Properties

Label 648.2.t.a.397.24
Level $648$
Weight $2$
Character 648.397
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 397.24
Character \(\chi\) \(=\) 648.397
Dual form 648.2.t.a.253.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.691259 + 1.23376i) q^{2} +(-1.04432 + 1.70569i) q^{4} +(-1.90914 - 2.27523i) q^{5} +(1.28267 - 0.466852i) q^{7} +(-2.82631 - 0.109365i) q^{8} +(1.48737 - 3.92819i) q^{10} +(2.78354 - 3.31729i) q^{11} +(4.65386 - 0.820601i) q^{13} +(1.46264 + 1.25978i) q^{14} +(-1.81878 - 3.56259i) q^{16} +(-0.356888 - 0.618149i) q^{17} +(-6.43384 - 3.71458i) q^{19} +(5.87460 - 0.880343i) q^{20} +(6.01689 + 1.14111i) q^{22} +(4.17513 + 1.51962i) q^{23} +(-0.663593 + 3.76342i) q^{25} +(4.22945 + 5.17449i) q^{26} +(-0.543209 + 2.67538i) q^{28} +(6.69820 + 1.18107i) q^{29} +(5.02097 + 1.82748i) q^{31} +(3.13812 - 4.70661i) q^{32} +(0.515944 - 0.867615i) q^{34} +(-3.51099 - 2.02707i) q^{35} +(0.547039 - 0.315833i) q^{37} +(0.135445 - 10.5055i) q^{38} +(5.14700 + 6.63929i) q^{40} +(-0.356345 - 2.02093i) q^{41} +(2.43534 - 2.90233i) q^{43} +(2.75138 + 8.21219i) q^{44} +(1.01125 + 6.20155i) q^{46} +(-5.10473 + 1.85797i) q^{47} +(-3.93503 + 3.30188i) q^{49} +(-5.10187 + 1.78279i) q^{50} +(-3.46043 + 8.79504i) q^{52} -11.4745i q^{53} -12.8618 q^{55} +(-3.67627 + 1.17919i) q^{56} +(3.17303 + 9.08039i) q^{58} +(0.803086 + 0.957081i) q^{59} +(0.216792 + 0.595632i) q^{61} +(1.21612 + 7.45793i) q^{62} +(7.97608 + 0.618197i) q^{64} +(-10.7519 - 9.02195i) q^{65} +(-14.0227 + 2.47258i) q^{67} +(1.42708 + 0.0368039i) q^{68} +(0.0739130 - 5.73294i) q^{70} +(0.414463 + 0.717870i) q^{71} +(7.29258 - 12.6311i) q^{73} +(0.767808 + 0.456592i) q^{74} +(13.0549 - 7.09494i) q^{76} +(2.02167 - 5.55448i) q^{77} +(-1.22756 + 6.96183i) q^{79} +(-4.63338 + 10.9396i) q^{80} +(2.24702 - 1.83663i) q^{82} +(-1.29008 - 0.227475i) q^{83} +(-0.725078 + 1.99214i) q^{85} +(5.26422 + 0.998364i) q^{86} +(-8.22995 + 9.07129i) q^{88} +(-2.66374 + 4.61373i) q^{89} +(5.58625 - 3.22522i) q^{91} +(-6.95219 + 5.53452i) q^{92} +(-5.82098 - 5.01367i) q^{94} +(3.83160 + 21.7301i) q^{95} +(-1.52072 - 1.27604i) q^{97} +(-6.79385 - 2.57242i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.691259 + 1.23376i 0.488794 + 0.872399i
\(3\) 0 0
\(4\) −1.04432 + 1.70569i −0.522161 + 0.852847i
\(5\) −1.90914 2.27523i −0.853794 1.01751i −0.999602 0.0281995i \(-0.991023\pi\)
0.145808 0.989313i \(-0.453422\pi\)
\(6\) 0 0
\(7\) 1.28267 0.466852i 0.484802 0.176454i −0.0880438 0.996117i \(-0.528062\pi\)
0.572846 + 0.819663i \(0.305839\pi\)
\(8\) −2.82631 0.109365i −0.999252 0.0386662i
\(9\) 0 0
\(10\) 1.48737 3.92819i 0.470348 1.24220i
\(11\) 2.78354 3.31729i 0.839269 1.00020i −0.160644 0.987012i \(-0.551357\pi\)
0.999913 0.0131894i \(-0.00419844\pi\)
\(12\) 0 0
\(13\) 4.65386 0.820601i 1.29075 0.227594i 0.514211 0.857664i \(-0.328085\pi\)
0.776538 + 0.630070i \(0.216974\pi\)
\(14\) 1.46264 + 1.25978i 0.390906 + 0.336692i
\(15\) 0 0
\(16\) −1.81878 3.56259i −0.454696 0.890647i
\(17\) −0.356888 0.618149i −0.0865581 0.149923i 0.819496 0.573085i \(-0.194254\pi\)
−0.906054 + 0.423162i \(0.860920\pi\)
\(18\) 0 0
\(19\) −6.43384 3.71458i −1.47602 0.852183i −0.476389 0.879234i \(-0.658055\pi\)
−0.999634 + 0.0270519i \(0.991388\pi\)
\(20\) 5.87460 0.880343i 1.31360 0.196851i
\(21\) 0 0
\(22\) 6.01689 + 1.14111i 1.28280 + 0.243285i
\(23\) 4.17513 + 1.51962i 0.870574 + 0.316863i 0.738400 0.674363i \(-0.235582\pi\)
0.132175 + 0.991226i \(0.457804\pi\)
\(24\) 0 0
\(25\) −0.663593 + 3.76342i −0.132719 + 0.752685i
\(26\) 4.22945 + 5.17449i 0.829463 + 1.01480i
\(27\) 0 0
\(28\) −0.543209 + 2.67538i −0.102657 + 0.505599i
\(29\) 6.69820 + 1.18107i 1.24382 + 0.219320i 0.756554 0.653931i \(-0.226882\pi\)
0.487270 + 0.873251i \(0.337993\pi\)
\(30\) 0 0
\(31\) 5.02097 + 1.82748i 0.901793 + 0.328226i 0.750971 0.660335i \(-0.229586\pi\)
0.150822 + 0.988561i \(0.451808\pi\)
\(32\) 3.13812 4.70661i 0.554747 0.832019i
\(33\) 0 0
\(34\) 0.515944 0.867615i 0.0884837 0.148795i
\(35\) −3.51099 2.02707i −0.593465 0.342637i
\(36\) 0 0
\(37\) 0.547039 0.315833i 0.0899327 0.0519226i −0.454359 0.890819i \(-0.650132\pi\)
0.544292 + 0.838896i \(0.316798\pi\)
\(38\) 0.135445 10.5055i 0.0219720 1.70422i
\(39\) 0 0
\(40\) 5.14700 + 6.63929i 0.813812 + 1.04976i
\(41\) −0.356345 2.02093i −0.0556517 0.315617i 0.944256 0.329213i \(-0.106783\pi\)
−0.999908 + 0.0135959i \(0.995672\pi\)
\(42\) 0 0
\(43\) 2.43534 2.90233i 0.371386 0.442601i −0.547690 0.836682i \(-0.684493\pi\)
0.919076 + 0.394081i \(0.128937\pi\)
\(44\) 2.75138 + 8.21219i 0.414786 + 1.23803i
\(45\) 0 0
\(46\) 1.01125 + 6.20155i 0.149100 + 0.914369i
\(47\) −5.10473 + 1.85797i −0.744601 + 0.271013i −0.686332 0.727288i \(-0.740780\pi\)
−0.0582692 + 0.998301i \(0.518558\pi\)
\(48\) 0 0
\(49\) −3.93503 + 3.30188i −0.562147 + 0.471697i
\(50\) −5.10187 + 1.78279i −0.721514 + 0.252124i
\(51\) 0 0
\(52\) −3.46043 + 8.79504i −0.479876 + 1.21965i
\(53\) 11.4745i 1.57614i −0.615583 0.788072i \(-0.711079\pi\)
0.615583 0.788072i \(-0.288921\pi\)
\(54\) 0 0
\(55\) −12.8618 −1.73428
\(56\) −3.67627 + 1.17919i −0.491262 + 0.157576i
\(57\) 0 0
\(58\) 3.17303 + 9.08039i 0.416639 + 1.19231i
\(59\) 0.803086 + 0.957081i 0.104553 + 0.124601i 0.815783 0.578358i \(-0.196306\pi\)
−0.711230 + 0.702959i \(0.751862\pi\)
\(60\) 0 0
\(61\) 0.216792 + 0.595632i 0.0277574 + 0.0762629i 0.952797 0.303607i \(-0.0981910\pi\)
−0.925040 + 0.379870i \(0.875969\pi\)
\(62\) 1.21612 + 7.45793i 0.154447 + 0.947158i
\(63\) 0 0
\(64\) 7.97608 + 0.618197i 0.997010 + 0.0772747i
\(65\) −10.7519 9.02195i −1.33361 1.11903i
\(66\) 0 0
\(67\) −14.0227 + 2.47258i −1.71314 + 0.302074i −0.942255 0.334896i \(-0.891299\pi\)
−0.770889 + 0.636969i \(0.780188\pi\)
\(68\) 1.42708 + 0.0368039i 0.173059 + 0.00446312i
\(69\) 0 0
\(70\) 0.0739130 5.73294i 0.00883429 0.685217i
\(71\) 0.414463 + 0.717870i 0.0491877 + 0.0851955i 0.889571 0.456797i \(-0.151003\pi\)
−0.840383 + 0.541993i \(0.817670\pi\)
\(72\) 0 0
\(73\) 7.29258 12.6311i 0.853532 1.47836i −0.0244686 0.999701i \(-0.507789\pi\)
0.878000 0.478660i \(-0.158877\pi\)
\(74\) 0.767808 + 0.456592i 0.0892558 + 0.0530777i
\(75\) 0 0
\(76\) 13.0549 7.09494i 1.49750 0.813846i
\(77\) 2.02167 5.55448i 0.230390 0.632992i
\(78\) 0 0
\(79\) −1.22756 + 6.96183i −0.138111 + 0.783267i 0.834532 + 0.550960i \(0.185738\pi\)
−0.972643 + 0.232306i \(0.925373\pi\)
\(80\) −4.63338 + 10.9396i −0.518027 + 1.22309i
\(81\) 0 0
\(82\) 2.24702 1.83663i 0.248141 0.202822i
\(83\) −1.29008 0.227475i −0.141604 0.0249686i 0.102397 0.994744i \(-0.467349\pi\)
−0.244001 + 0.969775i \(0.578460\pi\)
\(84\) 0 0
\(85\) −0.725078 + 1.99214i −0.0786458 + 0.216077i
\(86\) 5.26422 + 0.998364i 0.567656 + 0.107656i
\(87\) 0 0
\(88\) −8.22995 + 9.07129i −0.877315 + 0.967002i
\(89\) −2.66374 + 4.61373i −0.282356 + 0.489054i −0.971964 0.235128i \(-0.924449\pi\)
0.689609 + 0.724182i \(0.257782\pi\)
\(90\) 0 0
\(91\) 5.58625 3.22522i 0.585598 0.338095i
\(92\) −6.95219 + 5.53452i −0.724816 + 0.577013i
\(93\) 0 0
\(94\) −5.82098 5.01367i −0.600388 0.517120i
\(95\) 3.83160 + 21.7301i 0.393114 + 2.22946i
\(96\) 0 0
\(97\) −1.52072 1.27604i −0.154406 0.129562i 0.562312 0.826925i \(-0.309912\pi\)
−0.716718 + 0.697363i \(0.754356\pi\)
\(98\) −6.79385 2.57242i −0.686283 0.259854i
\(99\) 0 0
\(100\) −5.72624 5.06211i −0.572624 0.506211i
\(101\) −1.46496 4.02494i −0.145769 0.400497i 0.845224 0.534412i \(-0.179467\pi\)
−0.990993 + 0.133916i \(0.957245\pi\)
\(102\) 0 0
\(103\) −8.54275 + 7.16822i −0.841743 + 0.706306i −0.957955 0.286919i \(-0.907369\pi\)
0.116212 + 0.993224i \(0.462925\pi\)
\(104\) −13.2430 + 1.81031i −1.29858 + 0.177515i
\(105\) 0 0
\(106\) 14.1568 7.93185i 1.37503 0.770410i
\(107\) 11.6290i 1.12422i 0.827064 + 0.562108i \(0.190009\pi\)
−0.827064 + 0.562108i \(0.809991\pi\)
\(108\) 0 0
\(109\) 2.12823i 0.203848i −0.994792 0.101924i \(-0.967500\pi\)
0.994792 0.101924i \(-0.0324998\pi\)
\(110\) −8.89082 15.8683i −0.847706 1.51299i
\(111\) 0 0
\(112\) −3.99609 3.72051i −0.377595 0.351555i
\(113\) 13.3788 11.2261i 1.25857 1.05607i 0.262739 0.964867i \(-0.415374\pi\)
0.995833 0.0912002i \(-0.0290703\pi\)
\(114\) 0 0
\(115\) −4.51343 12.4005i −0.420879 1.15636i
\(116\) −9.00962 + 10.1917i −0.836522 + 0.946271i
\(117\) 0 0
\(118\) −0.625666 + 1.65241i −0.0575973 + 0.152116i
\(119\) −0.746353 0.626264i −0.0684180 0.0574096i
\(120\) 0 0
\(121\) −1.34621 7.63476i −0.122383 0.694069i
\(122\) −0.585007 + 0.679206i −0.0529641 + 0.0614924i
\(123\) 0 0
\(124\) −8.36063 + 6.65576i −0.750807 + 0.597705i
\(125\) −3.03136 + 1.75016i −0.271133 + 0.156539i
\(126\) 0 0
\(127\) 2.78247 4.81937i 0.246904 0.427650i −0.715761 0.698345i \(-0.753920\pi\)
0.962665 + 0.270695i \(0.0872534\pi\)
\(128\) 4.75083 + 10.2679i 0.419918 + 0.907562i
\(129\) 0 0
\(130\) 3.69853 19.5018i 0.324383 1.71042i
\(131\) −3.27187 + 8.98940i −0.285865 + 0.785407i 0.710769 + 0.703426i \(0.248347\pi\)
−0.996634 + 0.0819818i \(0.973875\pi\)
\(132\) 0 0
\(133\) −9.98662 1.76091i −0.865950 0.152690i
\(134\) −12.7439 15.5914i −1.10090 1.34689i
\(135\) 0 0
\(136\) 0.941074 + 1.78611i 0.0806964 + 0.153158i
\(137\) −0.661480 + 3.75144i −0.0565140 + 0.320507i −0.999939 0.0110802i \(-0.996473\pi\)
0.943425 + 0.331587i \(0.107584\pi\)
\(138\) 0 0
\(139\) −0.433062 + 1.18983i −0.0367318 + 0.100920i −0.956703 0.291067i \(-0.905990\pi\)
0.919971 + 0.391987i \(0.128212\pi\)
\(140\) 7.12416 3.87176i 0.602101 0.327223i
\(141\) 0 0
\(142\) −0.599178 + 1.00758i −0.0502819 + 0.0845544i
\(143\) 10.2320 17.7224i 0.855646 1.48202i
\(144\) 0 0
\(145\) −10.1006 17.4948i −0.838809 1.45286i
\(146\) 20.6248 + 0.265909i 1.70692 + 0.0220068i
\(147\) 0 0
\(148\) −0.0325701 + 1.26291i −0.00267724 + 0.103811i
\(149\) 9.84675 1.73625i 0.806677 0.142239i 0.244922 0.969543i \(-0.421238\pi\)
0.561755 + 0.827304i \(0.310126\pi\)
\(150\) 0 0
\(151\) 16.1625 + 13.5620i 1.31529 + 1.10366i 0.987281 + 0.158983i \(0.0508216\pi\)
0.328008 + 0.944675i \(0.393623\pi\)
\(152\) 17.7778 + 11.2022i 1.44197 + 0.908618i
\(153\) 0 0
\(154\) 8.25039 1.34534i 0.664835 0.108410i
\(155\) −5.42780 14.9128i −0.435972 1.19782i
\(156\) 0 0
\(157\) 5.71532 + 6.81126i 0.456133 + 0.543598i 0.944271 0.329168i \(-0.106768\pi\)
−0.488139 + 0.872766i \(0.662324\pi\)
\(158\) −9.43777 + 3.29792i −0.750829 + 0.262368i
\(159\) 0 0
\(160\) −16.6997 + 1.84565i −1.32023 + 0.145912i
\(161\) 6.06473 0.477968
\(162\) 0 0
\(163\) 17.7771i 1.39241i 0.717845 + 0.696203i \(0.245129\pi\)
−0.717845 + 0.696203i \(0.754871\pi\)
\(164\) 3.81923 + 1.50269i 0.298232 + 0.117340i
\(165\) 0 0
\(166\) −0.611127 1.74889i −0.0474327 0.135740i
\(167\) 5.29501 4.44304i 0.409740 0.343813i −0.414504 0.910048i \(-0.636045\pi\)
0.824244 + 0.566235i \(0.191600\pi\)
\(168\) 0 0
\(169\) 8.76904 3.19167i 0.674541 0.245513i
\(170\) −2.95903 + 0.482510i −0.226947 + 0.0370069i
\(171\) 0 0
\(172\) 2.40720 + 7.18491i 0.183547 + 0.547844i
\(173\) −14.6599 + 17.4709i −1.11457 + 1.32829i −0.175531 + 0.984474i \(0.556164\pi\)
−0.939037 + 0.343817i \(0.888280\pi\)
\(174\) 0 0
\(175\) 0.905794 + 5.13702i 0.0684716 + 0.388322i
\(176\) −16.8808 3.88316i −1.27244 0.292704i
\(177\) 0 0
\(178\) −7.53356 0.0971278i −0.564664 0.00728004i
\(179\) −10.8469 + 6.26245i −0.810734 + 0.468077i −0.847211 0.531257i \(-0.821720\pi\)
0.0364770 + 0.999334i \(0.488386\pi\)
\(180\) 0 0
\(181\) −10.6636 6.15662i −0.792618 0.457618i 0.0482656 0.998835i \(-0.484631\pi\)
−0.840883 + 0.541217i \(0.817964\pi\)
\(182\) 7.84069 + 4.66262i 0.581191 + 0.345616i
\(183\) 0 0
\(184\) −11.6340 4.75154i −0.857671 0.350288i
\(185\) −1.76297 0.641668i −0.129616 0.0471763i
\(186\) 0 0
\(187\) −3.04399 0.536738i −0.222599 0.0392502i
\(188\) 2.16185 10.6474i 0.157669 0.776543i
\(189\) 0 0
\(190\) −24.1611 + 19.7484i −1.75283 + 1.43270i
\(191\) −0.0708406 + 0.401757i −0.00512584 + 0.0290701i −0.987263 0.159094i \(-0.949143\pi\)
0.982138 + 0.188164i \(0.0602538\pi\)
\(192\) 0 0
\(193\) 20.6767 + 7.52571i 1.48834 + 0.541712i 0.953013 0.302930i \(-0.0979650\pi\)
0.535330 + 0.844643i \(0.320187\pi\)
\(194\) 0.523109 2.75828i 0.0375571 0.198033i
\(195\) 0 0
\(196\) −1.52256 10.1602i −0.108755 0.725727i
\(197\) 18.0410 + 10.4160i 1.28537 + 0.742108i 0.977824 0.209426i \(-0.0671596\pi\)
0.307544 + 0.951534i \(0.400493\pi\)
\(198\) 0 0
\(199\) −1.53489 2.65851i −0.108805 0.188457i 0.806481 0.591260i \(-0.201369\pi\)
−0.915287 + 0.402803i \(0.868036\pi\)
\(200\) 2.28711 10.5640i 0.161723 0.746990i
\(201\) 0 0
\(202\) 3.95314 4.58968i 0.278142 0.322929i
\(203\) 9.14294 1.61215i 0.641708 0.113150i
\(204\) 0 0
\(205\) −3.91777 + 4.66901i −0.273629 + 0.326098i
\(206\) −14.7491 5.58460i −1.02762 0.389097i
\(207\) 0 0
\(208\) −11.3878 15.0873i −0.789604 1.04612i
\(209\) −30.2312 + 11.0033i −2.09114 + 0.761111i
\(210\) 0 0
\(211\) 1.48569 + 1.77058i 0.102279 + 0.121892i 0.814756 0.579804i \(-0.196871\pi\)
−0.712477 + 0.701696i \(0.752427\pi\)
\(212\) 19.5720 + 11.9831i 1.34421 + 0.823001i
\(213\) 0 0
\(214\) −14.3473 + 8.03863i −0.980764 + 0.549510i
\(215\) −11.2529 −0.767439
\(216\) 0 0
\(217\) 7.29339 0.495108
\(218\) 2.62573 1.47116i 0.177837 0.0996395i
\(219\) 0 0
\(220\) 13.4318 21.9382i 0.905574 1.47908i
\(221\) −2.16816 2.58392i −0.145846 0.173813i
\(222\) 0 0
\(223\) 3.40012 1.23754i 0.227689 0.0828721i −0.225656 0.974207i \(-0.572453\pi\)
0.453345 + 0.891335i \(0.350230\pi\)
\(224\) 1.82787 7.50205i 0.122130 0.501252i
\(225\) 0 0
\(226\) 23.0986 + 8.74604i 1.53649 + 0.581778i
\(227\) −12.6692 + 15.0985i −0.840883 + 1.00212i 0.159007 + 0.987277i \(0.449171\pi\)
−0.999890 + 0.0148475i \(0.995274\pi\)
\(228\) 0 0
\(229\) 17.3012 3.05066i 1.14329 0.201593i 0.430247 0.902711i \(-0.358426\pi\)
0.713045 + 0.701118i \(0.247315\pi\)
\(230\) 12.1793 14.1405i 0.803081 0.932394i
\(231\) 0 0
\(232\) −18.8020 4.07063i −1.23441 0.267250i
\(233\) −9.53675 16.5181i −0.624774 1.08214i −0.988585 0.150667i \(-0.951858\pi\)
0.363811 0.931473i \(-0.381475\pi\)
\(234\) 0 0
\(235\) 13.9730 + 8.06729i 0.911495 + 0.526252i
\(236\) −2.47117 + 0.370319i −0.160859 + 0.0241057i
\(237\) 0 0
\(238\) 0.256736 1.35373i 0.0166417 0.0877493i
\(239\) 1.39969 + 0.509446i 0.0905384 + 0.0329533i 0.386892 0.922125i \(-0.373549\pi\)
−0.296354 + 0.955078i \(0.595771\pi\)
\(240\) 0 0
\(241\) 0.766076 4.34463i 0.0493473 0.279862i −0.950142 0.311817i \(-0.899062\pi\)
0.999489 + 0.0319552i \(0.0101734\pi\)
\(242\) 8.48887 6.93850i 0.545685 0.446024i
\(243\) 0 0
\(244\) −1.24237 0.252250i −0.0795345 0.0161487i
\(245\) 15.0251 + 2.64932i 0.959916 + 0.169259i
\(246\) 0 0
\(247\) −32.9904 12.0075i −2.09913 0.764020i
\(248\) −13.9910 5.71415i −0.888427 0.362849i
\(249\) 0 0
\(250\) −4.25473 2.53016i −0.269093 0.160021i
\(251\) −23.4897 13.5618i −1.48265 0.856011i −0.482848 0.875704i \(-0.660398\pi\)
−0.999806 + 0.0196931i \(0.993731\pi\)
\(252\) 0 0
\(253\) 16.6627 9.62020i 1.04757 0.604817i
\(254\) 7.86935 + 0.101457i 0.493767 + 0.00636598i
\(255\) 0 0
\(256\) −9.38405 + 12.9592i −0.586503 + 0.809947i
\(257\) 2.75518 + 15.6254i 0.171864 + 0.974687i 0.941702 + 0.336448i \(0.109226\pi\)
−0.769839 + 0.638239i \(0.779663\pi\)
\(258\) 0 0
\(259\) 0.554221 0.660495i 0.0344376 0.0410412i
\(260\) 26.6172 8.91770i 1.65073 0.553052i
\(261\) 0 0
\(262\) −13.3525 + 2.17730i −0.824918 + 0.134514i
\(263\) −1.51313 + 0.550733i −0.0933034 + 0.0339597i −0.388250 0.921554i \(-0.626920\pi\)
0.294947 + 0.955514i \(0.404698\pi\)
\(264\) 0 0
\(265\) −26.1071 + 21.9065i −1.60375 + 1.34570i
\(266\) −4.73080 13.5383i −0.290064 0.830088i
\(267\) 0 0
\(268\) 10.4267 26.5006i 0.636914 1.61878i
\(269\) 2.95858i 0.180388i −0.995924 0.0901940i \(-0.971251\pi\)
0.995924 0.0901940i \(-0.0287487\pi\)
\(270\) 0 0
\(271\) 6.23755 0.378904 0.189452 0.981890i \(-0.439329\pi\)
0.189452 + 0.981890i \(0.439329\pi\)
\(272\) −1.55311 + 2.39572i −0.0941709 + 0.145262i
\(273\) 0 0
\(274\) −5.08562 + 1.77711i −0.307234 + 0.107359i
\(275\) 10.6372 + 12.6770i 0.641450 + 0.764450i
\(276\) 0 0
\(277\) 7.97956 + 21.9237i 0.479445 + 1.31727i 0.909965 + 0.414684i \(0.136108\pi\)
−0.430520 + 0.902581i \(0.641670\pi\)
\(278\) −1.76732 + 0.288185i −0.105997 + 0.0172842i
\(279\) 0 0
\(280\) 9.70145 + 6.11311i 0.579773 + 0.365328i
\(281\) 5.53822 + 4.64712i 0.330383 + 0.277224i 0.792856 0.609409i \(-0.208593\pi\)
−0.462473 + 0.886633i \(0.653038\pi\)
\(282\) 0 0
\(283\) 1.34312 0.236829i 0.0798404 0.0140780i −0.133585 0.991037i \(-0.542649\pi\)
0.213426 + 0.976959i \(0.431538\pi\)
\(284\) −1.65730 0.0427412i −0.0983426 0.00253622i
\(285\) 0 0
\(286\) 28.9382 + 0.373090i 1.71115 + 0.0220613i
\(287\) −1.40055 2.42582i −0.0826718 0.143192i
\(288\) 0 0
\(289\) 8.24526 14.2812i 0.485015 0.840071i
\(290\) 14.6022 24.5551i 0.857469 1.44193i
\(291\) 0 0
\(292\) 13.9290 + 25.6299i 0.815134 + 1.49987i
\(293\) −5.01243 + 13.7715i −0.292829 + 0.804541i 0.702821 + 0.711367i \(0.251924\pi\)
−0.995650 + 0.0931743i \(0.970299\pi\)
\(294\) 0 0
\(295\) 0.644371 3.65441i 0.0375167 0.212768i
\(296\) −1.58064 + 0.832816i −0.0918731 + 0.0484065i
\(297\) 0 0
\(298\) 8.94876 + 10.9483i 0.518388 + 0.634219i
\(299\) 20.6775 + 3.64600i 1.19581 + 0.210853i
\(300\) 0 0
\(301\) 1.76877 4.85966i 0.101950 0.280106i
\(302\) −5.55971 + 29.3155i −0.319925 + 1.68692i
\(303\) 0 0
\(304\) −1.53174 + 29.6771i −0.0878515 + 1.70210i
\(305\) 0.941311 1.63040i 0.0538993 0.0933564i
\(306\) 0 0
\(307\) 9.62473 5.55684i 0.549313 0.317146i −0.199532 0.979891i \(-0.563942\pi\)
0.748845 + 0.662746i \(0.230609\pi\)
\(308\) 7.36298 + 9.24901i 0.419545 + 0.527011i
\(309\) 0 0
\(310\) 14.6467 17.0052i 0.831879 0.965830i
\(311\) −1.91302 10.8493i −0.108477 0.615206i −0.989774 0.142643i \(-0.954440\pi\)
0.881297 0.472563i \(-0.156671\pi\)
\(312\) 0 0
\(313\) −1.97229 1.65494i −0.111480 0.0935430i 0.585344 0.810785i \(-0.300960\pi\)
−0.696824 + 0.717242i \(0.745404\pi\)
\(314\) −4.45268 + 11.7597i −0.251279 + 0.663637i
\(315\) 0 0
\(316\) −10.5928 9.36422i −0.595890 0.526779i
\(317\) 1.43808 + 3.95110i 0.0807708 + 0.221916i 0.973504 0.228669i \(-0.0734375\pi\)
−0.892733 + 0.450585i \(0.851215\pi\)
\(318\) 0 0
\(319\) 22.5627 18.9323i 1.26327 1.06001i
\(320\) −13.8209 19.3276i −0.772613 1.08045i
\(321\) 0 0
\(322\) 4.19230 + 7.48242i 0.233628 + 0.416979i
\(323\) 5.30276i 0.295053i
\(324\) 0 0
\(325\) 18.0590i 1.00173i
\(326\) −21.9326 + 12.2886i −1.21473 + 0.680600i
\(327\) 0 0
\(328\) 0.786123 + 5.75076i 0.0434064 + 0.317532i
\(329\) −5.68027 + 4.76631i −0.313163 + 0.262775i
\(330\) 0 0
\(331\) 0.147225 + 0.404498i 0.00809223 + 0.0222332i 0.943673 0.330880i \(-0.107345\pi\)
−0.935581 + 0.353113i \(0.885123\pi\)
\(332\) 1.73526 1.96292i 0.0952346 0.107729i
\(333\) 0 0
\(334\) 9.14187 + 3.46148i 0.500221 + 0.189403i
\(335\) 32.3970 + 27.1843i 1.77004 + 1.48524i
\(336\) 0 0
\(337\) 2.69206 + 15.2674i 0.146646 + 0.831671i 0.966031 + 0.258427i \(0.0832041\pi\)
−0.819385 + 0.573244i \(0.805685\pi\)
\(338\) 9.99943 + 8.61261i 0.543897 + 0.468464i
\(339\) 0 0
\(340\) −2.64076 3.31719i −0.143215 0.179900i
\(341\) 20.0384 11.5692i 1.08514 0.626505i
\(342\) 0 0
\(343\) −8.28328 + 14.3471i −0.447255 + 0.774669i
\(344\) −7.20045 + 7.93654i −0.388222 + 0.427910i
\(345\) 0 0
\(346\) −31.6887 6.00978i −1.70359 0.323088i
\(347\) 2.18648 6.00732i 0.117377 0.322490i −0.867067 0.498192i \(-0.833997\pi\)
0.984443 + 0.175702i \(0.0562197\pi\)
\(348\) 0 0
\(349\) 35.8064 + 6.31363i 1.91667 + 0.337961i 0.998327 0.0578197i \(-0.0184148\pi\)
0.918345 + 0.395781i \(0.129526\pi\)
\(350\) −5.71170 + 4.66854i −0.305303 + 0.249544i
\(351\) 0 0
\(352\) −6.87813 23.5111i −0.366605 1.25315i
\(353\) 2.81872 15.9857i 0.150025 0.850835i −0.813169 0.582028i \(-0.802259\pi\)
0.963194 0.268807i \(-0.0866295\pi\)
\(354\) 0 0
\(355\) 0.842050 2.31351i 0.0446914 0.122789i
\(356\) −5.08781 9.36174i −0.269653 0.496171i
\(357\) 0 0
\(358\) −15.2244 9.05346i −0.804632 0.478490i
\(359\) 2.92393 5.06440i 0.154319 0.267289i −0.778492 0.627655i \(-0.784015\pi\)
0.932811 + 0.360366i \(0.117348\pi\)
\(360\) 0 0
\(361\) 18.0962 + 31.3435i 0.952430 + 1.64966i
\(362\) 0.224489 17.4121i 0.0117989 0.915160i
\(363\) 0 0
\(364\) −0.332599 + 12.8966i −0.0174329 + 0.675966i
\(365\) −42.6612 + 7.52233i −2.23299 + 0.393737i
\(366\) 0 0
\(367\) 14.7699 + 12.3934i 0.770981 + 0.646930i 0.940960 0.338518i \(-0.109925\pi\)
−0.169979 + 0.985448i \(0.554370\pi\)
\(368\) −2.17987 17.6381i −0.113634 0.919450i
\(369\) 0 0
\(370\) −0.427004 2.61864i −0.0221989 0.136136i
\(371\) −5.35690 14.7180i −0.278116 0.764118i
\(372\) 0 0
\(373\) −4.04624 4.82212i −0.209506 0.249680i 0.651050 0.759034i \(-0.274329\pi\)
−0.860557 + 0.509355i \(0.829884\pi\)
\(374\) −1.44198 4.12658i −0.0745632 0.213380i
\(375\) 0 0
\(376\) 14.6308 4.69293i 0.754524 0.242019i
\(377\) 32.1417 1.65538
\(378\) 0 0
\(379\) 17.2449i 0.885812i 0.896568 + 0.442906i \(0.146052\pi\)
−0.896568 + 0.442906i \(0.853948\pi\)
\(380\) −41.0663 16.1577i −2.10666 0.828871i
\(381\) 0 0
\(382\) −0.544640 + 0.190318i −0.0278662 + 0.00973751i
\(383\) −20.5611 + 17.2528i −1.05062 + 0.881578i −0.993159 0.116770i \(-0.962746\pi\)
−0.0574646 + 0.998348i \(0.518302\pi\)
\(384\) 0 0
\(385\) −16.4974 + 6.00455i −0.840783 + 0.306020i
\(386\) 5.00806 + 30.7123i 0.254903 + 1.56321i
\(387\) 0 0
\(388\) 3.76465 1.26129i 0.191121 0.0640324i
\(389\) −10.1688 + 12.1187i −0.515578 + 0.614442i −0.959529 0.281609i \(-0.909132\pi\)
0.443951 + 0.896051i \(0.353576\pi\)
\(390\) 0 0
\(391\) −0.550702 3.12319i −0.0278502 0.157946i
\(392\) 11.4827 8.90180i 0.579966 0.449609i
\(393\) 0 0
\(394\) −0.379797 + 29.4584i −0.0191339 + 1.48409i
\(395\) 18.1833 10.4981i 0.914902 0.528219i
\(396\) 0 0
\(397\) −31.3595 18.1054i −1.57389 0.908686i −0.995685 0.0927941i \(-0.970420\pi\)
−0.578205 0.815892i \(-0.696246\pi\)
\(398\) 2.21895 3.73140i 0.111226 0.187038i
\(399\) 0 0
\(400\) 14.6145 4.48075i 0.730723 0.224037i
\(401\) 29.9275 + 10.8927i 1.49451 + 0.543957i 0.954632 0.297788i \(-0.0962488\pi\)
0.539876 + 0.841744i \(0.318471\pi\)
\(402\) 0 0
\(403\) 24.8665 + 4.38464i 1.23869 + 0.218414i
\(404\) 8.39521 + 1.70456i 0.417677 + 0.0848051i
\(405\) 0 0
\(406\) 8.30914 + 10.1658i 0.412376 + 0.504519i
\(407\) 0.474994 2.69382i 0.0235446 0.133528i
\(408\) 0 0
\(409\) −15.5146 5.64685i −0.767147 0.279219i −0.0713442 0.997452i \(-0.522729\pi\)
−0.695802 + 0.718233i \(0.744951\pi\)
\(410\) −8.46863 1.60608i −0.418236 0.0793187i
\(411\) 0 0
\(412\) −3.30541 22.0573i −0.162846 1.08668i
\(413\) 1.47691 + 0.852693i 0.0726738 + 0.0419583i
\(414\) 0 0
\(415\) 1.94538 + 3.36950i 0.0954950 + 0.165402i
\(416\) 10.7421 24.4791i 0.526676 1.20018i
\(417\) 0 0
\(418\) −34.4729 29.6919i −1.68613 1.45228i
\(419\) 18.1570 3.20156i 0.887026 0.156407i 0.288471 0.957489i \(-0.406853\pi\)
0.598555 + 0.801082i \(0.295742\pi\)
\(420\) 0 0
\(421\) −6.32940 + 7.54309i −0.308476 + 0.367627i −0.897902 0.440195i \(-0.854909\pi\)
0.589426 + 0.807822i \(0.299354\pi\)
\(422\) −1.15747 + 3.05692i −0.0563448 + 0.148808i
\(423\) 0 0
\(424\) −1.25491 + 32.4305i −0.0609436 + 1.57497i
\(425\) 2.56318 0.932923i 0.124333 0.0452534i
\(426\) 0 0
\(427\) 0.556145 + 0.662787i 0.0269137 + 0.0320745i
\(428\) −19.8355 12.1444i −0.958783 0.587021i
\(429\) 0 0
\(430\) −7.77865 13.8833i −0.375120 0.669513i
\(431\) −5.60936 −0.270193 −0.135097 0.990832i \(-0.543134\pi\)
−0.135097 + 0.990832i \(0.543134\pi\)
\(432\) 0 0
\(433\) −21.7801 −1.04669 −0.523343 0.852122i \(-0.675315\pi\)
−0.523343 + 0.852122i \(0.675315\pi\)
\(434\) 5.04162 + 8.99829i 0.242006 + 0.431932i
\(435\) 0 0
\(436\) 3.63011 + 2.22256i 0.173851 + 0.106441i
\(437\) −21.2173 25.2858i −1.01496 1.20959i
\(438\) 0 0
\(439\) 14.2403 5.18304i 0.679652 0.247373i 0.0209536 0.999780i \(-0.493330\pi\)
0.658698 + 0.752408i \(0.271108\pi\)
\(440\) 36.3514 + 1.40662i 1.73298 + 0.0670581i
\(441\) 0 0
\(442\) 1.68917 4.46115i 0.0803455 0.212195i
\(443\) −6.71247 + 7.99962i −0.318919 + 0.380073i −0.901558 0.432658i \(-0.857576\pi\)
0.582639 + 0.812731i \(0.302020\pi\)
\(444\) 0 0
\(445\) 15.5827 2.74766i 0.738692 0.130251i
\(446\) 3.87720 + 3.33947i 0.183591 + 0.158128i
\(447\) 0 0
\(448\) 10.5193 2.93071i 0.496988 0.138463i
\(449\) 13.4948 + 23.3737i 0.636860 + 1.10307i 0.986118 + 0.166047i \(0.0531004\pi\)
−0.349258 + 0.937027i \(0.613566\pi\)
\(450\) 0 0
\(451\) −7.69593 4.44325i −0.362387 0.209224i
\(452\) 5.17660 + 34.5439i 0.243487 + 1.62481i
\(453\) 0 0
\(454\) −27.3856 5.19371i −1.28527 0.243753i
\(455\) −18.0031 6.55258i −0.843996 0.307190i
\(456\) 0 0
\(457\) 5.06627 28.7322i 0.236990 1.34404i −0.601392 0.798954i \(-0.705387\pi\)
0.838382 0.545083i \(-0.183502\pi\)
\(458\) 15.7234 + 19.2367i 0.734704 + 0.898870i
\(459\) 0 0
\(460\) 25.8650 + 5.25163i 1.20596 + 0.244858i
\(461\) 4.19983 + 0.740544i 0.195606 + 0.0344906i 0.270593 0.962694i \(-0.412780\pi\)
−0.0749868 + 0.997185i \(0.523891\pi\)
\(462\) 0 0
\(463\) −26.4209 9.61641i −1.22788 0.446912i −0.355010 0.934862i \(-0.615523\pi\)
−0.872872 + 0.487950i \(0.837745\pi\)
\(464\) −7.97490 26.0110i −0.370225 1.20753i
\(465\) 0 0
\(466\) 13.7870 23.1844i 0.638672 1.07400i
\(467\) 5.86716 + 3.38741i 0.271500 + 0.156750i 0.629569 0.776945i \(-0.283231\pi\)
−0.358069 + 0.933695i \(0.616565\pi\)
\(468\) 0 0
\(469\) −16.8321 + 9.71802i −0.777234 + 0.448736i
\(470\) −0.294157 + 22.8158i −0.0135685 + 1.05242i
\(471\) 0 0
\(472\) −2.16510 2.79284i −0.0996569 0.128551i
\(473\) −2.84900 16.1575i −0.130997 0.742922i
\(474\) 0 0
\(475\) 18.2490 21.7483i 0.837321 0.997880i
\(476\) 1.84765 0.619028i 0.0846868 0.0283731i
\(477\) 0 0
\(478\) 0.339016 + 2.07904i 0.0155062 + 0.0950930i
\(479\) 33.0606 12.0331i 1.51058 0.549806i 0.551804 0.833974i \(-0.313940\pi\)
0.958775 + 0.284168i \(0.0917173\pi\)
\(480\) 0 0
\(481\) 2.28667 1.91874i 0.104263 0.0874872i
\(482\) 5.88978 2.05811i 0.268272 0.0937445i
\(483\) 0 0
\(484\) 14.4284 + 5.67691i 0.655838 + 0.258042i
\(485\) 5.89612i 0.267729i
\(486\) 0 0
\(487\) −6.71410 −0.304245 −0.152122 0.988362i \(-0.548611\pi\)
−0.152122 + 0.988362i \(0.548611\pi\)
\(488\) −0.547582 1.70715i −0.0247879 0.0772792i
\(489\) 0 0
\(490\) 7.11758 + 20.3687i 0.321540 + 0.920163i
\(491\) 2.85750 + 3.40543i 0.128957 + 0.153685i 0.826659 0.562703i \(-0.190239\pi\)
−0.697702 + 0.716388i \(0.745794\pi\)
\(492\) 0 0
\(493\) −1.66043 4.56199i −0.0747820 0.205462i
\(494\) −7.99052 49.0025i −0.359510 2.20473i
\(495\) 0 0
\(496\) −2.62149 21.2114i −0.117708 0.952422i
\(497\) 0.866757 + 0.727295i 0.0388793 + 0.0326236i
\(498\) 0 0
\(499\) −19.6511 + 3.46501i −0.879702 + 0.155115i −0.595217 0.803565i \(-0.702934\pi\)
−0.284485 + 0.958680i \(0.591823\pi\)
\(500\) 0.180484 6.99831i 0.00807148 0.312974i
\(501\) 0 0
\(502\) 0.494502 38.3553i 0.0220707 1.71188i
\(503\) −17.6903 30.6405i −0.788771 1.36619i −0.926720 0.375753i \(-0.877384\pi\)
0.137949 0.990439i \(-0.455949\pi\)
\(504\) 0 0
\(505\) −6.36084 + 11.0173i −0.283054 + 0.490263i
\(506\) 23.3872 + 13.9077i 1.03969 + 0.618271i
\(507\) 0 0
\(508\) 5.31459 + 9.77901i 0.235797 + 0.433874i
\(509\) 10.5192 28.9013i 0.466256 1.28103i −0.454451 0.890772i \(-0.650164\pi\)
0.920707 0.390255i \(-0.127613\pi\)
\(510\) 0 0
\(511\) 3.45708 19.6061i 0.152932 0.867321i
\(512\) −22.4753 2.61952i −0.993276 0.115768i
\(513\) 0 0
\(514\) −17.3734 + 14.2004i −0.766310 + 0.626355i
\(515\) 32.6187 + 5.75155i 1.43735 + 0.253444i
\(516\) 0 0
\(517\) −8.04579 + 22.1056i −0.353853 + 0.972204i
\(518\) 1.19800 + 0.227202i 0.0526372 + 0.00998268i
\(519\) 0 0
\(520\) 29.4016 + 26.6747i 1.28935 + 1.16976i
\(521\) 7.26319 12.5802i 0.318206 0.551149i −0.661908 0.749585i \(-0.730253\pi\)
0.980114 + 0.198436i \(0.0635863\pi\)
\(522\) 0 0
\(523\) −27.5376 + 15.8989i −1.20414 + 0.695209i −0.961472 0.274901i \(-0.911355\pi\)
−0.242665 + 0.970110i \(0.578021\pi\)
\(524\) −11.9163 14.9686i −0.520565 0.653908i
\(525\) 0 0
\(526\) −1.72544 1.48614i −0.0752326 0.0647986i
\(527\) −0.662269 3.75591i −0.0288489 0.163610i
\(528\) 0 0
\(529\) −2.49659 2.09488i −0.108547 0.0910819i
\(530\) −45.0741 17.0668i −1.95789 0.741336i
\(531\) 0 0
\(532\) 13.4328 15.1952i 0.582387 0.658794i
\(533\) −3.31676 9.11272i −0.143665 0.394716i
\(534\) 0 0
\(535\) 26.4585 22.2014i 1.14390 0.959848i
\(536\) 39.9029 5.45469i 1.72354 0.235607i
\(537\) 0 0
\(538\) 3.65018 2.04515i 0.157370 0.0881726i
\(539\) 22.2446i 0.958142i
\(540\) 0 0
\(541\) 35.1941i 1.51311i −0.653929 0.756556i \(-0.726880\pi\)
0.653929 0.756556i \(-0.273120\pi\)
\(542\) 4.31176 + 7.69563i 0.185206 + 0.330556i
\(543\) 0 0
\(544\) −4.02935 0.260091i −0.172757 0.0111513i
\(545\) −4.84221 + 4.06310i −0.207418 + 0.174044i
\(546\) 0 0
\(547\) 1.10913 + 3.04730i 0.0474228 + 0.130293i 0.961143 0.276051i \(-0.0890258\pi\)
−0.913720 + 0.406344i \(0.866804\pi\)
\(548\) −5.70801 5.04599i −0.243834 0.215554i
\(549\) 0 0
\(550\) −8.28724 + 21.8869i −0.353369 + 0.933259i
\(551\) −38.7079 32.4798i −1.64901 1.38369i
\(552\) 0 0
\(553\) 1.67560 + 9.50278i 0.0712536 + 0.404100i
\(554\) −21.5326 + 24.9998i −0.914831 + 1.06214i
\(555\) 0 0
\(556\) −1.57723 1.98123i −0.0668893 0.0840231i
\(557\) −20.4301 + 11.7954i −0.865653 + 0.499785i −0.865901 0.500215i \(-0.833254\pi\)
0.000248175 1.00000i \(0.499921\pi\)
\(558\) 0 0
\(559\) 8.95209 15.5055i 0.378633 0.655812i
\(560\) −0.835882 + 16.1950i −0.0353225 + 0.684363i
\(561\) 0 0
\(562\) −1.90508 + 10.0452i −0.0803609 + 0.423731i
\(563\) 7.83509 21.5267i 0.330210 0.907244i −0.657847 0.753152i \(-0.728533\pi\)
0.988057 0.154092i \(-0.0492452\pi\)
\(564\) 0 0
\(565\) −51.0841 9.00750i −2.14912 0.378948i
\(566\) 1.22064 + 1.49338i 0.0513072 + 0.0627715i
\(567\) 0 0
\(568\) −1.09289 2.07425i −0.0458567 0.0870337i
\(569\) −5.27628 + 29.9233i −0.221193 + 1.25445i 0.648637 + 0.761098i \(0.275339\pi\)
−0.869830 + 0.493351i \(0.835772\pi\)
\(570\) 0 0
\(571\) 11.6641 32.0469i 0.488129 1.34112i −0.414244 0.910166i \(-0.635954\pi\)
0.902373 0.430957i \(-0.141824\pi\)
\(572\) 19.5435 + 35.9606i 0.817153 + 1.50359i
\(573\) 0 0
\(574\) 2.02474 3.40481i 0.0845109 0.142114i
\(575\) −8.48957 + 14.7044i −0.354039 + 0.613214i
\(576\) 0 0
\(577\) 5.70949 + 9.88913i 0.237689 + 0.411690i 0.960051 0.279826i \(-0.0902767\pi\)
−0.722362 + 0.691516i \(0.756943\pi\)
\(578\) 23.3192 + 0.300647i 0.969950 + 0.0125053i
\(579\) 0 0
\(580\) 40.3890 + 1.04162i 1.67706 + 0.0432508i
\(581\) −1.76093 + 0.310500i −0.0730558 + 0.0128817i
\(582\) 0 0
\(583\) −38.0643 31.9397i −1.57646 1.32281i
\(584\) −21.9925 + 34.9019i −0.910056 + 1.44425i
\(585\) 0 0
\(586\) −20.4556 + 3.33557i −0.845014 + 0.137791i
\(587\) −10.9697 30.1389i −0.452766 1.24396i −0.930770 0.365606i \(-0.880862\pi\)
0.478004 0.878358i \(-0.341361\pi\)
\(588\) 0 0
\(589\) −25.5158 30.4085i −1.05136 1.25296i
\(590\) 4.95408 1.73114i 0.203956 0.0712701i
\(591\) 0 0
\(592\) −2.12013 1.37444i −0.0871368 0.0564892i
\(593\) −19.2802 −0.791741 −0.395871 0.918306i \(-0.629557\pi\)
−0.395871 + 0.918306i \(0.629557\pi\)
\(594\) 0 0
\(595\) 2.89375i 0.118632i
\(596\) −7.32166 + 18.6087i −0.299907 + 0.762244i
\(597\) 0 0
\(598\) 9.79521 + 28.0313i 0.400556 + 1.14629i
\(599\) −31.8430 + 26.7195i −1.30107 + 1.09173i −0.311111 + 0.950374i \(0.600701\pi\)
−0.989959 + 0.141354i \(0.954855\pi\)
\(600\) 0 0
\(601\) −5.75768 + 2.09562i −0.234861 + 0.0854822i −0.456769 0.889585i \(-0.650994\pi\)
0.221909 + 0.975067i \(0.428771\pi\)
\(602\) 7.21833 1.17705i 0.294197 0.0479728i
\(603\) 0 0
\(604\) −40.0115 + 13.4053i −1.62804 + 0.545453i
\(605\) −14.8007 + 17.6388i −0.601734 + 0.717118i
\(606\) 0 0
\(607\) 3.21106 + 18.2108i 0.130333 + 0.739155i 0.977997 + 0.208621i \(0.0668975\pi\)
−0.847664 + 0.530534i \(0.821991\pi\)
\(608\) −37.6732 + 18.6248i −1.52785 + 0.755334i
\(609\) 0 0
\(610\) 2.66221 + 0.0343230i 0.107790 + 0.00138970i
\(611\) −22.2321 + 12.8357i −0.899413 + 0.519276i
\(612\) 0 0
\(613\) −16.0146 9.24602i −0.646823 0.373443i 0.140415 0.990093i \(-0.455156\pi\)
−0.787238 + 0.616650i \(0.788490\pi\)
\(614\) 13.5090 + 8.03338i 0.545178 + 0.324201i
\(615\) 0 0
\(616\) −6.32132 + 15.4776i −0.254693 + 0.623610i
\(617\) −29.7070 10.8125i −1.19596 0.435294i −0.334148 0.942521i \(-0.608448\pi\)
−0.861813 + 0.507227i \(0.830671\pi\)
\(618\) 0 0
\(619\) −15.2623 2.69116i −0.613445 0.108167i −0.141712 0.989908i \(-0.545261\pi\)
−0.471734 + 0.881741i \(0.656372\pi\)
\(620\) 31.1050 + 6.31556i 1.24921 + 0.253639i
\(621\) 0 0
\(622\) 12.0630 9.85987i 0.483682 0.395345i
\(623\) −1.26276 + 7.16145i −0.0505913 + 0.286917i
\(624\) 0 0
\(625\) 27.7244 + 10.0909i 1.10898 + 0.403634i
\(626\) 0.678441 3.57732i 0.0271160 0.142978i
\(627\) 0 0
\(628\) −17.5866 + 2.63545i −0.701780 + 0.105166i
\(629\) −0.390464 0.225434i −0.0155688 0.00898866i
\(630\) 0 0
\(631\) 11.8337 + 20.4966i 0.471093 + 0.815957i 0.999453 0.0330630i \(-0.0105262\pi\)
−0.528360 + 0.849020i \(0.677193\pi\)
\(632\) 4.23084 19.5420i 0.168294 0.777341i
\(633\) 0 0
\(634\) −3.88062 + 4.50548i −0.154119 + 0.178936i
\(635\) −16.2773 + 2.87013i −0.645945 + 0.113897i
\(636\) 0 0
\(637\) −15.6036 + 18.5956i −0.618235 + 0.736784i
\(638\) 38.9546 + 14.7497i 1.54223 + 0.583948i
\(639\) 0 0
\(640\) 14.2918 30.4121i 0.564932 1.20214i
\(641\) 11.7394 4.27278i 0.463677 0.168765i −0.0996090 0.995027i \(-0.531759\pi\)
0.563286 + 0.826262i \(0.309537\pi\)
\(642\) 0 0
\(643\) 9.44368 + 11.2545i 0.372422 + 0.443836i 0.919407 0.393307i \(-0.128669\pi\)
−0.546985 + 0.837142i \(0.684225\pi\)
\(644\) −6.33353 + 10.3446i −0.249576 + 0.407633i
\(645\) 0 0
\(646\) −6.54232 + 3.66558i −0.257404 + 0.144220i
\(647\) −9.10943 −0.358129 −0.179064 0.983837i \(-0.557307\pi\)
−0.179064 + 0.983837i \(0.557307\pi\)
\(648\) 0 0
\(649\) 5.41034 0.212375
\(650\) −22.2805 + 12.4834i −0.873911 + 0.489641i
\(651\) 0 0
\(652\) −30.3222 18.5650i −1.18751 0.727060i
\(653\) 11.0736 + 13.1970i 0.433345 + 0.516440i 0.937884 0.346949i \(-0.112782\pi\)
−0.504540 + 0.863389i \(0.668338\pi\)
\(654\) 0 0
\(655\) 26.6994 9.71778i 1.04323 0.379705i
\(656\) −6.55163 + 4.94515i −0.255798 + 0.193076i
\(657\) 0 0
\(658\) −9.80701 3.71332i −0.382317 0.144760i
\(659\) 13.0287 15.5270i 0.507525 0.604844i −0.450059 0.892999i \(-0.648597\pi\)
0.957584 + 0.288154i \(0.0930416\pi\)
\(660\) 0 0
\(661\) 28.8852 5.09323i 1.12350 0.198104i 0.419125 0.907929i \(-0.362337\pi\)
0.704378 + 0.709825i \(0.251226\pi\)
\(662\) −0.397282 + 0.461253i −0.0154408 + 0.0179271i
\(663\) 0 0
\(664\) 3.62128 + 0.784005i 0.140533 + 0.0304253i
\(665\) 15.0594 + 26.0837i 0.583979 + 1.01148i
\(666\) 0 0
\(667\) 26.1710 + 15.1099i 1.01335 + 0.585056i
\(668\) 2.04878 + 13.6716i 0.0792695 + 0.528972i
\(669\) 0 0
\(670\) −11.1442 + 58.7615i −0.430536 + 2.27015i
\(671\) 2.57934 + 0.938803i 0.0995743 + 0.0362421i
\(672\) 0 0
\(673\) −8.11942 + 46.0475i −0.312980 + 1.77500i 0.270346 + 0.962763i \(0.412862\pi\)
−0.583327 + 0.812237i \(0.698249\pi\)
\(674\) −16.9754 + 13.8751i −0.653869 + 0.534450i
\(675\) 0 0
\(676\) −3.71369 + 18.2904i −0.142834 + 0.703478i
\(677\) −10.5443 1.85925i −0.405251 0.0714567i −0.0326928 0.999465i \(-0.510408\pi\)
−0.372558 + 0.928009i \(0.621519\pi\)
\(678\) 0 0
\(679\) −2.54630 0.926777i −0.0977180 0.0355664i
\(680\) 2.26717 5.55110i 0.0869419 0.212875i
\(681\) 0 0
\(682\) 28.1253 + 16.7252i 1.07697 + 0.640442i
\(683\) 17.0645 + 9.85219i 0.652955 + 0.376984i 0.789587 0.613638i \(-0.210295\pi\)
−0.136632 + 0.990622i \(0.543628\pi\)
\(684\) 0 0
\(685\) 9.79823 5.65701i 0.374371 0.216143i
\(686\) −23.4267 0.302033i −0.894436 0.0115317i
\(687\) 0 0
\(688\) −14.7692 3.39741i −0.563069 0.129525i
\(689\) −9.41599 53.4008i −0.358721 2.03441i
\(690\) 0 0
\(691\) 4.57312 5.45003i 0.173970 0.207329i −0.672013 0.740539i \(-0.734570\pi\)
0.845983 + 0.533210i \(0.179015\pi\)
\(692\) −14.4905 43.2505i −0.550845 1.64414i
\(693\) 0 0
\(694\) 8.92301 1.45502i 0.338713 0.0552317i
\(695\) 3.53391 1.28624i 0.134049 0.0487897i
\(696\) 0 0
\(697\) −1.12206 + 0.941521i −0.0425011 + 0.0356627i
\(698\) 16.9620 + 48.5408i 0.642021 + 1.83730i
\(699\) 0 0
\(700\) −9.70812 3.81969i −0.366932 0.144371i
\(701\) 10.6994i 0.404109i −0.979374 0.202055i \(-0.935238\pi\)
0.979374 0.202055i \(-0.0647618\pi\)
\(702\) 0 0
\(703\) −4.69275 −0.176990
\(704\) 24.2525 24.7382i 0.914050 0.932357i
\(705\) 0 0
\(706\) 21.6710 7.57267i 0.815600 0.285001i
\(707\) −3.75811 4.47874i −0.141338 0.168440i
\(708\) 0 0
\(709\) −9.95367 27.3475i −0.373818 1.02706i −0.973872 0.227097i \(-0.927077\pi\)
0.600054 0.799959i \(-0.295146\pi\)
\(710\) 3.43639 0.560350i 0.128965 0.0210296i
\(711\) 0 0
\(712\) 8.03313 12.7485i 0.301054 0.477771i
\(713\) 18.1861 + 15.2600i 0.681075 + 0.571490i
\(714\) 0 0
\(715\) −59.8569 + 10.5544i −2.23852 + 0.394712i
\(716\) 0.645810 25.0415i 0.0241351 0.935843i
\(717\) 0 0
\(718\) 8.26944 + 0.106615i 0.308613 + 0.00397885i
\(719\) 4.95129 + 8.57588i 0.184652 + 0.319826i 0.943459 0.331489i \(-0.107551\pi\)
−0.758807 + 0.651315i \(0.774218\pi\)
\(720\) 0 0
\(721\) −7.61100 + 13.1826i −0.283448 + 0.490947i
\(722\) −26.1612 + 43.9928i −0.973618 + 1.63724i
\(723\) 0 0
\(724\) 21.6375 11.7593i 0.804152 0.437031i
\(725\) −8.88976 + 24.4244i −0.330157 + 0.907100i
\(726\) 0 0
\(727\) −4.91637 + 27.8821i −0.182338 + 1.03409i 0.746990 + 0.664835i \(0.231498\pi\)
−0.929328 + 0.369255i \(0.879613\pi\)
\(728\) −16.1412 + 8.50455i −0.598233 + 0.315200i
\(729\) 0 0
\(730\) −38.7707 47.4338i −1.43497 1.75560i
\(731\) −2.66321 0.469597i −0.0985026 0.0173687i
\(732\) 0 0
\(733\) −13.4575 + 36.9742i −0.497065 + 1.36567i 0.397033 + 0.917804i \(0.370040\pi\)
−0.894098 + 0.447871i \(0.852182\pi\)
\(734\) −5.08065 + 26.7895i −0.187530 + 0.988819i
\(735\) 0 0
\(736\) 20.2543 14.8819i 0.746584 0.548556i
\(737\) −30.8304 + 53.3999i −1.13565 + 1.96701i
\(738\) 0 0
\(739\) 40.7334 23.5175i 1.49840 0.865104i 0.498405 0.866944i \(-0.333919\pi\)
0.999998 + 0.00184073i \(0.000585924\pi\)
\(740\) 2.93559 2.33698i 0.107915 0.0859089i
\(741\) 0 0
\(742\) 14.4554 16.7830i 0.530675 0.616125i
\(743\) −4.48040 25.4096i −0.164370 0.932189i −0.949712 0.313126i \(-0.898624\pi\)
0.785342 0.619063i \(-0.212487\pi\)
\(744\) 0 0
\(745\) −22.7492 19.0888i −0.833466 0.699361i
\(746\) 3.15233 8.32542i 0.115415 0.304815i
\(747\) 0 0
\(748\) 4.09442 4.63160i 0.149707 0.169348i
\(749\) 5.42901 + 14.9161i 0.198372 + 0.545022i
\(750\) 0 0
\(751\) 27.2407 22.8576i 0.994026 0.834087i 0.00788021 0.999969i \(-0.497492\pi\)
0.986146 + 0.165882i \(0.0530472\pi\)
\(752\) 15.9036 + 14.8068i 0.579944 + 0.539948i
\(753\) 0 0
\(754\) 22.2182 + 39.6551i 0.809140 + 1.44415i
\(755\) 62.6652i 2.28062i
\(756\) 0 0
\(757\) 4.81926i 0.175159i 0.996158 + 0.0875795i \(0.0279132\pi\)
−0.996158 + 0.0875795i \(0.972087\pi\)
\(758\) −21.2761 + 11.9207i −0.772782 + 0.432979i
\(759\) 0 0
\(760\) −8.45280 61.8351i −0.306615 2.24299i
\(761\) −5.92907 + 4.97508i −0.214929 + 0.180347i −0.743896 0.668296i \(-0.767024\pi\)
0.528967 + 0.848642i \(0.322580\pi\)
\(762\) 0 0
\(763\) −0.993570 2.72981i −0.0359697 0.0988258i
\(764\) −0.611294 0.540396i −0.0221158 0.0195508i
\(765\) 0 0
\(766\) −35.4989 13.4413i −1.28263 0.485653i
\(767\) 4.52284 + 3.79511i 0.163310 + 0.137033i
\(768\) 0 0
\(769\) −5.50477 31.2191i −0.198507 1.12579i −0.907335 0.420409i \(-0.861887\pi\)
0.708828 0.705382i \(-0.249224\pi\)
\(770\) −18.8121 16.2031i −0.677941 0.583918i
\(771\) 0 0
\(772\) −34.4297 + 27.4089i −1.23915 + 0.986468i
\(773\) 27.4650 15.8569i 0.987847 0.570334i 0.0832173 0.996531i \(-0.473480\pi\)
0.904630 + 0.426197i \(0.140147\pi\)
\(774\) 0 0
\(775\) −10.2095 + 17.6833i −0.366735 + 0.635204i
\(776\) 4.15848 + 3.77279i 0.149281 + 0.135435i
\(777\) 0 0
\(778\) −21.9808 4.16868i −0.788050 0.149454i
\(779\) −5.21424 + 14.3260i −0.186820 + 0.513283i
\(780\) 0 0
\(781\) 3.53506 + 0.623327i 0.126494 + 0.0223044i
\(782\) 3.47258 2.83836i 0.124179 0.101500i
\(783\) 0 0
\(784\) 18.9202 + 8.01347i 0.675722 + 0.286196i
\(785\) 4.58579 26.0073i 0.163674 0.928241i
\(786\) 0 0
\(787\) −2.68876 + 7.38730i −0.0958438 + 0.263329i −0.978345 0.206982i \(-0.933636\pi\)
0.882501 + 0.470311i \(0.155858\pi\)
\(788\) −36.6071 + 19.8948i −1.30407 + 0.708723i
\(789\) 0 0
\(790\) 25.5216 + 15.1769i 0.908016 + 0.539969i
\(791\) 11.9196 20.6453i 0.423812 0.734063i
\(792\) 0 0
\(793\) 1.49770 + 2.59409i 0.0531849 + 0.0921189i
\(794\) 0.660178 51.2057i 0.0234288 1.81722i
\(795\) 0 0
\(796\) 6.13752 + 0.158284i 0.217539 + 0.00561024i
\(797\) 34.5495 6.09202i 1.22381 0.215790i 0.475844 0.879530i \(-0.342143\pi\)
0.747964 + 0.663740i \(0.231032\pi\)
\(798\) 0 0
\(799\) 2.97032 + 2.49239i 0.105082 + 0.0881746i
\(800\) 15.6305 + 14.9334i 0.552623 + 0.527974i
\(801\) 0 0
\(802\) 7.24867 + 44.4530i 0.255959 + 1.56969i
\(803\) −21.6019 59.3509i −0.762316 2.09445i
\(804\) 0 0
\(805\) −11.5784 13.7986i −0.408086 0.486338i
\(806\) 11.7796 + 33.7102i 0.414920 + 1.18739i
\(807\) 0 0
\(808\) 3.70024 + 11.5360i 0.130174 + 0.405834i
\(809\) −42.6190 −1.49840 −0.749202 0.662341i \(-0.769563\pi\)
−0.749202 + 0.662341i \(0.769563\pi\)
\(810\) 0 0
\(811\) 40.0596i 1.40668i −0.710852 0.703341i \(-0.751691\pi\)
0.710852 0.703341i \(-0.248309\pi\)
\(812\) −6.79834 + 17.2787i −0.238575 + 0.606362i
\(813\) 0 0
\(814\) 3.65187 1.27610i 0.127998 0.0447274i
\(815\) 40.4468 33.9389i 1.41679 1.18883i
\(816\) 0 0
\(817\) −26.4495 + 9.62683i −0.925351 + 0.336800i
\(818\) −3.75775 23.0447i −0.131387 0.805739i
\(819\) 0 0
\(820\) −3.87250 11.5585i −0.135233 0.403639i
\(821\) −1.07655 + 1.28299i −0.0375720 + 0.0447766i −0.784503 0.620125i \(-0.787082\pi\)
0.746931 + 0.664901i \(0.231526\pi\)
\(822\) 0 0
\(823\) 0.234450 + 1.32963i 0.00817242 + 0.0463481i 0.988621 0.150426i \(-0.0480645\pi\)
−0.980449 + 0.196774i \(0.936953\pi\)
\(824\) 24.9284 19.3254i 0.868423 0.673231i
\(825\) 0 0
\(826\) −0.0310917 + 2.41158i −0.00108182 + 0.0839096i
\(827\) −10.0199 + 5.78501i −0.348427 + 0.201165i −0.663992 0.747739i \(-0.731139\pi\)
0.315565 + 0.948904i \(0.397806\pi\)
\(828\) 0 0
\(829\) 34.1730 + 19.7298i 1.18688 + 0.685243i 0.957595 0.288117i \(-0.0930292\pi\)
0.229281 + 0.973360i \(0.426363\pi\)
\(830\) −2.81239 + 4.72933i −0.0976193 + 0.164157i
\(831\) 0 0
\(832\) 37.6269 3.66818i 1.30448 0.127171i
\(833\) 3.44542 + 1.25403i 0.119377 + 0.0434496i
\(834\) 0 0
\(835\) −20.2179 3.56496i −0.699668 0.123370i
\(836\) 12.8029 63.0561i 0.442798 2.18084i
\(837\) 0 0
\(838\) 16.5011 + 20.1882i 0.570022 + 0.697390i
\(839\) 6.51330 36.9388i 0.224864 1.27527i −0.638080 0.769970i \(-0.720271\pi\)
0.862945 0.505299i \(-0.168618\pi\)
\(840\) 0 0
\(841\) 16.2198 + 5.90354i 0.559305 + 0.203570i
\(842\) −13.6816 2.59473i −0.471499 0.0894202i
\(843\) 0 0
\(844\) −4.57161 + 0.685083i −0.157361 + 0.0235815i
\(845\) −24.0031 13.8582i −0.825732 0.476737i
\(846\) 0 0
\(847\) −5.29105 9.16436i −0.181803 0.314891i
\(848\) −40.8789 + 20.8696i −1.40379 + 0.716667i
\(849\) 0 0
\(850\) 2.92283 + 2.51746i 0.100252 + 0.0863482i
\(851\) 2.76390 0.487351i 0.0947454 0.0167062i
\(852\) 0 0
\(853\) 16.8181 20.0430i 0.575840 0.686260i −0.396978 0.917828i \(-0.629941\pi\)
0.972819 + 0.231568i \(0.0743856\pi\)
\(854\) −0.433280 + 1.14431i −0.0148265 + 0.0391574i
\(855\) 0 0
\(856\) 1.27180 32.8671i 0.0434692 1.12337i
\(857\) 19.6602 7.15571i 0.671578 0.244434i 0.0163509 0.999866i \(-0.494795\pi\)
0.655227 + 0.755432i \(0.272573\pi\)
\(858\) 0 0
\(859\) 18.2371 + 21.7341i 0.622241 + 0.741558i 0.981454 0.191698i \(-0.0613993\pi\)
−0.359213 + 0.933256i \(0.616955\pi\)
\(860\) 11.7516 19.1939i 0.400727 0.654508i
\(861\) 0 0
\(862\) −3.87752 6.92060i −0.132069 0.235716i
\(863\) 37.5798 1.27923 0.639616 0.768694i \(-0.279093\pi\)
0.639616 + 0.768694i \(0.279093\pi\)
\(864\) 0 0
\(865\) 67.7381 2.30316
\(866\) −15.0557 26.8714i −0.511614 0.913129i
\(867\) 0 0
\(868\) −7.61665 + 12.4403i −0.258526 + 0.422251i
\(869\) 19.6775 + 23.4507i 0.667512 + 0.795510i
\(870\) 0 0
\(871\) −63.2307 + 23.0141i −2.14249 + 0.779802i
\(872\) −0.232753 + 6.01505i −0.00788203 + 0.203695i
\(873\) 0 0
\(874\) 16.5299 43.6561i 0.559134 1.47669i
\(875\) −3.07116 + 3.66007i −0.103824 + 0.123733i
\(876\) 0 0
\(877\) −23.8777 + 4.21027i −0.806291 + 0.142171i −0.561577 0.827424i \(-0.689805\pi\)
−0.244714 + 0.969595i \(0.578694\pi\)
\(878\) 16.2383 + 13.9862i 0.548018 + 0.472013i
\(879\) 0 0
\(880\) 23.3928 + 45.8212i 0.788571 + 1.54463i
\(881\) 15.8494 + 27.4519i 0.533980 + 0.924880i 0.999212 + 0.0396911i \(0.0126374\pi\)
−0.465232 + 0.885189i \(0.654029\pi\)
\(882\) 0 0
\(883\) −19.1513 11.0570i −0.644492 0.372098i 0.141851 0.989888i \(-0.454695\pi\)
−0.786343 + 0.617790i \(0.788028\pi\)
\(884\) 6.67163 0.999783i 0.224391 0.0336263i
\(885\) 0 0
\(886\) −14.5097 2.75177i −0.487461 0.0924474i
\(887\) −0.923934 0.336285i −0.0310227 0.0112913i 0.326462 0.945210i \(-0.394143\pi\)
−0.357485 + 0.933919i \(0.616366\pi\)
\(888\) 0 0
\(889\) 1.31904 7.48065i 0.0442392 0.250893i
\(890\) 14.1617 + 17.3260i 0.474700 + 0.580769i
\(891\) 0 0
\(892\) −1.43995 + 7.09197i −0.0482132 + 0.237457i
\(893\) 39.7446 + 7.00804i 1.33000 + 0.234515i
\(894\) 0 0
\(895\) 34.9567 + 12.7232i 1.16847 + 0.425290i
\(896\) 10.8873 + 10.9523i 0.363720 + 0.365892i
\(897\) 0 0
\(898\) −19.5091 + 32.8067i −0.651028 + 1.09477i
\(899\) 31.4731 + 18.1710i 1.04969 + 0.606036i
\(900\) 0 0
\(901\) −7.09295 + 4.09512i −0.236300 + 0.136428i
\(902\) 0.162014 12.5664i 0.00539447 0.418414i
\(903\) 0 0
\(904\) −39.0404 + 30.2654i −1.29846 + 1.00661i
\(905\) 6.35058 + 36.0159i 0.211100 + 1.19721i
\(906\) 0 0
\(907\) −26.0101 + 30.9976i −0.863651 + 1.02926i 0.135607 + 0.990763i \(0.456701\pi\)
−0.999259 + 0.0384971i \(0.987743\pi\)
\(908\) −12.5228 37.3775i −0.415583 1.24041i
\(909\) 0 0
\(910\) −4.36048 26.7410i −0.144548 0.886454i
\(911\) −28.6333 + 10.4217i −0.948664 + 0.345286i −0.769582 0.638548i \(-0.779535\pi\)
−0.179083 + 0.983834i \(0.557313\pi\)
\(912\) 0 0
\(913\) −4.34558 + 3.64637i −0.143818 + 0.120677i
\(914\) 38.9507 13.6109i 1.28838 0.450207i
\(915\) 0 0
\(916\) −12.8645 + 32.6963i −0.425054 + 1.08032i
\(917\) 13.0579i 0.431209i
\(918\) 0 0
\(919\) −28.9703 −0.955641 −0.477820 0.878458i \(-0.658573\pi\)
−0.477820 + 0.878458i \(0.658573\pi\)
\(920\) 11.4002 + 35.5414i 0.375852 + 1.17177i
\(921\) 0 0
\(922\) 1.98952 + 5.69349i 0.0655214 + 0.187505i
\(923\) 2.51794 + 3.00076i 0.0828789 + 0.0987713i
\(924\) 0 0
\(925\) 0.825603 + 2.26832i 0.0271456 + 0.0745821i
\(926\) −6.39933 39.2444i −0.210295 1.28965i
\(927\) 0 0
\(928\) 26.5786 27.8195i 0.872486 0.913219i
\(929\) 21.4798 + 18.0237i 0.704730 + 0.591338i 0.923115 0.384524i \(-0.125634\pi\)
−0.218385 + 0.975863i \(0.570079\pi\)
\(930\) 0 0
\(931\) 37.5824 6.62680i 1.23171 0.217185i
\(932\) 38.1343 + 0.983471i 1.24913 + 0.0322147i
\(933\) 0 0
\(934\) −0.123515 + 9.58023i −0.00404153 + 0.313475i
\(935\) 4.59022 + 7.95049i 0.150116 + 0.260009i
\(936\) 0 0
\(937\) −10.0264 + 17.3662i −0.327548 + 0.567329i −0.982025 0.188753i \(-0.939556\pi\)
0.654477 + 0.756082i \(0.272889\pi\)
\(938\) −23.6250 14.0491i −0.771385 0.458719i
\(939\) 0 0
\(940\) −28.3526 + 15.4087i −0.924760 + 0.502578i
\(941\) 7.11484 19.5479i 0.231937 0.637242i −0.768058 0.640380i \(-0.778777\pi\)
0.999995 + 0.00313816i \(0.000998909\pi\)
\(942\) 0 0
\(943\) 1.58327 8.97916i 0.0515583 0.292402i
\(944\) 1.94904 4.60179i 0.0634360 0.149775i
\(945\) 0 0
\(946\) 17.9650 14.6840i 0.584094 0.477418i
\(947\) −31.3017 5.51933i −1.01717 0.179354i −0.359884 0.932997i \(-0.617184\pi\)
−0.657284 + 0.753643i \(0.728295\pi\)
\(948\) 0 0
\(949\) 23.5735 64.7678i 0.765230 2.10245i
\(950\) 39.4469 + 7.48114i 1.27983 + 0.242720i
\(951\) 0 0
\(952\) 2.04093 + 1.85164i 0.0661471 + 0.0600121i
\(953\) 6.86849 11.8966i 0.222492 0.385368i −0.733072 0.680151i \(-0.761914\pi\)
0.955564 + 0.294783i \(0.0952475\pi\)
\(954\) 0 0
\(955\) 1.04933 0.605833i 0.0339556 0.0196043i
\(956\) −2.33069 + 1.85542i −0.0753798 + 0.0600085i
\(957\) 0 0
\(958\) 37.6994 + 32.4709i 1.21801 + 1.04909i
\(959\) 0.902910 + 5.12065i 0.0291565 + 0.165355i
\(960\) 0 0
\(961\) −1.87694 1.57494i −0.0605465 0.0508046i
\(962\) 3.94795 + 1.49485i 0.127287 + 0.0481959i
\(963\) 0 0
\(964\) 6.61058 + 5.84388i 0.212913 + 0.188219i
\(965\) −22.3521 61.4119i −0.719539 1.97692i
\(966\) 0 0
\(967\) 10.5560 8.85755i 0.339458 0.284839i −0.457082 0.889424i \(-0.651105\pi\)
0.796541 + 0.604585i \(0.206661\pi\)
\(968\) 2.96985 + 21.7254i 0.0954545 + 0.698282i
\(969\) 0 0
\(970\) −7.27439 + 4.07575i −0.233567 + 0.130864i
\(971\) 1.88573i 0.0605161i 0.999542 + 0.0302580i \(0.00963290\pi\)
−0.999542 + 0.0302580i \(0.990367\pi\)
\(972\) 0 0
\(973\) 1.72833i 0.0554077i
\(974\) −4.64118 8.28358i −0.148713 0.265423i
\(975\) 0 0
\(976\) 1.72769 1.85567i 0.0553021 0.0593985i
\(977\) 19.2464 16.1496i 0.615746 0.516672i −0.280717 0.959790i \(-0.590572\pi\)
0.896463 + 0.443119i \(0.146128\pi\)
\(978\) 0 0
\(979\) 7.89048 + 21.6789i 0.252181 + 0.692861i
\(980\) −20.2099 + 22.8614i −0.645583 + 0.730281i
\(981\) 0 0
\(982\) −2.22621 + 5.87949i −0.0710412 + 0.187622i
\(983\) 38.8553 + 32.6035i 1.23929 + 1.03989i 0.997579 + 0.0695429i \(0.0221541\pi\)
0.241714 + 0.970348i \(0.422290\pi\)
\(984\) 0 0
\(985\) −10.7441 60.9330i −0.342336 1.94149i
\(986\) 4.48061 5.20209i 0.142692 0.165668i
\(987\) 0 0
\(988\) 54.9337 43.7318i 1.74767 1.39129i
\(989\) 14.5783 8.41679i 0.463563 0.267638i
\(990\) 0 0
\(991\) −16.9675 + 29.3886i −0.538991 + 0.933559i 0.459968 + 0.887936i \(0.347861\pi\)
−0.998959 + 0.0456239i \(0.985472\pi\)
\(992\) 24.3577 17.8969i 0.773357 0.568227i
\(993\) 0 0
\(994\) −0.298153 + 1.57212i −0.00945685 + 0.0498646i
\(995\) −3.11838 + 8.56769i −0.0988594 + 0.271614i
\(996\) 0 0
\(997\) −14.9293 2.63244i −0.472817 0.0833703i −0.0678377 0.997696i \(-0.521610\pi\)
−0.404979 + 0.914326i \(0.632721\pi\)
\(998\) −17.8590 21.8494i −0.565316 0.691632i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.397.24 204
3.2 odd 2 216.2.t.a.133.11 yes 204
8.5 even 2 inner 648.2.t.a.397.8 204
12.11 even 2 864.2.bf.a.241.7 204
24.5 odd 2 216.2.t.a.133.27 yes 204
24.11 even 2 864.2.bf.a.241.28 204
27.13 even 9 inner 648.2.t.a.253.8 204
27.14 odd 18 216.2.t.a.13.27 yes 204
108.95 even 18 864.2.bf.a.337.28 204
216.13 even 18 inner 648.2.t.a.253.24 204
216.149 odd 18 216.2.t.a.13.11 204
216.203 even 18 864.2.bf.a.337.7 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.11 204 216.149 odd 18
216.2.t.a.13.27 yes 204 27.14 odd 18
216.2.t.a.133.11 yes 204 3.2 odd 2
216.2.t.a.133.27 yes 204 24.5 odd 2
648.2.t.a.253.8 204 27.13 even 9 inner
648.2.t.a.253.24 204 216.13 even 18 inner
648.2.t.a.397.8 204 8.5 even 2 inner
648.2.t.a.397.24 204 1.1 even 1 trivial
864.2.bf.a.241.7 204 12.11 even 2
864.2.bf.a.241.28 204 24.11 even 2
864.2.bf.a.337.7 204 216.203 even 18
864.2.bf.a.337.28 204 108.95 even 18