Properties

Label 648.2.t.a.397.6
Level $648$
Weight $2$
Character 648.397
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 397.6
Character \(\chi\) \(=\) 648.397
Dual form 648.2.t.a.253.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15171 - 0.820715i) q^{2} +(0.652854 + 1.89044i) q^{4} +(-2.15975 - 2.57389i) q^{5} +(-1.78453 + 0.649515i) q^{7} +(0.799620 - 2.71304i) q^{8} +(0.374968 + 4.73691i) q^{10} +(-3.21944 + 3.83678i) q^{11} +(3.61424 - 0.637289i) q^{13} +(2.58832 + 0.716539i) q^{14} +(-3.14756 + 2.46837i) q^{16} +(1.74380 + 3.02034i) q^{17} +(-2.73085 - 1.57666i) q^{19} +(3.45580 - 5.76327i) q^{20} +(6.85676 - 1.77660i) q^{22} +(2.93428 + 1.06799i) q^{23} +(-1.09215 + 6.19390i) q^{25} +(-4.68558 - 2.23229i) q^{26} +(-2.39291 - 2.94951i) q^{28} +(6.61611 + 1.16660i) q^{29} +(0.842639 + 0.306695i) q^{31} +(5.65090 - 0.259585i) q^{32} +(0.470500 - 4.90971i) q^{34} +(5.52592 + 3.19039i) q^{35} +(6.21485 - 3.58815i) q^{37} +(1.85115 + 4.05710i) q^{38} +(-8.71007 + 3.80137i) q^{40} +(0.341649 + 1.93759i) q^{41} +(-5.36405 + 6.39263i) q^{43} +(-9.35505 - 3.58132i) q^{44} +(-2.50291 - 3.63822i) q^{46} +(-2.63733 + 0.959909i) q^{47} +(-2.59964 + 2.18135i) q^{49} +(6.34127 - 6.23721i) q^{50} +(3.56433 + 6.41647i) q^{52} +9.52536i q^{53} +16.8287 q^{55} +(0.335219 + 5.36087i) q^{56} +(-6.66237 - 6.77352i) q^{58} +(6.13695 + 7.31373i) q^{59} +(2.92540 + 8.03747i) q^{61} +(-0.718763 - 1.04479i) q^{62} +(-6.72122 - 4.33881i) q^{64} +(-9.44618 - 7.92629i) q^{65} +(13.7512 - 2.42470i) q^{67} +(-4.57135 + 5.26839i) q^{68} +(-3.74584 - 8.20960i) q^{70} +(-1.50109 - 2.59997i) q^{71} +(0.472663 - 0.818676i) q^{73} +(-10.1025 - 0.968131i) q^{74} +(1.19774 - 6.19185i) q^{76} +(3.25314 - 8.93793i) q^{77} +(-0.803209 + 4.55523i) q^{79} +(13.1513 + 2.77042i) q^{80} +(1.19673 - 2.51193i) q^{82} +(-2.12803 - 0.375229i) q^{83} +(4.00787 - 11.0115i) q^{85} +(11.4243 - 2.96007i) q^{86} +(7.83503 + 11.8025i) q^{88} +(7.83712 - 13.5743i) q^{89} +(-6.03579 + 3.48477i) q^{91} +(-0.103320 + 6.24433i) q^{92} +(3.82524 + 1.05896i) q^{94} +(1.83982 + 10.4341i) q^{95} +(1.68619 + 1.41488i) q^{97} +(4.78429 - 0.378719i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15171 0.820715i −0.814379 0.580333i
\(3\) 0 0
\(4\) 0.652854 + 1.89044i 0.326427 + 0.945222i
\(5\) −2.15975 2.57389i −0.965871 1.15108i −0.988482 0.151335i \(-0.951643\pi\)
0.0226118 0.999744i \(-0.492802\pi\)
\(6\) 0 0
\(7\) −1.78453 + 0.649515i −0.674489 + 0.245494i −0.656479 0.754344i \(-0.727955\pi\)
−0.0180093 + 0.999838i \(0.505733\pi\)
\(8\) 0.799620 2.71304i 0.282708 0.959206i
\(9\) 0 0
\(10\) 0.374968 + 4.73691i 0.118575 + 1.49794i
\(11\) −3.21944 + 3.83678i −0.970699 + 1.15683i 0.0169036 + 0.999857i \(0.494619\pi\)
−0.987602 + 0.156977i \(0.949825\pi\)
\(12\) 0 0
\(13\) 3.61424 0.637289i 1.00241 0.176752i 0.351728 0.936102i \(-0.385594\pi\)
0.650682 + 0.759350i \(0.274483\pi\)
\(14\) 2.58832 + 0.716539i 0.691758 + 0.191503i
\(15\) 0 0
\(16\) −3.14756 + 2.46837i −0.786891 + 0.617092i
\(17\) 1.74380 + 3.02034i 0.422932 + 0.732541i 0.996225 0.0868103i \(-0.0276674\pi\)
−0.573292 + 0.819351i \(0.694334\pi\)
\(18\) 0 0
\(19\) −2.73085 1.57666i −0.626501 0.361710i 0.152895 0.988242i \(-0.451140\pi\)
−0.779396 + 0.626532i \(0.784474\pi\)
\(20\) 3.45580 5.76327i 0.772740 1.28871i
\(21\) 0 0
\(22\) 6.85676 1.77660i 1.46187 0.378773i
\(23\) 2.93428 + 1.06799i 0.611839 + 0.222691i 0.629308 0.777156i \(-0.283338\pi\)
−0.0174685 + 0.999847i \(0.505561\pi\)
\(24\) 0 0
\(25\) −1.09215 + 6.19390i −0.218430 + 1.23878i
\(26\) −4.68558 2.23229i −0.918918 0.437789i
\(27\) 0 0
\(28\) −2.39291 2.94951i −0.452218 0.557406i
\(29\) 6.61611 + 1.16660i 1.22858 + 0.216632i 0.750015 0.661420i \(-0.230046\pi\)
0.478565 + 0.878052i \(0.341157\pi\)
\(30\) 0 0
\(31\) 0.842639 + 0.306695i 0.151342 + 0.0550841i 0.416581 0.909099i \(-0.363228\pi\)
−0.265238 + 0.964183i \(0.585451\pi\)
\(32\) 5.65090 0.259585i 0.998947 0.0458885i
\(33\) 0 0
\(34\) 0.470500 4.90971i 0.0806901 0.842008i
\(35\) 5.52592 + 3.19039i 0.934052 + 0.539275i
\(36\) 0 0
\(37\) 6.21485 3.58815i 1.02172 0.589887i 0.107115 0.994247i \(-0.465839\pi\)
0.914600 + 0.404359i \(0.132505\pi\)
\(38\) 1.85115 + 4.05710i 0.300297 + 0.658148i
\(39\) 0 0
\(40\) −8.71007 + 3.80137i −1.37718 + 0.601049i
\(41\) 0.341649 + 1.93759i 0.0533567 + 0.302601i 0.999794 0.0202862i \(-0.00645776\pi\)
−0.946438 + 0.322887i \(0.895347\pi\)
\(42\) 0 0
\(43\) −5.36405 + 6.39263i −0.818010 + 0.974867i −0.999964 0.00844018i \(-0.997313\pi\)
0.181954 + 0.983307i \(0.441758\pi\)
\(44\) −9.35505 3.58132i −1.41033 0.539904i
\(45\) 0 0
\(46\) −2.50291 3.63822i −0.369034 0.536426i
\(47\) −2.63733 + 0.959909i −0.384694 + 0.140017i −0.527125 0.849788i \(-0.676730\pi\)
0.142432 + 0.989805i \(0.454508\pi\)
\(48\) 0 0
\(49\) −2.59964 + 2.18135i −0.371377 + 0.311622i
\(50\) 6.34127 6.23721i 0.896791 0.882075i
\(51\) 0 0
\(52\) 3.56433 + 6.41647i 0.494284 + 0.889804i
\(53\) 9.52536i 1.30841i 0.756318 + 0.654205i \(0.226996\pi\)
−0.756318 + 0.654205i \(0.773004\pi\)
\(54\) 0 0
\(55\) 16.8287 2.26918
\(56\) 0.335219 + 5.36087i 0.0447955 + 0.716377i
\(57\) 0 0
\(58\) −6.66237 6.77352i −0.874812 0.889406i
\(59\) 6.13695 + 7.31373i 0.798963 + 0.952167i 0.999622 0.0274946i \(-0.00875290\pi\)
−0.200659 + 0.979661i \(0.564308\pi\)
\(60\) 0 0
\(61\) 2.92540 + 8.03747i 0.374559 + 1.02909i 0.973577 + 0.228358i \(0.0733355\pi\)
−0.599018 + 0.800735i \(0.704442\pi\)
\(62\) −0.718763 1.04479i −0.0912830 0.132688i
\(63\) 0 0
\(64\) −6.72122 4.33881i −0.840152 0.542351i
\(65\) −9.44618 7.92629i −1.17165 0.983135i
\(66\) 0 0
\(67\) 13.7512 2.42470i 1.67997 0.296224i 0.749341 0.662184i \(-0.230370\pi\)
0.930631 + 0.365960i \(0.119259\pi\)
\(68\) −4.57135 + 5.26839i −0.554357 + 0.638886i
\(69\) 0 0
\(70\) −3.74584 8.20960i −0.447713 0.981235i
\(71\) −1.50109 2.59997i −0.178147 0.308560i 0.763099 0.646282i \(-0.223677\pi\)
−0.941246 + 0.337722i \(0.890344\pi\)
\(72\) 0 0
\(73\) 0.472663 0.818676i 0.0553210 0.0958187i −0.837039 0.547144i \(-0.815715\pi\)
0.892360 + 0.451325i \(0.149048\pi\)
\(74\) −10.1025 0.968131i −1.17439 0.112543i
\(75\) 0 0
\(76\) 1.19774 6.19185i 0.137390 0.710254i
\(77\) 3.25314 8.93793i 0.370730 1.01857i
\(78\) 0 0
\(79\) −0.803209 + 4.55523i −0.0903681 + 0.512503i 0.905701 + 0.423918i \(0.139346\pi\)
−0.996069 + 0.0885849i \(0.971766\pi\)
\(80\) 13.1513 + 2.77042i 1.47036 + 0.309743i
\(81\) 0 0
\(82\) 1.19673 2.51193i 0.132157 0.277396i
\(83\) −2.12803 0.375229i −0.233582 0.0411868i 0.0556319 0.998451i \(-0.482283\pi\)
−0.289214 + 0.957265i \(0.593394\pi\)
\(84\) 0 0
\(85\) 4.00787 11.0115i 0.434715 1.19437i
\(86\) 11.4243 2.96007i 1.23192 0.319193i
\(87\) 0 0
\(88\) 7.83503 + 11.8025i 0.835217 + 1.25815i
\(89\) 7.83712 13.5743i 0.830733 1.43887i −0.0667245 0.997771i \(-0.521255\pi\)
0.897458 0.441101i \(-0.145412\pi\)
\(90\) 0 0
\(91\) −6.03579 + 3.48477i −0.632723 + 0.365303i
\(92\) −0.103320 + 6.24433i −0.0107719 + 0.651017i
\(93\) 0 0
\(94\) 3.82524 + 1.05896i 0.394543 + 0.109223i
\(95\) 1.83982 + 10.4341i 0.188761 + 1.07052i
\(96\) 0 0
\(97\) 1.68619 + 1.41488i 0.171207 + 0.143659i 0.724365 0.689417i \(-0.242133\pi\)
−0.553158 + 0.833076i \(0.686578\pi\)
\(98\) 4.78429 0.378719i 0.483286 0.0382564i
\(99\) 0 0
\(100\) −12.4222 + 1.97906i −1.24222 + 0.197906i
\(101\) −6.12830 16.8374i −0.609789 1.67538i −0.730684 0.682716i \(-0.760799\pi\)
0.120895 0.992665i \(-0.461424\pi\)
\(102\) 0 0
\(103\) −10.6973 + 8.97613i −1.05404 + 0.884444i −0.993513 0.113723i \(-0.963723\pi\)
−0.0605268 + 0.998167i \(0.519278\pi\)
\(104\) 1.16103 10.3152i 0.113848 1.01149i
\(105\) 0 0
\(106\) 7.81761 10.9704i 0.759313 1.06554i
\(107\) 12.3518i 1.19409i 0.802207 + 0.597046i \(0.203659\pi\)
−0.802207 + 0.597046i \(0.796341\pi\)
\(108\) 0 0
\(109\) 2.18468i 0.209255i 0.994511 + 0.104627i \(0.0333650\pi\)
−0.994511 + 0.104627i \(0.966635\pi\)
\(110\) −19.3817 13.8115i −1.84797 1.31688i
\(111\) 0 0
\(112\) 4.01367 6.44927i 0.379256 0.609399i
\(113\) −12.1210 + 10.1708i −1.14025 + 0.956785i −0.999447 0.0332523i \(-0.989413\pi\)
−0.140805 + 0.990037i \(0.544969\pi\)
\(114\) 0 0
\(115\) −3.58842 9.85911i −0.334622 0.919367i
\(116\) 2.11396 + 13.2690i 0.196277 + 1.23200i
\(117\) 0 0
\(118\) −1.06547 13.4600i −0.0980848 1.23909i
\(119\) −5.07361 4.25727i −0.465097 0.390263i
\(120\) 0 0
\(121\) −2.44596 13.8717i −0.222360 1.26107i
\(122\) 3.22727 11.6577i 0.292183 1.05544i
\(123\) 0 0
\(124\) −0.0296705 + 1.79319i −0.00266449 + 0.161033i
\(125\) 3.75209 2.16627i 0.335597 0.193757i
\(126\) 0 0
\(127\) −5.17381 + 8.96131i −0.459102 + 0.795187i −0.998914 0.0465982i \(-0.985162\pi\)
0.539812 + 0.841786i \(0.318495\pi\)
\(128\) 4.17994 + 10.5132i 0.369458 + 0.929247i
\(129\) 0 0
\(130\) 4.37400 + 16.8814i 0.383626 + 1.48059i
\(131\) 3.07414 8.44614i 0.268589 0.737942i −0.729929 0.683523i \(-0.760447\pi\)
0.998518 0.0544195i \(-0.0173308\pi\)
\(132\) 0 0
\(133\) 5.89735 + 1.03986i 0.511365 + 0.0901675i
\(134\) −17.8273 8.49324i −1.54004 0.733704i
\(135\) 0 0
\(136\) 9.58869 2.31587i 0.822224 0.198584i
\(137\) −2.92683 + 16.5989i −0.250056 + 1.41814i 0.558395 + 0.829575i \(0.311417\pi\)
−0.808451 + 0.588563i \(0.799694\pi\)
\(138\) 0 0
\(139\) −3.76833 + 10.3534i −0.319626 + 0.878164i 0.670988 + 0.741469i \(0.265870\pi\)
−0.990613 + 0.136695i \(0.956352\pi\)
\(140\) −2.42364 + 12.5293i −0.204835 + 1.05892i
\(141\) 0 0
\(142\) −0.405016 + 4.22637i −0.0339882 + 0.354669i
\(143\) −9.19071 + 15.9188i −0.768566 + 1.33120i
\(144\) 0 0
\(145\) −11.2865 19.5487i −0.937289 1.62343i
\(146\) −1.21627 + 0.554953i −0.100659 + 0.0459282i
\(147\) 0 0
\(148\) 10.8406 + 9.40629i 0.891090 + 0.773193i
\(149\) −10.6491 + 1.87772i −0.872406 + 0.153829i −0.591888 0.806020i \(-0.701617\pi\)
−0.280518 + 0.959849i \(0.590506\pi\)
\(150\) 0 0
\(151\) −0.489785 0.410979i −0.0398582 0.0334450i 0.622641 0.782508i \(-0.286060\pi\)
−0.662499 + 0.749063i \(0.730504\pi\)
\(152\) −6.46119 + 6.14820i −0.524072 + 0.498685i
\(153\) 0 0
\(154\) −11.0822 + 7.62397i −0.893025 + 0.614357i
\(155\) −1.03049 2.83125i −0.0827709 0.227411i
\(156\) 0 0
\(157\) −5.93021 7.06735i −0.473282 0.564036i 0.475602 0.879661i \(-0.342230\pi\)
−0.948884 + 0.315625i \(0.897786\pi\)
\(158\) 4.66360 4.58708i 0.371016 0.364928i
\(159\) 0 0
\(160\) −12.8727 13.9842i −1.01767 1.10554i
\(161\) −5.92998 −0.467348
\(162\) 0 0
\(163\) 8.36032i 0.654831i 0.944881 + 0.327415i \(0.106178\pi\)
−0.944881 + 0.327415i \(0.893822\pi\)
\(164\) −3.43986 + 1.91083i −0.268608 + 0.149211i
\(165\) 0 0
\(166\) 2.14291 + 2.17866i 0.166322 + 0.169097i
\(167\) 4.77570 4.00729i 0.369555 0.310094i −0.439030 0.898472i \(-0.644678\pi\)
0.808586 + 0.588379i \(0.200234\pi\)
\(168\) 0 0
\(169\) 0.440614 0.160370i 0.0338934 0.0123362i
\(170\) −13.6532 + 9.39273i −1.04715 + 0.720390i
\(171\) 0 0
\(172\) −15.5869 5.96699i −1.18849 0.454979i
\(173\) 5.72780 6.82613i 0.435477 0.518981i −0.503017 0.864276i \(-0.667777\pi\)
0.938494 + 0.345295i \(0.112221\pi\)
\(174\) 0 0
\(175\) −2.07406 11.7626i −0.156784 0.889167i
\(176\) 0.662802 20.0233i 0.0499605 1.50931i
\(177\) 0 0
\(178\) −20.1667 + 9.20155i −1.51156 + 0.689686i
\(179\) −12.5035 + 7.21893i −0.934559 + 0.539568i −0.888251 0.459359i \(-0.848079\pi\)
−0.0463085 + 0.998927i \(0.514746\pi\)
\(180\) 0 0
\(181\) 4.19806 + 2.42375i 0.312039 + 0.180156i 0.647839 0.761778i \(-0.275673\pi\)
−0.335799 + 0.941934i \(0.609006\pi\)
\(182\) 9.81146 + 0.940238i 0.727274 + 0.0696951i
\(183\) 0 0
\(184\) 5.24381 7.10684i 0.386579 0.523923i
\(185\) −22.6580 8.24685i −1.66585 0.606321i
\(186\) 0 0
\(187\) −17.2024 3.03326i −1.25797 0.221814i
\(188\) −3.53644 4.35904i −0.257922 0.317916i
\(189\) 0 0
\(190\) 6.44451 13.5270i 0.467534 0.981352i
\(191\) 4.56335 25.8800i 0.330192 1.87261i −0.140153 0.990130i \(-0.544759\pi\)
0.470345 0.882483i \(-0.344129\pi\)
\(192\) 0 0
\(193\) 3.82953 + 1.39383i 0.275655 + 0.100330i 0.476149 0.879365i \(-0.342032\pi\)
−0.200494 + 0.979695i \(0.564255\pi\)
\(194\) −0.780781 3.01341i −0.0560568 0.216350i
\(195\) 0 0
\(196\) −5.82091 3.49036i −0.415780 0.249312i
\(197\) −8.91014 5.14427i −0.634821 0.366514i 0.147796 0.989018i \(-0.452782\pi\)
−0.782617 + 0.622504i \(0.786116\pi\)
\(198\) 0 0
\(199\) 0.690545 + 1.19606i 0.0489514 + 0.0847864i 0.889463 0.457007i \(-0.151079\pi\)
−0.840511 + 0.541794i \(0.817745\pi\)
\(200\) 15.9310 + 7.91583i 1.12649 + 0.559733i
\(201\) 0 0
\(202\) −6.76068 + 24.4213i −0.475680 + 1.71828i
\(203\) −12.5644 + 2.21544i −0.881845 + 0.155493i
\(204\) 0 0
\(205\) 4.24927 5.06408i 0.296782 0.353691i
\(206\) 19.6870 1.55840i 1.37166 0.108579i
\(207\) 0 0
\(208\) −9.80299 + 10.9272i −0.679715 + 0.757665i
\(209\) 14.8411 5.40173i 1.02658 0.373645i
\(210\) 0 0
\(211\) −7.42731 8.85152i −0.511317 0.609364i 0.447188 0.894440i \(-0.352426\pi\)
−0.958505 + 0.285076i \(0.907981\pi\)
\(212\) −18.0072 + 6.21867i −1.23674 + 0.427100i
\(213\) 0 0
\(214\) 10.1373 14.2256i 0.692971 0.972444i
\(215\) 28.0390 1.91224
\(216\) 0 0
\(217\) −1.70292 −0.115602
\(218\) 1.79300 2.51611i 0.121437 0.170413i
\(219\) 0 0
\(220\) 10.9867 + 31.8137i 0.740721 + 2.14488i
\(221\) 8.22733 + 9.80495i 0.553430 + 0.659552i
\(222\) 0 0
\(223\) 2.85912 1.04063i 0.191461 0.0696860i −0.244510 0.969647i \(-0.578627\pi\)
0.435971 + 0.899961i \(0.356405\pi\)
\(224\) −9.91558 + 4.13358i −0.662513 + 0.276186i
\(225\) 0 0
\(226\) 22.3072 1.76581i 1.48385 0.117460i
\(227\) −0.641654 + 0.764693i −0.0425881 + 0.0507545i −0.786918 0.617058i \(-0.788325\pi\)
0.744330 + 0.667812i \(0.232769\pi\)
\(228\) 0 0
\(229\) 0.846018 0.149176i 0.0559064 0.00985781i −0.145625 0.989340i \(-0.546519\pi\)
0.201531 + 0.979482i \(0.435408\pi\)
\(230\) −3.95871 + 14.2999i −0.261030 + 0.942906i
\(231\) 0 0
\(232\) 8.45541 17.0170i 0.555125 1.11722i
\(233\) 5.17379 + 8.96127i 0.338946 + 0.587072i 0.984235 0.176867i \(-0.0565961\pi\)
−0.645288 + 0.763939i \(0.723263\pi\)
\(234\) 0 0
\(235\) 8.16668 + 4.71503i 0.532735 + 0.307575i
\(236\) −9.81967 + 16.3764i −0.639206 + 1.06601i
\(237\) 0 0
\(238\) 2.34931 + 9.06711i 0.152283 + 0.587733i
\(239\) 11.5092 + 4.18901i 0.744469 + 0.270965i 0.686277 0.727341i \(-0.259244\pi\)
0.0581928 + 0.998305i \(0.481466\pi\)
\(240\) 0 0
\(241\) −2.60278 + 14.7611i −0.167660 + 0.950846i 0.778620 + 0.627496i \(0.215920\pi\)
−0.946279 + 0.323350i \(0.895191\pi\)
\(242\) −8.56771 + 17.9836i −0.550753 + 1.15603i
\(243\) 0 0
\(244\) −13.2845 + 10.7776i −0.850455 + 0.689966i
\(245\) 11.2291 + 1.98000i 0.717404 + 0.126498i
\(246\) 0 0
\(247\) −10.8748 3.95809i −0.691944 0.251847i
\(248\) 1.50587 2.04088i 0.0956228 0.129596i
\(249\) 0 0
\(250\) −6.09919 0.584489i −0.385747 0.0369663i
\(251\) 13.8356 + 7.98801i 0.873298 + 0.504199i 0.868443 0.495789i \(-0.165121\pi\)
0.00485525 + 0.999988i \(0.498455\pi\)
\(252\) 0 0
\(253\) −13.5444 + 7.81986i −0.851528 + 0.491630i
\(254\) 13.3134 6.07457i 0.835356 0.381152i
\(255\) 0 0
\(256\) 3.81430 15.5387i 0.238394 0.971169i
\(257\) 1.36142 + 7.72098i 0.0849229 + 0.481622i 0.997373 + 0.0724341i \(0.0230767\pi\)
−0.912450 + 0.409187i \(0.865812\pi\)
\(258\) 0 0
\(259\) −8.76002 + 10.4398i −0.544321 + 0.648697i
\(260\) 8.81723 23.0322i 0.546821 1.42840i
\(261\) 0 0
\(262\) −10.4724 + 7.20447i −0.646986 + 0.445094i
\(263\) 19.3707 7.05037i 1.19445 0.434744i 0.333166 0.942868i \(-0.391883\pi\)
0.861284 + 0.508124i \(0.169661\pi\)
\(264\) 0 0
\(265\) 24.5173 20.5724i 1.50608 1.26375i
\(266\) −5.93858 6.03766i −0.364118 0.370193i
\(267\) 0 0
\(268\) 13.5613 + 24.4128i 0.828386 + 1.49125i
\(269\) 15.9724i 0.973852i −0.873443 0.486926i \(-0.838118\pi\)
0.873443 0.486926i \(-0.161882\pi\)
\(270\) 0 0
\(271\) 7.19443 0.437031 0.218515 0.975834i \(-0.429879\pi\)
0.218515 + 0.975834i \(0.429879\pi\)
\(272\) −12.9440 5.20239i −0.784847 0.315441i
\(273\) 0 0
\(274\) 16.9938 16.7149i 1.02663 1.00979i
\(275\) −20.2485 24.1313i −1.22103 1.45517i
\(276\) 0 0
\(277\) −6.45750 17.7418i −0.387993 1.06600i −0.967903 0.251322i \(-0.919135\pi\)
0.579910 0.814680i \(-0.303088\pi\)
\(278\) 12.8372 8.83135i 0.769924 0.529669i
\(279\) 0 0
\(280\) 13.0743 12.4410i 0.781340 0.743490i
\(281\) 14.1133 + 11.8425i 0.841932 + 0.706465i 0.957997 0.286777i \(-0.0925839\pi\)
−0.116066 + 0.993242i \(0.537028\pi\)
\(282\) 0 0
\(283\) −8.62324 + 1.52051i −0.512599 + 0.0903850i −0.423964 0.905679i \(-0.639362\pi\)
−0.0886349 + 0.996064i \(0.528250\pi\)
\(284\) 3.93511 4.53514i 0.233506 0.269111i
\(285\) 0 0
\(286\) 23.6498 10.7908i 1.39844 0.638074i
\(287\) −1.86818 3.23578i −0.110275 0.191002i
\(288\) 0 0
\(289\) 2.41836 4.18872i 0.142256 0.246395i
\(290\) −3.04524 + 31.7773i −0.178823 + 1.86603i
\(291\) 0 0
\(292\) 1.85624 + 0.359067i 0.108628 + 0.0210128i
\(293\) −4.67724 + 12.8506i −0.273247 + 0.750741i 0.724840 + 0.688918i \(0.241914\pi\)
−0.998087 + 0.0618236i \(0.980308\pi\)
\(294\) 0 0
\(295\) 5.57047 31.5917i 0.324325 1.83934i
\(296\) −4.76528 19.7303i −0.276976 1.14680i
\(297\) 0 0
\(298\) 13.8057 + 6.57727i 0.799742 + 0.381011i
\(299\) 11.2858 + 1.98999i 0.652675 + 0.115084i
\(300\) 0 0
\(301\) 5.42020 14.8919i 0.312415 0.858353i
\(302\) 0.226792 + 0.875301i 0.0130504 + 0.0503679i
\(303\) 0 0
\(304\) 12.4873 1.77812i 0.716196 0.101982i
\(305\) 14.3695 24.8886i 0.822792 1.42512i
\(306\) 0 0
\(307\) 21.3532 12.3283i 1.21869 0.703612i 0.254053 0.967190i \(-0.418236\pi\)
0.964638 + 0.263578i \(0.0849028\pi\)
\(308\) 19.0205 + 0.314717i 1.08379 + 0.0179327i
\(309\) 0 0
\(310\) −1.13683 + 4.10650i −0.0645674 + 0.233234i
\(311\) −0.221479 1.25607i −0.0125589 0.0712250i 0.977884 0.209147i \(-0.0670688\pi\)
−0.990443 + 0.137922i \(0.955958\pi\)
\(312\) 0 0
\(313\) 15.3438 + 12.8749i 0.867280 + 0.727735i 0.963524 0.267623i \(-0.0862382\pi\)
−0.0962433 + 0.995358i \(0.530683\pi\)
\(314\) 1.02958 + 13.0065i 0.0581026 + 0.734001i
\(315\) 0 0
\(316\) −9.13578 + 1.45548i −0.513928 + 0.0818769i
\(317\) 2.05364 + 5.64232i 0.115344 + 0.316904i 0.983909 0.178671i \(-0.0571796\pi\)
−0.868565 + 0.495575i \(0.834957\pi\)
\(318\) 0 0
\(319\) −25.7762 + 21.6288i −1.44319 + 1.21098i
\(320\) 3.34853 + 26.6704i 0.187189 + 1.49092i
\(321\) 0 0
\(322\) 6.82960 + 4.86682i 0.380598 + 0.271217i
\(323\) 10.9975i 0.611916i
\(324\) 0 0
\(325\) 23.0823i 1.28038i
\(326\) 6.86144 9.62863i 0.380020 0.533280i
\(327\) 0 0
\(328\) 5.52996 + 0.622426i 0.305341 + 0.0343677i
\(329\) 4.08291 3.42597i 0.225098 0.188880i
\(330\) 0 0
\(331\) 6.69009 + 18.3809i 0.367721 + 1.01030i 0.976226 + 0.216755i \(0.0695472\pi\)
−0.608505 + 0.793550i \(0.708231\pi\)
\(332\) −0.679944 4.26790i −0.0373168 0.234231i
\(333\) 0 0
\(334\) −8.78905 + 0.695731i −0.480916 + 0.0380687i
\(335\) −35.9400 30.1573i −1.96361 1.64767i
\(336\) 0 0
\(337\) 3.82769 + 21.7079i 0.208508 + 1.18251i 0.891824 + 0.452383i \(0.149426\pi\)
−0.683316 + 0.730123i \(0.739463\pi\)
\(338\) −0.639077 0.176919i −0.0347612 0.00962313i
\(339\) 0 0
\(340\) 23.4332 + 0.387732i 1.27085 + 0.0210277i
\(341\) −3.88955 + 2.24563i −0.210631 + 0.121608i
\(342\) 0 0
\(343\) 9.86900 17.0936i 0.532876 0.922968i
\(344\) 13.0543 + 19.6646i 0.703840 + 1.06024i
\(345\) 0 0
\(346\) −12.1990 + 3.16080i −0.655825 + 0.169926i
\(347\) −0.0110975 + 0.0304900i −0.000595743 + 0.00163679i −0.939990 0.341202i \(-0.889166\pi\)
0.939394 + 0.342838i \(0.111388\pi\)
\(348\) 0 0
\(349\) −32.0493 5.65116i −1.71556 0.302500i −0.772474 0.635046i \(-0.780981\pi\)
−0.943087 + 0.332546i \(0.892092\pi\)
\(350\) −7.26501 + 15.2492i −0.388331 + 0.815106i
\(351\) 0 0
\(352\) −17.1968 + 22.5170i −0.916591 + 1.20016i
\(353\) 0.185474 1.05188i 0.00987180 0.0559857i −0.979474 0.201571i \(-0.935395\pi\)
0.989346 + 0.145585i \(0.0465065\pi\)
\(354\) 0 0
\(355\) −3.45005 + 9.47895i −0.183110 + 0.503090i
\(356\) 30.7779 + 5.95361i 1.63123 + 0.315541i
\(357\) 0 0
\(358\) 20.3251 + 1.94777i 1.07421 + 0.102943i
\(359\) −5.68242 + 9.84224i −0.299907 + 0.519453i −0.976114 0.217258i \(-0.930289\pi\)
0.676208 + 0.736711i \(0.263622\pi\)
\(360\) 0 0
\(361\) −4.52830 7.84324i −0.238331 0.412802i
\(362\) −2.84572 6.23686i −0.149568 0.327802i
\(363\) 0 0
\(364\) −10.5283 9.13529i −0.551830 0.478819i
\(365\) −3.12802 + 0.551554i −0.163728 + 0.0288697i
\(366\) 0 0
\(367\) 6.59453 + 5.53346i 0.344231 + 0.288844i 0.798469 0.602036i \(-0.205644\pi\)
−0.454237 + 0.890881i \(0.650088\pi\)
\(368\) −11.8720 + 3.88132i −0.618872 + 0.202328i
\(369\) 0 0
\(370\) 19.3271 + 28.0937i 1.00477 + 1.46052i
\(371\) −6.18687 16.9983i −0.321206 0.882507i
\(372\) 0 0
\(373\) 24.5912 + 29.3067i 1.27328 + 1.51744i 0.742318 + 0.670048i \(0.233726\pi\)
0.530966 + 0.847393i \(0.321829\pi\)
\(374\) 17.3227 + 17.6117i 0.895737 + 0.910681i
\(375\) 0 0
\(376\) 0.495415 + 7.92275i 0.0255491 + 0.408584i
\(377\) 24.6557 1.26983
\(378\) 0 0
\(379\) 22.1132i 1.13588i −0.823071 0.567939i \(-0.807741\pi\)
0.823071 0.567939i \(-0.192259\pi\)
\(380\) −18.5240 + 10.2900i −0.950260 + 0.527867i
\(381\) 0 0
\(382\) −26.4958 + 26.0610i −1.35564 + 1.33340i
\(383\) 1.25391 1.05215i 0.0640717 0.0537626i −0.610189 0.792256i \(-0.708907\pi\)
0.674261 + 0.738493i \(0.264462\pi\)
\(384\) 0 0
\(385\) −30.0312 + 10.9305i −1.53053 + 0.557069i
\(386\) −3.26655 4.74824i −0.166263 0.241679i
\(387\) 0 0
\(388\) −1.57392 + 4.11136i −0.0799036 + 0.208723i
\(389\) −7.37158 + 8.78511i −0.373754 + 0.445423i −0.919832 0.392311i \(-0.871676\pi\)
0.546079 + 0.837734i \(0.316120\pi\)
\(390\) 0 0
\(391\) 1.89109 + 10.7249i 0.0956363 + 0.542380i
\(392\) 3.83939 + 8.79719i 0.193918 + 0.444325i
\(393\) 0 0
\(394\) 6.03988 + 13.2374i 0.304285 + 0.666889i
\(395\) 13.4594 7.77079i 0.677216 0.390991i
\(396\) 0 0
\(397\) −2.58188 1.49065i −0.129581 0.0748137i 0.433808 0.901005i \(-0.357170\pi\)
−0.563389 + 0.826192i \(0.690503\pi\)
\(398\) 0.186319 1.94425i 0.00933930 0.0974564i
\(399\) 0 0
\(400\) −11.8512 22.1915i −0.592561 1.10958i
\(401\) 8.85877 + 3.22433i 0.442386 + 0.161015i 0.553603 0.832781i \(-0.313253\pi\)
−0.111217 + 0.993796i \(0.535475\pi\)
\(402\) 0 0
\(403\) 3.24096 + 0.571468i 0.161443 + 0.0284668i
\(404\) 27.8292 22.5776i 1.38456 1.12328i
\(405\) 0 0
\(406\) 16.2887 + 7.76023i 0.808394 + 0.385134i
\(407\) −6.24142 + 35.3969i −0.309376 + 1.75456i
\(408\) 0 0
\(409\) −24.0695 8.76058i −1.19016 0.433183i −0.330380 0.943848i \(-0.607177\pi\)
−0.859779 + 0.510665i \(0.829399\pi\)
\(410\) −9.05008 + 2.34490i −0.446952 + 0.115806i
\(411\) 0 0
\(412\) −23.9527 14.3626i −1.18006 0.707595i
\(413\) −15.7019 9.06552i −0.772642 0.446085i
\(414\) 0 0
\(415\) 3.63022 + 6.28773i 0.178201 + 0.308652i
\(416\) 20.2583 4.53945i 0.993244 0.222565i
\(417\) 0 0
\(418\) −21.5259 5.95913i −1.05287 0.291470i
\(419\) 2.41298 0.425474i 0.117882 0.0207858i −0.114396 0.993435i \(-0.536493\pi\)
0.232278 + 0.972649i \(0.425382\pi\)
\(420\) 0 0
\(421\) 8.35420 9.95615i 0.407159 0.485233i −0.523030 0.852314i \(-0.675198\pi\)
0.930189 + 0.367081i \(0.119643\pi\)
\(422\) 1.28950 + 16.2901i 0.0627720 + 0.792988i
\(423\) 0 0
\(424\) 25.8427 + 7.61667i 1.25503 + 0.369898i
\(425\) −20.6122 + 7.50223i −0.999838 + 0.363911i
\(426\) 0 0
\(427\) −10.4409 12.4430i −0.505272 0.602160i
\(428\) −23.3504 + 8.06391i −1.12868 + 0.389784i
\(429\) 0 0
\(430\) −32.2927 23.0120i −1.55729 1.10974i
\(431\) −26.6357 −1.28300 −0.641499 0.767124i \(-0.721687\pi\)
−0.641499 + 0.767124i \(0.721687\pi\)
\(432\) 0 0
\(433\) 27.8356 1.33769 0.668846 0.743401i \(-0.266788\pi\)
0.668846 + 0.743401i \(0.266788\pi\)
\(434\) 1.96126 + 1.39761i 0.0941435 + 0.0670874i
\(435\) 0 0
\(436\) −4.13003 + 1.42628i −0.197792 + 0.0683064i
\(437\) −6.32923 7.54288i −0.302768 0.360825i
\(438\) 0 0
\(439\) 15.2198 5.53956i 0.726402 0.264389i 0.0477612 0.998859i \(-0.484791\pi\)
0.678641 + 0.734470i \(0.262569\pi\)
\(440\) 13.4565 45.6569i 0.641515 2.17661i
\(441\) 0 0
\(442\) −1.42840 18.0447i −0.0679420 0.858300i
\(443\) −11.8910 + 14.1711i −0.564957 + 0.673290i −0.970588 0.240747i \(-0.922607\pi\)
0.405631 + 0.914037i \(0.367052\pi\)
\(444\) 0 0
\(445\) −51.8650 + 9.14520i −2.45864 + 0.433524i
\(446\) −4.14693 1.14802i −0.196363 0.0543601i
\(447\) 0 0
\(448\) 14.8123 + 3.37720i 0.699817 + 0.159558i
\(449\) −3.76662 6.52398i −0.177758 0.307886i 0.763354 0.645980i \(-0.223551\pi\)
−0.941112 + 0.338094i \(0.890218\pi\)
\(450\) 0 0
\(451\) −8.53403 4.92713i −0.401852 0.232009i
\(452\) −27.1405 16.2741i −1.27658 0.765471i
\(453\) 0 0
\(454\) 1.36659 0.354087i 0.0641373 0.0166181i
\(455\) 22.0052 + 8.00925i 1.03162 + 0.375479i
\(456\) 0 0
\(457\) −2.46966 + 14.0062i −0.115526 + 0.655180i 0.870962 + 0.491350i \(0.163496\pi\)
−0.986488 + 0.163831i \(0.947615\pi\)
\(458\) −1.09679 0.522533i −0.0512499 0.0244164i
\(459\) 0 0
\(460\) 16.2954 13.2203i 0.759776 0.616399i
\(461\) 12.3225 + 2.17278i 0.573914 + 0.101197i 0.453070 0.891475i \(-0.350329\pi\)
0.120844 + 0.992672i \(0.461440\pi\)
\(462\) 0 0
\(463\) −5.11858 1.86301i −0.237881 0.0865815i 0.220329 0.975426i \(-0.429287\pi\)
−0.458210 + 0.888844i \(0.651509\pi\)
\(464\) −23.7042 + 12.6591i −1.10044 + 0.587682i
\(465\) 0 0
\(466\) 1.39596 14.5670i 0.0646666 0.674801i
\(467\) 6.32947 + 3.65432i 0.292893 + 0.169102i 0.639246 0.769003i \(-0.279247\pi\)
−0.346353 + 0.938104i \(0.612580\pi\)
\(468\) 0 0
\(469\) −22.9645 + 13.2585i −1.06040 + 0.612222i
\(470\) −5.53591 12.1328i −0.255353 0.559646i
\(471\) 0 0
\(472\) 24.7497 10.8016i 1.13920 0.497184i
\(473\) −7.25787 41.1614i −0.333717 1.89260i
\(474\) 0 0
\(475\) 12.7482 15.1927i 0.584926 0.697088i
\(476\) 4.73580 12.3708i 0.217065 0.567013i
\(477\) 0 0
\(478\) −9.81725 14.2703i −0.449031 0.652708i
\(479\) −6.51285 + 2.37048i −0.297580 + 0.108310i −0.486495 0.873683i \(-0.661725\pi\)
0.188916 + 0.981993i \(0.439503\pi\)
\(480\) 0 0
\(481\) 20.1753 16.9291i 0.919914 0.771900i
\(482\) 15.1123 14.8643i 0.688346 0.677051i
\(483\) 0 0
\(484\) 24.6269 13.6802i 1.11940 0.621826i
\(485\) 7.39586i 0.335829i
\(486\) 0 0
\(487\) 29.6823 1.34503 0.672517 0.740081i \(-0.265213\pi\)
0.672517 + 0.740081i \(0.265213\pi\)
\(488\) 24.1452 1.50982i 1.09300 0.0683462i
\(489\) 0 0
\(490\) −11.3077 11.4963i −0.510828 0.519350i
\(491\) −5.65695 6.74169i −0.255295 0.304248i 0.623140 0.782110i \(-0.285856\pi\)
−0.878435 + 0.477862i \(0.841412\pi\)
\(492\) 0 0
\(493\) 8.01361 + 22.0172i 0.360915 + 0.991606i
\(494\) 9.27606 + 13.4836i 0.417350 + 0.606657i
\(495\) 0 0
\(496\) −3.40930 + 1.11460i −0.153082 + 0.0500471i
\(497\) 4.36747 + 3.66474i 0.195908 + 0.164386i
\(498\) 0 0
\(499\) 14.6580 2.58460i 0.656181 0.115702i 0.164362 0.986400i \(-0.447443\pi\)
0.491819 + 0.870698i \(0.336332\pi\)
\(500\) 6.54478 + 5.67886i 0.292691 + 0.253966i
\(501\) 0 0
\(502\) −9.37872 20.5550i −0.418593 0.917413i
\(503\) 5.25851 + 9.10801i 0.234465 + 0.406106i 0.959117 0.283009i \(-0.0913327\pi\)
−0.724652 + 0.689115i \(0.757999\pi\)
\(504\) 0 0
\(505\) −30.1020 + 52.1381i −1.33952 + 2.32012i
\(506\) 22.0170 + 2.10990i 0.978776 + 0.0937967i
\(507\) 0 0
\(508\) −20.3186 3.93038i −0.901492 0.174382i
\(509\) −8.68462 + 23.8608i −0.384939 + 1.05761i 0.584310 + 0.811531i \(0.301365\pi\)
−0.969249 + 0.246081i \(0.920857\pi\)
\(510\) 0 0
\(511\) −0.311738 + 1.76795i −0.0137905 + 0.0782096i
\(512\) −17.1458 + 14.7656i −0.757744 + 0.652552i
\(513\) 0 0
\(514\) 4.76877 10.0096i 0.210341 0.441506i
\(515\) 46.2072 + 8.14757i 2.03613 + 0.359025i
\(516\) 0 0
\(517\) 4.80776 13.2092i 0.211445 0.580941i
\(518\) 18.6571 4.83409i 0.819744 0.212398i
\(519\) 0 0
\(520\) −29.0577 + 19.2899i −1.27427 + 0.845918i
\(521\) 5.54892 9.61101i 0.243103 0.421066i −0.718494 0.695533i \(-0.755168\pi\)
0.961596 + 0.274467i \(0.0885015\pi\)
\(522\) 0 0
\(523\) 21.2339 12.2594i 0.928493 0.536066i 0.0421586 0.999111i \(-0.486577\pi\)
0.886335 + 0.463045i \(0.153243\pi\)
\(524\) 17.9739 + 0.297401i 0.785194 + 0.0129920i
\(525\) 0 0
\(526\) −28.0957 7.77789i −1.22503 0.339132i
\(527\) 0.543064 + 3.07987i 0.0236563 + 0.134161i
\(528\) 0 0
\(529\) −10.1496 8.51656i −0.441289 0.370285i
\(530\) −45.1208 + 3.57171i −1.95992 + 0.155145i
\(531\) 0 0
\(532\) 1.88431 + 11.8275i 0.0816951 + 0.512787i
\(533\) 2.46961 + 6.78519i 0.106971 + 0.293899i
\(534\) 0 0
\(535\) 31.7922 26.6768i 1.37450 1.15334i
\(536\) 4.41738 39.2463i 0.190802 1.69518i
\(537\) 0 0
\(538\) −13.1088 + 18.3955i −0.565158 + 0.793085i
\(539\) 16.9970i 0.732112i
\(540\) 0 0
\(541\) 10.1117i 0.434737i 0.976090 + 0.217369i \(0.0697474\pi\)
−0.976090 + 0.217369i \(0.930253\pi\)
\(542\) −8.28587 5.90458i −0.355909 0.253623i
\(543\) 0 0
\(544\) 10.6380 + 16.6150i 0.456102 + 0.712361i
\(545\) 5.62314 4.71838i 0.240869 0.202113i
\(546\) 0 0
\(547\) −9.82775 27.0015i −0.420204 1.15450i −0.951590 0.307371i \(-0.900551\pi\)
0.531386 0.847130i \(-0.321672\pi\)
\(548\) −33.2901 + 5.30364i −1.42208 + 0.226560i
\(549\) 0 0
\(550\) 3.51548 + 44.4104i 0.149900 + 1.89367i
\(551\) −16.2283 13.6172i −0.691348 0.580110i
\(552\) 0 0
\(553\) −1.52534 8.65063i −0.0648640 0.367862i
\(554\) −7.12384 + 25.7331i −0.302663 + 1.09330i
\(555\) 0 0
\(556\) −22.0327 0.364558i −0.934395 0.0154607i
\(557\) 10.4290 6.02119i 0.441891 0.255126i −0.262508 0.964930i \(-0.584550\pi\)
0.704400 + 0.709804i \(0.251216\pi\)
\(558\) 0 0
\(559\) −15.3130 + 26.5230i −0.647673 + 1.12180i
\(560\) −25.2683 + 3.59806i −1.06778 + 0.152046i
\(561\) 0 0
\(562\) −6.53511 25.2221i −0.275667 1.06393i
\(563\) −1.52700 + 4.19539i −0.0643553 + 0.176815i −0.967702 0.252096i \(-0.918880\pi\)
0.903347 + 0.428910i \(0.141102\pi\)
\(564\) 0 0
\(565\) 52.3569 + 9.23194i 2.20267 + 0.388390i
\(566\) 11.1793 + 5.32604i 0.469903 + 0.223870i
\(567\) 0 0
\(568\) −8.25414 + 1.99354i −0.346336 + 0.0836473i
\(569\) −5.31792 + 30.1594i −0.222939 + 1.26435i 0.643648 + 0.765322i \(0.277420\pi\)
−0.866586 + 0.499027i \(0.833691\pi\)
\(570\) 0 0
\(571\) −4.43557 + 12.1866i −0.185623 + 0.509994i −0.997244 0.0741895i \(-0.976363\pi\)
0.811621 + 0.584184i \(0.198585\pi\)
\(572\) −36.0938 6.98189i −1.50916 0.291928i
\(573\) 0 0
\(574\) −0.504060 + 5.25991i −0.0210391 + 0.219544i
\(575\) −9.81971 + 17.0082i −0.409510 + 0.709292i
\(576\) 0 0
\(577\) −9.34815 16.1915i −0.389169 0.674060i 0.603169 0.797613i \(-0.293904\pi\)
−0.992338 + 0.123553i \(0.960571\pi\)
\(578\) −6.22298 + 2.83939i −0.258842 + 0.118103i
\(579\) 0 0
\(580\) 29.5874 34.0989i 1.22855 1.41588i
\(581\) 4.04125 0.712582i 0.167659 0.0295629i
\(582\) 0 0
\(583\) −36.5468 30.6664i −1.51361 1.27007i
\(584\) −1.84315 1.93698i −0.0762702 0.0801530i
\(585\) 0 0
\(586\) 15.9335 10.9615i 0.658207 0.452814i
\(587\) −9.91990 27.2547i −0.409438 1.12492i −0.957487 0.288475i \(-0.906852\pi\)
0.548049 0.836446i \(-0.315371\pi\)
\(588\) 0 0
\(589\) −1.81757 2.16609i −0.0748916 0.0892523i
\(590\) −32.3433 + 31.8126i −1.33155 + 1.30970i
\(591\) 0 0
\(592\) −10.7048 + 26.6345i −0.439963 + 1.09467i
\(593\) −12.4895 −0.512883 −0.256441 0.966560i \(-0.582550\pi\)
−0.256441 + 0.966560i \(0.582550\pi\)
\(594\) 0 0
\(595\) 22.2536i 0.912308i
\(596\) −10.5020 18.9056i −0.430179 0.774404i
\(597\) 0 0
\(598\) −11.3647 11.5543i −0.464738 0.472491i
\(599\) −7.49705 + 6.29078i −0.306321 + 0.257034i −0.782970 0.622060i \(-0.786296\pi\)
0.476648 + 0.879094i \(0.341852\pi\)
\(600\) 0 0
\(601\) 27.8247 10.1274i 1.13499 0.413103i 0.294890 0.955531i \(-0.404717\pi\)
0.840102 + 0.542428i \(0.182495\pi\)
\(602\) −18.4645 + 12.7026i −0.752555 + 0.517720i
\(603\) 0 0
\(604\) 0.457174 1.19422i 0.0186022 0.0485922i
\(605\) −30.4217 + 36.2551i −1.23682 + 1.47398i
\(606\) 0 0
\(607\) 1.41051 + 7.99939i 0.0572507 + 0.324685i 0.999960 0.00892998i \(-0.00284254\pi\)
−0.942709 + 0.333615i \(0.891731\pi\)
\(608\) −15.8410 8.20064i −0.642439 0.332580i
\(609\) 0 0
\(610\) −36.9758 + 16.8712i −1.49711 + 0.683093i
\(611\) −8.92020 + 5.15008i −0.360873 + 0.208350i
\(612\) 0 0
\(613\) −10.1533 5.86202i −0.410088 0.236765i 0.280739 0.959784i \(-0.409420\pi\)
−0.690828 + 0.723019i \(0.742754\pi\)
\(614\) −34.7106 3.32634i −1.40081 0.134240i
\(615\) 0 0
\(616\) −21.6477 15.9729i −0.872212 0.643565i
\(617\) 1.24227 + 0.452149i 0.0500118 + 0.0182028i 0.366905 0.930258i \(-0.380417\pi\)
−0.316893 + 0.948461i \(0.602640\pi\)
\(618\) 0 0
\(619\) 25.4782 + 4.49249i 1.02405 + 0.180568i 0.660359 0.750950i \(-0.270404\pi\)
0.363695 + 0.931518i \(0.381515\pi\)
\(620\) 4.67956 3.79648i 0.187936 0.152470i
\(621\) 0 0
\(622\) −0.775795 + 1.62839i −0.0311065 + 0.0652925i
\(623\) −5.16886 + 29.3141i −0.207086 + 1.17444i
\(624\) 0 0
\(625\) 15.8714 + 5.77673i 0.634858 + 0.231069i
\(626\) −7.10484 27.4210i −0.283967 1.09596i
\(627\) 0 0
\(628\) 9.48887 15.8247i 0.378647 0.631474i
\(629\) 21.6749 + 12.5140i 0.864233 + 0.498965i
\(630\) 0 0
\(631\) −6.70635 11.6157i −0.266976 0.462415i 0.701104 0.713059i \(-0.252691\pi\)
−0.968079 + 0.250644i \(0.919358\pi\)
\(632\) 11.7163 + 5.82159i 0.466048 + 0.231571i
\(633\) 0 0
\(634\) 2.26555 8.18375i 0.0899765 0.325018i
\(635\) 34.2396 6.03736i 1.35876 0.239585i
\(636\) 0 0
\(637\) −8.00557 + 9.54067i −0.317192 + 0.378015i
\(638\) 47.4376 3.75511i 1.87807 0.148666i
\(639\) 0 0
\(640\) 18.0323 33.4647i 0.712789 1.32281i
\(641\) 30.4904 11.0976i 1.20430 0.438328i 0.339575 0.940579i \(-0.389717\pi\)
0.864722 + 0.502251i \(0.167495\pi\)
\(642\) 0 0
\(643\) 17.3052 + 20.6235i 0.682449 + 0.813312i 0.990420 0.138084i \(-0.0440944\pi\)
−0.307971 + 0.951396i \(0.599650\pi\)
\(644\) −3.87141 11.2103i −0.152555 0.441748i
\(645\) 0 0
\(646\) −9.02579 + 12.6659i −0.355115 + 0.498332i
\(647\) −25.1491 −0.988713 −0.494356 0.869259i \(-0.664596\pi\)
−0.494356 + 0.869259i \(0.664596\pi\)
\(648\) 0 0
\(649\) −47.8188 −1.87705
\(650\) 18.9440 26.5840i 0.743044 1.04271i
\(651\) 0 0
\(652\) −15.8047 + 5.45807i −0.618960 + 0.213754i
\(653\) 13.3995 + 15.9689i 0.524363 + 0.624912i 0.961607 0.274431i \(-0.0884896\pi\)
−0.437243 + 0.899343i \(0.644045\pi\)
\(654\) 0 0
\(655\) −28.3788 + 10.3291i −1.10885 + 0.403589i
\(656\) −5.85805 5.25537i −0.228718 0.205188i
\(657\) 0 0
\(658\) −7.51406 + 0.594804i −0.292929 + 0.0231879i
\(659\) −18.1622 + 21.6448i −0.707497 + 0.843162i −0.993353 0.115110i \(-0.963278\pi\)
0.285856 + 0.958273i \(0.407722\pi\)
\(660\) 0 0
\(661\) −37.0880 + 6.53962i −1.44256 + 0.254362i −0.839510 0.543344i \(-0.817158\pi\)
−0.603046 + 0.797706i \(0.706047\pi\)
\(662\) 7.38044 26.6600i 0.286849 1.03617i
\(663\) 0 0
\(664\) −2.71963 + 5.47340i −0.105542 + 0.212409i
\(665\) −10.0603 17.4250i −0.390123 0.675712i
\(666\) 0 0
\(667\) 18.1676 + 10.4891i 0.703452 + 0.406138i
\(668\) 10.6934 + 6.41203i 0.413740 + 0.248089i
\(669\) 0 0
\(670\) 16.6418 + 64.2288i 0.642930 + 2.48138i
\(671\) −40.2562 14.6521i −1.55407 0.565636i
\(672\) 0 0
\(673\) 0.887037 5.03064i 0.0341928 0.193917i −0.962927 0.269763i \(-0.913055\pi\)
0.997120 + 0.0758462i \(0.0241658\pi\)
\(674\) 13.4076 28.1426i 0.516443 1.08401i
\(675\) 0 0
\(676\) 0.590828 + 0.728258i 0.0227242 + 0.0280099i
\(677\) 29.3482 + 5.17487i 1.12794 + 0.198887i 0.706325 0.707888i \(-0.250352\pi\)
0.421617 + 0.906774i \(0.361463\pi\)
\(678\) 0 0
\(679\) −3.92804 1.42969i −0.150744 0.0548665i
\(680\) −26.6700 19.6786i −1.02275 0.754639i
\(681\) 0 0
\(682\) 6.32265 + 0.605903i 0.242107 + 0.0232012i
\(683\) −41.0964 23.7270i −1.57251 0.907889i −0.995860 0.0908981i \(-0.971026\pi\)
−0.576650 0.816991i \(-0.695640\pi\)
\(684\) 0 0
\(685\) 49.0450 28.3161i 1.87391 1.08190i
\(686\) −25.3952 + 11.5872i −0.969592 + 0.442401i
\(687\) 0 0
\(688\) 1.10432 33.3617i 0.0421019 1.27190i
\(689\) 6.07041 + 34.4270i 0.231264 + 1.31156i
\(690\) 0 0
\(691\) 19.5742 23.3276i 0.744637 0.887424i −0.252136 0.967692i \(-0.581133\pi\)
0.996773 + 0.0802677i \(0.0255775\pi\)
\(692\) 16.6438 + 6.37163i 0.632704 + 0.242213i
\(693\) 0 0
\(694\) 0.0378046 0.0260077i 0.00143504 0.000987239i
\(695\) 34.7872 12.6615i 1.31955 0.480278i
\(696\) 0 0
\(697\) −5.25642 + 4.41066i −0.199101 + 0.167066i
\(698\) 32.2734 + 32.8118i 1.22157 + 1.24195i
\(699\) 0 0
\(700\) 20.8824 11.6001i 0.789282 0.438444i
\(701\) 22.9653i 0.867386i 0.901061 + 0.433693i \(0.142790\pi\)
−0.901061 + 0.433693i \(0.857210\pi\)
\(702\) 0 0
\(703\) −22.6291 −0.853473
\(704\) 38.2856 11.8193i 1.44294 0.445457i
\(705\) 0 0
\(706\) −1.07690 + 1.05923i −0.0405298 + 0.0398647i
\(707\) 21.8723 + 26.0664i 0.822591 + 0.980326i
\(708\) 0 0
\(709\) −12.4178 34.1176i −0.466361 1.28132i −0.920625 0.390448i \(-0.872320\pi\)
0.454264 0.890867i \(-0.349902\pi\)
\(710\) 11.7530 8.08545i 0.441081 0.303442i
\(711\) 0 0
\(712\) −30.5609 32.1167i −1.14532 1.20363i
\(713\) 2.14499 + 1.79986i 0.0803305 + 0.0674053i
\(714\) 0 0
\(715\) 60.8229 10.7247i 2.27465 0.401082i
\(716\) −21.8100 18.9244i −0.815077 0.707237i
\(717\) 0 0
\(718\) 14.6221 6.67172i 0.545694 0.248986i
\(719\) −13.7419 23.8016i −0.512485 0.887651i −0.999895 0.0144775i \(-0.995392\pi\)
0.487410 0.873173i \(-0.337942\pi\)
\(720\) 0 0
\(721\) 13.2596 22.9662i 0.493812 0.855308i
\(722\) −1.22180 + 12.7495i −0.0454706 + 0.474489i
\(723\) 0 0
\(724\) −1.84125 + 9.51855i −0.0684294 + 0.353754i
\(725\) −14.4516 + 39.7054i −0.536719 + 1.47462i
\(726\) 0 0
\(727\) −0.612001 + 3.47083i −0.0226979 + 0.128726i −0.994051 0.108914i \(-0.965263\pi\)
0.971353 + 0.237640i \(0.0763738\pi\)
\(728\) 4.62799 + 19.1619i 0.171525 + 0.710186i
\(729\) 0 0
\(730\) 4.05523 + 1.93198i 0.150091 + 0.0715059i
\(731\) −28.6617 5.05384i −1.06009 0.186923i
\(732\) 0 0
\(733\) 4.83027 13.2711i 0.178410 0.490178i −0.817963 0.575271i \(-0.804897\pi\)
0.996373 + 0.0850933i \(0.0271188\pi\)
\(734\) −3.05356 11.7851i −0.112709 0.434998i
\(735\) 0 0
\(736\) 16.8585 + 5.27341i 0.621414 + 0.194380i
\(737\) −34.9680 + 60.5664i −1.28806 + 2.23099i
\(738\) 0 0
\(739\) −2.52352 + 1.45695i −0.0928291 + 0.0535949i −0.545696 0.837983i \(-0.683735\pi\)
0.452867 + 0.891578i \(0.350401\pi\)
\(740\) 0.797822 48.2178i 0.0293285 1.77252i
\(741\) 0 0
\(742\) −6.82529 + 24.6547i −0.250564 + 0.905102i
\(743\) −0.918280 5.20783i −0.0336884 0.191057i 0.963319 0.268358i \(-0.0864809\pi\)
−0.997008 + 0.0773010i \(0.975370\pi\)
\(744\) 0 0
\(745\) 27.8324 + 23.3542i 1.01970 + 0.855631i
\(746\) −4.26943 53.9350i −0.156315 1.97470i
\(747\) 0 0
\(748\) −5.49649 34.5006i −0.200971 1.26147i
\(749\) −8.02267 22.0421i −0.293142 0.805401i
\(750\) 0 0
\(751\) −27.0071 + 22.6616i −0.985502 + 0.826935i −0.984910 0.173065i \(-0.944633\pi\)
−0.000591865 1.00000i \(0.500188\pi\)
\(752\) 5.93174 9.53127i 0.216308 0.347570i
\(753\) 0 0
\(754\) −28.3961 20.2353i −1.03413 0.736926i
\(755\) 2.14827i 0.0781834i
\(756\) 0 0
\(757\) 38.9874i 1.41702i −0.705700 0.708511i \(-0.749367\pi\)
0.705700 0.708511i \(-0.250633\pi\)
\(758\) −18.1486 + 25.4679i −0.659187 + 0.925035i
\(759\) 0 0
\(760\) 29.7794 + 3.35182i 1.08021 + 0.121583i
\(761\) −31.7399 + 26.6329i −1.15057 + 0.965443i −0.999733 0.0231155i \(-0.992641\pi\)
−0.150837 + 0.988559i \(0.548197\pi\)
\(762\) 0 0
\(763\) −1.41899 3.89863i −0.0513708 0.141140i
\(764\) 51.9039 8.26913i 1.87782 0.299166i
\(765\) 0 0
\(766\) −2.30765 + 0.182671i −0.0833789 + 0.00660017i
\(767\) 26.8414 + 22.5226i 0.969186 + 0.813244i
\(768\) 0 0
\(769\) 8.75977 + 49.6791i 0.315886 + 1.79148i 0.567210 + 0.823573i \(0.308023\pi\)
−0.251325 + 0.967903i \(0.580866\pi\)
\(770\) 43.5580 + 12.0584i 1.56972 + 0.434554i
\(771\) 0 0
\(772\) −0.134843 + 8.14948i −0.00485311 + 0.293306i
\(773\) −26.2565 + 15.1592i −0.944379 + 0.545238i −0.891330 0.453354i \(-0.850227\pi\)
−0.0530488 + 0.998592i \(0.516894\pi\)
\(774\) 0 0
\(775\) −2.81993 + 4.88427i −0.101295 + 0.175448i
\(776\) 5.18695 3.44334i 0.186201 0.123609i
\(777\) 0 0
\(778\) 15.7000 4.06790i 0.562871 0.145841i
\(779\) 2.12192 5.82994i 0.0760258 0.208879i
\(780\) 0 0
\(781\) 14.8082 + 2.61109i 0.529879 + 0.0934320i
\(782\) 6.62409 13.9040i 0.236877 0.497204i
\(783\) 0 0
\(784\) 2.79813 13.2828i 0.0999333 0.474386i
\(785\) −5.38281 + 30.5275i −0.192121 + 1.08957i
\(786\) 0 0
\(787\) −9.23473 + 25.3722i −0.329182 + 0.904421i 0.659137 + 0.752023i \(0.270922\pi\)
−0.988319 + 0.152398i \(0.951300\pi\)
\(788\) 3.90794 20.2026i 0.139215 0.719687i
\(789\) 0 0
\(790\) −21.8789 2.09666i −0.778415 0.0745960i
\(791\) 15.0243 26.0228i 0.534202 0.925265i
\(792\) 0 0
\(793\) 15.6953 + 27.1851i 0.557356 + 0.965370i
\(794\) 1.75017 + 3.83578i 0.0621113 + 0.136127i
\(795\) 0 0
\(796\) −1.81026 + 2.08629i −0.0641629 + 0.0739466i
\(797\) 52.0759 9.18239i 1.84462 0.325257i 0.861437 0.507864i \(-0.169565\pi\)
0.983186 + 0.182608i \(0.0584538\pi\)
\(798\) 0 0
\(799\) −7.49821 6.29175i −0.265268 0.222586i
\(800\) −4.56380 + 35.2846i −0.161355 + 1.24750i
\(801\) 0 0
\(802\) −7.55644 10.9840i −0.266827 0.387858i
\(803\) 1.61937 + 4.44918i 0.0571463 + 0.157008i
\(804\) 0 0
\(805\) 12.8073 + 15.2631i 0.451398 + 0.537955i
\(806\) −3.26362 3.31806i −0.114956 0.116874i
\(807\) 0 0
\(808\) −50.5808 + 3.16286i −1.77943 + 0.111269i
\(809\) 18.3017 0.643453 0.321727 0.946833i \(-0.395737\pi\)
0.321727 + 0.946833i \(0.395737\pi\)
\(810\) 0 0
\(811\) 34.2759i 1.20359i −0.798650 0.601795i \(-0.794452\pi\)
0.798650 0.601795i \(-0.205548\pi\)
\(812\) −12.3909 22.3059i −0.434834 0.782783i
\(813\) 0 0
\(814\) 36.2390 35.6444i 1.27018 1.24933i
\(815\) 21.5186 18.0562i 0.753762 0.632482i
\(816\) 0 0
\(817\) 24.7274 9.00005i 0.865103 0.314872i
\(818\) 20.5310 + 29.8438i 0.717851 + 1.04346i
\(819\) 0 0
\(820\) 12.3475 + 4.72690i 0.431194 + 0.165071i
\(821\) 16.1380 19.2325i 0.563221 0.671220i −0.407004 0.913426i \(-0.633427\pi\)
0.970225 + 0.242206i \(0.0778710\pi\)
\(822\) 0 0
\(823\) −5.65012 32.0434i −0.196951 1.11696i −0.909613 0.415456i \(-0.863622\pi\)
0.712662 0.701507i \(-0.247489\pi\)
\(824\) 15.7988 + 36.1998i 0.550378 + 1.26108i
\(825\) 0 0
\(826\) 10.6438 + 23.3276i 0.370346 + 0.811672i
\(827\) 39.6695 22.9032i 1.37944 0.796423i 0.387352 0.921932i \(-0.373390\pi\)
0.992092 + 0.125509i \(0.0400565\pi\)
\(828\) 0 0
\(829\) 17.0001 + 9.81500i 0.590437 + 0.340889i 0.765270 0.643709i \(-0.222605\pi\)
−0.174833 + 0.984598i \(0.555939\pi\)
\(830\) 0.979483 10.2210i 0.0339984 0.354776i
\(831\) 0 0
\(832\) −27.0572 11.3982i −0.938039 0.395160i
\(833\) −11.1217 4.04796i −0.385343 0.140253i
\(834\) 0 0
\(835\) −20.6287 3.63739i −0.713885 0.125877i
\(836\) 19.9008 + 24.5298i 0.688282 + 0.848380i
\(837\) 0 0
\(838\) −3.12824 1.49035i −0.108063 0.0514833i
\(839\) 8.40287 47.6550i 0.290099 1.64523i −0.396381 0.918086i \(-0.629734\pi\)
0.686480 0.727149i \(-0.259155\pi\)
\(840\) 0 0
\(841\) 15.1609 + 5.51810i 0.522788 + 0.190279i
\(842\) −17.7928 + 4.61014i −0.613179 + 0.158876i
\(843\) 0 0
\(844\) 11.8844 19.8197i 0.409077 0.682221i
\(845\) −1.36439 0.787733i −0.0469366 0.0270989i
\(846\) 0 0
\(847\) 13.3748 + 23.1658i 0.459563 + 0.795987i
\(848\) −23.5121 29.9817i −0.807409 1.02958i
\(849\) 0 0
\(850\) 29.8964 + 8.27638i 1.02544 + 0.283877i
\(851\) 22.0682 3.89122i 0.756488 0.133389i
\(852\) 0 0
\(853\) −30.1220 + 35.8980i −1.03136 + 1.22912i −0.0583624 + 0.998295i \(0.518588\pi\)
−0.972995 + 0.230828i \(0.925857\pi\)
\(854\) 1.81271 + 22.8997i 0.0620298 + 0.783612i
\(855\) 0 0
\(856\) 33.5109 + 9.87673i 1.14538 + 0.337580i
\(857\) 5.93538 2.16030i 0.202749 0.0737946i −0.238650 0.971106i \(-0.576705\pi\)
0.441399 + 0.897311i \(0.354483\pi\)
\(858\) 0 0
\(859\) −19.3877 23.1054i −0.661501 0.788346i 0.326100 0.945335i \(-0.394266\pi\)
−0.987600 + 0.156990i \(0.949821\pi\)
\(860\) 18.3054 + 53.0061i 0.624208 + 1.80749i
\(861\) 0 0
\(862\) 30.6765 + 21.8603i 1.04485 + 0.744566i
\(863\) −48.6885 −1.65737 −0.828687 0.559712i \(-0.810912\pi\)
−0.828687 + 0.559712i \(0.810912\pi\)
\(864\) 0 0
\(865\) −29.9404 −1.01800
\(866\) −32.0584 22.8451i −1.08939 0.776307i
\(867\) 0 0
\(868\) −1.11176 3.21927i −0.0377355 0.109269i
\(869\) −14.8915 17.7470i −0.505161 0.602027i
\(870\) 0 0
\(871\) 48.1548 17.5269i 1.63166 0.593877i
\(872\) 5.92715 + 1.74692i 0.200718 + 0.0591581i
\(873\) 0 0
\(874\) 1.09886 + 13.8817i 0.0371694 + 0.469554i
\(875\) −5.28869 + 6.30281i −0.178790 + 0.213074i
\(876\) 0 0
\(877\) −34.7601 + 6.12915i −1.17377 + 0.206967i −0.726328 0.687348i \(-0.758775\pi\)
−0.447438 + 0.894315i \(0.647664\pi\)
\(878\) −22.0752 6.11119i −0.745001 0.206243i
\(879\) 0 0
\(880\) −52.9693 + 41.5394i −1.78559 + 1.40029i
\(881\) −7.22906 12.5211i −0.243553 0.421847i 0.718171 0.695867i \(-0.244980\pi\)
−0.961724 + 0.274020i \(0.911646\pi\)
\(882\) 0 0
\(883\) −30.6193 17.6781i −1.03042 0.594915i −0.113317 0.993559i \(-0.536148\pi\)
−0.917106 + 0.398644i \(0.869481\pi\)
\(884\) −13.1645 + 21.9545i −0.442769 + 0.738410i
\(885\) 0 0
\(886\) 25.3253 6.56186i 0.850822 0.220450i
\(887\) 33.6657 + 12.2533i 1.13038 + 0.411426i 0.838432 0.545007i \(-0.183473\pi\)
0.291952 + 0.956433i \(0.405695\pi\)
\(888\) 0 0
\(889\) 3.41231 19.3522i 0.114445 0.649051i
\(890\) 67.2389 + 32.0338i 2.25385 + 1.07378i
\(891\) 0 0
\(892\) 3.83385 + 4.72562i 0.128367 + 0.158225i
\(893\) 8.71560 + 1.53680i 0.291656 + 0.0514269i
\(894\) 0 0
\(895\) 45.5853 + 16.5917i 1.52375 + 0.554599i
\(896\) −14.2877 16.0462i −0.477320 0.536067i
\(897\) 0 0
\(898\) −1.01629 + 10.6050i −0.0339139 + 0.353894i
\(899\) 5.21720 + 3.01215i 0.174003 + 0.100461i
\(900\) 0 0
\(901\) −28.7699 + 16.6103i −0.958463 + 0.553369i
\(902\) 5.78493 + 12.6786i 0.192617 + 0.422151i
\(903\) 0 0
\(904\) 17.9015 + 41.0177i 0.595395 + 1.36423i
\(905\) −2.82829 16.0401i −0.0940157 0.533189i
\(906\) 0 0
\(907\) 5.65021 6.73365i 0.187612 0.223587i −0.664037 0.747700i \(-0.731158\pi\)
0.851649 + 0.524112i \(0.175603\pi\)
\(908\) −1.86452 0.713778i −0.0618762 0.0236876i
\(909\) 0 0
\(910\) −18.7703 27.2843i −0.622228 0.904467i
\(911\) −13.4129 + 4.88190i −0.444389 + 0.161744i −0.554516 0.832173i \(-0.687097\pi\)
0.110127 + 0.993918i \(0.464874\pi\)
\(912\) 0 0
\(913\) 8.29075 6.95676i 0.274384 0.230235i
\(914\) 14.3394 14.1041i 0.474305 0.466522i
\(915\) 0 0
\(916\) 0.834335 + 1.50196i 0.0275672 + 0.0496262i
\(917\) 17.0691i 0.563671i
\(918\) 0 0
\(919\) −54.9336 −1.81209 −0.906046 0.423179i \(-0.860914\pi\)
−0.906046 + 0.423179i \(0.860914\pi\)
\(920\) −29.6176 + 1.85201i −0.976463 + 0.0610589i
\(921\) 0 0
\(922\) −12.4086 12.6156i −0.408656 0.415474i
\(923\) −7.08225 8.44030i −0.233115 0.277816i
\(924\) 0 0
\(925\) 15.4371 + 42.4130i 0.507567 + 1.39453i
\(926\) 4.36610 + 6.34654i 0.143479 + 0.208560i
\(927\) 0 0
\(928\) 37.6898 + 4.87488i 1.23723 + 0.160026i
\(929\) −20.0336 16.8102i −0.657282 0.551525i 0.251989 0.967730i \(-0.418915\pi\)
−0.909271 + 0.416205i \(0.863360\pi\)
\(930\) 0 0
\(931\) 10.5385 1.85822i 0.345385 0.0609006i
\(932\) −13.5631 + 15.6312i −0.444273 + 0.512016i
\(933\) 0 0
\(934\) −4.29053 9.40339i −0.140390 0.307688i
\(935\) 29.3458 + 50.8283i 0.959709 + 1.66226i
\(936\) 0 0
\(937\) 30.0604 52.0662i 0.982031 1.70093i 0.327580 0.944823i \(-0.393767\pi\)
0.654451 0.756105i \(-0.272900\pi\)
\(938\) 37.3298 + 3.57734i 1.21886 + 0.116804i
\(939\) 0 0
\(940\) −3.58186 + 18.5169i −0.116827 + 0.603954i
\(941\) 19.3533 53.1728i 0.630900 1.73338i −0.0476846 0.998862i \(-0.515184\pi\)
0.678585 0.734522i \(-0.262594\pi\)
\(942\) 0 0
\(943\) −1.06683 + 6.05031i −0.0347408 + 0.197025i
\(944\) −37.3694 7.87217i −1.21627 0.256217i
\(945\) 0 0
\(946\) −25.4229 + 53.3625i −0.826568 + 1.73496i
\(947\) −45.6408 8.04770i −1.48313 0.261515i −0.627299 0.778778i \(-0.715840\pi\)
−0.855826 + 0.517263i \(0.826951\pi\)
\(948\) 0 0
\(949\) 1.18659 3.26012i 0.0385182 0.105828i
\(950\) −27.1510 + 7.03489i −0.880895 + 0.228242i
\(951\) 0 0
\(952\) −15.6071 + 10.3607i −0.505829 + 0.335793i
\(953\) 2.93376 5.08142i 0.0950338 0.164603i −0.814589 0.580039i \(-0.803037\pi\)
0.909623 + 0.415435i \(0.136371\pi\)
\(954\) 0 0
\(955\) −76.4681 + 44.1489i −2.47445 + 1.42862i
\(956\) −0.405256 + 24.4924i −0.0131069 + 0.792139i
\(957\) 0 0
\(958\) 9.44638 + 2.61509i 0.305199 + 0.0844898i
\(959\) −5.55822 31.5222i −0.179484 1.01791i
\(960\) 0 0
\(961\) −23.1314 19.4095i −0.746174 0.626114i
\(962\) −37.1300 + 2.93916i −1.19712 + 0.0947625i
\(963\) 0 0
\(964\) −29.6043 + 4.71643i −0.953490 + 0.151906i
\(965\) −4.68325 12.8671i −0.150759 0.414207i
\(966\) 0 0
\(967\) −17.2553 + 14.4789i −0.554893 + 0.465610i −0.876594 0.481231i \(-0.840190\pi\)
0.321701 + 0.946841i \(0.395745\pi\)
\(968\) −39.5904 4.45611i −1.27249 0.143225i
\(969\) 0 0
\(970\) −6.06990 + 8.51786i −0.194893 + 0.273492i
\(971\) 21.9521i 0.704475i 0.935911 + 0.352238i \(0.114579\pi\)
−0.935911 + 0.352238i \(0.885421\pi\)
\(972\) 0 0
\(973\) 20.9235i 0.670778i
\(974\) −34.1853 24.3607i −1.09537 0.780568i
\(975\) 0 0
\(976\) −29.0473 18.0775i −0.929783 0.578646i
\(977\) 36.9729 31.0239i 1.18287 0.992543i 0.182911 0.983129i \(-0.441448\pi\)
0.999956 0.00941403i \(-0.00299662\pi\)
\(978\) 0 0
\(979\) 26.8504 + 73.7710i 0.858144 + 2.35773i
\(980\) 3.58791 + 22.5207i 0.114612 + 0.719398i
\(981\) 0 0
\(982\) 0.982139 + 12.4072i 0.0313413 + 0.395929i
\(983\) 35.0417 + 29.4034i 1.11766 + 0.937824i 0.998484 0.0550493i \(-0.0175316\pi\)
0.119172 + 0.992874i \(0.461976\pi\)
\(984\) 0 0
\(985\) 6.00289 + 34.0441i 0.191268 + 1.08474i
\(986\) 8.84053 31.9343i 0.281540 1.01699i
\(987\) 0 0
\(988\) 0.382916 23.1422i 0.0121822 0.736251i
\(989\) −22.5669 + 13.0290i −0.717585 + 0.414298i
\(990\) 0 0
\(991\) 6.44420 11.1617i 0.204707 0.354562i −0.745333 0.666693i \(-0.767709\pi\)
0.950039 + 0.312130i \(0.101043\pi\)
\(992\) 4.84128 + 1.51437i 0.153711 + 0.0480812i
\(993\) 0 0
\(994\) −2.02233 7.80515i −0.0641445 0.247564i
\(995\) 1.58712 4.36058i 0.0503151 0.138240i
\(996\) 0 0
\(997\) −4.83400 0.852365i −0.153094 0.0269947i 0.0965756 0.995326i \(-0.469211\pi\)
−0.249670 + 0.968331i \(0.580322\pi\)
\(998\) −19.0029 9.05332i −0.601526 0.286578i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.397.6 204
3.2 odd 2 216.2.t.a.133.29 yes 204
8.5 even 2 inner 648.2.t.a.397.32 204
12.11 even 2 864.2.bf.a.241.20 204
24.5 odd 2 216.2.t.a.133.3 yes 204
24.11 even 2 864.2.bf.a.241.15 204
27.13 even 9 inner 648.2.t.a.253.32 204
27.14 odd 18 216.2.t.a.13.3 204
108.95 even 18 864.2.bf.a.337.15 204
216.13 even 18 inner 648.2.t.a.253.6 204
216.149 odd 18 216.2.t.a.13.29 yes 204
216.203 even 18 864.2.bf.a.337.20 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.3 204 27.14 odd 18
216.2.t.a.13.29 yes 204 216.149 odd 18
216.2.t.a.133.3 yes 204 24.5 odd 2
216.2.t.a.133.29 yes 204 3.2 odd 2
648.2.t.a.253.6 204 216.13 even 18 inner
648.2.t.a.253.32 204 27.13 even 9 inner
648.2.t.a.397.6 204 1.1 even 1 trivial
648.2.t.a.397.32 204 8.5 even 2 inner
864.2.bf.a.241.15 204 24.11 even 2
864.2.bf.a.241.20 204 12.11 even 2
864.2.bf.a.337.15 204 108.95 even 18
864.2.bf.a.337.20 204 216.203 even 18