Properties

Label 648.2.t.a.397.31
Level $648$
Weight $2$
Character 648.397
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 397.31
Character \(\chi\) \(=\) 648.397
Dual form 648.2.t.a.253.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34345 + 0.441744i) q^{2} +(1.60972 + 1.18692i) q^{4} +(0.721676 + 0.860059i) q^{5} +(1.31793 - 0.479686i) q^{7} +(1.63827 + 2.30566i) q^{8} +(0.589610 + 1.47424i) q^{10} +(-1.05816 + 1.26106i) q^{11} +(-0.671077 + 0.118329i) q^{13} +(1.98247 - 0.0622489i) q^{14} +(1.18243 + 3.82124i) q^{16} +(-0.907443 - 1.57174i) q^{17} +(2.96777 + 1.71344i) q^{19} +(0.140874 + 2.24103i) q^{20} +(-1.97865 + 1.22674i) q^{22} +(3.62278 + 1.31858i) q^{23} +(0.649354 - 3.68267i) q^{25} +(-0.953831 - 0.137475i) q^{26} +(2.69085 + 0.792115i) q^{28} +(-3.92395 - 0.691898i) q^{29} +(-6.21468 - 2.26196i) q^{31} +(-0.0994769 + 5.65598i) q^{32} +(-0.524800 - 2.51241i) q^{34} +(1.36367 + 0.787317i) q^{35} +(3.83532 - 2.21432i) q^{37} +(3.23015 + 3.61292i) q^{38} +(-0.800705 + 3.07295i) q^{40} +(-0.952217 - 5.40029i) q^{41} +(-7.26017 + 8.65234i) q^{43} +(-3.20013 + 0.774013i) q^{44} +(4.28455 + 3.37179i) q^{46} +(11.5469 - 4.20273i) q^{47} +(-3.85548 + 3.23513i) q^{49} +(2.49917 - 4.66064i) q^{50} +(-1.22070 - 0.606040i) q^{52} -6.89741i q^{53} -1.84824 q^{55} +(3.26511 + 2.25283i) q^{56} +(-4.96599 - 2.66291i) q^{58} +(6.78921 + 8.09106i) q^{59} +(1.24084 + 3.40917i) q^{61} +(-7.34992 - 5.78413i) q^{62} +(-2.63214 + 7.55459i) q^{64} +(-0.586070 - 0.491771i) q^{65} +(-11.9425 + 2.10578i) q^{67} +(0.404798 - 3.60713i) q^{68} +(1.48424 + 1.66012i) q^{70} +(-6.80355 - 11.7841i) q^{71} +(4.73823 - 8.20685i) q^{73} +(6.13073 - 1.28061i) q^{74} +(2.74357 + 6.28068i) q^{76} +(-0.789660 + 2.16957i) q^{77} +(1.59290 - 9.03380i) q^{79} +(-2.43316 + 3.77465i) q^{80} +(1.10629 - 7.67567i) q^{82} +(-1.29853 - 0.228966i) q^{83} +(0.696908 - 1.91474i) q^{85} +(-13.5758 + 8.41686i) q^{86} +(-4.64114 - 0.373789i) q^{88} +(3.52339 - 6.10270i) q^{89} +(-0.827669 + 0.477855i) q^{91} +(4.26662 + 6.42251i) q^{92} +(17.3692 - 0.545389i) q^{94} +(0.668104 + 3.78901i) q^{95} +(-6.33275 - 5.31381i) q^{97} +(-6.60875 + 2.64311i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34345 + 0.441744i 0.949964 + 0.312360i
\(3\) 0 0
\(4\) 1.60972 + 1.18692i 0.804862 + 0.593462i
\(5\) 0.721676 + 0.860059i 0.322743 + 0.384630i 0.902883 0.429887i \(-0.141447\pi\)
−0.580140 + 0.814517i \(0.697002\pi\)
\(6\) 0 0
\(7\) 1.31793 0.479686i 0.498129 0.181304i −0.0807232 0.996737i \(-0.525723\pi\)
0.578852 + 0.815432i \(0.303501\pi\)
\(8\) 1.63827 + 2.30566i 0.579216 + 0.815174i
\(9\) 0 0
\(10\) 0.589610 + 1.47424i 0.186451 + 0.466197i
\(11\) −1.05816 + 1.26106i −0.319047 + 0.380225i −0.901602 0.432566i \(-0.857608\pi\)
0.582556 + 0.812791i \(0.302053\pi\)
\(12\) 0 0
\(13\) −0.671077 + 0.118329i −0.186123 + 0.0328186i −0.265933 0.963992i \(-0.585680\pi\)
0.0798095 + 0.996810i \(0.474569\pi\)
\(14\) 1.98247 0.0622489i 0.529837 0.0166367i
\(15\) 0 0
\(16\) 1.18243 + 3.82124i 0.295607 + 0.955310i
\(17\) −0.907443 1.57174i −0.220087 0.381202i 0.734747 0.678341i \(-0.237301\pi\)
−0.954834 + 0.297139i \(0.903968\pi\)
\(18\) 0 0
\(19\) 2.96777 + 1.71344i 0.680853 + 0.393091i 0.800176 0.599765i \(-0.204739\pi\)
−0.119323 + 0.992855i \(0.538073\pi\)
\(20\) 0.140874 + 2.24103i 0.0315004 + 0.501110i
\(21\) 0 0
\(22\) −1.97865 + 1.22674i −0.421850 + 0.261543i
\(23\) 3.62278 + 1.31858i 0.755401 + 0.274944i 0.690877 0.722973i \(-0.257225\pi\)
0.0645244 + 0.997916i \(0.479447\pi\)
\(24\) 0 0
\(25\) 0.649354 3.68267i 0.129871 0.736534i
\(26\) −0.953831 0.137475i −0.187062 0.0269611i
\(27\) 0 0
\(28\) 2.69085 + 0.792115i 0.508522 + 0.149696i
\(29\) −3.92395 0.691898i −0.728659 0.128482i −0.203001 0.979179i \(-0.565070\pi\)
−0.525657 + 0.850696i \(0.676181\pi\)
\(30\) 0 0
\(31\) −6.21468 2.26196i −1.11619 0.406260i −0.282930 0.959141i \(-0.591306\pi\)
−0.833260 + 0.552881i \(0.813529\pi\)
\(32\) −0.0994769 + 5.65598i −0.0175852 + 0.999845i
\(33\) 0 0
\(34\) −0.524800 2.51241i −0.0900025 0.430875i
\(35\) 1.36367 + 0.787317i 0.230503 + 0.133081i
\(36\) 0 0
\(37\) 3.83532 2.21432i 0.630522 0.364032i −0.150432 0.988620i \(-0.548066\pi\)
0.780954 + 0.624588i \(0.214733\pi\)
\(38\) 3.23015 + 3.61292i 0.524000 + 0.586093i
\(39\) 0 0
\(40\) −0.800705 + 3.07295i −0.126603 + 0.485876i
\(41\) −0.952217 5.40029i −0.148711 0.843384i −0.964312 0.264769i \(-0.914704\pi\)
0.815601 0.578615i \(-0.196407\pi\)
\(42\) 0 0
\(43\) −7.26017 + 8.65234i −1.10717 + 1.31947i −0.164257 + 0.986418i \(0.552523\pi\)
−0.942909 + 0.333051i \(0.891922\pi\)
\(44\) −3.20013 + 0.774013i −0.482438 + 0.116687i
\(45\) 0 0
\(46\) 4.28455 + 3.37179i 0.631722 + 0.497144i
\(47\) 11.5469 4.20273i 1.68429 0.613031i 0.690402 0.723426i \(-0.257434\pi\)
0.993888 + 0.110395i \(0.0352116\pi\)
\(48\) 0 0
\(49\) −3.85548 + 3.23513i −0.550783 + 0.462162i
\(50\) 2.49917 4.66064i 0.353437 0.659114i
\(51\) 0 0
\(52\) −1.22070 0.606040i −0.169280 0.0840426i
\(53\) 6.89741i 0.947432i −0.880678 0.473716i \(-0.842912\pi\)
0.880678 0.473716i \(-0.157088\pi\)
\(54\) 0 0
\(55\) −1.84824 −0.249216
\(56\) 3.26511 + 2.25283i 0.436319 + 0.301048i
\(57\) 0 0
\(58\) −4.96599 2.66291i −0.652067 0.349657i
\(59\) 6.78921 + 8.09106i 0.883880 + 1.05337i 0.998203 + 0.0599230i \(0.0190855\pi\)
−0.114323 + 0.993444i \(0.536470\pi\)
\(60\) 0 0
\(61\) 1.24084 + 3.40917i 0.158873 + 0.436499i 0.993433 0.114418i \(-0.0365003\pi\)
−0.834560 + 0.550917i \(0.814278\pi\)
\(62\) −7.34992 5.78413i −0.933441 0.734586i
\(63\) 0 0
\(64\) −2.63214 + 7.55459i −0.329017 + 0.944324i
\(65\) −0.586070 0.491771i −0.0726930 0.0609967i
\(66\) 0 0
\(67\) −11.9425 + 2.10578i −1.45901 + 0.257263i −0.846156 0.532935i \(-0.821089\pi\)
−0.612852 + 0.790198i \(0.709978\pi\)
\(68\) 0.404798 3.60713i 0.0490890 0.437429i
\(69\) 0 0
\(70\) 1.48424 + 1.66012i 0.177400 + 0.198422i
\(71\) −6.80355 11.7841i −0.807432 1.39851i −0.914637 0.404277i \(-0.867523\pi\)
0.107204 0.994237i \(-0.465810\pi\)
\(72\) 0 0
\(73\) 4.73823 8.20685i 0.554567 0.960539i −0.443370 0.896339i \(-0.646217\pi\)
0.997937 0.0642000i \(-0.0204496\pi\)
\(74\) 6.13073 1.28061i 0.712682 0.148867i
\(75\) 0 0
\(76\) 2.74357 + 6.28068i 0.314709 + 0.720444i
\(77\) −0.789660 + 2.16957i −0.0899901 + 0.247246i
\(78\) 0 0
\(79\) 1.59290 9.03380i 0.179215 1.01638i −0.753949 0.656933i \(-0.771854\pi\)
0.933165 0.359449i \(-0.117035\pi\)
\(80\) −2.43316 + 3.77465i −0.272036 + 0.422019i
\(81\) 0 0
\(82\) 1.10629 7.67567i 0.122169 0.847635i
\(83\) −1.29853 0.228966i −0.142532 0.0251322i 0.101927 0.994792i \(-0.467499\pi\)
−0.244459 + 0.969660i \(0.578610\pi\)
\(84\) 0 0
\(85\) 0.696908 1.91474i 0.0755903 0.207683i
\(86\) −13.5758 + 8.41686i −1.46392 + 0.907613i
\(87\) 0 0
\(88\) −4.64114 0.373789i −0.494747 0.0398461i
\(89\) 3.52339 6.10270i 0.373479 0.646884i −0.616619 0.787262i \(-0.711498\pi\)
0.990098 + 0.140377i \(0.0448315\pi\)
\(90\) 0 0
\(91\) −0.827669 + 0.477855i −0.0867633 + 0.0500928i
\(92\) 4.26662 + 6.42251i 0.444825 + 0.669593i
\(93\) 0 0
\(94\) 17.3692 0.545389i 1.79150 0.0562525i
\(95\) 0.668104 + 3.78901i 0.0685460 + 0.388744i
\(96\) 0 0
\(97\) −6.33275 5.31381i −0.642993 0.539535i 0.261943 0.965083i \(-0.415637\pi\)
−0.904936 + 0.425548i \(0.860081\pi\)
\(98\) −6.60875 + 2.64311i −0.667585 + 0.266994i
\(99\) 0 0
\(100\) 5.41633 5.15735i 0.541633 0.515735i
\(101\) −6.04137 16.5985i −0.601139 1.65162i −0.748971 0.662603i \(-0.769452\pi\)
0.147832 0.989012i \(-0.452770\pi\)
\(102\) 0 0
\(103\) −2.98038 + 2.50084i −0.293666 + 0.246415i −0.777702 0.628633i \(-0.783615\pi\)
0.484036 + 0.875048i \(0.339170\pi\)
\(104\) −1.37223 1.35342i −0.134558 0.132714i
\(105\) 0 0
\(106\) 3.04689 9.26634i 0.295940 0.900026i
\(107\) 4.16409i 0.402558i 0.979534 + 0.201279i \(0.0645098\pi\)
−0.979534 + 0.201279i \(0.935490\pi\)
\(108\) 0 0
\(109\) 20.6082i 1.97391i −0.161002 0.986954i \(-0.551473\pi\)
0.161002 0.986954i \(-0.448527\pi\)
\(110\) −2.48302 0.816448i −0.236746 0.0778452i
\(111\) 0 0
\(112\) 3.39134 + 4.46892i 0.320452 + 0.422273i
\(113\) −2.03205 + 1.70510i −0.191160 + 0.160402i −0.733344 0.679857i \(-0.762042\pi\)
0.542185 + 0.840259i \(0.317597\pi\)
\(114\) 0 0
\(115\) 1.48041 + 4.06739i 0.138049 + 0.379286i
\(116\) −5.49524 5.77119i −0.510221 0.535841i
\(117\) 0 0
\(118\) 5.54679 + 13.8690i 0.510624 + 1.27675i
\(119\) −1.94988 1.63615i −0.178745 0.149985i
\(120\) 0 0
\(121\) 1.43955 + 8.16407i 0.130868 + 0.742188i
\(122\) 0.161023 + 5.12818i 0.0145784 + 0.464284i
\(123\) 0 0
\(124\) −7.31916 11.0175i −0.657280 0.989399i
\(125\) 8.49749 4.90603i 0.760039 0.438809i
\(126\) 0 0
\(127\) −2.14785 + 3.72019i −0.190591 + 0.330113i −0.945446 0.325778i \(-0.894374\pi\)
0.754855 + 0.655891i \(0.227707\pi\)
\(128\) −6.87334 + 8.98650i −0.607524 + 0.794302i
\(129\) 0 0
\(130\) −0.570120 0.919563i −0.0500028 0.0806510i
\(131\) −2.70846 + 7.44142i −0.236639 + 0.650160i 0.763352 + 0.645982i \(0.223552\pi\)
−0.999991 + 0.00417788i \(0.998670\pi\)
\(132\) 0 0
\(133\) 4.73321 + 0.834593i 0.410422 + 0.0723684i
\(134\) −16.9744 2.44651i −1.46636 0.211346i
\(135\) 0 0
\(136\) 2.13726 4.66719i 0.183268 0.400208i
\(137\) −2.73472 + 15.5094i −0.233643 + 1.32506i 0.611809 + 0.791006i \(0.290442\pi\)
−0.845452 + 0.534051i \(0.820669\pi\)
\(138\) 0 0
\(139\) 0.133147 0.365819i 0.0112934 0.0310283i −0.933918 0.357488i \(-0.883633\pi\)
0.945211 + 0.326459i \(0.105856\pi\)
\(140\) 1.26065 + 2.88594i 0.106545 + 0.243906i
\(141\) 0 0
\(142\) −3.93469 18.8368i −0.330191 1.58075i
\(143\) 0.560885 0.971482i 0.0469036 0.0812394i
\(144\) 0 0
\(145\) −2.23674 3.87415i −0.185751 0.321731i
\(146\) 9.99090 8.93242i 0.826853 0.739252i
\(147\) 0 0
\(148\) 8.80203 + 0.987780i 0.723523 + 0.0811950i
\(149\) −11.6562 + 2.05530i −0.954913 + 0.168377i −0.629331 0.777137i \(-0.716671\pi\)
−0.325581 + 0.945514i \(0.605560\pi\)
\(150\) 0 0
\(151\) 7.05111 + 5.91658i 0.573811 + 0.481485i 0.882908 0.469546i \(-0.155582\pi\)
−0.309097 + 0.951031i \(0.600027\pi\)
\(152\) 0.911394 + 9.64975i 0.0739238 + 0.782698i
\(153\) 0 0
\(154\) −2.01927 + 2.56589i −0.162717 + 0.206765i
\(155\) −2.53957 6.97740i −0.203983 0.560438i
\(156\) 0 0
\(157\) −8.84016 10.5353i −0.705521 0.840807i 0.287618 0.957745i \(-0.407137\pi\)
−0.993139 + 0.116938i \(0.962692\pi\)
\(158\) 6.13061 11.4328i 0.487725 0.909546i
\(159\) 0 0
\(160\) −4.93627 + 3.99623i −0.390246 + 0.315929i
\(161\) 5.40706 0.426136
\(162\) 0 0
\(163\) 12.7196i 0.996272i −0.867099 0.498136i \(-0.834018\pi\)
0.867099 0.498136i \(-0.165982\pi\)
\(164\) 4.87692 9.82319i 0.380824 0.767062i
\(165\) 0 0
\(166\) −1.64337 0.881221i −0.127550 0.0683960i
\(167\) −15.1696 + 12.7288i −1.17386 + 0.984986i −0.173861 + 0.984770i \(0.555624\pi\)
−1.00000 0.000215714i \(0.999931\pi\)
\(168\) 0 0
\(169\) −11.7797 + 4.28745i −0.906128 + 0.329804i
\(170\) 1.78209 2.26450i 0.136680 0.173680i
\(171\) 0 0
\(172\) −21.9565 + 5.31061i −1.67417 + 0.404930i
\(173\) 3.14984 3.75384i 0.239478 0.285399i −0.632897 0.774236i \(-0.718134\pi\)
0.872375 + 0.488837i \(0.162579\pi\)
\(174\) 0 0
\(175\) −0.910724 5.16497i −0.0688443 0.390435i
\(176\) −6.07002 2.55236i −0.457545 0.192392i
\(177\) 0 0
\(178\) 7.42934 6.64224i 0.556852 0.497857i
\(179\) 3.21176 1.85431i 0.240058 0.138598i −0.375145 0.926966i \(-0.622407\pi\)
0.615204 + 0.788368i \(0.289074\pi\)
\(180\) 0 0
\(181\) 14.1322 + 8.15921i 1.05044 + 0.606470i 0.922771 0.385348i \(-0.125919\pi\)
0.127665 + 0.991817i \(0.459252\pi\)
\(182\) −1.32302 + 0.276357i −0.0980690 + 0.0204850i
\(183\) 0 0
\(184\) 2.89489 + 10.5131i 0.213414 + 0.775035i
\(185\) 4.67230 + 1.70058i 0.343515 + 0.125029i
\(186\) 0 0
\(187\) 2.94228 + 0.518804i 0.215161 + 0.0379387i
\(188\) 23.5757 + 6.94005i 1.71943 + 0.506155i
\(189\) 0 0
\(190\) −0.776205 + 5.38548i −0.0563118 + 0.390704i
\(191\) −1.19811 + 6.79482i −0.0866922 + 0.491656i 0.910286 + 0.413979i \(0.135861\pi\)
−0.996979 + 0.0776767i \(0.975250\pi\)
\(192\) 0 0
\(193\) 8.95564 + 3.25959i 0.644641 + 0.234630i 0.643591 0.765369i \(-0.277444\pi\)
0.00104978 + 0.999999i \(0.499666\pi\)
\(194\) −6.16040 9.93630i −0.442291 0.713385i
\(195\) 0 0
\(196\) −10.0461 + 0.631512i −0.717580 + 0.0451080i
\(197\) −1.74001 1.00460i −0.123971 0.0715746i 0.436732 0.899592i \(-0.356136\pi\)
−0.560703 + 0.828017i \(0.689469\pi\)
\(198\) 0 0
\(199\) 10.6564 + 18.4573i 0.755409 + 1.30841i 0.945171 + 0.326576i \(0.105895\pi\)
−0.189762 + 0.981830i \(0.560772\pi\)
\(200\) 9.55481 4.53602i 0.675627 0.320745i
\(201\) 0 0
\(202\) −0.783989 24.9681i −0.0551613 1.75675i
\(203\) −5.50336 + 0.970392i −0.386260 + 0.0681081i
\(204\) 0 0
\(205\) 3.95738 4.71622i 0.276395 0.329395i
\(206\) −5.10873 + 2.04319i −0.355942 + 0.142356i
\(207\) 0 0
\(208\) −1.24566 2.42443i −0.0863711 0.168104i
\(209\) −5.30113 + 1.92945i −0.366687 + 0.133463i
\(210\) 0 0
\(211\) 5.98817 + 7.13642i 0.412242 + 0.491291i 0.931712 0.363197i \(-0.118315\pi\)
−0.519470 + 0.854489i \(0.673870\pi\)
\(212\) 8.18670 11.1029i 0.562265 0.762552i
\(213\) 0 0
\(214\) −1.83946 + 5.59426i −0.125743 + 0.382416i
\(215\) −12.6810 −0.864838
\(216\) 0 0
\(217\) −9.27552 −0.629664
\(218\) 9.10355 27.6861i 0.616570 1.87514i
\(219\) 0 0
\(220\) −2.97515 2.19372i −0.200585 0.147900i
\(221\) 0.794946 + 0.947380i 0.0534739 + 0.0637277i
\(222\) 0 0
\(223\) 23.1313 8.41909i 1.54898 0.563784i 0.580805 0.814043i \(-0.302738\pi\)
0.968179 + 0.250259i \(0.0805157\pi\)
\(224\) 2.58199 + 7.50188i 0.172516 + 0.501240i
\(225\) 0 0
\(226\) −3.48318 + 1.39307i −0.231698 + 0.0926654i
\(227\) −2.62591 + 3.12944i −0.174288 + 0.207708i −0.846116 0.532999i \(-0.821065\pi\)
0.671828 + 0.740707i \(0.265509\pi\)
\(228\) 0 0
\(229\) 12.4279 2.19138i 0.821261 0.144810i 0.252798 0.967519i \(-0.418649\pi\)
0.568463 + 0.822709i \(0.307538\pi\)
\(230\) 0.192113 + 6.11831i 0.0126675 + 0.403429i
\(231\) 0 0
\(232\) −4.83321 10.1808i −0.317316 0.668402i
\(233\) 12.2882 + 21.2839i 0.805030 + 1.39435i 0.916271 + 0.400559i \(0.131184\pi\)
−0.111241 + 0.993793i \(0.535483\pi\)
\(234\) 0 0
\(235\) 11.9477 + 6.89802i 0.779383 + 0.449977i
\(236\) 1.32528 + 21.0827i 0.0862686 + 1.37236i
\(237\) 0 0
\(238\) −1.89682 3.05943i −0.122952 0.198314i
\(239\) 10.1778 + 3.70441i 0.658346 + 0.239618i 0.649522 0.760343i \(-0.274969\pi\)
0.00882395 + 0.999961i \(0.497191\pi\)
\(240\) 0 0
\(241\) −2.29103 + 12.9931i −0.147579 + 0.836959i 0.817682 + 0.575670i \(0.195259\pi\)
−0.965261 + 0.261289i \(0.915852\pi\)
\(242\) −1.67247 + 11.6039i −0.107510 + 0.745930i
\(243\) 0 0
\(244\) −2.04902 + 6.96060i −0.131175 + 0.445607i
\(245\) −5.56481 0.981227i −0.355523 0.0626883i
\(246\) 0 0
\(247\) −2.19435 0.798678i −0.139623 0.0508187i
\(248\) −4.96602 18.0347i −0.315343 1.14520i
\(249\) 0 0
\(250\) 13.5832 2.83730i 0.859076 0.179446i
\(251\) 17.6367 + 10.1826i 1.11322 + 0.642717i 0.939661 0.342106i \(-0.111140\pi\)
0.173558 + 0.984824i \(0.444474\pi\)
\(252\) 0 0
\(253\) −5.49629 + 3.17328i −0.345549 + 0.199503i
\(254\) −4.52890 + 4.04909i −0.284169 + 0.254063i
\(255\) 0 0
\(256\) −13.2037 + 9.03667i −0.825234 + 0.564792i
\(257\) −2.07937 11.7927i −0.129707 0.735606i −0.978400 0.206720i \(-0.933721\pi\)
0.848693 0.528886i \(-0.177390\pi\)
\(258\) 0 0
\(259\) 3.99249 4.75806i 0.248081 0.295651i
\(260\) −0.359717 1.48724i −0.0223087 0.0922344i
\(261\) 0 0
\(262\) −6.92589 + 8.80075i −0.427883 + 0.543712i
\(263\) 9.28725 3.38028i 0.572677 0.208437i −0.0394166 0.999223i \(-0.512550\pi\)
0.612093 + 0.790786i \(0.290328\pi\)
\(264\) 0 0
\(265\) 5.93218 4.97769i 0.364411 0.305777i
\(266\) 5.99017 + 3.21210i 0.367281 + 0.196947i
\(267\) 0 0
\(268\) −21.7235 10.7851i −1.32698 0.658805i
\(269\) 5.38944i 0.328600i 0.986410 + 0.164300i \(0.0525365\pi\)
−0.986410 + 0.164300i \(0.947463\pi\)
\(270\) 0 0
\(271\) −6.24978 −0.379647 −0.189823 0.981818i \(-0.560792\pi\)
−0.189823 + 0.981818i \(0.560792\pi\)
\(272\) 4.93300 5.32602i 0.299107 0.322937i
\(273\) 0 0
\(274\) −10.5252 + 19.6281i −0.635848 + 1.18578i
\(275\) 3.95697 + 4.71573i 0.238614 + 0.284369i
\(276\) 0 0
\(277\) 4.85450 + 13.3376i 0.291679 + 0.801381i 0.995821 + 0.0913223i \(0.0291093\pi\)
−0.704143 + 0.710059i \(0.748668\pi\)
\(278\) 0.340475 0.432643i 0.0204203 0.0259482i
\(279\) 0 0
\(280\) 0.418780 + 4.43401i 0.0250269 + 0.264983i
\(281\) −21.3543 17.9184i −1.27389 1.06892i −0.994055 0.108875i \(-0.965275\pi\)
−0.279837 0.960047i \(-0.590280\pi\)
\(282\) 0 0
\(283\) −22.0316 + 3.88476i −1.30964 + 0.230925i −0.784521 0.620102i \(-0.787091\pi\)
−0.525121 + 0.851027i \(0.675980\pi\)
\(284\) 3.03497 27.0444i 0.180093 1.60479i
\(285\) 0 0
\(286\) 1.18267 1.05737i 0.0699327 0.0625237i
\(287\) −3.84539 6.66042i −0.226986 0.393152i
\(288\) 0 0
\(289\) 6.85309 11.8699i 0.403123 0.698230i
\(290\) −1.29357 6.19280i −0.0759612 0.363654i
\(291\) 0 0
\(292\) 17.3681 7.58685i 1.01639 0.443987i
\(293\) 0.130208 0.357742i 0.00760680 0.0208995i −0.935831 0.352449i \(-0.885349\pi\)
0.943438 + 0.331549i \(0.107571\pi\)
\(294\) 0 0
\(295\) −2.05919 + 11.6782i −0.119891 + 0.679934i
\(296\) 11.3888 + 5.21528i 0.661958 + 0.303132i
\(297\) 0 0
\(298\) −16.5675 2.38786i −0.959727 0.138325i
\(299\) −2.58719 0.456191i −0.149621 0.0263822i
\(300\) 0 0
\(301\) −5.41797 + 14.8857i −0.312286 + 0.858000i
\(302\) 6.85921 + 11.0634i 0.394703 + 0.636629i
\(303\) 0 0
\(304\) −3.03830 + 13.3666i −0.174259 + 0.766626i
\(305\) −2.03661 + 3.52751i −0.116616 + 0.201984i
\(306\) 0 0
\(307\) −9.47107 + 5.46813i −0.540543 + 0.312083i −0.745299 0.666731i \(-0.767693\pi\)
0.204756 + 0.978813i \(0.434360\pi\)
\(308\) −3.84625 + 2.55515i −0.219161 + 0.145593i
\(309\) 0 0
\(310\) −0.329560 10.4956i −0.0187177 0.596112i
\(311\) 3.17033 + 17.9798i 0.179773 + 1.01954i 0.932490 + 0.361197i \(0.117632\pi\)
−0.752717 + 0.658344i \(0.771257\pi\)
\(312\) 0 0
\(313\) 2.49125 + 2.09041i 0.140814 + 0.118157i 0.710474 0.703724i \(-0.248481\pi\)
−0.569660 + 0.821880i \(0.692925\pi\)
\(314\) −7.22242 18.0587i −0.407585 1.01911i
\(315\) 0 0
\(316\) 13.2866 12.6513i 0.747427 0.711690i
\(317\) 5.82505 + 16.0042i 0.327167 + 0.898885i 0.988825 + 0.149079i \(0.0476309\pi\)
−0.661658 + 0.749806i \(0.730147\pi\)
\(318\) 0 0
\(319\) 5.02469 4.21621i 0.281328 0.236063i
\(320\) −8.39695 + 3.18817i −0.469404 + 0.178224i
\(321\) 0 0
\(322\) 7.26412 + 2.38853i 0.404814 + 0.133108i
\(323\) 6.21940i 0.346057i
\(324\) 0 0
\(325\) 2.54819i 0.141348i
\(326\) 5.61879 17.0881i 0.311196 0.946423i
\(327\) 0 0
\(328\) 10.8912 11.0426i 0.601368 0.609727i
\(329\) 13.2020 11.0778i 0.727849 0.610737i
\(330\) 0 0
\(331\) 1.92215 + 5.28106i 0.105651 + 0.290273i 0.981242 0.192780i \(-0.0617502\pi\)
−0.875591 + 0.483053i \(0.839528\pi\)
\(332\) −1.81851 1.90983i −0.0998036 0.104815i
\(333\) 0 0
\(334\) −26.0025 + 10.3995i −1.42280 + 0.569034i
\(335\) −10.4297 8.75156i −0.569836 0.478149i
\(336\) 0 0
\(337\) 3.30062 + 18.7188i 0.179796 + 1.01968i 0.932461 + 0.361271i \(0.117657\pi\)
−0.752665 + 0.658404i \(0.771232\pi\)
\(338\) −17.7194 + 0.556382i −0.963806 + 0.0302632i
\(339\) 0 0
\(340\) 3.39448 2.25503i 0.184091 0.122296i
\(341\) 9.42860 5.44360i 0.510587 0.294788i
\(342\) 0 0
\(343\) −8.43817 + 14.6153i −0.455618 + 0.789154i
\(344\) −31.8435 2.56462i −1.71689 0.138275i
\(345\) 0 0
\(346\) 5.88990 3.65167i 0.316643 0.196315i
\(347\) −3.17358 + 8.71933i −0.170366 + 0.468078i −0.995265 0.0972035i \(-0.969010\pi\)
0.824898 + 0.565282i \(0.191232\pi\)
\(348\) 0 0
\(349\) −7.31028 1.28900i −0.391310 0.0689985i −0.0254684 0.999676i \(-0.508108\pi\)
−0.365842 + 0.930677i \(0.619219\pi\)
\(350\) 1.05808 7.34120i 0.0565569 0.392404i
\(351\) 0 0
\(352\) −7.02729 6.11037i −0.374556 0.325684i
\(353\) −4.91102 + 27.8518i −0.261387 + 1.48240i 0.517742 + 0.855537i \(0.326773\pi\)
−0.779129 + 0.626864i \(0.784338\pi\)
\(354\) 0 0
\(355\) 5.22506 14.3557i 0.277318 0.761924i
\(356\) 12.9151 5.64166i 0.684500 0.299007i
\(357\) 0 0
\(358\) 5.13398 1.07240i 0.271339 0.0566782i
\(359\) −8.47821 + 14.6847i −0.447463 + 0.775029i −0.998220 0.0596369i \(-0.981006\pi\)
0.550757 + 0.834666i \(0.314339\pi\)
\(360\) 0 0
\(361\) −3.62823 6.28428i −0.190960 0.330752i
\(362\) 15.3816 + 17.2043i 0.808439 + 0.904239i
\(363\) 0 0
\(364\) −1.89950 0.213165i −0.0995607 0.0111729i
\(365\) 10.4778 1.84753i 0.548435 0.0967039i
\(366\) 0 0
\(367\) 6.19539 + 5.19855i 0.323397 + 0.271362i 0.790003 0.613103i \(-0.210079\pi\)
−0.466606 + 0.884465i \(0.654523\pi\)
\(368\) −0.754954 + 15.4026i −0.0393547 + 0.802917i
\(369\) 0 0
\(370\) 5.52579 + 4.34861i 0.287272 + 0.226073i
\(371\) −3.30859 9.09028i −0.171773 0.471944i
\(372\) 0 0
\(373\) −14.1644 16.8805i −0.733405 0.874038i 0.262454 0.964944i \(-0.415468\pi\)
−0.995859 + 0.0909062i \(0.971024\pi\)
\(374\) 3.72363 + 1.99672i 0.192545 + 0.103248i
\(375\) 0 0
\(376\) 28.6070 + 19.7380i 1.47529 + 1.01791i
\(377\) 2.71514 0.139837
\(378\) 0 0
\(379\) 9.42240i 0.483996i −0.970277 0.241998i \(-0.922197\pi\)
0.970277 0.241998i \(-0.0778027\pi\)
\(380\) −3.42180 + 6.89225i −0.175534 + 0.353565i
\(381\) 0 0
\(382\) −4.61117 + 8.59925i −0.235928 + 0.439976i
\(383\) 13.2473 11.1158i 0.676904 0.567989i −0.238196 0.971217i \(-0.576556\pi\)
0.915100 + 0.403228i \(0.132112\pi\)
\(384\) 0 0
\(385\) −2.43584 + 0.886573i −0.124142 + 0.0451840i
\(386\) 10.5916 + 8.33520i 0.539097 + 0.424250i
\(387\) 0 0
\(388\) −3.88690 16.0703i −0.197327 0.815844i
\(389\) −15.9667 + 19.0284i −0.809546 + 0.964780i −0.999856 0.0169443i \(-0.994606\pi\)
0.190310 + 0.981724i \(0.439051\pi\)
\(390\) 0 0
\(391\) −1.21500 6.89059i −0.0614451 0.348472i
\(392\) −13.7754 3.58940i −0.695765 0.181292i
\(393\) 0 0
\(394\) −1.89385 2.11827i −0.0954108 0.106717i
\(395\) 8.91916 5.14948i 0.448772 0.259098i
\(396\) 0 0
\(397\) −5.94466 3.43215i −0.298354 0.172255i 0.343349 0.939208i \(-0.388439\pi\)
−0.641703 + 0.766953i \(0.721772\pi\)
\(398\) 6.16287 + 29.5039i 0.308917 + 1.47890i
\(399\) 0 0
\(400\) 14.8402 1.87315i 0.742009 0.0936574i
\(401\) −11.8463 4.31169i −0.591574 0.215315i 0.0288475 0.999584i \(-0.490816\pi\)
−0.620422 + 0.784268i \(0.713039\pi\)
\(402\) 0 0
\(403\) 4.43819 + 0.782572i 0.221082 + 0.0389827i
\(404\) 9.97624 33.8897i 0.496336 1.68608i
\(405\) 0 0
\(406\) −7.82217 1.12740i −0.388208 0.0559521i
\(407\) −1.26597 + 7.17969i −0.0627519 + 0.355884i
\(408\) 0 0
\(409\) 32.0334 + 11.6592i 1.58395 + 0.576510i 0.976058 0.217510i \(-0.0697935\pi\)
0.607891 + 0.794020i \(0.292016\pi\)
\(410\) 7.39991 4.58787i 0.365455 0.226579i
\(411\) 0 0
\(412\) −7.76590 + 0.488175i −0.382598 + 0.0240506i
\(413\) 12.8288 + 7.40673i 0.631266 + 0.364462i
\(414\) 0 0
\(415\) −0.740192 1.28205i −0.0363346 0.0629334i
\(416\) −0.602510 3.80737i −0.0295405 0.186672i
\(417\) 0 0
\(418\) −7.97414 + 0.250385i −0.390028 + 0.0122467i
\(419\) 10.9419 1.92935i 0.534545 0.0942547i 0.100142 0.994973i \(-0.468070\pi\)
0.434403 + 0.900718i \(0.356959\pi\)
\(420\) 0 0
\(421\) −12.6851 + 15.1175i −0.618232 + 0.736780i −0.980765 0.195190i \(-0.937468\pi\)
0.362533 + 0.931971i \(0.381912\pi\)
\(422\) 4.89234 + 12.2327i 0.238156 + 0.595477i
\(423\) 0 0
\(424\) 15.9031 11.2998i 0.772322 0.548768i
\(425\) −6.37744 + 2.32120i −0.309352 + 0.112595i
\(426\) 0 0
\(427\) 3.27066 + 3.89782i 0.158278 + 0.188629i
\(428\) −4.94246 + 6.70304i −0.238903 + 0.324004i
\(429\) 0 0
\(430\) −17.0363 5.60176i −0.821565 0.270141i
\(431\) 0.293057 0.0141161 0.00705803 0.999975i \(-0.497753\pi\)
0.00705803 + 0.999975i \(0.497753\pi\)
\(432\) 0 0
\(433\) 18.2482 0.876954 0.438477 0.898742i \(-0.355518\pi\)
0.438477 + 0.898742i \(0.355518\pi\)
\(434\) −12.4612 4.09741i −0.598158 0.196682i
\(435\) 0 0
\(436\) 24.4604 33.1735i 1.17144 1.58872i
\(437\) 8.49225 + 10.1207i 0.406239 + 0.484137i
\(438\) 0 0
\(439\) 0.920498 0.335034i 0.0439330 0.0159903i −0.319960 0.947431i \(-0.603670\pi\)
0.363893 + 0.931441i \(0.381447\pi\)
\(440\) −3.02791 4.26141i −0.144350 0.203155i
\(441\) 0 0
\(442\) 0.649472 + 1.62392i 0.0308923 + 0.0772421i
\(443\) 3.31318 3.94849i 0.157414 0.187599i −0.681573 0.731750i \(-0.738704\pi\)
0.838987 + 0.544151i \(0.183148\pi\)
\(444\) 0 0
\(445\) 7.79143 1.37384i 0.369349 0.0651262i
\(446\) 34.7948 1.09255i 1.64758 0.0517336i
\(447\) 0 0
\(448\) 0.154869 + 11.2190i 0.00731685 + 0.530048i
\(449\) 6.21921 + 10.7720i 0.293503 + 0.508362i 0.974635 0.223798i \(-0.0718457\pi\)
−0.681133 + 0.732160i \(0.738512\pi\)
\(450\) 0 0
\(451\) 7.81771 + 4.51356i 0.368122 + 0.212535i
\(452\) −5.29486 + 0.332842i −0.249049 + 0.0156556i
\(453\) 0 0
\(454\) −4.91019 + 3.04427i −0.230447 + 0.142875i
\(455\) −1.00829 0.366988i −0.0472695 0.0172047i
\(456\) 0 0
\(457\) −4.18789 + 23.7507i −0.195901 + 1.11101i 0.715228 + 0.698891i \(0.246323\pi\)
−0.911129 + 0.412121i \(0.864788\pi\)
\(458\) 17.6644 + 2.54595i 0.825401 + 0.118964i
\(459\) 0 0
\(460\) −2.44463 + 8.30451i −0.113981 + 0.387200i
\(461\) 36.0117 + 6.34983i 1.67723 + 0.295741i 0.929654 0.368434i \(-0.120106\pi\)
0.747577 + 0.664175i \(0.231217\pi\)
\(462\) 0 0
\(463\) −21.2745 7.74329i −0.988711 0.359861i −0.203490 0.979077i \(-0.565228\pi\)
−0.785221 + 0.619216i \(0.787451\pi\)
\(464\) −1.99587 15.8125i −0.0926560 0.734075i
\(465\) 0 0
\(466\) 7.10665 + 34.0221i 0.329209 + 1.57604i
\(467\) −20.1982 11.6614i −0.934662 0.539628i −0.0463792 0.998924i \(-0.514768\pi\)
−0.888283 + 0.459296i \(0.848102\pi\)
\(468\) 0 0
\(469\) −14.7292 + 8.50392i −0.680132 + 0.392674i
\(470\) 13.0040 + 14.5450i 0.599831 + 0.670910i
\(471\) 0 0
\(472\) −7.53268 + 28.9090i −0.346720 + 1.33064i
\(473\) −3.22874 18.3111i −0.148458 0.841945i
\(474\) 0 0
\(475\) 8.23718 9.81669i 0.377948 0.450420i
\(476\) −1.19679 4.94811i −0.0548550 0.226796i
\(477\) 0 0
\(478\) 12.0370 + 9.47267i 0.550558 + 0.433270i
\(479\) 37.4812 13.6420i 1.71256 0.623320i 0.715405 0.698710i \(-0.246242\pi\)
0.997154 + 0.0753898i \(0.0240201\pi\)
\(480\) 0 0
\(481\) −2.31177 + 1.93981i −0.105408 + 0.0884477i
\(482\) −8.81752 + 16.4436i −0.401627 + 0.748983i
\(483\) 0 0
\(484\) −7.37286 + 14.8505i −0.335130 + 0.675025i
\(485\) 9.28139i 0.421446i
\(486\) 0 0
\(487\) −32.0323 −1.45152 −0.725762 0.687946i \(-0.758512\pi\)
−0.725762 + 0.687946i \(0.758512\pi\)
\(488\) −5.82756 + 8.44609i −0.263801 + 0.382336i
\(489\) 0 0
\(490\) −7.04260 3.77645i −0.318152 0.170603i
\(491\) −16.9415 20.1901i −0.764559 0.911166i 0.233568 0.972341i \(-0.424960\pi\)
−0.998127 + 0.0611743i \(0.980515\pi\)
\(492\) 0 0
\(493\) 2.47328 + 6.79527i 0.111391 + 0.306044i
\(494\) −2.59519 2.04233i −0.116763 0.0918886i
\(495\) 0 0
\(496\) 1.29508 26.4224i 0.0581510 1.18640i
\(497\) −14.6192 12.2670i −0.655762 0.550250i
\(498\) 0 0
\(499\) 0.796549 0.140453i 0.0356584 0.00628755i −0.155790 0.987790i \(-0.549792\pi\)
0.191449 + 0.981503i \(0.438681\pi\)
\(500\) 19.5017 + 2.18852i 0.872143 + 0.0978734i
\(501\) 0 0
\(502\) 19.1960 + 21.4707i 0.856759 + 0.958284i
\(503\) 0.838775 + 1.45280i 0.0373991 + 0.0647772i 0.884119 0.467262i \(-0.154759\pi\)
−0.846720 + 0.532039i \(0.821426\pi\)
\(504\) 0 0
\(505\) 9.91581 17.1747i 0.441248 0.764264i
\(506\) −8.78578 + 1.83520i −0.390576 + 0.0815847i
\(507\) 0 0
\(508\) −7.87302 + 3.43914i −0.349309 + 0.152587i
\(509\) −2.89525 + 7.95462i −0.128330 + 0.352583i −0.987173 0.159656i \(-0.948961\pi\)
0.858843 + 0.512239i \(0.171184\pi\)
\(510\) 0 0
\(511\) 2.30792 13.0889i 0.102096 0.579018i
\(512\) −21.7305 + 6.30765i −0.960360 + 0.278762i
\(513\) 0 0
\(514\) 2.41581 16.7614i 0.106557 0.739315i
\(515\) −4.30174 0.758513i −0.189557 0.0334241i
\(516\) 0 0
\(517\) −6.91855 + 19.0085i −0.304277 + 0.835995i
\(518\) 7.46555 4.62857i 0.328018 0.203367i
\(519\) 0 0
\(520\) 0.173716 2.15693i 0.00761793 0.0945877i
\(521\) −1.96303 + 3.40007i −0.0860020 + 0.148960i −0.905818 0.423668i \(-0.860742\pi\)
0.819816 + 0.572627i \(0.194076\pi\)
\(522\) 0 0
\(523\) 14.9783 8.64774i 0.654956 0.378139i −0.135396 0.990792i \(-0.543231\pi\)
0.790353 + 0.612652i \(0.209897\pi\)
\(524\) −13.1923 + 8.76391i −0.576307 + 0.382853i
\(525\) 0 0
\(526\) 13.9702 0.438660i 0.609129 0.0191265i
\(527\) 2.08426 + 11.8205i 0.0907920 + 0.514907i
\(528\) 0 0
\(529\) −6.23317 5.23025i −0.271008 0.227402i
\(530\) 10.1685 4.06678i 0.441690 0.176650i
\(531\) 0 0
\(532\) 6.62857 + 6.96143i 0.287385 + 0.301816i
\(533\) 1.27802 + 3.51134i 0.0553573 + 0.152093i
\(534\) 0 0
\(535\) −3.58137 + 3.00512i −0.154836 + 0.129923i
\(536\) −24.4203 24.0855i −1.05480 1.04033i
\(537\) 0 0
\(538\) −2.38075 + 7.24046i −0.102642 + 0.312158i
\(539\) 8.28529i 0.356873i
\(540\) 0 0
\(541\) 11.4118i 0.490630i 0.969443 + 0.245315i \(0.0788914\pi\)
−0.969443 + 0.245315i \(0.921109\pi\)
\(542\) −8.39627 2.76080i −0.360651 0.118587i
\(543\) 0 0
\(544\) 8.97999 4.97613i 0.385014 0.213350i
\(545\) 17.7243 14.8724i 0.759225 0.637065i
\(546\) 0 0
\(547\) −4.84214 13.3037i −0.207035 0.568824i 0.792101 0.610390i \(-0.208987\pi\)
−0.999136 + 0.0415665i \(0.986765\pi\)
\(548\) −22.8106 + 21.7199i −0.974421 + 0.927830i
\(549\) 0 0
\(550\) 3.23285 + 8.08332i 0.137849 + 0.344674i
\(551\) −10.4598 8.77685i −0.445604 0.373906i
\(552\) 0 0
\(553\) −2.23406 12.6700i −0.0950018 0.538782i
\(554\) 0.629969 + 20.0629i 0.0267648 + 0.852392i
\(555\) 0 0
\(556\) 0.648529 0.430832i 0.0275037 0.0182713i
\(557\) −29.6837 + 17.1379i −1.25774 + 0.726155i −0.972634 0.232342i \(-0.925361\pi\)
−0.285103 + 0.958497i \(0.592028\pi\)
\(558\) 0 0
\(559\) 3.84831 6.66547i 0.162766 0.281919i
\(560\) −1.39608 + 6.14187i −0.0589953 + 0.259541i
\(561\) 0 0
\(562\) −20.7732 33.5057i −0.876263 1.41335i
\(563\) 11.1729 30.6973i 0.470882 1.29374i −0.446162 0.894952i \(-0.647210\pi\)
0.917044 0.398786i \(-0.130568\pi\)
\(564\) 0 0
\(565\) −2.93297 0.517161i −0.123391 0.0217571i
\(566\) −31.3144 4.51333i −1.31624 0.189709i
\(567\) 0 0
\(568\) 16.0240 34.9922i 0.672354 1.46824i
\(569\) −4.57663 + 25.9553i −0.191862 + 1.08810i 0.724955 + 0.688797i \(0.241861\pi\)
−0.916817 + 0.399308i \(0.869250\pi\)
\(570\) 0 0
\(571\) 14.3103 39.3171i 0.598865 1.64537i −0.154673 0.987966i \(-0.549432\pi\)
0.753539 0.657404i \(-0.228345\pi\)
\(572\) 2.05595 0.898091i 0.0859634 0.0375511i
\(573\) 0 0
\(574\) −2.22390 10.6466i −0.0928239 0.444382i
\(575\) 7.20837 12.4853i 0.300610 0.520672i
\(576\) 0 0
\(577\) −6.39933 11.0840i −0.266408 0.461431i 0.701524 0.712646i \(-0.252503\pi\)
−0.967931 + 0.251215i \(0.919170\pi\)
\(578\) 14.4503 12.9193i 0.601052 0.537373i
\(579\) 0 0
\(580\) 0.997782 8.89116i 0.0414306 0.369185i
\(581\) −1.82120 + 0.321126i −0.0755560 + 0.0133226i
\(582\) 0 0
\(583\) 8.69808 + 7.29856i 0.360238 + 0.302275i
\(584\) 26.6847 2.52030i 1.10422 0.104291i
\(585\) 0 0
\(586\) 0.332958 0.423091i 0.0137544 0.0174777i
\(587\) −4.86117 13.3560i −0.200642 0.551260i 0.798039 0.602606i \(-0.205871\pi\)
−0.998681 + 0.0513464i \(0.983649\pi\)
\(588\) 0 0
\(589\) −14.5680 17.3615i −0.600264 0.715367i
\(590\) −7.92522 + 14.7795i −0.326276 + 0.608463i
\(591\) 0 0
\(592\) 12.9964 + 12.0374i 0.534150 + 0.494734i
\(593\) 22.4225 0.920782 0.460391 0.887716i \(-0.347709\pi\)
0.460391 + 0.887716i \(0.347709\pi\)
\(594\) 0 0
\(595\) 2.85778i 0.117158i
\(596\) −21.2027 10.5265i −0.868498 0.431184i
\(597\) 0 0
\(598\) −3.27424 1.75575i −0.133894 0.0717978i
\(599\) −3.21966 + 2.70162i −0.131552 + 0.110385i −0.706190 0.708023i \(-0.749587\pi\)
0.574638 + 0.818408i \(0.305143\pi\)
\(600\) 0 0
\(601\) −12.5218 + 4.55756i −0.510775 + 0.185907i −0.584534 0.811369i \(-0.698723\pi\)
0.0737590 + 0.997276i \(0.476500\pi\)
\(602\) −13.8545 + 17.6049i −0.564666 + 0.717523i
\(603\) 0 0
\(604\) 4.32781 + 17.8932i 0.176096 + 0.728064i
\(605\) −5.98270 + 7.12991i −0.243231 + 0.289872i
\(606\) 0 0
\(607\) −5.79180 32.8469i −0.235082 1.33322i −0.842441 0.538789i \(-0.818882\pi\)
0.607359 0.794428i \(-0.292229\pi\)
\(608\) −9.98642 + 16.6152i −0.405003 + 0.673835i
\(609\) 0 0
\(610\) −4.29434 + 3.83938i −0.173873 + 0.155452i
\(611\) −7.25156 + 4.18669i −0.293367 + 0.169375i
\(612\) 0 0
\(613\) 11.1640 + 6.44552i 0.450908 + 0.260332i 0.708214 0.705998i \(-0.249501\pi\)
−0.257305 + 0.966330i \(0.582835\pi\)
\(614\) −15.1394 + 3.16237i −0.610978 + 0.127623i
\(615\) 0 0
\(616\) −6.29598 + 1.73366i −0.253672 + 0.0698512i
\(617\) −20.7471 7.55132i −0.835246 0.304005i −0.111236 0.993794i \(-0.535481\pi\)
−0.724010 + 0.689789i \(0.757703\pi\)
\(618\) 0 0
\(619\) 0.110454 + 0.0194760i 0.00443952 + 0.000782807i 0.175867 0.984414i \(-0.443727\pi\)
−0.171428 + 0.985197i \(0.554838\pi\)
\(620\) 4.19364 14.2460i 0.168420 0.572131i
\(621\) 0 0
\(622\) −3.68329 + 25.5555i −0.147687 + 1.02468i
\(623\) 1.71619 9.73302i 0.0687579 0.389945i
\(624\) 0 0
\(625\) −7.21791 2.62710i −0.288716 0.105084i
\(626\) 2.42345 + 3.90885i 0.0968604 + 0.156229i
\(627\) 0 0
\(628\) −1.72564 27.4515i −0.0688604 1.09543i
\(629\) −6.96066 4.01874i −0.277540 0.160238i
\(630\) 0 0
\(631\) −7.25883 12.5727i −0.288970 0.500510i 0.684595 0.728924i \(-0.259979\pi\)
−0.973564 + 0.228414i \(0.926646\pi\)
\(632\) 23.4385 11.1271i 0.932332 0.442613i
\(633\) 0 0
\(634\) 0.755917 + 24.0740i 0.0300213 + 0.956102i
\(635\) −4.74963 + 0.837488i −0.188483 + 0.0332347i
\(636\) 0 0
\(637\) 2.20451 2.62724i 0.0873460 0.104095i
\(638\) 8.61291 3.44465i 0.340988 0.136375i
\(639\) 0 0
\(640\) −12.6892 + 0.573851i −0.501586 + 0.0226835i
\(641\) 26.9693 9.81603i 1.06522 0.387710i 0.250835 0.968030i \(-0.419295\pi\)
0.814389 + 0.580320i \(0.197072\pi\)
\(642\) 0 0
\(643\) 16.9076 + 20.1497i 0.666772 + 0.794628i 0.988341 0.152258i \(-0.0486546\pi\)
−0.321569 + 0.946886i \(0.604210\pi\)
\(644\) 8.70387 + 6.41776i 0.342981 + 0.252895i
\(645\) 0 0
\(646\) 2.74738 8.35547i 0.108094 0.328742i
\(647\) −31.9679 −1.25679 −0.628394 0.777895i \(-0.716287\pi\)
−0.628394 + 0.777895i \(0.716287\pi\)
\(648\) 0 0
\(649\) −17.3874 −0.682516
\(650\) −1.12565 + 3.42337i −0.0441516 + 0.134276i
\(651\) 0 0
\(652\) 15.0971 20.4750i 0.591249 0.801862i
\(653\) −24.4383 29.1244i −0.956344 1.13973i −0.990109 0.140297i \(-0.955194\pi\)
0.0337653 0.999430i \(-0.489250\pi\)
\(654\) 0 0
\(655\) −8.35469 + 3.04086i −0.326445 + 0.118816i
\(656\) 19.5099 10.0241i 0.761733 0.391375i
\(657\) 0 0
\(658\) 22.6298 9.05056i 0.882200 0.352828i
\(659\) −13.8230 + 16.4736i −0.538469 + 0.641722i −0.964844 0.262825i \(-0.915346\pi\)
0.426375 + 0.904546i \(0.359790\pi\)
\(660\) 0 0
\(661\) 40.0325 7.05881i 1.55708 0.274556i 0.672201 0.740369i \(-0.265349\pi\)
0.884883 + 0.465813i \(0.154238\pi\)
\(662\) 0.249437 + 7.94394i 0.00969465 + 0.308750i
\(663\) 0 0
\(664\) −1.59942 3.36907i −0.0620697 0.130745i
\(665\) 2.69804 + 4.67315i 0.104626 + 0.181217i
\(666\) 0 0
\(667\) −13.3033 7.68064i −0.515104 0.297396i
\(668\) −39.5271 + 2.48472i −1.52935 + 0.0961368i
\(669\) 0 0
\(670\) −10.1459 16.3646i −0.391969 0.632218i
\(671\) −5.61218 2.04267i −0.216656 0.0788563i
\(672\) 0 0
\(673\) 7.13129 40.4435i 0.274891 1.55898i −0.464417 0.885616i \(-0.653736\pi\)
0.739308 0.673367i \(-0.235153\pi\)
\(674\) −3.83467 + 26.6058i −0.147706 + 1.02482i
\(675\) 0 0
\(676\) −24.0509 7.07995i −0.925034 0.272306i
\(677\) −17.2637 3.04406i −0.663499 0.116993i −0.168251 0.985744i \(-0.553812\pi\)
−0.495248 + 0.868752i \(0.664923\pi\)
\(678\) 0 0
\(679\) −10.8951 3.96547i −0.418114 0.152181i
\(680\) 5.55646 1.53003i 0.213081 0.0586739i
\(681\) 0 0
\(682\) 15.0715 3.14819i 0.577119 0.120551i
\(683\) −34.2463 19.7721i −1.31040 0.756558i −0.328235 0.944596i \(-0.606454\pi\)
−0.982162 + 0.188038i \(0.939787\pi\)
\(684\) 0 0
\(685\) −15.3126 + 8.84073i −0.585064 + 0.337787i
\(686\) −17.7925 + 15.9075i −0.679321 + 0.607351i
\(687\) 0 0
\(688\) −41.6473 17.5121i −1.58779 0.667643i
\(689\) 0.816164 + 4.62869i 0.0310934 + 0.176339i
\(690\) 0 0
\(691\) 13.9569 16.6332i 0.530946 0.632757i −0.432186 0.901784i \(-0.642258\pi\)
0.963133 + 0.269027i \(0.0867022\pi\)
\(692\) 9.52589 2.30402i 0.362120 0.0875857i
\(693\) 0 0
\(694\) −8.11526 + 10.3121i −0.308051 + 0.391441i
\(695\) 0.410715 0.149488i 0.0155793 0.00567040i
\(696\) 0 0
\(697\) −7.62376 + 6.39709i −0.288770 + 0.242307i
\(698\) −9.25159 4.96098i −0.350178 0.187776i
\(699\) 0 0
\(700\) 4.66441 9.39515i 0.176298 0.355103i
\(701\) 24.5820i 0.928448i 0.885718 + 0.464224i \(0.153667\pi\)
−0.885718 + 0.464224i \(0.846333\pi\)
\(702\) 0 0
\(703\) 15.1764 0.572390
\(704\) −6.74161 11.3133i −0.254084 0.426384i
\(705\) 0 0
\(706\) −18.9011 + 35.2481i −0.711351 + 1.32658i
\(707\) −15.9242 18.9777i −0.598889 0.713729i
\(708\) 0 0
\(709\) −14.8834 40.8919i −0.558959 1.53573i −0.821151 0.570711i \(-0.806668\pi\)
0.262193 0.965016i \(-0.415554\pi\)
\(710\) 13.3612 16.9781i 0.501436 0.637177i
\(711\) 0 0
\(712\) 19.8430 1.87412i 0.743648 0.0702357i
\(713\) −19.5318 16.3891i −0.731473 0.613778i
\(714\) 0 0
\(715\) 1.24031 0.218700i 0.0463850 0.00817892i
\(716\) 7.37098 + 0.827184i 0.275466 + 0.0309133i
\(717\) 0 0
\(718\) −17.8769 + 15.9830i −0.667162 + 0.596480i
\(719\) −2.30085 3.98520i −0.0858074 0.148623i 0.819928 0.572467i \(-0.194014\pi\)
−0.905735 + 0.423844i \(0.860680\pi\)
\(720\) 0 0
\(721\) −2.72831 + 4.72557i −0.101607 + 0.175989i
\(722\) −2.09831 10.0454i −0.0780910 0.373850i
\(723\) 0 0
\(724\) 13.0645 + 29.9079i 0.485540 + 1.11152i
\(725\) −5.09606 + 14.0013i −0.189263 + 0.519996i
\(726\) 0 0
\(727\) −0.922052 + 5.22921i −0.0341970 + 0.193941i −0.997120 0.0758339i \(-0.975838\pi\)
0.962923 + 0.269775i \(0.0869492\pi\)
\(728\) −2.45772 1.12547i −0.0910891 0.0417126i
\(729\) 0 0
\(730\) 14.8926 + 2.14646i 0.551200 + 0.0794441i
\(731\) 20.1874 + 3.55958i 0.746658 + 0.131656i
\(732\) 0 0
\(733\) −17.7690 + 48.8201i −0.656315 + 1.80321i −0.0633350 + 0.997992i \(0.520174\pi\)
−0.592980 + 0.805217i \(0.702049\pi\)
\(734\) 6.02677 + 9.72077i 0.222452 + 0.358800i
\(735\) 0 0
\(736\) −7.81826 + 20.3592i −0.288185 + 0.750449i
\(737\) 9.98153 17.2885i 0.367674 0.636831i
\(738\) 0 0
\(739\) −8.21344 + 4.74203i −0.302136 + 0.174439i −0.643402 0.765528i \(-0.722478\pi\)
0.341266 + 0.939967i \(0.389144\pi\)
\(740\) 5.50266 + 8.28313i 0.202282 + 0.304494i
\(741\) 0 0
\(742\) −0.429356 13.6739i −0.0157622 0.501985i
\(743\) −1.45201 8.23477i −0.0532691 0.302104i 0.946520 0.322646i \(-0.104572\pi\)
−0.999789 + 0.0205412i \(0.993461\pi\)
\(744\) 0 0
\(745\) −10.1797 8.54176i −0.372954 0.312946i
\(746\) −11.5723 28.9352i −0.423694 1.05939i
\(747\) 0 0
\(748\) 4.12048 + 4.32739i 0.150660 + 0.158225i
\(749\) 1.99746 + 5.48797i 0.0729855 + 0.200526i
\(750\) 0 0
\(751\) 36.5089 30.6346i 1.33223 1.11787i 0.348680 0.937242i \(-0.386630\pi\)
0.983551 0.180632i \(-0.0578143\pi\)
\(752\) 29.7130 + 39.1541i 1.08352 + 1.42780i
\(753\) 0 0
\(754\) 3.64766 + 1.19940i 0.132840 + 0.0436795i
\(755\) 10.3342i 0.376101i
\(756\) 0 0
\(757\) 22.8271i 0.829666i 0.909898 + 0.414833i \(0.136160\pi\)
−0.909898 + 0.414833i \(0.863840\pi\)
\(758\) 4.16229 12.6585i 0.151181 0.459779i
\(759\) 0 0
\(760\) −7.64163 + 7.74784i −0.277191 + 0.281044i
\(761\) 9.00453 7.55570i 0.326414 0.273894i −0.464823 0.885404i \(-0.653882\pi\)
0.791237 + 0.611510i \(0.209438\pi\)
\(762\) 0 0
\(763\) −9.88546 27.1601i −0.357878 0.983261i
\(764\) −9.99355 + 9.51572i −0.361554 + 0.344267i
\(765\) 0 0
\(766\) 22.7074 9.08161i 0.820451 0.328132i
\(767\) −5.51349 4.62637i −0.199081 0.167048i
\(768\) 0 0
\(769\) −3.03895 17.2347i −0.109587 0.621501i −0.989288 0.145974i \(-0.953369\pi\)
0.879701 0.475527i \(-0.157743\pi\)
\(770\) −3.66407 + 0.115051i −0.132044 + 0.00414614i
\(771\) 0 0
\(772\) 10.5472 + 15.8767i 0.379603 + 0.571415i
\(773\) 20.9933 12.1205i 0.755076 0.435943i −0.0724491 0.997372i \(-0.523081\pi\)
0.827525 + 0.561429i \(0.189748\pi\)
\(774\) 0 0
\(775\) −12.3656 + 21.4178i −0.444185 + 0.769351i
\(776\) 1.87708 23.3066i 0.0673831 0.836659i
\(777\) 0 0
\(778\) −29.8562 + 18.5106i −1.07040 + 0.663636i
\(779\) 6.42713 17.6584i 0.230276 0.632677i
\(780\) 0 0
\(781\) 22.0597 + 3.88972i 0.789359 + 0.139185i
\(782\) 1.41159 9.79390i 0.0504783 0.350229i
\(783\) 0 0
\(784\) −16.9210 10.9074i −0.604323 0.389550i
\(785\) 2.68125 15.2061i 0.0956979 0.542730i
\(786\) 0 0
\(787\) 2.60184 7.14850i 0.0927457 0.254817i −0.884642 0.466270i \(-0.845597\pi\)
0.977388 + 0.211454i \(0.0678197\pi\)
\(788\) −1.60856 3.68239i −0.0573027 0.131180i
\(789\) 0 0
\(790\) 14.2572 2.97809i 0.507249 0.105956i
\(791\) −1.86019 + 3.22194i −0.0661406 + 0.114559i
\(792\) 0 0
\(793\) −1.23610 2.14099i −0.0438952 0.0760287i
\(794\) −6.47023 7.23694i −0.229620 0.256830i
\(795\) 0 0
\(796\) −4.75366 + 42.3595i −0.168489 + 1.50139i
\(797\) 13.7809 2.42995i 0.488146 0.0860733i 0.0758424 0.997120i \(-0.475835\pi\)
0.412304 + 0.911047i \(0.364724\pi\)
\(798\) 0 0
\(799\) −17.0837 14.3350i −0.604380 0.507135i
\(800\) 20.7645 + 4.03908i 0.734137 + 0.142803i
\(801\) 0 0
\(802\) −14.0102 11.0256i −0.494718 0.389326i
\(803\) 5.33557 + 14.6594i 0.188288 + 0.517317i
\(804\) 0 0
\(805\) 3.90214 + 4.65039i 0.137532 + 0.163905i
\(806\) 5.61679 + 3.01189i 0.197843 + 0.106089i
\(807\) 0 0
\(808\) 28.3732 41.1222i 0.998164 1.44667i
\(809\) 20.7183 0.728415 0.364208 0.931318i \(-0.381340\pi\)
0.364208 + 0.931318i \(0.381340\pi\)
\(810\) 0 0
\(811\) 43.7615i 1.53668i 0.640045 + 0.768338i \(0.278916\pi\)
−0.640045 + 0.768338i \(0.721084\pi\)
\(812\) −10.0107 4.97001i −0.351306 0.174413i
\(813\) 0 0
\(814\) −4.87236 + 9.08632i −0.170776 + 0.318476i
\(815\) 10.9396 9.17939i 0.383197 0.321540i
\(816\) 0 0
\(817\) −36.3718 + 13.2382i −1.27249 + 0.463148i
\(818\) 37.8849 + 29.8141i 1.32462 + 1.04243i
\(819\) 0 0
\(820\) 11.9681 2.89471i 0.417944 0.101088i
\(821\) 12.4887 14.8834i 0.435858 0.519435i −0.502745 0.864435i \(-0.667677\pi\)
0.938603 + 0.345000i \(0.112121\pi\)
\(822\) 0 0
\(823\) 6.24682 + 35.4275i 0.217750 + 1.23492i 0.876069 + 0.482185i \(0.160157\pi\)
−0.658319 + 0.752739i \(0.728732\pi\)
\(824\) −10.6488 2.77470i −0.370967 0.0966613i
\(825\) 0 0
\(826\) 13.9630 + 15.6177i 0.485837 + 0.543408i
\(827\) −35.6157 + 20.5627i −1.23848 + 0.715037i −0.968783 0.247909i \(-0.920257\pi\)
−0.269697 + 0.962945i \(0.586923\pi\)
\(828\) 0 0
\(829\) −43.3862 25.0490i −1.50687 0.869989i −0.999968 0.00798294i \(-0.997459\pi\)
−0.506897 0.862006i \(-0.669208\pi\)
\(830\) −0.428074 2.04935i −0.0148587 0.0711339i
\(831\) 0 0
\(832\) 0.872440 5.38117i 0.0302464 0.186559i
\(833\) 8.58341 + 3.12411i 0.297397 + 0.108244i
\(834\) 0 0
\(835\) −21.8951 3.86070i −0.757711 0.133605i
\(836\) −10.8235 3.18615i −0.374338 0.110195i
\(837\) 0 0
\(838\) 15.5521 + 2.24152i 0.537240 + 0.0774320i
\(839\) −2.93816 + 16.6631i −0.101436 + 0.575275i 0.891148 + 0.453714i \(0.149901\pi\)
−0.992584 + 0.121561i \(0.961210\pi\)
\(840\) 0 0
\(841\) −12.3325 4.48865i −0.425257 0.154781i
\(842\) −23.7198 + 14.7060i −0.817439 + 0.506804i
\(843\) 0 0
\(844\) 1.16892 + 18.5952i 0.0402358 + 0.640072i
\(845\) −12.1886 7.03706i −0.419299 0.242082i
\(846\) 0 0
\(847\) 5.81341 + 10.0691i 0.199751 + 0.345979i
\(848\) 26.3567 8.15568i 0.905091 0.280067i
\(849\) 0 0
\(850\) −9.59316 + 0.301222i −0.329043 + 0.0103318i
\(851\) 16.8143 2.96481i 0.576385 0.101632i
\(852\) 0 0
\(853\) −16.8126 + 20.0365i −0.575653 + 0.686037i −0.972781 0.231726i \(-0.925563\pi\)
0.397128 + 0.917763i \(0.370007\pi\)
\(854\) 2.67213 + 6.68133i 0.0914386 + 0.228630i
\(855\) 0 0
\(856\) −9.60099 + 6.82191i −0.328155 + 0.233168i
\(857\) 39.5672 14.4013i 1.35159 0.491938i 0.438146 0.898904i \(-0.355635\pi\)
0.913444 + 0.406965i \(0.133413\pi\)
\(858\) 0 0
\(859\) 27.7503 + 33.0715i 0.946827 + 1.12838i 0.991594 + 0.129387i \(0.0413011\pi\)
−0.0447668 + 0.998997i \(0.514254\pi\)
\(860\) −20.4129 15.0514i −0.696075 0.513248i
\(861\) 0 0
\(862\) 0.393708 + 0.129456i 0.0134097 + 0.00440929i
\(863\) 31.5239 1.07308 0.536542 0.843873i \(-0.319730\pi\)
0.536542 + 0.843873i \(0.319730\pi\)
\(864\) 0 0
\(865\) 5.50169 0.187063
\(866\) 24.5156 + 8.06105i 0.833075 + 0.273926i
\(867\) 0 0
\(868\) −14.9310 11.0093i −0.506792 0.373681i
\(869\) 9.70666 + 11.5679i 0.329276 + 0.392416i
\(870\) 0 0
\(871\) 7.76516 2.82629i 0.263112 0.0957651i
\(872\) 47.5155 33.7618i 1.60908 1.14332i
\(873\) 0 0
\(874\) 6.93818 + 17.3480i 0.234687 + 0.586806i
\(875\) 8.84571 10.5419i 0.299040 0.356382i
\(876\) 0 0
\(877\) 22.1917 3.91299i 0.749360 0.132132i 0.214091 0.976814i \(-0.431321\pi\)
0.535269 + 0.844681i \(0.320210\pi\)
\(878\) 1.38464 0.0434774i 0.0467295 0.00146729i
\(879\) 0 0
\(880\) −2.18540 7.06256i −0.0736700 0.238079i
\(881\) −15.0315 26.0353i −0.506424 0.877153i −0.999972 0.00743425i \(-0.997634\pi\)
0.493548 0.869719i \(-0.335700\pi\)
\(882\) 0 0
\(883\) −11.7757 6.79869i −0.396283 0.228794i 0.288596 0.957451i \(-0.406812\pi\)
−0.684879 + 0.728657i \(0.740145\pi\)
\(884\) 0.155177 + 2.46856i 0.00521917 + 0.0830267i
\(885\) 0 0
\(886\) 6.19532 3.84103i 0.208136 0.129042i
\(887\) −34.6577 12.6144i −1.16369 0.423549i −0.313277 0.949662i \(-0.601427\pi\)
−0.850415 + 0.526112i \(0.823649\pi\)
\(888\) 0 0
\(889\) −1.04619 + 5.93322i −0.0350880 + 0.198994i
\(890\) 11.0743 + 1.59613i 0.371211 + 0.0535024i
\(891\) 0 0
\(892\) 47.2278 + 13.9026i 1.58130 + 0.465494i
\(893\) 41.4697 + 7.31222i 1.38773 + 0.244694i
\(894\) 0 0
\(895\) 3.91267 + 1.42409i 0.130786 + 0.0476022i
\(896\) −4.74786 + 15.1406i −0.158615 + 0.505811i
\(897\) 0 0
\(898\) 3.59675 + 17.2189i 0.120025 + 0.574604i
\(899\) 22.8210 + 13.1757i 0.761124 + 0.439435i
\(900\) 0 0
\(901\) −10.8409 + 6.25901i −0.361163 + 0.208518i
\(902\) 8.50888 + 9.51717i 0.283315 + 0.316887i
\(903\) 0 0
\(904\) −7.26043 1.89182i −0.241478 0.0629209i
\(905\) 3.18143 + 18.0428i 0.105754 + 0.599763i
\(906\) 0 0
\(907\) 2.75537 3.28372i 0.0914905 0.109034i −0.718357 0.695675i \(-0.755105\pi\)
0.809847 + 0.586641i \(0.199550\pi\)
\(908\) −7.94140 + 1.92078i −0.263544 + 0.0637433i
\(909\) 0 0
\(910\) −1.19248 0.938438i −0.0395302 0.0311089i
\(911\) 26.1940 9.53385i 0.867847 0.315871i 0.130552 0.991441i \(-0.458325\pi\)
0.737295 + 0.675571i \(0.236103\pi\)
\(912\) 0 0
\(913\) 1.66279 1.39525i 0.0550303 0.0461759i
\(914\) −16.1180 + 30.0580i −0.533135 + 0.994229i
\(915\) 0 0
\(916\) 22.6065 + 11.2235i 0.746941 + 0.370834i
\(917\) 11.1065i 0.366767i
\(918\) 0 0
\(919\) 54.1746 1.78705 0.893527 0.449009i \(-0.148223\pi\)
0.893527 + 0.449009i \(0.148223\pi\)
\(920\) −6.95271 + 10.0768i −0.229224 + 0.332223i
\(921\) 0 0
\(922\) 45.5750 + 24.4386i 1.50093 + 0.804844i
\(923\) 5.96010 + 7.10297i 0.196179 + 0.233797i
\(924\) 0 0
\(925\) −5.66414 15.5621i −0.186236 0.511678i
\(926\) −25.1607 19.8006i −0.826833 0.650689i
\(927\) 0 0
\(928\) 4.30370 22.1249i 0.141276 0.726287i
\(929\) 26.4712 + 22.2120i 0.868491 + 0.728751i 0.963780 0.266699i \(-0.0859330\pi\)
−0.0952887 + 0.995450i \(0.530377\pi\)
\(930\) 0 0
\(931\) −16.9854 + 2.99498i −0.556674 + 0.0981566i
\(932\) −5.48163 + 48.8464i −0.179557 + 1.60002i
\(933\) 0 0
\(934\) −21.9840 24.5890i −0.719337 0.804578i
\(935\) 1.67717 + 2.90494i 0.0548493 + 0.0950018i
\(936\) 0 0
\(937\) −13.1443 + 22.7665i −0.429404 + 0.743750i −0.996820 0.0796811i \(-0.974610\pi\)
0.567416 + 0.823431i \(0.307943\pi\)
\(938\) −23.5445 + 4.91806i −0.768756 + 0.160580i
\(939\) 0 0
\(940\) 11.0451 + 25.2849i 0.360252 + 0.824704i
\(941\) 13.8588 38.0767i 0.451784 1.24127i −0.479683 0.877442i \(-0.659248\pi\)
0.931467 0.363825i \(-0.118529\pi\)
\(942\) 0 0
\(943\) 3.67106 20.8196i 0.119546 0.677980i
\(944\) −22.8901 + 35.5103i −0.745011 + 1.15576i
\(945\) 0 0
\(946\) 3.75116 26.0263i 0.121961 0.846189i
\(947\) 38.4009 + 6.77112i 1.24786 + 0.220032i 0.758282 0.651926i \(-0.226039\pi\)
0.489580 + 0.871958i \(0.337150\pi\)
\(948\) 0 0
\(949\) −2.20861 + 6.06810i −0.0716944 + 0.196979i
\(950\) 15.4027 9.54952i 0.499730 0.309827i
\(951\) 0 0
\(952\) 0.577960 7.17622i 0.0187318 0.232583i
\(953\) −12.7586 + 22.0985i −0.413291 + 0.715842i −0.995247 0.0973785i \(-0.968954\pi\)
0.581956 + 0.813220i \(0.302288\pi\)
\(954\) 0 0
\(955\) −6.70859 + 3.87321i −0.217085 + 0.125334i
\(956\) 11.9866 + 18.0433i 0.387674 + 0.583563i
\(957\) 0 0
\(958\) 56.3804 1.77033i 1.82157 0.0571967i
\(959\) 3.83547 + 21.7520i 0.123854 + 0.702410i
\(960\) 0 0
\(961\) 9.75845 + 8.18831i 0.314789 + 0.264139i
\(962\) −3.96266 + 1.58483i −0.127761 + 0.0510969i
\(963\) 0 0
\(964\) −19.1098 + 18.1960i −0.615484 + 0.586055i
\(965\) 3.65963 + 10.0547i 0.117808 + 0.323674i
\(966\) 0 0
\(967\) −35.3489 + 29.6612i −1.13674 + 0.953841i −0.999327 0.0366729i \(-0.988324\pi\)
−0.137416 + 0.990513i \(0.543880\pi\)
\(968\) −16.4652 + 16.6941i −0.529212 + 0.536568i
\(969\) 0 0
\(970\) 4.10000 12.4691i 0.131643 0.400358i
\(971\) 1.40859i 0.0452039i −0.999745 0.0226020i \(-0.992805\pi\)
0.999745 0.0226020i \(-0.00719504\pi\)
\(972\) 0 0
\(973\) 0.545991i 0.0175037i
\(974\) −43.0339 14.1501i −1.37889 0.453398i
\(975\) 0 0
\(976\) −11.5601 + 8.77262i −0.370028 + 0.280805i
\(977\) −36.5361 + 30.6574i −1.16889 + 0.980817i −0.999988 0.00481536i \(-0.998467\pi\)
−0.168904 + 0.985633i \(0.554023\pi\)
\(978\) 0 0
\(979\) 3.96758 + 10.9008i 0.126805 + 0.348393i
\(980\) −7.79317 8.18451i −0.248944 0.261445i
\(981\) 0 0
\(982\) −13.8412 34.6082i −0.441692 1.10439i
\(983\) −13.2755 11.1394i −0.423421 0.355293i 0.406041 0.913855i \(-0.366909\pi\)
−0.829463 + 0.558562i \(0.811353\pi\)
\(984\) 0 0
\(985\) −0.391712 2.22151i −0.0124810 0.0707832i
\(986\) 0.320957 + 10.2217i 0.0102214 + 0.325524i
\(987\) 0 0
\(988\) −2.58433 3.89018i −0.0822185 0.123763i
\(989\) −37.7108 + 21.7723i −1.19913 + 0.692320i
\(990\) 0 0
\(991\) 16.1511 27.9745i 0.513056 0.888638i −0.486830 0.873497i \(-0.661847\pi\)
0.999885 0.0151416i \(-0.00481989\pi\)
\(992\) 13.4118 34.9251i 0.425826 1.10887i
\(993\) 0 0
\(994\) −14.2214 22.9381i −0.451074 0.727551i
\(995\) −8.18398 + 22.4853i −0.259450 + 0.712832i
\(996\) 0 0
\(997\) −24.1513 4.25852i −0.764879 0.134869i −0.222420 0.974951i \(-0.571396\pi\)
−0.542459 + 0.840082i \(0.682507\pi\)
\(998\) 1.13217 + 0.163179i 0.0358382 + 0.00516534i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.397.31 204
3.2 odd 2 216.2.t.a.133.4 yes 204
8.5 even 2 inner 648.2.t.a.397.1 204
12.11 even 2 864.2.bf.a.241.1 204
24.5 odd 2 216.2.t.a.133.34 yes 204
24.11 even 2 864.2.bf.a.241.34 204
27.13 even 9 inner 648.2.t.a.253.1 204
27.14 odd 18 216.2.t.a.13.34 yes 204
108.95 even 18 864.2.bf.a.337.34 204
216.13 even 18 inner 648.2.t.a.253.31 204
216.149 odd 18 216.2.t.a.13.4 204
216.203 even 18 864.2.bf.a.337.1 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.4 204 216.149 odd 18
216.2.t.a.13.34 yes 204 27.14 odd 18
216.2.t.a.133.4 yes 204 3.2 odd 2
216.2.t.a.133.34 yes 204 24.5 odd 2
648.2.t.a.253.1 204 27.13 even 9 inner
648.2.t.a.253.31 204 216.13 even 18 inner
648.2.t.a.397.1 204 8.5 even 2 inner
648.2.t.a.397.31 204 1.1 even 1 trivial
864.2.bf.a.241.1 204 12.11 even 2
864.2.bf.a.241.34 204 24.11 even 2
864.2.bf.a.337.1 204 216.203 even 18
864.2.bf.a.337.34 204 108.95 even 18