Properties

Label 648.2.t.a.397.7
Level $648$
Weight $2$
Character 648.397
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 397.7
Character \(\chi\) \(=\) 648.397
Dual form 648.2.t.a.253.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.08004 - 0.912975i) q^{2} +(0.332954 + 1.97209i) q^{4} +(-0.114718 - 0.136716i) q^{5} +(2.42085 - 0.881117i) q^{7} +(1.44087 - 2.43391i) q^{8} +(-0.000918366 + 0.252392i) q^{10} +(0.599296 - 0.714213i) q^{11} +(-0.368417 + 0.0649618i) q^{13} +(-3.41904 - 1.25854i) q^{14} +(-3.77828 + 1.31323i) q^{16} +(2.26254 + 3.91883i) q^{17} +(1.97566 + 1.14065i) q^{19} +(0.231420 - 0.271754i) q^{20} +(-1.29932 + 0.224233i) q^{22} +(-4.40423 - 1.60301i) q^{23} +(0.862710 - 4.89267i) q^{25} +(0.457212 + 0.266194i) q^{26} +(2.54367 + 4.48076i) q^{28} +(1.58682 + 0.279799i) q^{29} +(8.17965 + 2.97715i) q^{31} +(5.27963 + 2.03114i) q^{32} +(1.13417 - 6.29812i) q^{34} +(-0.398177 - 0.229888i) q^{35} +(3.82721 - 2.20964i) q^{37} +(-1.09240 - 3.03566i) q^{38} +(-0.498046 + 0.0822239i) q^{40} +(-0.238139 - 1.35055i) q^{41} +(3.28437 - 3.91416i) q^{43} +(1.60803 + 0.944066i) q^{44} +(3.29322 + 5.75225i) q^{46} +(7.70413 - 2.80407i) q^{47} +(-0.278168 + 0.233411i) q^{49} +(-5.39864 + 4.49663i) q^{50} +(-0.250776 - 0.704922i) q^{52} -9.07829i q^{53} -0.166394 q^{55} +(1.34357 - 7.16169i) q^{56} +(-1.45837 - 1.75092i) q^{58} +(9.44865 + 11.2605i) q^{59} +(-5.07860 - 13.9533i) q^{61} +(-6.11625 - 10.6832i) q^{62} +(-3.84780 - 7.01387i) q^{64} +(0.0511453 + 0.0429160i) q^{65} +(-1.72274 + 0.303765i) q^{67} +(-6.97497 + 5.76672i) q^{68} +(0.220164 + 0.611813i) q^{70} +(-2.77372 - 4.80422i) q^{71} +(-4.77001 + 8.26190i) q^{73} +(-6.15087 - 1.10766i) q^{74} +(-1.59165 + 4.27595i) q^{76} +(0.821500 - 2.25705i) q^{77} +(-0.704340 + 3.99451i) q^{79} +(0.612976 + 0.365899i) q^{80} +(-0.975822 + 1.67606i) q^{82} +(15.0319 + 2.65052i) q^{83} +(0.276212 - 0.758885i) q^{85} +(-7.12077 + 1.22889i) q^{86} +(-0.874822 - 2.48772i) q^{88} +(-8.16359 + 14.1397i) q^{89} +(-0.834643 + 0.481881i) q^{91} +(1.69487 - 9.21926i) q^{92} +(-10.8808 - 4.00518i) q^{94} +(-0.0706993 - 0.400955i) q^{95} +(-8.94677 - 7.50723i) q^{97} +(0.513530 + 0.00186855i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.08004 0.912975i −0.763701 0.645571i
\(3\) 0 0
\(4\) 0.332954 + 1.97209i 0.166477 + 0.986045i
\(5\) −0.114718 0.136716i −0.0513035 0.0611411i 0.739782 0.672846i \(-0.234928\pi\)
−0.791086 + 0.611705i \(0.790484\pi\)
\(6\) 0 0
\(7\) 2.42085 0.881117i 0.914995 0.333031i 0.158749 0.987319i \(-0.449254\pi\)
0.756245 + 0.654288i \(0.227032\pi\)
\(8\) 1.44087 2.43391i 0.509423 0.860516i
\(9\) 0 0
\(10\) −0.000918366 0.252392i −0.000290413 0.0798135i
\(11\) 0.599296 0.714213i 0.180695 0.215343i −0.668093 0.744078i \(-0.732889\pi\)
0.848787 + 0.528735i \(0.177333\pi\)
\(12\) 0 0
\(13\) −0.368417 + 0.0649618i −0.102180 + 0.0180172i −0.224505 0.974473i \(-0.572076\pi\)
0.122324 + 0.992490i \(0.460965\pi\)
\(14\) −3.41904 1.25854i −0.913777 0.336358i
\(15\) 0 0
\(16\) −3.77828 + 1.31323i −0.944571 + 0.328308i
\(17\) 2.26254 + 3.91883i 0.548746 + 0.950456i 0.998361 + 0.0572337i \(0.0182280\pi\)
−0.449615 + 0.893223i \(0.648439\pi\)
\(18\) 0 0
\(19\) 1.97566 + 1.14065i 0.453246 + 0.261682i 0.709200 0.705007i \(-0.249056\pi\)
−0.255954 + 0.966689i \(0.582390\pi\)
\(20\) 0.231420 0.271754i 0.0517470 0.0607661i
\(21\) 0 0
\(22\) −1.29932 + 0.224233i −0.277016 + 0.0478067i
\(23\) −4.40423 1.60301i −0.918345 0.334250i −0.160765 0.986993i \(-0.551396\pi\)
−0.757580 + 0.652742i \(0.773618\pi\)
\(24\) 0 0
\(25\) 0.862710 4.89267i 0.172542 0.978534i
\(26\) 0.457212 + 0.266194i 0.0896666 + 0.0522050i
\(27\) 0 0
\(28\) 2.54367 + 4.48076i 0.480709 + 0.846785i
\(29\) 1.58682 + 0.279799i 0.294665 + 0.0519574i 0.319026 0.947746i \(-0.396644\pi\)
−0.0243613 + 0.999703i \(0.507755\pi\)
\(30\) 0 0
\(31\) 8.17965 + 2.97715i 1.46911 + 0.534712i 0.947858 0.318692i \(-0.103244\pi\)
0.521250 + 0.853404i \(0.325466\pi\)
\(32\) 5.27963 + 2.03114i 0.933315 + 0.359059i
\(33\) 0 0
\(34\) 1.13417 6.29812i 0.194509 1.08012i
\(35\) −0.398177 0.229888i −0.0673043 0.0388581i
\(36\) 0 0
\(37\) 3.82721 2.20964i 0.629190 0.363263i −0.151248 0.988496i \(-0.548329\pi\)
0.780438 + 0.625233i \(0.214996\pi\)
\(38\) −1.09240 3.03566i −0.177210 0.492449i
\(39\) 0 0
\(40\) −0.498046 + 0.0822239i −0.0787481 + 0.0130007i
\(41\) −0.238139 1.35055i −0.0371910 0.210921i 0.960549 0.278110i \(-0.0897080\pi\)
−0.997740 + 0.0671892i \(0.978597\pi\)
\(42\) 0 0
\(43\) 3.28437 3.91416i 0.500862 0.596904i −0.455083 0.890449i \(-0.650391\pi\)
0.955945 + 0.293545i \(0.0948350\pi\)
\(44\) 1.60803 + 0.944066i 0.242420 + 0.142323i
\(45\) 0 0
\(46\) 3.29322 + 5.75225i 0.485558 + 0.848124i
\(47\) 7.70413 2.80407i 1.12376 0.409016i 0.287738 0.957709i \(-0.407097\pi\)
0.836024 + 0.548693i \(0.184874\pi\)
\(48\) 0 0
\(49\) −0.278168 + 0.233411i −0.0397383 + 0.0333444i
\(50\) −5.39864 + 4.49663i −0.763483 + 0.635919i
\(51\) 0 0
\(52\) −0.250776 0.704922i −0.0347764 0.0977551i
\(53\) 9.07829i 1.24700i −0.781824 0.623500i \(-0.785710\pi\)
0.781824 0.623500i \(-0.214290\pi\)
\(54\) 0 0
\(55\) −0.166394 −0.0224366
\(56\) 1.34357 7.16169i 0.179541 0.957022i
\(57\) 0 0
\(58\) −1.45837 1.75092i −0.191494 0.229907i
\(59\) 9.44865 + 11.2605i 1.23011 + 1.46599i 0.837641 + 0.546222i \(0.183934\pi\)
0.392469 + 0.919765i \(0.371621\pi\)
\(60\) 0 0
\(61\) −5.07860 13.9533i −0.650247 1.78654i −0.616827 0.787099i \(-0.711582\pi\)
−0.0334206 0.999441i \(-0.510640\pi\)
\(62\) −6.11625 10.6832i −0.776765 1.35677i
\(63\) 0 0
\(64\) −3.84780 7.01387i −0.480975 0.876734i
\(65\) 0.0511453 + 0.0429160i 0.00634380 + 0.00532308i
\(66\) 0 0
\(67\) −1.72274 + 0.303765i −0.210466 + 0.0371108i −0.277887 0.960614i \(-0.589634\pi\)
0.0674209 + 0.997725i \(0.478523\pi\)
\(68\) −6.97497 + 5.76672i −0.845840 + 0.699318i
\(69\) 0 0
\(70\) 0.220164 + 0.611813i 0.0263146 + 0.0731256i
\(71\) −2.77372 4.80422i −0.329180 0.570156i 0.653169 0.757212i \(-0.273439\pi\)
−0.982349 + 0.187055i \(0.940106\pi\)
\(72\) 0 0
\(73\) −4.77001 + 8.26190i −0.558287 + 0.966982i 0.439352 + 0.898315i \(0.355208\pi\)
−0.997640 + 0.0686670i \(0.978125\pi\)
\(74\) −6.15087 1.10766i −0.715024 0.128762i
\(75\) 0 0
\(76\) −1.59165 + 4.27595i −0.182575 + 0.490486i
\(77\) 0.821500 2.25705i 0.0936186 0.257215i
\(78\) 0 0
\(79\) −0.704340 + 3.99451i −0.0792444 + 0.449417i 0.919206 + 0.393776i \(0.128831\pi\)
−0.998451 + 0.0556413i \(0.982280\pi\)
\(80\) 0.612976 + 0.365899i 0.0685328 + 0.0409088i
\(81\) 0 0
\(82\) −0.975822 + 1.67606i −0.107761 + 0.185090i
\(83\) 15.0319 + 2.65052i 1.64996 + 0.290933i 0.919813 0.392357i \(-0.128340\pi\)
0.730148 + 0.683289i \(0.239451\pi\)
\(84\) 0 0
\(85\) 0.276212 0.758885i 0.0299594 0.0823126i
\(86\) −7.12077 + 1.22889i −0.767852 + 0.132514i
\(87\) 0 0
\(88\) −0.874822 2.48772i −0.0932564 0.265191i
\(89\) −8.16359 + 14.1397i −0.865339 + 1.49881i 0.00137211 + 0.999999i \(0.499563\pi\)
−0.866711 + 0.498811i \(0.833770\pi\)
\(90\) 0 0
\(91\) −0.834643 + 0.481881i −0.0874943 + 0.0505149i
\(92\) 1.69487 9.21926i 0.176703 0.961175i
\(93\) 0 0
\(94\) −10.8808 4.00518i −1.12227 0.413102i
\(95\) −0.0706993 0.400955i −0.00725359 0.0411372i
\(96\) 0 0
\(97\) −8.94677 7.50723i −0.908407 0.762244i 0.0634084 0.997988i \(-0.479803\pi\)
−0.971815 + 0.235744i \(0.924247\pi\)
\(98\) 0.513530 + 0.00186855i 0.0518744 + 0.000188752i
\(99\) 0 0
\(100\) 9.93603 + 0.0723083i 0.993603 + 0.00723083i
\(101\) −0.733566 2.01546i −0.0729926 0.200545i 0.897831 0.440340i \(-0.145142\pi\)
−0.970824 + 0.239795i \(0.922920\pi\)
\(102\) 0 0
\(103\) 8.97851 7.53386i 0.884679 0.742334i −0.0824568 0.996595i \(-0.526277\pi\)
0.967136 + 0.254261i \(0.0818322\pi\)
\(104\) −0.372729 + 0.990294i −0.0365491 + 0.0971063i
\(105\) 0 0
\(106\) −8.28825 + 9.80488i −0.805026 + 0.952334i
\(107\) 7.40373i 0.715745i −0.933770 0.357873i \(-0.883502\pi\)
0.933770 0.357873i \(-0.116498\pi\)
\(108\) 0 0
\(109\) 13.2321i 1.26741i −0.773575 0.633704i \(-0.781534\pi\)
0.773575 0.633704i \(-0.218466\pi\)
\(110\) 0.179712 + 0.151914i 0.0171348 + 0.0144844i
\(111\) 0 0
\(112\) −7.98954 + 6.50824i −0.754941 + 0.614971i
\(113\) 7.02588 5.89541i 0.660939 0.554594i −0.249429 0.968393i \(-0.580243\pi\)
0.910368 + 0.413799i \(0.135799\pi\)
\(114\) 0 0
\(115\) 0.286088 + 0.786020i 0.0266778 + 0.0732968i
\(116\) −0.0234515 + 3.22251i −0.00217741 + 0.299203i
\(117\) 0 0
\(118\) 0.0756404 20.7881i 0.00696326 1.91370i
\(119\) 8.93021 + 7.49334i 0.818631 + 0.686913i
\(120\) 0 0
\(121\) 1.75919 + 9.97684i 0.159926 + 0.906985i
\(122\) −7.25397 + 19.7067i −0.656744 + 1.78416i
\(123\) 0 0
\(124\) −3.14776 + 17.1223i −0.282677 + 1.53762i
\(125\) −1.54067 + 0.889506i −0.137802 + 0.0795598i
\(126\) 0 0
\(127\) −9.58464 + 16.6011i −0.850500 + 1.47311i 0.0302583 + 0.999542i \(0.490367\pi\)
−0.880758 + 0.473567i \(0.842966\pi\)
\(128\) −2.24772 + 11.0882i −0.198673 + 0.980066i
\(129\) 0 0
\(130\) −0.0160575 0.0930453i −0.00140834 0.00816061i
\(131\) 0.312406 0.858328i 0.0272950 0.0749924i −0.925297 0.379244i \(-0.876184\pi\)
0.952592 + 0.304252i \(0.0984063\pi\)
\(132\) 0 0
\(133\) 5.78780 + 1.02055i 0.501866 + 0.0884926i
\(134\) 2.13795 + 1.24474i 0.184691 + 0.107529i
\(135\) 0 0
\(136\) 12.7981 + 0.139708i 1.09743 + 0.0119799i
\(137\) −0.995947 + 5.64830i −0.0850895 + 0.482566i 0.912248 + 0.409639i \(0.134345\pi\)
−0.997337 + 0.0729275i \(0.976766\pi\)
\(138\) 0 0
\(139\) −7.23743 + 19.8847i −0.613871 + 1.68660i 0.107638 + 0.994190i \(0.465671\pi\)
−0.721509 + 0.692406i \(0.756551\pi\)
\(140\) 0.320785 0.861784i 0.0271113 0.0728340i
\(141\) 0 0
\(142\) −1.39042 + 7.72107i −0.116681 + 0.647938i
\(143\) −0.174394 + 0.302060i −0.0145836 + 0.0252595i
\(144\) 0 0
\(145\) −0.143784 0.249041i −0.0119406 0.0206817i
\(146\) 12.6947 4.56824i 1.05062 0.378071i
\(147\) 0 0
\(148\) 5.63190 + 6.81190i 0.462939 + 0.559935i
\(149\) −7.83652 + 1.38179i −0.641992 + 0.113201i −0.485161 0.874425i \(-0.661239\pi\)
−0.156831 + 0.987625i \(0.550128\pi\)
\(150\) 0 0
\(151\) −2.04551 1.71638i −0.166461 0.139677i 0.555752 0.831348i \(-0.312430\pi\)
−0.722213 + 0.691671i \(0.756875\pi\)
\(152\) 5.62288 3.16504i 0.456076 0.256719i
\(153\) 0 0
\(154\) −2.94788 + 1.68769i −0.237547 + 0.135998i
\(155\) −0.531330 1.45982i −0.0426775 0.117255i
\(156\) 0 0
\(157\) 7.93100 + 9.45180i 0.632963 + 0.754336i 0.983241 0.182310i \(-0.0583574\pi\)
−0.350278 + 0.936646i \(0.613913\pi\)
\(158\) 4.40760 3.67117i 0.350650 0.292062i
\(159\) 0 0
\(160\) −0.327980 0.954816i −0.0259291 0.0754848i
\(161\) −12.0744 −0.951597
\(162\) 0 0
\(163\) 13.6508i 1.06922i 0.845100 + 0.534608i \(0.179541\pi\)
−0.845100 + 0.534608i \(0.820459\pi\)
\(164\) 2.58412 0.919303i 0.201786 0.0717855i
\(165\) 0 0
\(166\) −13.8151 16.5864i −1.07226 1.28735i
\(167\) 3.21110 2.69443i 0.248482 0.208502i −0.510036 0.860153i \(-0.670368\pi\)
0.758519 + 0.651651i \(0.225924\pi\)
\(168\) 0 0
\(169\) −12.0845 + 4.39840i −0.929576 + 0.338338i
\(170\) −0.991161 + 0.567449i −0.0760186 + 0.0435213i
\(171\) 0 0
\(172\) 8.81262 + 5.17384i 0.671956 + 0.394502i
\(173\) −12.8781 + 15.3475i −0.979103 + 1.16685i 0.00687524 + 0.999976i \(0.497812\pi\)
−0.985978 + 0.166873i \(0.946633\pi\)
\(174\) 0 0
\(175\) −2.22253 12.6046i −0.168007 0.952816i
\(176\) −1.32638 + 3.48551i −0.0999799 + 0.262730i
\(177\) 0 0
\(178\) 21.7262 7.81828i 1.62845 0.586005i
\(179\) −6.96829 + 4.02315i −0.520835 + 0.300704i −0.737276 0.675592i \(-0.763888\pi\)
0.216441 + 0.976296i \(0.430555\pi\)
\(180\) 0 0
\(181\) −6.99841 4.04053i −0.520188 0.300331i 0.216824 0.976211i \(-0.430430\pi\)
−0.737011 + 0.675880i \(0.763764\pi\)
\(182\) 1.34139 + 0.241559i 0.0994304 + 0.0179055i
\(183\) 0 0
\(184\) −10.2475 + 8.40976i −0.755454 + 0.619976i
\(185\) −0.741143 0.269754i −0.0544899 0.0198327i
\(186\) 0 0
\(187\) 4.15481 + 0.732605i 0.303830 + 0.0535734i
\(188\) 8.09501 + 14.2596i 0.590389 + 1.03999i
\(189\) 0 0
\(190\) −0.289705 + 0.497593i −0.0210174 + 0.0360992i
\(191\) −2.88972 + 16.3884i −0.209093 + 1.18582i 0.681776 + 0.731561i \(0.261208\pi\)
−0.890868 + 0.454262i \(0.849903\pi\)
\(192\) 0 0
\(193\) −0.775835 0.282381i −0.0558458 0.0203262i 0.313946 0.949441i \(-0.398349\pi\)
−0.369792 + 0.929115i \(0.620571\pi\)
\(194\) 2.80892 + 16.2763i 0.201668 + 1.16857i
\(195\) 0 0
\(196\) −0.552925 0.470858i −0.0394946 0.0336327i
\(197\) −13.0620 7.54137i −0.930632 0.537301i −0.0436205 0.999048i \(-0.513889\pi\)
−0.887011 + 0.461748i \(0.847223\pi\)
\(198\) 0 0
\(199\) −7.77810 13.4721i −0.551375 0.955009i −0.998176 0.0603759i \(-0.980770\pi\)
0.446801 0.894633i \(-0.352563\pi\)
\(200\) −10.6653 9.14944i −0.754147 0.646963i
\(201\) 0 0
\(202\) −1.04778 + 2.84649i −0.0737218 + 0.200279i
\(203\) 4.08799 0.720823i 0.286921 0.0505918i
\(204\) 0 0
\(205\) −0.157323 + 0.187490i −0.0109879 + 0.0130949i
\(206\) −16.5753 0.0603118i −1.15486 0.00420212i
\(207\) 0 0
\(208\) 1.30667 0.729260i 0.0906015 0.0505651i
\(209\) 1.99867 0.727455i 0.138251 0.0503191i
\(210\) 0 0
\(211\) −3.55232 4.23349i −0.244552 0.291445i 0.629781 0.776773i \(-0.283145\pi\)
−0.874332 + 0.485328i \(0.838700\pi\)
\(212\) 17.9032 3.02265i 1.22960 0.207597i
\(213\) 0 0
\(214\) −6.75942 + 7.99629i −0.462064 + 0.546615i
\(215\) −0.911903 −0.0621913
\(216\) 0 0
\(217\) 22.4249 1.52230
\(218\) −12.0806 + 14.2912i −0.818202 + 0.967920i
\(219\) 0 0
\(220\) −0.0554016 0.328144i −0.00373517 0.0221235i
\(221\) −1.08813 1.29679i −0.0731957 0.0872312i
\(222\) 0 0
\(223\) 4.91216 1.78788i 0.328942 0.119725i −0.172269 0.985050i \(-0.555110\pi\)
0.501212 + 0.865325i \(0.332888\pi\)
\(224\) 14.5709 + 0.265119i 0.973556 + 0.0177140i
\(225\) 0 0
\(226\) −12.9706 0.0471953i −0.862789 0.00313938i
\(227\) −5.65872 + 6.74381i −0.375583 + 0.447602i −0.920415 0.390943i \(-0.872149\pi\)
0.544832 + 0.838545i \(0.316593\pi\)
\(228\) 0 0
\(229\) −8.50987 + 1.50052i −0.562348 + 0.0991572i −0.447594 0.894237i \(-0.647719\pi\)
−0.114754 + 0.993394i \(0.536608\pi\)
\(230\) 0.408632 1.11012i 0.0269444 0.0731992i
\(231\) 0 0
\(232\) 2.96740 3.45902i 0.194820 0.227096i
\(233\) 0.420645 + 0.728579i 0.0275574 + 0.0477308i 0.879475 0.475945i \(-0.157894\pi\)
−0.851918 + 0.523676i \(0.824560\pi\)
\(234\) 0 0
\(235\) −1.26716 0.731597i −0.0826606 0.0477241i
\(236\) −19.0607 + 22.3828i −1.24075 + 1.45700i
\(237\) 0 0
\(238\) −2.80372 16.2461i −0.181738 1.05308i
\(239\) −12.9749 4.72248i −0.839276 0.305472i −0.113616 0.993525i \(-0.536243\pi\)
−0.725660 + 0.688053i \(0.758466\pi\)
\(240\) 0 0
\(241\) 2.61837 14.8495i 0.168664 0.956542i −0.776541 0.630066i \(-0.783028\pi\)
0.945206 0.326476i \(-0.105861\pi\)
\(242\) 7.20862 12.3814i 0.463387 0.795908i
\(243\) 0 0
\(244\) 25.8263 14.6613i 1.65336 0.938591i
\(245\) 0.0638218 + 0.0112535i 0.00407743 + 0.000718960i
\(246\) 0 0
\(247\) −0.801963 0.291891i −0.0510277 0.0185726i
\(248\) 19.0319 15.6188i 1.20853 0.991797i
\(249\) 0 0
\(250\) 2.47607 + 0.445894i 0.156601 + 0.0282008i
\(251\) −9.73582 5.62098i −0.614520 0.354793i 0.160213 0.987083i \(-0.448782\pi\)
−0.774732 + 0.632289i \(0.782115\pi\)
\(252\) 0 0
\(253\) −3.78432 + 2.18488i −0.237918 + 0.137362i
\(254\) 25.5081 9.17923i 1.60052 0.575956i
\(255\) 0 0
\(256\) 12.5509 9.92351i 0.784428 0.620220i
\(257\) −1.23538 7.00619i −0.0770609 0.437034i −0.998789 0.0491976i \(-0.984334\pi\)
0.921728 0.387837i \(-0.126778\pi\)
\(258\) 0 0
\(259\) 7.31815 8.72143i 0.454728 0.541923i
\(260\) −0.0676053 + 0.115152i −0.00419270 + 0.00714144i
\(261\) 0 0
\(262\) −1.12104 + 0.641806i −0.0692581 + 0.0396509i
\(263\) 18.0450 6.56783i 1.11270 0.404990i 0.280717 0.959790i \(-0.409428\pi\)
0.831983 + 0.554801i \(0.187205\pi\)
\(264\) 0 0
\(265\) −1.24114 + 1.04144i −0.0762429 + 0.0639754i
\(266\) −5.31930 6.38635i −0.326147 0.391572i
\(267\) 0 0
\(268\) −1.17265 3.29626i −0.0716307 0.201351i
\(269\) 16.5198i 1.00723i 0.863928 + 0.503616i \(0.167997\pi\)
−0.863928 + 0.503616i \(0.832003\pi\)
\(270\) 0 0
\(271\) −1.17854 −0.0715913 −0.0357956 0.999359i \(-0.511397\pi\)
−0.0357956 + 0.999359i \(0.511397\pi\)
\(272\) −13.6948 11.8352i −0.830372 0.717616i
\(273\) 0 0
\(274\) 6.23241 5.19109i 0.376514 0.313605i
\(275\) −2.97739 3.54832i −0.179543 0.213972i
\(276\) 0 0
\(277\) 7.87030 + 21.6235i 0.472880 + 1.29923i 0.915428 + 0.402483i \(0.131853\pi\)
−0.442547 + 0.896745i \(0.645925\pi\)
\(278\) 25.9709 14.8686i 1.55763 0.891757i
\(279\) 0 0
\(280\) −1.13325 + 0.637889i −0.0677244 + 0.0381212i
\(281\) −16.4336 13.7895i −0.980348 0.822610i 0.00379366 0.999993i \(-0.498792\pi\)
−0.984142 + 0.177383i \(0.943237\pi\)
\(282\) 0 0
\(283\) 0.339199 0.0598100i 0.0201633 0.00355534i −0.163557 0.986534i \(-0.552297\pi\)
0.183721 + 0.982978i \(0.441186\pi\)
\(284\) 8.55084 7.06961i 0.507399 0.419504i
\(285\) 0 0
\(286\) 0.464125 0.167018i 0.0274443 0.00987596i
\(287\) −1.76649 3.05966i −0.104273 0.180606i
\(288\) 0 0
\(289\) −1.73816 + 3.01059i −0.102245 + 0.177093i
\(290\) −0.0720765 + 0.400244i −0.00423248 + 0.0235032i
\(291\) 0 0
\(292\) −17.8814 6.65606i −1.04643 0.389516i
\(293\) 9.01139 24.7586i 0.526451 1.44641i −0.336770 0.941587i \(-0.609335\pi\)
0.863221 0.504826i \(-0.168443\pi\)
\(294\) 0 0
\(295\) 0.455551 2.58356i 0.0265232 0.150420i
\(296\) 0.136442 12.4989i 0.00793051 0.726482i
\(297\) 0 0
\(298\) 9.72525 + 5.66216i 0.563369 + 0.328000i
\(299\) 1.72673 + 0.304468i 0.0998591 + 0.0176079i
\(300\) 0 0
\(301\) 4.50213 12.3695i 0.259499 0.712967i
\(302\) 0.642205 + 3.72125i 0.0369547 + 0.214134i
\(303\) 0 0
\(304\) −8.96252 1.71519i −0.514036 0.0983729i
\(305\) −1.32503 + 2.29502i −0.0758711 + 0.131413i
\(306\) 0 0
\(307\) −14.2917 + 8.25134i −0.815673 + 0.470929i −0.848922 0.528518i \(-0.822748\pi\)
0.0332493 + 0.999447i \(0.489414\pi\)
\(308\) 4.72463 + 0.868578i 0.269211 + 0.0494918i
\(309\) 0 0
\(310\) −0.758922 + 2.06175i −0.0431039 + 0.117099i
\(311\) −3.58763 20.3464i −0.203436 1.15374i −0.899882 0.436133i \(-0.856348\pi\)
0.696447 0.717609i \(-0.254763\pi\)
\(312\) 0 0
\(313\) −9.65918 8.10501i −0.545969 0.458122i 0.327604 0.944815i \(-0.393759\pi\)
−0.873573 + 0.486693i \(0.838203\pi\)
\(314\) 0.0634910 17.4491i 0.00358300 0.984709i
\(315\) 0 0
\(316\) −8.11205 0.0590345i −0.456338 0.00332095i
\(317\) −4.18467 11.4973i −0.235034 0.645752i −0.999999 0.00167879i \(-0.999466\pi\)
0.764964 0.644073i \(-0.222757\pi\)
\(318\) 0 0
\(319\) 1.15081 0.965645i 0.0644331 0.0540658i
\(320\) −0.517493 + 1.33067i −0.0289288 + 0.0743868i
\(321\) 0 0
\(322\) 13.0408 + 11.0236i 0.726735 + 0.614323i
\(323\) 10.3230i 0.574388i
\(324\) 0 0
\(325\) 1.85859i 0.103096i
\(326\) 12.4629 14.7434i 0.690254 0.816561i
\(327\) 0 0
\(328\) −3.63024 1.36636i −0.200447 0.0754445i
\(329\) 16.1798 13.5765i 0.892022 0.748495i
\(330\) 0 0
\(331\) 6.93586 + 19.0561i 0.381230 + 1.04742i 0.970839 + 0.239731i \(0.0770593\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(332\) −0.222154 + 30.5267i −0.0121923 + 1.67537i
\(333\) 0 0
\(334\) −5.92805 0.0215701i −0.324369 0.00118026i
\(335\) 0.239159 + 0.200678i 0.0130666 + 0.0109642i
\(336\) 0 0
\(337\) 2.99094 + 16.9625i 0.162927 + 0.924006i 0.951176 + 0.308649i \(0.0998769\pi\)
−0.788249 + 0.615357i \(0.789012\pi\)
\(338\) 17.0673 + 6.28241i 0.928339 + 0.341718i
\(339\) 0 0
\(340\) 1.58856 + 0.292041i 0.0861515 + 0.0158381i
\(341\) 7.02835 4.05782i 0.380606 0.219743i
\(342\) 0 0
\(343\) −9.48449 + 16.4276i −0.512114 + 0.887008i
\(344\) −4.79436 13.6336i −0.258495 0.735076i
\(345\) 0 0
\(346\) 27.9207 4.81849i 1.50103 0.259043i
\(347\) −2.18170 + 5.99416i −0.117120 + 0.321783i −0.984376 0.176078i \(-0.943659\pi\)
0.867257 + 0.497861i \(0.165881\pi\)
\(348\) 0 0
\(349\) −13.1972 2.32702i −0.706430 0.124563i −0.191120 0.981567i \(-0.561212\pi\)
−0.515310 + 0.857004i \(0.672323\pi\)
\(350\) −9.10725 + 15.6425i −0.486803 + 0.836126i
\(351\) 0 0
\(352\) 4.61473 2.55352i 0.245966 0.136103i
\(353\) 1.95983 11.1147i 0.104311 0.591577i −0.887182 0.461419i \(-0.847340\pi\)
0.991493 0.130158i \(-0.0415484\pi\)
\(354\) 0 0
\(355\) −0.338617 + 0.930342i −0.0179719 + 0.0493774i
\(356\) −30.6030 11.3915i −1.62195 0.603746i
\(357\) 0 0
\(358\) 11.1990 + 2.01674i 0.591888 + 0.106588i
\(359\) 13.5862 23.5320i 0.717053 1.24197i −0.245109 0.969495i \(-0.578824\pi\)
0.962162 0.272477i \(-0.0878428\pi\)
\(360\) 0 0
\(361\) −6.89786 11.9474i −0.363045 0.628813i
\(362\) 3.86963 + 10.7533i 0.203383 + 0.565181i
\(363\) 0 0
\(364\) −1.22821 1.48555i −0.0643757 0.0778638i
\(365\) 1.67674 0.295654i 0.0877644 0.0154752i
\(366\) 0 0
\(367\) 17.5436 + 14.7209i 0.915771 + 0.768423i 0.973208 0.229926i \(-0.0738485\pi\)
−0.0574375 + 0.998349i \(0.518293\pi\)
\(368\) 18.7455 + 0.272851i 0.977179 + 0.0142234i
\(369\) 0 0
\(370\) 0.554182 + 0.967988i 0.0288105 + 0.0503233i
\(371\) −7.99904 21.9772i −0.415289 1.14100i
\(372\) 0 0
\(373\) 18.2082 + 21.6997i 0.942786 + 1.12357i 0.992183 + 0.124790i \(0.0398257\pi\)
−0.0493967 + 0.998779i \(0.515730\pi\)
\(374\) −3.81849 4.58448i −0.197450 0.237058i
\(375\) 0 0
\(376\) 4.27577 22.7914i 0.220506 1.17538i
\(377\) −0.602788 −0.0310451
\(378\) 0 0
\(379\) 9.20463i 0.472810i −0.971655 0.236405i \(-0.924031\pi\)
0.971655 0.236405i \(-0.0759692\pi\)
\(380\) 0.767181 0.272925i 0.0393556 0.0140008i
\(381\) 0 0
\(382\) 18.0832 15.0618i 0.925217 0.770630i
\(383\) −18.0654 + 15.1587i −0.923100 + 0.774573i −0.974566 0.224102i \(-0.928055\pi\)
0.0514658 + 0.998675i \(0.483611\pi\)
\(384\) 0 0
\(385\) −0.402815 + 0.146613i −0.0205294 + 0.00747207i
\(386\) 0.580123 + 1.01330i 0.0295275 + 0.0515756i
\(387\) 0 0
\(388\) 11.8261 20.1434i 0.600378 1.02263i
\(389\) −19.3453 + 23.0548i −0.980844 + 1.16892i 0.00478250 + 0.999989i \(0.498478\pi\)
−0.985627 + 0.168936i \(0.945967\pi\)
\(390\) 0 0
\(391\) −3.68282 20.8863i −0.186248 1.05627i
\(392\) 0.167297 + 1.01335i 0.00844977 + 0.0511819i
\(393\) 0 0
\(394\) 7.22239 + 20.0703i 0.363859 + 1.01113i
\(395\) 0.626912 0.361948i 0.0315434 0.0182116i
\(396\) 0 0
\(397\) −15.4854 8.94051i −0.777191 0.448711i 0.0582431 0.998302i \(-0.481450\pi\)
−0.835434 + 0.549591i \(0.814783\pi\)
\(398\) −3.89903 + 21.6515i −0.195441 + 1.08529i
\(399\) 0 0
\(400\) 3.16564 + 19.6188i 0.158282 + 0.980942i
\(401\) 9.33220 + 3.39664i 0.466028 + 0.169620i 0.564352 0.825534i \(-0.309126\pi\)
−0.0983243 + 0.995154i \(0.531348\pi\)
\(402\) 0 0
\(403\) −3.20692 0.565467i −0.159748 0.0281679i
\(404\) 3.73042 2.11771i 0.185595 0.105360i
\(405\) 0 0
\(406\) −5.07327 2.95372i −0.251782 0.146590i
\(407\) 0.715477 4.05767i 0.0354649 0.201131i
\(408\) 0 0
\(409\) −5.20287 1.89369i −0.257265 0.0936369i 0.210168 0.977665i \(-0.432599\pi\)
−0.467433 + 0.884028i \(0.654821\pi\)
\(410\) 0.341088 0.0588641i 0.0168451 0.00290709i
\(411\) 0 0
\(412\) 17.8469 + 15.1980i 0.879253 + 0.748752i
\(413\) 32.7955 + 18.9345i 1.61376 + 0.931706i
\(414\) 0 0
\(415\) −1.36206 2.35915i −0.0668608 0.115806i
\(416\) −2.07705 0.405333i −0.101836 0.0198731i
\(417\) 0 0
\(418\) −2.82278 1.03905i −0.138067 0.0508218i
\(419\) 4.02902 0.710424i 0.196830 0.0347065i −0.0743638 0.997231i \(-0.523693\pi\)
0.271194 + 0.962525i \(0.412581\pi\)
\(420\) 0 0
\(421\) −15.7920 + 18.8201i −0.769653 + 0.917237i −0.998417 0.0562453i \(-0.982087\pi\)
0.228764 + 0.973482i \(0.426532\pi\)
\(422\) −0.0284378 + 7.81549i −0.00138433 + 0.380452i
\(423\) 0 0
\(424\) −22.0957 13.0806i −1.07306 0.635251i
\(425\) 21.1255 7.68904i 1.02474 0.372973i
\(426\) 0 0
\(427\) −24.5890 29.3041i −1.18995 1.41812i
\(428\) 14.6008 2.46510i 0.705757 0.119155i
\(429\) 0 0
\(430\) 0.984888 + 0.832545i 0.0474955 + 0.0401489i
\(431\) −14.0058 −0.674635 −0.337318 0.941391i \(-0.609520\pi\)
−0.337318 + 0.941391i \(0.609520\pi\)
\(432\) 0 0
\(433\) 12.4899 0.600227 0.300113 0.953904i \(-0.402976\pi\)
0.300113 + 0.953904i \(0.402976\pi\)
\(434\) −24.2197 20.4734i −1.16258 0.982754i
\(435\) 0 0
\(436\) 26.0950 4.40569i 1.24972 0.210994i
\(437\) −6.87277 8.19065i −0.328769 0.391812i
\(438\) 0 0
\(439\) −10.1446 + 3.69232i −0.484174 + 0.176225i −0.572562 0.819861i \(-0.694050\pi\)
0.0883886 + 0.996086i \(0.471828\pi\)
\(440\) −0.239752 + 0.404988i −0.0114297 + 0.0193070i
\(441\) 0 0
\(442\) −0.00871096 + 2.39401i −0.000414338 + 0.113872i
\(443\) −18.6993 + 22.2849i −0.888430 + 1.05879i 0.109469 + 0.993990i \(0.465085\pi\)
−0.997898 + 0.0647991i \(0.979359\pi\)
\(444\) 0 0
\(445\) 2.86963 0.505994i 0.136034 0.0239864i
\(446\) −6.93759 2.55370i −0.328504 0.120921i
\(447\) 0 0
\(448\) −15.4950 13.5892i −0.732070 0.642027i
\(449\) 15.0485 + 26.0648i 0.710184 + 1.23007i 0.964788 + 0.263029i \(0.0847216\pi\)
−0.254604 + 0.967045i \(0.581945\pi\)
\(450\) 0 0
\(451\) −1.10730 0.639299i −0.0521406 0.0301034i
\(452\) 13.9656 + 11.8928i 0.656886 + 0.559389i
\(453\) 0 0
\(454\) 12.2685 2.11728i 0.575792 0.0993687i
\(455\) 0.161629 + 0.0588282i 0.00757729 + 0.00275791i
\(456\) 0 0
\(457\) 2.71160 15.3782i 0.126843 0.719363i −0.853353 0.521334i \(-0.825435\pi\)
0.980196 0.198029i \(-0.0634542\pi\)
\(458\) 10.5609 + 6.14868i 0.493479 + 0.287309i
\(459\) 0 0
\(460\) −1.45485 + 0.825900i −0.0678327 + 0.0385078i
\(461\) 12.7088 + 2.24090i 0.591908 + 0.104369i 0.461575 0.887101i \(-0.347284\pi\)
0.130332 + 0.991470i \(0.458396\pi\)
\(462\) 0 0
\(463\) 32.6243 + 11.8743i 1.51618 + 0.551845i 0.960191 0.279345i \(-0.0901172\pi\)
0.555990 + 0.831189i \(0.312339\pi\)
\(464\) −6.36290 + 1.02670i −0.295390 + 0.0476634i
\(465\) 0 0
\(466\) 0.210862 1.17093i 0.00976801 0.0542423i
\(467\) −12.4213 7.17141i −0.574787 0.331853i 0.184272 0.982875i \(-0.441007\pi\)
−0.759059 + 0.651022i \(0.774341\pi\)
\(468\) 0 0
\(469\) −3.90284 + 2.25330i −0.180216 + 0.104048i
\(470\) 0.700651 + 1.94704i 0.0323186 + 0.0898102i
\(471\) 0 0
\(472\) 41.0212 6.77230i 1.88815 0.311720i
\(473\) −0.827235 4.69148i −0.0380363 0.215715i
\(474\) 0 0
\(475\) 7.28522 8.68219i 0.334269 0.398366i
\(476\) −11.8042 + 20.1061i −0.541044 + 0.921563i
\(477\) 0 0
\(478\) 9.70185 + 16.9462i 0.443752 + 0.775101i
\(479\) −0.567163 + 0.206430i −0.0259143 + 0.00943204i −0.354945 0.934887i \(-0.615500\pi\)
0.329030 + 0.944319i \(0.393278\pi\)
\(480\) 0 0
\(481\) −1.26647 + 1.06269i −0.0577459 + 0.0484546i
\(482\) −16.3852 + 13.6475i −0.746324 + 0.621627i
\(483\) 0 0
\(484\) −19.0895 + 6.79110i −0.867704 + 0.308686i
\(485\) 2.08438i 0.0946467i
\(486\) 0 0
\(487\) −22.8735 −1.03650 −0.518249 0.855230i \(-0.673416\pi\)
−0.518249 + 0.855230i \(0.673416\pi\)
\(488\) −41.2787 7.74406i −1.86860 0.350557i
\(489\) 0 0
\(490\) −0.0586557 0.0704219i −0.00264979 0.00318134i
\(491\) −5.76980 6.87618i −0.260387 0.310318i 0.619973 0.784623i \(-0.287144\pi\)
−0.880360 + 0.474306i \(0.842699\pi\)
\(492\) 0 0
\(493\) 2.49376 + 6.85154i 0.112313 + 0.308578i
\(494\) 0.599660 + 1.04742i 0.0269800 + 0.0471259i
\(495\) 0 0
\(496\) −34.8147 0.506747i −1.56323 0.0227536i
\(497\) −10.9478 9.18633i −0.491078 0.412063i
\(498\) 0 0
\(499\) 43.2976 7.63454i 1.93827 0.341769i 0.938276 0.345886i \(-0.112422\pi\)
0.999992 + 0.00411738i \(0.00131061\pi\)
\(500\) −2.26716 2.74217i −0.101390 0.122634i
\(501\) 0 0
\(502\) 5.38322 + 14.9594i 0.240265 + 0.667671i
\(503\) −8.29388 14.3654i −0.369806 0.640523i 0.619729 0.784816i \(-0.287242\pi\)
−0.989535 + 0.144293i \(0.953909\pi\)
\(504\) 0 0
\(505\) −0.191391 + 0.331499i −0.00851679 + 0.0147515i
\(506\) 6.08195 + 1.09524i 0.270376 + 0.0486895i
\(507\) 0 0
\(508\) −35.9301 13.3744i −1.59414 0.593393i
\(509\) −9.18363 + 25.2318i −0.407057 + 1.11838i 0.551672 + 0.834061i \(0.313990\pi\)
−0.958730 + 0.284320i \(0.908232\pi\)
\(510\) 0 0
\(511\) −4.26777 + 24.2037i −0.188795 + 1.07071i
\(512\) −22.6153 0.740862i −0.999464 0.0327418i
\(513\) 0 0
\(514\) −5.06222 + 8.69481i −0.223285 + 0.383512i
\(515\) −2.05999 0.363232i −0.0907742 0.0160059i
\(516\) 0 0
\(517\) 2.61435 7.18286i 0.114979 0.315902i
\(518\) −15.8663 + 2.73817i −0.697126 + 0.120308i
\(519\) 0 0
\(520\) 0.178147 0.0626467i 0.00781228 0.00274724i
\(521\) −1.11230 + 1.92655i −0.0487306 + 0.0844039i −0.889362 0.457204i \(-0.848851\pi\)
0.840631 + 0.541608i \(0.182184\pi\)
\(522\) 0 0
\(523\) 3.08920 1.78355i 0.135081 0.0779892i −0.430937 0.902382i \(-0.641817\pi\)
0.566018 + 0.824393i \(0.308483\pi\)
\(524\) 1.79672 + 0.330309i 0.0784899 + 0.0144296i
\(525\) 0 0
\(526\) −25.4855 9.38111i −1.11122 0.409036i
\(527\) 6.83983 + 38.7906i 0.297948 + 1.68974i
\(528\) 0 0
\(529\) −0.791437 0.664094i −0.0344103 0.0288737i
\(530\) 2.29129 + 0.00833720i 0.0995274 + 0.000362145i
\(531\) 0 0
\(532\) −0.0855374 + 11.7539i −0.00370852 + 0.509595i
\(533\) 0.175469 + 0.482096i 0.00760039 + 0.0208819i
\(534\) 0 0
\(535\) −1.01220 + 0.849341i −0.0437614 + 0.0367202i
\(536\) −1.74290 + 4.63067i −0.0752819 + 0.200015i
\(537\) 0 0
\(538\) 15.0822 17.8420i 0.650239 0.769224i
\(539\) 0.338554i 0.0145825i
\(540\) 0 0
\(541\) 16.0298i 0.689174i 0.938754 + 0.344587i \(0.111981\pi\)
−0.938754 + 0.344587i \(0.888019\pi\)
\(542\) 1.27287 + 1.07598i 0.0546743 + 0.0462172i
\(543\) 0 0
\(544\) 3.98566 + 25.2855i 0.170884 + 1.08411i
\(545\) −1.80904 + 1.51796i −0.0774907 + 0.0650224i
\(546\) 0 0
\(547\) −11.0856 30.4574i −0.473985 1.30226i −0.914525 0.404530i \(-0.867435\pi\)
0.440539 0.897733i \(-0.354787\pi\)
\(548\) −11.4706 0.0834756i −0.489998 0.00356590i
\(549\) 0 0
\(550\) −0.0238353 + 6.55059i −0.00101634 + 0.279318i
\(551\) 2.81586 + 2.36279i 0.119960 + 0.100658i
\(552\) 0 0
\(553\) 1.81453 + 10.2907i 0.0771616 + 0.437605i
\(554\) 11.2415 30.5395i 0.477605 1.29750i
\(555\) 0 0
\(556\) −41.6241 7.65219i −1.76526 0.324525i
\(557\) 29.5913 17.0845i 1.25382 0.723895i 0.281956 0.959427i \(-0.409017\pi\)
0.971867 + 0.235532i \(0.0756833\pi\)
\(558\) 0 0
\(559\) −0.955747 + 1.65540i −0.0404238 + 0.0700160i
\(560\) 1.80632 + 0.345683i 0.0763311 + 0.0146078i
\(561\) 0 0
\(562\) 5.15948 + 29.8966i 0.217640 + 1.26111i
\(563\) −2.63340 + 7.23520i −0.110984 + 0.304927i −0.982734 0.185025i \(-0.940763\pi\)
0.871749 + 0.489952i \(0.162986\pi\)
\(564\) 0 0
\(565\) −1.61199 0.284237i −0.0678169 0.0119580i
\(566\) −0.420952 0.245084i −0.0176939 0.0103016i
\(567\) 0 0
\(568\) −15.6896 0.171273i −0.658321 0.00718644i
\(569\) −2.70678 + 15.3509i −0.113474 + 0.643544i 0.874020 + 0.485890i \(0.161504\pi\)
−0.987494 + 0.157654i \(0.949607\pi\)
\(570\) 0 0
\(571\) 7.83178 21.5176i 0.327750 0.900485i −0.660930 0.750447i \(-0.729838\pi\)
0.988680 0.150038i \(-0.0479396\pi\)
\(572\) −0.653754 0.243349i −0.0273348 0.0101749i
\(573\) 0 0
\(574\) −0.885513 + 4.91730i −0.0369606 + 0.205244i
\(575\) −11.6426 + 20.1655i −0.485528 + 0.840960i
\(576\) 0 0
\(577\) 13.3039 + 23.0431i 0.553850 + 0.959297i 0.997992 + 0.0633405i \(0.0201754\pi\)
−0.444141 + 0.895957i \(0.646491\pi\)
\(578\) 4.62587 1.66464i 0.192411 0.0692400i
\(579\) 0 0
\(580\) 0.443258 0.366474i 0.0184053 0.0152170i
\(581\) 38.7253 6.82831i 1.60660 0.283286i
\(582\) 0 0
\(583\) −6.48384 5.44058i −0.268533 0.225326i
\(584\) 13.2357 + 23.5140i 0.547699 + 0.973018i
\(585\) 0 0
\(586\) −32.3366 + 18.5130i −1.33581 + 0.764765i
\(587\) −14.1595 38.9028i −0.584424 1.60569i −0.780537 0.625110i \(-0.785054\pi\)
0.196113 0.980581i \(-0.437168\pi\)
\(588\) 0 0
\(589\) 12.7643 + 15.2119i 0.525944 + 0.626795i
\(590\) −2.85073 + 2.37443i −0.117363 + 0.0977536i
\(591\) 0 0
\(592\) −11.5585 + 13.3747i −0.475052 + 0.549695i
\(593\) 12.1474 0.498833 0.249417 0.968396i \(-0.419761\pi\)
0.249417 + 0.968396i \(0.419761\pi\)
\(594\) 0 0
\(595\) 2.08052i 0.0852930i
\(596\) −5.33421 14.9942i −0.218498 0.614188i
\(597\) 0 0
\(598\) −1.58695 1.90529i −0.0648954 0.0779133i
\(599\) −25.1300 + 21.0866i −1.02679 + 0.861575i −0.990465 0.137765i \(-0.956008\pi\)
−0.0363204 + 0.999340i \(0.511564\pi\)
\(600\) 0 0
\(601\) 26.6419 9.69685i 1.08674 0.395543i 0.264331 0.964432i \(-0.414849\pi\)
0.822414 + 0.568889i \(0.192627\pi\)
\(602\) −16.1555 + 9.24917i −0.658450 + 0.376968i
\(603\) 0 0
\(604\) 2.70380 4.60540i 0.110016 0.187391i
\(605\) 1.16218 1.38503i 0.0472493 0.0563095i
\(606\) 0 0
\(607\) −0.218532 1.23936i −0.00886995 0.0503040i 0.980052 0.198744i \(-0.0636861\pi\)
−0.988921 + 0.148440i \(0.952575\pi\)
\(608\) 8.11391 + 10.0350i 0.329063 + 0.406974i
\(609\) 0 0
\(610\) 3.52638 1.26898i 0.142779 0.0513797i
\(611\) −2.65617 + 1.53354i −0.107457 + 0.0620405i
\(612\) 0 0
\(613\) 27.4944 + 15.8739i 1.11049 + 0.641141i 0.938956 0.344038i \(-0.111795\pi\)
0.171532 + 0.985179i \(0.445128\pi\)
\(614\) 22.9689 + 4.13626i 0.926947 + 0.166926i
\(615\) 0 0
\(616\) −4.30978 5.25157i −0.173646 0.211592i
\(617\) 29.6509 + 10.7920i 1.19370 + 0.434471i 0.861021 0.508569i \(-0.169825\pi\)
0.332679 + 0.943040i \(0.392047\pi\)
\(618\) 0 0
\(619\) 29.3688 + 5.17850i 1.18043 + 0.208142i 0.729222 0.684277i \(-0.239882\pi\)
0.451208 + 0.892419i \(0.350993\pi\)
\(620\) 2.70199 1.53388i 0.108514 0.0616023i
\(621\) 0 0
\(622\) −14.7010 + 25.2503i −0.589458 + 1.01244i
\(623\) −7.30404 + 41.4233i −0.292630 + 1.65959i
\(624\) 0 0
\(625\) −23.0443 8.38744i −0.921772 0.335498i
\(626\) 3.03258 + 17.5723i 0.121206 + 0.702330i
\(627\) 0 0
\(628\) −15.9991 + 18.7877i −0.638435 + 0.749710i
\(629\) 17.3184 + 9.99880i 0.690531 + 0.398678i
\(630\) 0 0
\(631\) −15.5109 26.8656i −0.617478 1.06950i −0.989944 0.141458i \(-0.954821\pi\)
0.372466 0.928046i \(-0.378512\pi\)
\(632\) 8.70740 + 7.46985i 0.346362 + 0.297135i
\(633\) 0 0
\(634\) −5.97714 + 16.2380i −0.237382 + 0.644892i
\(635\) 3.36916 0.594074i 0.133701 0.0235751i
\(636\) 0 0
\(637\) 0.0873191 0.104063i 0.00345971 0.00412312i
\(638\) −2.12453 0.00773040i −0.0841108 0.000306049i
\(639\) 0 0
\(640\) 1.77378 0.964715i 0.0701149 0.0381337i
\(641\) −34.7901 + 12.6626i −1.37413 + 0.500142i −0.920393 0.390995i \(-0.872131\pi\)
−0.453735 + 0.891137i \(0.649909\pi\)
\(642\) 0 0
\(643\) −21.1010 25.1472i −0.832143 0.991710i −0.999983 0.00589543i \(-0.998123\pi\)
0.167839 0.985814i \(-0.446321\pi\)
\(644\) −4.02022 23.8118i −0.158419 0.938317i
\(645\) 0 0
\(646\) 9.42465 11.1492i 0.370808 0.438660i
\(647\) 32.3509 1.27185 0.635923 0.771752i \(-0.280620\pi\)
0.635923 + 0.771752i \(0.280620\pi\)
\(648\) 0 0
\(649\) 13.7049 0.537965
\(650\) 1.69684 2.00734i 0.0665556 0.0787343i
\(651\) 0 0
\(652\) −26.9207 + 4.54510i −1.05430 + 0.178000i
\(653\) −7.14706 8.51753i −0.279686 0.333317i 0.607853 0.794050i \(-0.292031\pi\)
−0.887539 + 0.460733i \(0.847587\pi\)
\(654\) 0 0
\(655\) −0.153185 + 0.0557549i −0.00598545 + 0.00217852i
\(656\) 2.67334 + 4.79004i 0.104376 + 0.187020i
\(657\) 0 0
\(658\) −29.8698 0.108685i −1.16444 0.00423700i
\(659\) 21.7371 25.9052i 0.846757 1.00913i −0.153025 0.988222i \(-0.548901\pi\)
0.999782 0.0209028i \(-0.00665406\pi\)
\(660\) 0 0
\(661\) −26.9698 + 4.75551i −1.04901 + 0.184968i −0.671473 0.741029i \(-0.734338\pi\)
−0.377532 + 0.925997i \(0.623227\pi\)
\(662\) 9.90679 26.9136i 0.385038 1.04603i
\(663\) 0 0
\(664\) 28.1100 32.7671i 1.09088 1.27161i
\(665\) −0.524441 0.908358i −0.0203369 0.0352246i
\(666\) 0 0
\(667\) −6.54020 3.77598i −0.253237 0.146207i
\(668\) 6.38282 + 5.43546i 0.246959 + 0.210304i
\(669\) 0 0
\(670\) −0.0750860 0.435085i −0.00290082 0.0168088i
\(671\) −13.0092 4.73497i −0.502216 0.182792i
\(672\) 0 0
\(673\) −3.55472 + 20.1598i −0.137024 + 0.777103i 0.836404 + 0.548113i \(0.184654\pi\)
−0.973429 + 0.228990i \(0.926458\pi\)
\(674\) 12.2560 21.0508i 0.472083 0.810845i
\(675\) 0 0
\(676\) −12.6976 22.3673i −0.488370 0.860279i
\(677\) 32.7893 + 5.78165i 1.26020 + 0.222207i 0.763552 0.645747i \(-0.223454\pi\)
0.496645 + 0.867954i \(0.334565\pi\)
\(678\) 0 0
\(679\) −28.2735 10.2907i −1.08504 0.394922i
\(680\) −1.44907 1.76573i −0.0555693 0.0677125i
\(681\) 0 0
\(682\) −11.2956 2.03412i −0.432529 0.0778904i
\(683\) 11.8895 + 6.86440i 0.454939 + 0.262659i 0.709914 0.704289i \(-0.248734\pi\)
−0.254975 + 0.966948i \(0.582067\pi\)
\(684\) 0 0
\(685\) 0.886463 0.511800i 0.0338700 0.0195549i
\(686\) 25.2416 9.08331i 0.963728 0.346802i
\(687\) 0 0
\(688\) −7.26909 + 19.1019i −0.277131 + 0.728255i
\(689\) 0.589743 + 3.34460i 0.0224674 + 0.127419i
\(690\) 0 0
\(691\) −16.4903 + 19.6524i −0.627321 + 0.747612i −0.982311 0.187258i \(-0.940040\pi\)
0.354990 + 0.934870i \(0.384484\pi\)
\(692\) −34.5545 20.2867i −1.31356 0.771187i
\(693\) 0 0
\(694\) 7.82883 4.48207i 0.297178 0.170137i
\(695\) 3.54881 1.29166i 0.134614 0.0489955i
\(696\) 0 0
\(697\) 4.75379 3.98890i 0.180063 0.151090i
\(698\) 12.1289 + 14.5620i 0.459087 + 0.551179i
\(699\) 0 0
\(700\) 24.1174 8.57976i 0.911550 0.324284i
\(701\) 0.366433i 0.0138400i 0.999976 + 0.00692000i \(0.00220272\pi\)
−0.999976 + 0.00692000i \(0.997797\pi\)
\(702\) 0 0
\(703\) 10.0817 0.380237
\(704\) −7.31537 1.45523i −0.275708 0.0548462i
\(705\) 0 0
\(706\) −12.2641 + 10.2150i −0.461567 + 0.384447i
\(707\) −3.55171 4.23276i −0.133576 0.159189i
\(708\) 0 0
\(709\) 2.32486 + 6.38749i 0.0873118 + 0.239887i 0.975662 0.219279i \(-0.0703705\pi\)
−0.888350 + 0.459166i \(0.848148\pi\)
\(710\) 1.21510 0.695654i 0.0456018 0.0261074i
\(711\) 0 0
\(712\) 22.6522 + 40.2429i 0.848926 + 1.50817i
\(713\) −31.2526 26.2241i −1.17042 0.982100i
\(714\) 0 0
\(715\) 0.0613024 0.0108093i 0.00229258 0.000404244i
\(716\) −10.2541 12.4026i −0.383215 0.463506i
\(717\) 0 0
\(718\) −36.1577 + 13.0115i −1.34939 + 0.485586i
\(719\) 6.07495 + 10.5221i 0.226558 + 0.392409i 0.956786 0.290794i \(-0.0939195\pi\)
−0.730228 + 0.683203i \(0.760586\pi\)
\(720\) 0 0
\(721\) 15.0974 26.1495i 0.562257 0.973857i
\(722\) −3.45778 + 19.2012i −0.128685 + 0.714596i
\(723\) 0 0
\(724\) 5.63815 15.1468i 0.209540 0.562927i
\(725\) 2.73793 7.52240i 0.101684 0.279375i
\(726\) 0 0
\(727\) 0.337498 1.91405i 0.0125171 0.0709881i −0.977909 0.209029i \(-0.932970\pi\)
0.990426 + 0.138041i \(0.0440807\pi\)
\(728\) −0.0297554 + 2.72577i −0.00110281 + 0.101024i
\(729\) 0 0
\(730\) −2.08086 1.21150i −0.0770160 0.0448397i
\(731\) 22.7700 + 4.01496i 0.842177 + 0.148499i
\(732\) 0 0
\(733\) 14.2681 39.2014i 0.527006 1.44794i −0.335572 0.942014i \(-0.608930\pi\)
0.862579 0.505923i \(-0.168848\pi\)
\(734\) −5.50798 31.9160i −0.203303 1.17804i
\(735\) 0 0
\(736\) −19.9967 17.4089i −0.737090 0.641700i
\(737\) −0.815477 + 1.41245i −0.0300385 + 0.0520282i
\(738\) 0 0
\(739\) 22.3170 12.8847i 0.820943 0.473971i −0.0297988 0.999556i \(-0.509487\pi\)
0.850741 + 0.525584i \(0.176153\pi\)
\(740\) 0.285213 1.55142i 0.0104846 0.0570312i
\(741\) 0 0
\(742\) −11.4254 + 31.0391i −0.419438 + 1.13948i
\(743\) 0.466716 + 2.64688i 0.0171222 + 0.0971046i 0.992171 0.124885i \(-0.0398561\pi\)
−0.975049 + 0.221989i \(0.928745\pi\)
\(744\) 0 0
\(745\) 1.08790 + 0.912858i 0.0398576 + 0.0334445i
\(746\) 0.145765 40.0601i 0.00533682 1.46671i
\(747\) 0 0
\(748\) −0.0614036 + 8.43759i −0.00224514 + 0.308509i
\(749\) −6.52355 17.9233i −0.238365 0.654903i
\(750\) 0 0
\(751\) −35.3934 + 29.6986i −1.29153 + 1.08372i −0.299982 + 0.953945i \(0.596981\pi\)
−0.991544 + 0.129773i \(0.958575\pi\)
\(752\) −25.4260 + 20.7119i −0.927190 + 0.755284i
\(753\) 0 0
\(754\) 0.651032 + 0.550330i 0.0237092 + 0.0200418i
\(755\) 0.476553i 0.0173435i
\(756\) 0 0
\(757\) 41.2974i 1.50098i −0.660883 0.750489i \(-0.729818\pi\)
0.660883 0.750489i \(-0.270182\pi\)
\(758\) −8.40360 + 9.94133i −0.305232 + 0.361085i
\(759\) 0 0
\(760\) −1.07776 0.405648i −0.0390943 0.0147144i
\(761\) −16.6555 + 13.9756i −0.603762 + 0.506616i −0.892652 0.450746i \(-0.851158\pi\)
0.288891 + 0.957362i \(0.406714\pi\)
\(762\) 0 0
\(763\) −11.6591 32.0330i −0.422086 1.15967i
\(764\) −33.2816 0.242203i −1.20408 0.00876258i
\(765\) 0 0
\(766\) 33.3508 + 0.121352i 1.20501 + 0.00438462i
\(767\) −4.21254 3.53474i −0.152106 0.127632i
\(768\) 0 0
\(769\) 4.86149 + 27.5709i 0.175310 + 0.994232i 0.937786 + 0.347215i \(0.112873\pi\)
−0.762476 + 0.647017i \(0.776016\pi\)
\(770\) 0.568908 + 0.209413i 0.0205020 + 0.00754672i
\(771\) 0 0
\(772\) 0.298563 1.62404i 0.0107455 0.0584504i
\(773\) −23.6486 + 13.6535i −0.850580 + 0.491083i −0.860847 0.508864i \(-0.830065\pi\)
0.0102662 + 0.999947i \(0.496732\pi\)
\(774\) 0 0
\(775\) 21.6229 37.4519i 0.776717 1.34531i
\(776\) −31.1630 + 10.9587i −1.11869 + 0.393394i
\(777\) 0 0
\(778\) 41.9420 7.23826i 1.50370 0.259504i
\(779\) 1.07002 2.93986i 0.0383375 0.105331i
\(780\) 0 0
\(781\) −5.09352 0.898125i −0.182260 0.0321374i
\(782\) −15.0911 + 25.9203i −0.539656 + 0.926907i
\(783\) 0 0
\(784\) 0.744476 1.24719i 0.0265884 0.0445426i
\(785\) 0.382380 2.16858i 0.0136477 0.0774001i
\(786\) 0 0
\(787\) −7.72182 + 21.2155i −0.275253 + 0.756252i 0.722631 + 0.691234i \(0.242933\pi\)
−0.997884 + 0.0650180i \(0.979290\pi\)
\(788\) 10.5232 28.2705i 0.374874 1.00709i
\(789\) 0 0
\(790\) −1.00754 0.181438i −0.0358465 0.00645529i
\(791\) 11.8140 20.4625i 0.420059 0.727564i
\(792\) 0 0
\(793\) 2.77747 + 4.81073i 0.0986310 + 0.170834i
\(794\) 8.56234 + 23.7939i 0.303866 + 0.844412i
\(795\) 0 0
\(796\) 23.9784 19.8247i 0.849891 0.702668i
\(797\) −19.2857 + 3.40058i −0.683133 + 0.120455i −0.504436 0.863449i \(-0.668299\pi\)
−0.178697 + 0.983904i \(0.557188\pi\)
\(798\) 0 0
\(799\) 28.4196 + 23.8469i 1.00541 + 0.843641i
\(800\) 14.4925 24.0792i 0.512387 0.851328i
\(801\) 0 0
\(802\) −6.97806 12.1886i −0.246404 0.430393i
\(803\) 3.04211 + 8.35812i 0.107354 + 0.294952i
\(804\) 0 0
\(805\) 1.38515 + 1.65076i 0.0488202 + 0.0581816i
\(806\) 2.94733 + 3.53856i 0.103815 + 0.124641i
\(807\) 0 0
\(808\) −5.96241 1.11857i −0.209757 0.0393513i
\(809\) 27.8483 0.979094 0.489547 0.871977i \(-0.337162\pi\)
0.489547 + 0.871977i \(0.337162\pi\)
\(810\) 0 0
\(811\) 7.82601i 0.274808i 0.990515 + 0.137404i \(0.0438759\pi\)
−0.990515 + 0.137404i \(0.956124\pi\)
\(812\) 2.78264 + 7.82188i 0.0976515 + 0.274494i
\(813\) 0 0
\(814\) −4.47730 + 3.72922i −0.156929 + 0.130709i
\(815\) 1.86628 1.56600i 0.0653730 0.0548545i
\(816\) 0 0
\(817\) 10.9535 3.98673i 0.383213 0.139478i
\(818\) 3.89039 + 6.79534i 0.136024 + 0.237593i
\(819\) 0 0
\(820\) −0.422128 0.247829i −0.0147414 0.00865457i
\(821\) −9.82911 + 11.7139i −0.343038 + 0.408817i −0.909788 0.415073i \(-0.863756\pi\)
0.566750 + 0.823890i \(0.308201\pi\)
\(822\) 0 0
\(823\) −4.11133 23.3165i −0.143312 0.812763i −0.968707 0.248207i \(-0.920159\pi\)
0.825395 0.564556i \(-0.190953\pi\)
\(824\) −5.39988 32.7082i −0.188114 1.13944i
\(825\) 0 0
\(826\) −18.1336 50.3914i −0.630949 1.75334i
\(827\) −0.0403168 + 0.0232769i −0.00140195 + 0.000809419i −0.500701 0.865620i \(-0.666924\pi\)
0.499299 + 0.866430i \(0.333591\pi\)
\(828\) 0 0
\(829\) 6.44307 + 3.71991i 0.223777 + 0.129198i 0.607698 0.794168i \(-0.292093\pi\)
−0.383921 + 0.923366i \(0.625426\pi\)
\(830\) −0.682776 + 3.79149i −0.0236995 + 0.131605i
\(831\) 0 0
\(832\) 1.87323 + 2.33407i 0.0649426 + 0.0809193i
\(833\) −1.54406 0.561994i −0.0534987 0.0194719i
\(834\) 0 0
\(835\) −0.736742 0.129908i −0.0254960 0.00449564i
\(836\) 2.10007 + 3.69934i 0.0726325 + 0.127944i
\(837\) 0 0
\(838\) −5.00008 2.91111i −0.172725 0.100562i
\(839\) 3.69536 20.9574i 0.127578 0.723531i −0.852165 0.523273i \(-0.824711\pi\)
0.979743 0.200258i \(-0.0641780\pi\)
\(840\) 0 0
\(841\) −24.8114 9.03060i −0.855565 0.311400i
\(842\) 34.2382 5.90874i 1.17993 0.203629i
\(843\) 0 0
\(844\) 7.16606 8.41505i 0.246666 0.289658i
\(845\) 1.98764 + 1.14756i 0.0683768 + 0.0394774i
\(846\) 0 0
\(847\) 13.0495 + 22.6024i 0.448385 + 0.776626i
\(848\) 11.9219 + 34.3004i 0.409399 + 1.17788i
\(849\) 0 0
\(850\) −29.8362 10.9826i −1.02337 0.376700i
\(851\) −20.3980 + 3.59671i −0.699234 + 0.123294i
\(852\) 0 0
\(853\) 11.8527 14.1255i 0.405829 0.483648i −0.523959 0.851744i \(-0.675545\pi\)
0.929788 + 0.368095i \(0.119990\pi\)
\(854\) −0.196846 + 54.0986i −0.00673591 + 1.85122i
\(855\) 0 0
\(856\) −18.0200 10.6678i −0.615910 0.364617i
\(857\) 18.6167 6.77591i 0.635933 0.231461i −0.00387866 0.999992i \(-0.501235\pi\)
0.639812 + 0.768532i \(0.279012\pi\)
\(858\) 0 0
\(859\) −5.06270 6.03349i −0.172737 0.205860i 0.672729 0.739889i \(-0.265122\pi\)
−0.845466 + 0.534029i \(0.820677\pi\)
\(860\) −0.303622 1.79836i −0.0103534 0.0613234i
\(861\) 0 0
\(862\) 15.1268 + 12.7869i 0.515219 + 0.435525i
\(863\) 3.41425 0.116222 0.0581111 0.998310i \(-0.481492\pi\)
0.0581111 + 0.998310i \(0.481492\pi\)
\(864\) 0 0
\(865\) 3.57559 0.121574
\(866\) −13.4895 11.4030i −0.458393 0.387489i
\(867\) 0 0
\(868\) 7.46646 + 44.2240i 0.253428 + 1.50106i
\(869\) 2.43082 + 2.89694i 0.0824600 + 0.0982720i
\(870\) 0 0
\(871\) 0.614953 0.223825i 0.0208369 0.00758401i
\(872\) −32.2058 19.0657i −1.09063 0.645648i
\(873\) 0 0
\(874\) −0.0550194 + 15.1209i −0.00186106 + 0.511471i
\(875\) −2.94597 + 3.51087i −0.0995919 + 0.118689i
\(876\) 0 0
\(877\) −13.1746 + 2.32305i −0.444876 + 0.0784437i −0.391599 0.920136i \(-0.628078\pi\)
−0.0532774 + 0.998580i \(0.516967\pi\)
\(878\) 14.3275 + 5.27389i 0.483529 + 0.177985i
\(879\) 0 0
\(880\) 0.628684 0.218514i 0.0211929 0.00736610i
\(881\) −28.5441 49.4399i −0.961676 1.66567i −0.718292 0.695742i \(-0.755076\pi\)
−0.243384 0.969930i \(-0.578257\pi\)
\(882\) 0 0
\(883\) 17.0975 + 9.87122i 0.575375 + 0.332193i 0.759293 0.650749i \(-0.225545\pi\)
−0.183918 + 0.982942i \(0.558878\pi\)
\(884\) 2.19508 2.57766i 0.0738285 0.0866962i
\(885\) 0 0
\(886\) 40.5415 6.99655i 1.36202 0.235054i
\(887\) 53.6182 + 19.5154i 1.80032 + 0.655264i 0.998320 + 0.0579452i \(0.0184549\pi\)
0.802004 + 0.597319i \(0.203767\pi\)
\(888\) 0 0
\(889\) −8.57547 + 48.6339i −0.287612 + 1.63113i
\(890\) −3.56127 2.07341i −0.119374 0.0695010i
\(891\) 0 0
\(892\) 5.16138 + 9.09194i 0.172816 + 0.304421i
\(893\) 18.4192 + 3.24779i 0.616373 + 0.108683i
\(894\) 0 0
\(895\) 1.34942 + 0.491147i 0.0451060 + 0.0164172i
\(896\) 4.32858 + 28.8233i 0.144608 + 0.962919i
\(897\) 0 0
\(898\) 7.54357 41.8899i 0.251732 1.39788i
\(899\) 12.1466 + 7.01286i 0.405113 + 0.233892i
\(900\) 0 0
\(901\) 35.5763 20.5400i 1.18522 0.684286i
\(902\) 0.612257 + 1.70140i 0.0203859 + 0.0566504i
\(903\) 0 0
\(904\) −4.22553 25.5948i −0.140539 0.851272i
\(905\) 0.250440 + 1.42031i 0.00832490 + 0.0472128i
\(906\) 0 0
\(907\) −15.5646 + 18.5491i −0.516813 + 0.615914i −0.959824 0.280602i \(-0.909466\pi\)
0.443011 + 0.896516i \(0.353910\pi\)
\(908\) −15.1835 8.91414i −0.503882 0.295826i
\(909\) 0 0
\(910\) −0.120857 0.211100i −0.00400636 0.00699790i
\(911\) −21.3962 + 7.78758i −0.708888 + 0.258014i −0.671201 0.741275i \(-0.734221\pi\)
−0.0376870 + 0.999290i \(0.511999\pi\)
\(912\) 0 0
\(913\) 10.9016 9.14750i 0.360789 0.302738i
\(914\) −16.9686 + 14.1334i −0.561270 + 0.467492i
\(915\) 0 0
\(916\) −5.79256 16.2826i −0.191391 0.537993i
\(917\) 2.35315i 0.0777078i
\(918\) 0 0
\(919\) 3.40847 0.112435 0.0562174 0.998419i \(-0.482096\pi\)
0.0562174 + 0.998419i \(0.482096\pi\)
\(920\) 2.32532 + 0.436239i 0.0766634 + 0.0143824i
\(921\) 0 0
\(922\) −11.6801 14.0231i −0.384662 0.461825i
\(923\) 1.33398 + 1.58977i 0.0439084 + 0.0523279i
\(924\) 0 0
\(925\) −7.50928 20.6316i −0.246904 0.678362i
\(926\) −24.3945 42.6098i −0.801653 1.40025i
\(927\) 0 0
\(928\) 7.80951 + 4.70029i 0.256360 + 0.154295i
\(929\) 16.2267 + 13.6158i 0.532381 + 0.446721i 0.868923 0.494948i \(-0.164813\pi\)
−0.336541 + 0.941669i \(0.609257\pi\)
\(930\) 0 0
\(931\) −0.815804 + 0.143848i −0.0267369 + 0.00471443i
\(932\) −1.29677 + 1.07213i −0.0424771 + 0.0351189i
\(933\) 0 0
\(934\) 6.86807 + 19.0857i 0.224730 + 0.624502i
\(935\) −0.376473 0.652071i −0.0123120 0.0213250i
\(936\) 0 0
\(937\) 20.8301 36.0788i 0.680489 1.17864i −0.294342 0.955700i \(-0.595101\pi\)
0.974832 0.222942i \(-0.0715661\pi\)
\(938\) 6.27241 + 1.12954i 0.204802 + 0.0368809i
\(939\) 0 0
\(940\) 1.02087 2.74255i 0.0332971 0.0894520i
\(941\) −17.2670 + 47.4407i −0.562888 + 1.54652i 0.252493 + 0.967599i \(0.418749\pi\)
−0.815382 + 0.578924i \(0.803473\pi\)
\(942\) 0 0
\(943\) −1.11613 + 6.32988i −0.0363461 + 0.206129i
\(944\) −50.4873 30.1370i −1.64322 0.980874i
\(945\) 0 0
\(946\) −3.38976 + 5.82221i −0.110211 + 0.189296i
\(947\) 38.1758 + 6.73142i 1.24055 + 0.218742i 0.755149 0.655553i \(-0.227564\pi\)
0.485396 + 0.874294i \(0.338675\pi\)
\(948\) 0 0
\(949\) 1.22064 3.35369i 0.0396238 0.108865i
\(950\) −15.7949 + 2.72585i −0.512455 + 0.0884382i
\(951\) 0 0
\(952\) 31.1053 10.9384i 1.00813 0.354516i
\(953\) 17.7159 30.6848i 0.573873 0.993977i −0.422290 0.906461i \(-0.638774\pi\)
0.996163 0.0875165i \(-0.0278931\pi\)
\(954\) 0 0
\(955\) 2.57205 1.48498i 0.0832297 0.0480527i
\(956\) 4.99311 27.1600i 0.161489 0.878419i
\(957\) 0 0
\(958\) 0.801022 + 0.294853i 0.0258798 + 0.00952627i
\(959\) 2.56577 + 14.5512i 0.0828531 + 0.469883i
\(960\) 0 0
\(961\) 34.2959 + 28.7776i 1.10632 + 0.928311i
\(962\) 2.33804 + 0.00850730i 0.0753815 + 0.000274286i
\(963\) 0 0
\(964\) 30.1564 + 0.219460i 0.971272 + 0.00706832i
\(965\) 0.0503964 + 0.138463i 0.00162232 + 0.00445728i
\(966\) 0 0
\(967\) −1.48262 + 1.24406i −0.0476777 + 0.0400064i −0.666315 0.745670i \(-0.732129\pi\)
0.618637 + 0.785677i \(0.287685\pi\)
\(968\) 26.8174 + 10.0936i 0.861945 + 0.324421i
\(969\) 0 0
\(970\) 1.90298 2.25120i 0.0611011 0.0722817i
\(971\) 30.4220i 0.976288i −0.872763 0.488144i \(-0.837674\pi\)
0.872763 0.488144i \(-0.162326\pi\)
\(972\) 0 0
\(973\) 54.5148i 1.74766i
\(974\) 24.7042 + 20.8830i 0.791574 + 0.669133i
\(975\) 0 0
\(976\) 37.5123 + 46.0503i 1.20074 + 1.47403i
\(977\) −2.40690 + 2.01963i −0.0770035 + 0.0646136i −0.680477 0.732769i \(-0.738227\pi\)
0.603473 + 0.797383i \(0.293783\pi\)
\(978\) 0 0
\(979\) 5.20639 + 14.3044i 0.166397 + 0.457172i
\(980\) −0.000943217 0.129609i −3.01300e−5 0.00414022i
\(981\) 0 0
\(982\) −0.0461897 + 12.6942i −0.00147397 + 0.405088i
\(983\) −44.9828 37.7451i −1.43473 1.20388i −0.942850 0.333218i \(-0.891865\pi\)
−0.491880 0.870663i \(-0.663690\pi\)
\(984\) 0 0
\(985\) 0.467428 + 2.65092i 0.0148935 + 0.0844652i
\(986\) 3.56194 9.67664i 0.113435 0.308167i
\(987\) 0 0
\(988\) 0.308618 1.67873i 0.00981845 0.0534075i
\(989\) −20.7395 + 11.9740i −0.659479 + 0.380750i
\(990\) 0 0
\(991\) 10.3807 17.9799i 0.329754 0.571150i −0.652709 0.757609i \(-0.726368\pi\)
0.982463 + 0.186458i \(0.0597009\pi\)
\(992\) 37.1385 + 32.3323i 1.17915 + 1.02655i
\(993\) 0 0
\(994\) 3.43717 + 19.9167i 0.109020 + 0.631718i
\(995\) −0.949553 + 2.60888i −0.0301029 + 0.0827069i
\(996\) 0 0
\(997\) −32.5454 5.73863i −1.03072 0.181744i −0.367389 0.930067i \(-0.619748\pi\)
−0.663335 + 0.748323i \(0.730859\pi\)
\(998\) −53.7331 31.2841i −1.70089 0.990280i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.397.7 204
3.2 odd 2 216.2.t.a.133.28 yes 204
8.5 even 2 inner 648.2.t.a.397.30 204
12.11 even 2 864.2.bf.a.241.22 204
24.5 odd 2 216.2.t.a.133.5 yes 204
24.11 even 2 864.2.bf.a.241.13 204
27.13 even 9 inner 648.2.t.a.253.30 204
27.14 odd 18 216.2.t.a.13.5 204
108.95 even 18 864.2.bf.a.337.13 204
216.13 even 18 inner 648.2.t.a.253.7 204
216.149 odd 18 216.2.t.a.13.28 yes 204
216.203 even 18 864.2.bf.a.337.22 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.5 204 27.14 odd 18
216.2.t.a.13.28 yes 204 216.149 odd 18
216.2.t.a.133.5 yes 204 24.5 odd 2
216.2.t.a.133.28 yes 204 3.2 odd 2
648.2.t.a.253.7 204 216.13 even 18 inner
648.2.t.a.253.30 204 27.13 even 9 inner
648.2.t.a.397.7 204 1.1 even 1 trivial
648.2.t.a.397.30 204 8.5 even 2 inner
864.2.bf.a.241.13 204 24.11 even 2
864.2.bf.a.241.22 204 12.11 even 2
864.2.bf.a.337.13 204 108.95 even 18
864.2.bf.a.337.22 204 216.203 even 18