289 + 0.156458i
\(635\) −20.7970 24.7848i −0.825302 0.983557i
\(636\) 0 0
\(637\) 10.7002 + 29.3985i 0.423956 + 1.16481i
\(638\) 2.10121 1.92176i 0.0831876 0.0760831i
\(639\) 0 0
\(640\) 32.0665 + 20.7276i 1.26754 + 0.819331i
\(641\) 7.57282 42.9476i 0.299108 1.69633i −0.350911 0.936409i \(-0.614128\pi\)
0.650019 0.759918i \(-0.274761\pi\)
\(642\) 0 0
\(643\) 0.120739 0.331727i 0.00476148 0.0130820i −0.937289 0.348553i \(-0.886673\pi\)
0.942051 + 0.335471i \(0.108895\pi\)
\(644\) 25.9296 + 37.1804i 1.02177 + 1.46511i
\(645\) 0 0
\(646\) −1.18554 0.618578i −0.0466446 0.0243376i
\(647\) 26.0967 1.02597 0.512984 0.858398i \(-0.328540\pi\)
0.512984 + 0.858398i \(0.328540\pi\)
\(648\) 0 0
\(649\) 5.05855 0.198565
\(650\) 53.6189 + 27.9766i 2.10311 + 1.09733i
\(651\) 0 0
\(652\) −21.9777 + 15.3272i −0.860711 + 0.600259i
\(653\) 0.281991 0.774764i 0.0110352 0.0303189i −0.934053 0.357135i \(-0.883754\pi\)
0.945088 + 0.326816i \(0.105976\pi\)
\(654\) 0 0
\(655\) −0.241889 + 1.37182i −0.00945137 + 0.0536014i
\(656\) −8.99693 25.0122i −0.351271 0.976562i
\(657\) 0 0
\(658\) −11.2325 + 10.2732i −0.437887 + 0.400490i
\(659\) 14.2971 + 39.2809i 0.556935 + 1.53017i 0.824058 + 0.566505i \(0.191705\pi\)
−0.267123 + 0.963662i \(0.586073\pi\)
\(660\) 0 0
\(661\) −1.06741 1.27208i −0.0415173 0.0494784i 0.744886 0.667192i \(-0.232504\pi\)
−0.786404 + 0.617713i \(0.788059\pi\)
\(662\) −15.0139 + 19.5283i −0.583530 + 0.758988i
\(663\) 0 0
\(664\) −15.8432 + 24.7142i −0.614835 + 0.959096i
\(665\) 2.35205 + 4.07387i 0.0912086 + 0.157978i
\(666\) 0 0
\(667\) 20.0764 + 11.5911i 0.777362 + 0.448810i
\(668\) −3.48137 13.0914i −0.134698 0.506522i
\(669\) 0 0
\(670\) −9.43970 + 71.1826i −0.364688 + 2.75002i
\(671\) −0.474878 2.69317i −0.0183325 0.103969i
\(672\) 0 0
\(673\) −4.23311 3.55200i −0.163175 0.136920i 0.557544 0.830147i \(-0.311744\pi\)
−0.720719 + 0.693227i \(0.756188\pi\)
\(674\) 0.867456 + 3.93039i 0.0334132 + 0.151393i
\(675\) 0 0
\(676\) 57.6779 26.7632i 2.21838 1.02936i
\(677\) −2.08429 + 2.48396i −0.0801056 + 0.0954662i −0.804609 0.593805i \(-0.797625\pi\)
0.724503 + 0.689272i \(0.242069\pi\)
\(678\) 0 0
\(679\) −6.66432 37.7952i −0.255753 1.45045i
\(680\) −21.1201 + 6.59347i −0.809919 + 0.252848i
\(681\) 0 0
\(682\) 0.0766817 + 1.79517i 0.00293629 + 0.0687405i
\(683\) −22.4547 12.9642i −0.859206 0.496063i 0.00454025 0.999990i \(-0.498555\pi\)
−0.863746 + 0.503927i \(0.831888\pi\)
\(684\) 0 0
\(685\) 46.0615 26.5936i 1.75992 1.01609i
\(686\) −6.02864 9.48281i −0.230175 0.362055i
\(687\) 0 0
\(688\) 5.17094 + 0.0195167i 0.197140 + 0.000744069i
\(689\) −47.9602 + 40.2434i −1.82714 + 1.53315i
\(690\) 0 0
\(691\) −10.2247 28.0920i −0.388964 1.06867i −0.967469 0.252991i \(-0.918586\pi\)
0.578504 0.815679i \(-0.303637\pi\)
\(692\) 1.93866 2.75761i 0.0736970 0.104829i
\(693\) 0 0
\(694\) 11.1682 35.3049i 0.423941 1.34016i
\(695\) 1.29396 7.33841i 0.0490827 0.278362i
\(696\) 0 0
\(697\) 14.4739 + 5.26808i 0.548240 + 0.199543i
\(698\) −2.75500 6.66895i −0.104278 0.252423i
\(699\) 0 0
\(700\) 42.1559 + 11.3810i 1.59334 + 0.430160i
\(701\) 24.6223i 0.929973i −0.885318 0.464987i \(-0.846059\pi\)
0.885318 0.464987i \(-0.153941\pi\)
\(702\) 0 0
\(703\) 0.495778 0.0186986
\(704\) −2.62221 3.79040i −0.0988284 0.142856i
\(705\) 0 0
\(706\) 19.4551 8.03705i 0.732201 0.302479i
\(707\) −14.5258 + 39.9094i −0.546300 + 1.50095i
\(708\) 0 0
\(709\) −26.4148 4.65765i −0.992030 0.174922i −0.346001 0.938234i \(-0.612460\pi\)
−0.646029 + 0.763313i \(0.723572\pi\)
\(710\) −11.2950 + 35.7056i −0.423894 + 1.34001i
\(711\) 0 0
\(712\) −6.24449 + 14.9556i −0.234022 + 0.560487i
\(713\) −13.7461 + 5.00317i −0.514796 + 0.187370i
\(714\) 0 0
\(715\) −8.36463 9.96858i −0.312819 0.372804i
\(716\) −21.5789 10.1120i −0.806443 0.377905i
\(717\) 0 0
\(718\) −11.7501 18.4825i −0.438512 0.689761i
\(719\) −9.26666 16.0503i −0.345588 0.598576i 0.639872 0.768481i \(-0.278987\pi\)
−0.985460 + 0.169905i \(0.945654\pi\)
\(720\) 0 0
\(721\) −27.0047 + 46.7736i −1.00571 + 1.74194i
\(722\) −26.6104 + 1.13668i −0.990338 + 0.0423029i
\(723\) 0 0
\(724\) 2.81672 + 32.9105i 0.104683 + 1.22311i
\(725\) 21.9920 3.87779i 0.816764 0.144017i
\(726\) 0 0
\(727\) 4.82234 + 4.04643i 0.178851 + 0.150074i 0.727818 0.685770i \(-0.240534\pi\)
−0.548967 + 0.835844i \(0.684979\pi\)
\(728\) 51.4249 39.2290i 1.90593 1.45392i
\(729\) 0 0
\(730\) 5.98247 1.32036i 0.221421 0.0488687i
\(731\) −1.92605 + 2.29538i −0.0712377 + 0.0848978i
\(732\) 0 0
\(733\) −22.4113 + 3.95172i −0.827781 + 0.145960i −0.571458 0.820631i \(-0.693622\pi\)
−0.256323 + 0.966591i \(0.582511\pi\)
\(734\) 4.76304 35.9170i 0.175807 1.32572i
\(735\) 0 0
\(736\) 22.9830 29.6612i 0.847165 1.09333i
\(737\) 4.33388 7.50649i 0.159640 0.276505i
\(738\) 0 0
\(739\) −37.2940 + 21.5317i −1.37188 + 0.792056i −0.991165 0.132636i \(-0.957656\pi\)
−0.380717 + 0.924692i \(0.624323\pi\)
\(740\) 5.81137 5.78948i 0.213630 0.212825i
\(741\) 0 0
\(742\) −27.5512 + 35.8354i −1.01144 + 1.31556i
\(743\) 27.0616 22.7074i 0.992794 0.833053i 0.00682406 0.999977i \(-0.497828\pi\)
0.985970 + 0.166924i \(0.0533834\pi\)
\(744\) 0 0
\(745\) 21.7106 7.90201i 0.795415 0.289507i
\(746\) 13.5627 + 14.8292i 0.496566 + 0.542934i
\(747\) 0 0
\(748\) 2.66017 + 0.237794i 0.0972655 + 0.00869462i
\(749\) −8.22687 1.45062i −0.300603 0.0530045i
\(750\) 0 0
\(751\) −23.5008 8.55359i −0.857557 0.312125i −0.124439 0.992227i \(-0.539713\pi\)
−0.733117 + 0.680102i \(0.761935\pi\)
\(752\) 10.8887 + 6.34149i 0.397069 + 0.231250i
\(753\) 0 0
\(754\) 15.3016 29.3265i 0.557251 1.06801i
\(755\) 39.8171i 1.44909i
\(756\) 0 0
\(757\) 31.3025i 1.13771i 0.822439 + 0.568853i \(0.192613\pi\)
−0.822439 + 0.568853i \(0.807387\pi\)
\(758\) −2.42157 1.26349i −0.0879553 0.0458922i
\(759\) 0 0
\(760\) 2.63890 2.86354i 0.0957230 0.103872i
\(761\) 2.59308 + 0.943805i 0.0939992 + 0.0342129i 0.388592 0.921410i \(-0.372962\pi\)
−0.294592 + 0.955623i \(0.595184\pi\)
\(762\) 0 0
\(763\) −54.6869 9.64278i −1.97980 0.349092i
\(764\) 2.35401 26.3340i 0.0851652 0.952732i
\(765\) 0 0
\(766\) −13.8126 + 12.6330i −0.499069 + 0.456447i
\(767\) 55.2197 20.0983i 1.99387 0.725708i
\(768\) 0 0
\(769\) 3.61913 3.03681i 0.130509 0.109510i −0.575197 0.818015i \(-0.695074\pi\)
0.705706 + 0.708505i \(0.250630\pi\)
\(770\) −7.44841 5.72654i −0.268422 0.206370i
\(771\) 0 0
\(772\) −0.250762 + 0.249817i −0.00902511 + 0.00899111i
\(773\) 17.3435 10.0133i 0.623803 0.360153i −0.154545 0.987986i \(-0.549391\pi\)
0.778348 + 0.627833i \(0.216058\pi\)
\(774\) 0 0
\(775\) −7.04567 + 12.2035i −0.253088 + 0.438361i
\(776\) −28.2214 + 14.5897i −1.01309 + 0.523741i
\(777\) 0 0
\(778\) −33.7152 4.47105i −1.20875 0.160295i
\(779\) −2.66971 + 0.470742i −0.0956522 + 0.0168661i
\(780\) 0 0
\(781\) 2.90577 3.46296i 0.103977 0.123914i
\(782\) 4.68614 + 21.2326i 0.167576 + 0.759276i
\(783\) 0 0
\(784\) 12.0729 14.2781i 0.431174 0.509932i
\(785\) −31.1567 26.1436i −1.11203 0.933105i
\(786\) 0 0
\(787\) 41.5062 7.31867i 1.47954 0.260882i 0.625144 0.780510i \(-0.285040\pi\)
0.854393 + 0.519627i \(0.173929\pi\)
\(788\) 0.165666 + 1.93564i 0.00590162 + 0.0689543i
\(789\) 0 0
\(790\) 1.02125 + 23.9081i 0.0363345 + 0.850613i
\(791\) 20.7940 36.0163i 0.739350 1.28059i
\(792\) 0 0
\(793\) −15.8842 27.5122i −0.564063 0.976986i
\(794\) −39.5278 + 25.1296i −1.40279 + 0.891816i
\(795\) 0 0
\(796\) 3.47823 7.42249i 0.123283 0.263083i
\(797\) 32.1711 + 38.3400i 1.13956 + 1.35807i 0.924369 + 0.381500i \(0.124592\pi\)
0.215189 + 0.976572i \(0.430963\pi\)
\(798\) 0 0
\(799\) −6.86134 + 2.49732i −0.242737 + 0.0883489i
\(800\) −1.40628 36.1187i −0.0497196 1.27699i
\(801\) 0 0
\(802\) −15.1079 4.77917i −0.533478 0.168758i
\(803\) −0.728294 0.128418i −0.0257009 0.00453177i
\(804\) 0 0
\(805\) 26.1611 71.8771i 0.922059 2.53334i
\(806\) 7.96952 + 19.2916i 0.280714 + 0.679517i
\(807\) 0 0
\(808\) 35.1193 + 1.63296i 1.23549 + 0.0574472i
\(809\) −7.89082 −0.277426 −0.138713 0.990333i \(-0.544297\pi\)
−0.138713 + 0.990333i \(0.544297\pi\)
\(810\) 0 0
\(811\) 16.9433i 0.594960i −0.954728 0.297480i \(-0.903854\pi\)
0.954728 0.297480i \(-0.0961461\pi\)
\(812\) 6.22474 23.0569i 0.218445 0.809139i
\(813\) 0 0
\(814\) −0.915182 + 0.378069i −0.0320771 + 0.0132513i
\(815\) 42.4871 + 15.4641i 1.48826 + 0.541682i
\(816\) 0 0
\(817\) 0.0915762 0.519355i 0.00320385 0.0181699i
\(818\) 15.1418 + 4.78992i 0.529422 + 0.167475i
\(819\) 0 0
\(820\) −25.7964 + 36.6936i −0.900851 + 1.28140i
\(821\) 16.2209 + 44.5665i 0.566112 + 1.55538i 0.810522 + 0.585708i \(0.199184\pi\)
−0.244410 + 0.969672i \(0.578594\pi\)
\(822\) 0 0
\(823\) −3.65996 + 3.07107i −0.127578 + 0.107051i −0.704344 0.709858i \(-0.748759\pi\)
0.576766 + 0.816909i \(0.304314\pi\)
\(824\) 43.6217 + 9.80032i 1.51963 + 0.341410i
\(825\) 0 0
\(826\) 35.8039 22.7621i 1.24578 0.791996i
\(827\) 25.0451 14.4598i 0.870903 0.502816i 0.00325451 0.999995i \(-0.498964\pi\)
0.867648 + 0.497179i \(0.165631\pi\)
\(828\) 0 0
\(829\) −17.1833 9.92077i −0.596800 0.344563i 0.170982 0.985274i \(-0.445306\pi\)
−0.767782 + 0.640711i \(0.778639\pi\)
\(830\) 49.4919 2.11408i 1.71789 0.0733807i
\(831\) 0 0
\(832\) −43.6842 30.9580i −1.51448 1.07328i
\(833\) 1.88146 + 10.6703i 0.0651888 + 0.369704i
\(834\) 0 0
\(835\) −14.6933 + 17.5108i −0.508482 + 0.605986i
\(836\) −0.426389 + 0.197850i −0.0147470 + 0.00684278i
\(837\) 0 0
\(838\) −19.2429 + 4.24701i −0.664737 + 0.146711i
\(839\) −26.2638 22.0379i −0.906725 0.760833i 0.0647677 0.997900i \(-0.479369\pi\)
−0.971493 + 0.237067i \(0.923814\pi\)
\(840\) 0 0
\(841\) 2.91487 + 16.5310i 0.100513 + 0.570036i
\(842\) −16.6701 2.21066i −0.574490 0.0761845i
\(843\) 0 0
\(844\) 7.25279 1.92872i 0.249651 0.0663892i
\(845\) −92.9203 53.6476i −3.19656 1.84553i
\(846\) 0 0
\(847\) −18.2253 31.5672i −0.626230 1.08466i
\(848\) 35.1133 + 12.9305i 1.20579 + 0.444034i
\(849\) 0 0
\(850\) 16.6051 + 12.7664i 0.569549 + 0.437885i
\(851\) −5.18183 6.17546i −0.177631 0.211692i
\(852\) 0 0
\(853\) 11.5939 + 31.8539i 0.396967 + 1.09066i 0.963754 + 0.266793i \(0.0859641\pi\)
−0.566787 + 0.823865i \(0.691814\pi\)
\(854\) −15.4797 16.9252i −0.529705 0.579167i
\(855\) 0 0
\(856\) 0.883211 + 6.85863i 0.0301875 + 0.234423i
\(857\) −0.670084 + 3.80024i −0.0228896 + 0.129814i −0.994111 0.108364i \(-0.965439\pi\)
0.971222 + 0.238177i \(0.0765500\pi\)
\(858\) 0 0
\(859\) −7.37600 + 20.2654i −0.251666 + 0.691446i 0.747951 + 0.663754i \(0.231038\pi\)
−0.999617 + 0.0276917i \(0.991184\pi\)
\(860\) −4.99136 7.15711i −0.170204 0.244056i
\(861\) 0 0
\(862\) 18.4814 35.4208i 0.629480 1.20644i
\(863\) −30.2497 −1.02971 −0.514857 0.857276i \(-0.672155\pi\)
−0.514857 + 0.857276i \(0.672155\pi\)
\(864\) 0 0
\(865\) −5.68815 −0.193403
\(866\) −18.2209 + 34.9216i −0.619172 + 1.18668i
\(867\) 0 0
\(868\) 8.62053 + 12.3610i 0.292600 + 0.419559i
\(869\) 0.987962 2.71440i 0.0335143 0.0920799i
\(870\) 0 0
\(871\) 17.4847 99.1608i 0.592447 3.35994i
\(872\) 5.87102 + 45.5917i 0.198818 + 1.54393i
\(873\) 0 0
\(874\) −2.58272 2.82389i −0.0873619 0.0955196i
\(875\) −5.48119 15.0594i −0.185298 0.509102i
\(876\) 0 0
\(877\) −10.0265 11.9491i −0.338571 0.403493i 0.569715 0.821842i \(-0.307053\pi\)
−0.908286 + 0.418349i \(0.862609\pi\)
\(878\) 13.7679 + 10.5852i 0.464645 + 0.357232i
\(879\) 0 0
\(880\) −2.68761 + 7.29832i −0.0905993 + 0.246026i
\(881\) −18.2832 31.6674i −0.615977 1.06690i −0.990212 0.139569i \(-0.955428\pi\)
0.374235 0.927334i \(-0.377905\pi\)
\(882\) 0 0
\(883\) 26.1355 + 15.0893i 0.879529 + 0.507796i 0.870503 0.492163i \(-0.163794\pi\)
0.00902592 + 0.999959i \(0.497127\pi\)
\(884\) 29.9835 7.97344i 1.00845 0.268176i
\(885\) 0 0
\(886\) −29.6222 3.92828i −0.995178 0.131973i
\(887\) 7.16882 + 40.6564i 0.240705 + 1.36511i 0.830258 + 0.557379i \(0.188193\pi\)
−0.589553 + 0.807730i \(0.700696\pi\)
\(888\) 0 0
\(889\) 25.0927 + 21.0553i 0.841584 + 0.706172i
\(890\) 26.7055 5.89404i 0.895171 0.197569i
\(891\) 0 0
\(892\) −7.11472 + 3.30132i −0.238219 + 0.110536i
\(893\) 0.826041 0.984438i 0.0276424 0.0329430i
\(894\) 0 0
\(895\) 6.98289 + 39.6019i 0.233412 + 1.32375i
\(896\) −35.6156 15.0288i −1.18983 0.502078i
\(897\) 0 0
\(898\) −39.1968 + 1.67432i −1.30801 + 0.0558726i
\(899\) 6.67459 + 3.85358i 0.222610 + 0.128524i
\(900\) 0 0
\(901\) −18.7778 + 10.8414i −0.625578 + 0.361178i
\(902\) 4.56917 2.90483i 0.152137 0.0967201i
\(903\) 0 0
\(904\) −33.5893 7.54639i −1.11716 0.250989i
\(905\) 42.6973 35.8273i 1.41931 1.19094i
\(906\) 0 0
\(907\) 13.9229 + 38.2529i 0.462303 + 1.27017i 0.923749 + 0.382999i \(0.125109\pi\)
−0.461446 + 0.887168i \(0.652669\pi\)
\(908\) −13.6116 + 19.3615i −0.451716 + 0.642533i
\(909\) 0 0
\(910\) −104.060 32.9180i −3.44956 1.09122i
\(911\) −7.42318 + 42.0989i −0.245941 + 1.39480i 0.572357 + 0.820005i \(0.306029\pi\)
−0.818298 + 0.574795i \(0.805082\pi\)
\(912\) 0 0
\(913\) −5.61905 2.04517i −0.185963 0.0676852i
\(914\) −44.5175 + 18.3905i −1.47251 + 0.608305i
\(915\) 0 0
\(916\) 5.52440 20.4628i 0.182531 0.676110i
\(917\) 1.41029i 0.0465717i
\(918\) 0 0
\(919\) −4.00742 −0.132193 −0.0660963 0.997813i \(-0.521054\pi\)
−0.0660963 + 0.997813i \(0.521054\pi\)
\(920\) −63.2501 2.94097i −2.08529 0.0969608i
\(921\) 0 0
\(922\) 7.50646 + 18.1707i 0.247212 + 0.598419i
\(923\) 17.9609 49.3471i 0.591189 1.62428i
\(924\) 0 0
\(925\) −7.64760 1.34848i −0.251452 0.0443377i
\(926\) 25.0613 + 7.92779i 0.823564 + 0.260523i
\(927\) 0 0
\(928\) −19.7549 + 0.769156i −0.648485 + 0.0252488i
\(929\) −46.5451 + 16.9410i −1.52710 + 0.555818i −0.962908 0.269829i \(-0.913033\pi\)
−0.564188 + 0.825646i \(0.690811\pi\)
\(930\) 0 0
\(931\) −1.22576 1.46080i −0.0401725 0.0478758i
\(932\) 0.958991 2.04647i 0.0314128 0.0670344i
\(933\) 0 0
\(934\) −11.4948 + 7.30774i −0.376121 + 0.239117i
\(935\) −2.25339 3.90298i −0.0736936 0.127641i
\(936\) 0 0
\(937\) 4.84280 8.38798i 0.158207 0.274023i −0.776015 0.630715i \(-0.782762\pi\)
0.934222 + 0.356691i \(0.116095\pi\)
\(938\) −3.10250 72.6316i −0.101300 2.37150i
\(939\) 0 0
\(940\) −1.81321 21.1854i −0.0591403 0.690993i
\(941\) 5.10500 0.900150i 0.166418 0.0293440i −0.0898181 0.995958i \(-0.528629\pi\)
0.256236 + 0.966614i \(0.417517\pi\)
\(942\) 0 0
\(943\) 33.7672 + 28.3340i 1.09961 + 0.922682i
\(944\) −26.8188 22.6767i −0.872877 0.738063i
\(945\) 0 0
\(946\) 0.227003 + 1.02854i 0.00738051 + 0.0334406i
\(947\) −19.6357 + 23.4009i −0.638075 + 0.760428i −0.984065 0.177811i \(-0.943099\pi\)
0.345990 + 0.938238i \(0.387543\pi\)
\(948\) 0 0
\(949\) −8.46036 + 1.49179i −0.274635 + 0.0484256i
\(950\) −3.65439 0.484618i −0.118564 0.0157231i
\(951\) 0 0
\(952\) 19.8985 10.2870i 0.644913 0.333403i
\(953\) −8.71927 + 15.1022i −0.282445 + 0.489209i −0.971986 0.235037i \(-0.924479\pi\)
0.689542 + 0.724246i \(0.257812\pi\)
\(954\) 0 0
\(955\) −38.6370 + 22.3071i −1.25027 + 0.721841i
\(956\) −8.22369 + 8.19271i −0.265973 + 0.264971i
\(957\) 0 0
\(958\) 32.6339 + 25.0898i 1.05435 + 0.810616i
\(959\) −41.2500 + 34.6128i −1.33203 + 1.11771i
\(960\) 0 0
\(961\) 24.5605 8.93927i 0.792273 0.288364i
\(962\) −8.48811 + 7.76319i −0.273667 + 0.250295i
\(963\) 0 0
\(964\) 5.25289 58.7633i 0.169184 1.89264i
\(965\) 0.588217 + 0.103718i 0.0189354 + 0.00333882i
\(966\) 0 0
\(967\) −46.2859 16.8467i −1.48845 0.541752i −0.535411 0.844592i \(-0.679843\pi\)
−0.953042 + 0.302839i \(0.902065\pi\)
\(968\) −20.4481 + 22.1887i −0.657226 + 0.713172i
\(969\) 0 0
\(970\) 47.5285 + 24.7988i 1.52605 + 0.796242i
\(971\) 13.2201i 0.424253i −0.977242 0.212126i \(-0.931961\pi\)
0.977242 0.212126i \(-0.0680388\pi\)
\(972\) 0 0
\(973\) 7.54418i 0.241855i
\(974\) −8.59804 + 16.4787i −0.275499 + 0.528011i
\(975\) 0 0
\(976\) −9.55541 + 16.4071i −0.305861 + 0.525179i
\(977\) 22.1311 + 8.05506i 0.708037 + 0.257704i 0.670838 0.741604i \(-0.265934\pi\)
0.0371983 + 0.999308i \(0.488157\pi\)
\(978\) 0 0
\(979\) −3.25108 0.573253i −0.103905 0.0183212i
\(980\) −31.4265 2.80924i −1.00388 0.0897378i
\(981\) 0 0
\(982\) −11.2167 12.2641i −0.357940 0.391363i
\(983\) 44.1620 16.0737i 1.40855 0.512670i 0.477846 0.878444i \(-0.341418\pi\)
0.930704 + 0.365773i \(0.119195\pi\)
\(984\) 0 0
\(985\) 2.51126 2.10719i 0.0800153 0.0671408i
\(986\) 6.98251 9.08203i 0.222369 0.289231i
\(987\) 0 0
\(988\) −3.86843 + 3.85385i −0.123071 + 0.122607i
\(989\) −7.42628 + 4.28756i −0.236142 + 0.136337i
\(990\) 0 0
\(991\) −10.5119 + 18.2072i −0.333922 + 0.578370i −0.983277 0.182115i \(-0.941706\pi\)
0.649355 + 0.760486i \(0.275039\pi\)
\(992\) 7.64092 9.86116i 0.242599 0.313092i
\(993\) 0 0
\(994\) 4.98434 37.5857i 0.158094 1.19215i
\(995\) −13.6219 + 2.40190i −0.431842 + 0.0761454i
\(996\) 0 0
\(997\) 1.15413 1.37543i 0.0365515 0.0435604i −0.747459 0.664308i \(-0.768726\pi\)
0.784011 + 0.620748i \(0.213171\pi\)
\(998\) −49.9718 + 11.0290i −1.58183 + 0.349117i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.613.23 204
3.2 odd 2 216.2.t.a.205.12 yes 204
8.5 even 2 inner 648.2.t.a.613.8 204
12.11 even 2 864.2.bf.a.529.22 204
24.5 odd 2 216.2.t.a.205.27 yes 204
24.11 even 2 864.2.bf.a.529.13 204
27.5 odd 18 216.2.t.a.157.27 yes 204
27.22 even 9 inner 648.2.t.a.37.8 204
108.59 even 18 864.2.bf.a.49.13 204
216.5 odd 18 216.2.t.a.157.12 204
216.59 even 18 864.2.bf.a.49.22 204
216.157 even 18 inner 648.2.t.a.37.23 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.12 204 216.5 odd 18
216.2.t.a.157.27 yes 204 27.5 odd 18
216.2.t.a.205.12 yes 204 3.2 odd 2
216.2.t.a.205.27 yes 204 24.5 odd 2
648.2.t.a.37.8 204 27.22 even 9 inner
648.2.t.a.37.23 204 216.157 even 18 inner
648.2.t.a.613.8 204 8.5 even 2 inner
648.2.t.a.613.23 204 1.1 even 1 trivial
864.2.bf.a.49.13 204 108.59 even 18
864.2.bf.a.49.22 204 216.59 even 18
864.2.bf.a.529.13 204 24.11 even 2
864.2.bf.a.529.22 204 12.11 even 2