Properties

Label 648.2.t.a.397.15
Level $648$
Weight $2$
Character 648.397
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 397.15
Character \(\chi\) \(=\) 648.397
Dual form 648.2.t.a.253.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.289471 + 1.38427i) q^{2} +(-1.83241 - 0.801412i) q^{4} +(1.55785 + 1.85658i) q^{5} +(0.763942 - 0.278052i) q^{7} +(1.63980 - 2.30457i) q^{8} +(-3.02096 + 1.61907i) q^{10} +(2.23007 - 2.65769i) q^{11} +(2.83964 - 0.500705i) q^{13} +(0.163761 + 1.13799i) q^{14} +(2.71548 + 2.93704i) q^{16} +(3.55127 + 6.15099i) q^{17} +(-5.16371 - 2.98127i) q^{19} +(-1.36675 - 4.65050i) q^{20} +(3.03343 + 3.85634i) q^{22} +(6.58997 + 2.39855i) q^{23} +(-0.151733 + 0.860521i) q^{25} +(-0.128881 + 4.07577i) q^{26} +(-1.62269 - 0.102726i) q^{28} +(-6.59552 - 1.16297i) q^{29} +(2.55724 + 0.930757i) q^{31} +(-4.85171 + 2.90877i) q^{32} +(-9.54262 + 3.13539i) q^{34} +(1.70634 + 0.985154i) q^{35} +(3.59434 - 2.07519i) q^{37} +(5.62163 - 6.28499i) q^{38} +(6.83319 - 0.545766i) q^{40} +(0.742124 + 4.20880i) q^{41} +(-1.77034 + 2.10981i) q^{43} +(-6.21631 + 3.08279i) q^{44} +(-5.22785 + 8.42800i) q^{46} +(-2.80028 + 1.01922i) q^{47} +(-4.85602 + 4.07468i) q^{49} +(-1.14727 - 0.459136i) q^{50} +(-5.60467 - 1.35822i) q^{52} +7.38929i q^{53} +8.40834 q^{55} +(0.611922 - 2.21651i) q^{56} +(3.51907 - 8.79334i) q^{58} +(4.72368 + 5.62947i) q^{59} +(0.0900385 + 0.247379i) q^{61} +(-2.02867 + 3.27048i) q^{62} +(-2.62210 - 7.55808i) q^{64} +(5.35335 + 4.49199i) q^{65} +(2.20513 - 0.388825i) q^{67} +(-1.57793 - 14.1172i) q^{68} +(-1.85765 + 2.07686i) q^{70} +(-2.69918 - 4.67512i) q^{71} +(-1.97245 + 3.41639i) q^{73} +(1.83217 + 5.57624i) q^{74} +(7.07283 + 9.60118i) q^{76} +(0.964666 - 2.65040i) q^{77} +(1.76846 - 10.0295i) q^{79} +(-1.22252 + 9.61697i) q^{80} +(-6.04094 - 0.191022i) q^{82} +(-7.86515 - 1.38684i) q^{83} +(-5.88742 + 16.1756i) q^{85} +(-2.40809 - 3.06136i) q^{86} +(-2.46797 - 9.49744i) q^{88} +(-2.14833 + 3.72101i) q^{89} +(2.03010 - 1.17208i) q^{91} +(-10.1533 - 9.67643i) q^{92} +(-0.600276 - 4.17138i) q^{94} +(-2.50935 - 14.2312i) q^{95} +(4.28345 + 3.59424i) q^{97} +(-4.23479 - 7.90155i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.289471 + 1.38427i −0.204687 + 0.978828i
\(3\) 0 0
\(4\) −1.83241 0.801412i −0.916207 0.400706i
\(5\) 1.55785 + 1.85658i 0.696694 + 0.830287i 0.992148 0.125070i \(-0.0399154\pi\)
−0.295454 + 0.955357i \(0.595471\pi\)
\(6\) 0 0
\(7\) 0.763942 0.278052i 0.288743 0.105094i −0.193588 0.981083i \(-0.562012\pi\)
0.482331 + 0.875989i \(0.339790\pi\)
\(8\) 1.63980 2.30457i 0.579758 0.814789i
\(9\) 0 0
\(10\) −3.02096 + 1.61907i −0.955312 + 0.511994i
\(11\) 2.23007 2.65769i 0.672391 0.801324i −0.316716 0.948520i \(-0.602580\pi\)
0.989107 + 0.147196i \(0.0470248\pi\)
\(12\) 0 0
\(13\) 2.83964 0.500705i 0.787574 0.138871i 0.234626 0.972086i \(-0.424614\pi\)
0.552949 + 0.833215i \(0.313502\pi\)
\(14\) 0.163761 + 1.13799i 0.0437669 + 0.304141i
\(15\) 0 0
\(16\) 2.71548 + 2.93704i 0.678869 + 0.734259i
\(17\) 3.55127 + 6.15099i 0.861310 + 1.49183i 0.870665 + 0.491877i \(0.163689\pi\)
−0.00935441 + 0.999956i \(0.502978\pi\)
\(18\) 0 0
\(19\) −5.16371 2.98127i −1.18464 0.683950i −0.227554 0.973765i \(-0.573073\pi\)
−0.957083 + 0.289815i \(0.906406\pi\)
\(20\) −1.36675 4.65050i −0.305614 1.03988i
\(21\) 0 0
\(22\) 3.03343 + 3.85634i 0.646729 + 0.822175i
\(23\) 6.58997 + 2.39855i 1.37410 + 0.500133i 0.920386 0.391012i \(-0.127875\pi\)
0.453719 + 0.891145i \(0.350097\pi\)
\(24\) 0 0
\(25\) −0.151733 + 0.860521i −0.0303466 + 0.172104i
\(26\) −0.128881 + 4.07577i −0.0252757 + 0.799325i
\(27\) 0 0
\(28\) −1.62269 0.102726i −0.306660 0.0194134i
\(29\) −6.59552 1.16297i −1.22476 0.215958i −0.476385 0.879237i \(-0.658053\pi\)
−0.748372 + 0.663279i \(0.769164\pi\)
\(30\) 0 0
\(31\) 2.55724 + 0.930757i 0.459293 + 0.167169i 0.561296 0.827615i \(-0.310303\pi\)
−0.102003 + 0.994784i \(0.532525\pi\)
\(32\) −4.85171 + 2.90877i −0.857669 + 0.514203i
\(33\) 0 0
\(34\) −9.54262 + 3.13539i −1.63655 + 0.537716i
\(35\) 1.70634 + 0.985154i 0.288423 + 0.166521i
\(36\) 0 0
\(37\) 3.59434 2.07519i 0.590905 0.341159i −0.174550 0.984648i \(-0.555847\pi\)
0.765455 + 0.643489i \(0.222514\pi\)
\(38\) 5.62163 6.28499i 0.911949 1.01956i
\(39\) 0 0
\(40\) 6.83319 0.545766i 1.08042 0.0862932i
\(41\) 0.742124 + 4.20880i 0.115900 + 0.657304i 0.986301 + 0.164959i \(0.0527490\pi\)
−0.870400 + 0.492345i \(0.836140\pi\)
\(42\) 0 0
\(43\) −1.77034 + 2.10981i −0.269975 + 0.321743i −0.883950 0.467582i \(-0.845125\pi\)
0.613975 + 0.789326i \(0.289570\pi\)
\(44\) −6.21631 + 3.08279i −0.937145 + 0.464748i
\(45\) 0 0
\(46\) −5.22785 + 8.42800i −0.770805 + 1.24264i
\(47\) −2.80028 + 1.01922i −0.408463 + 0.148668i −0.538076 0.842896i \(-0.680849\pi\)
0.129613 + 0.991565i \(0.458626\pi\)
\(48\) 0 0
\(49\) −4.85602 + 4.07468i −0.693717 + 0.582097i
\(50\) −1.14727 0.459136i −0.162249 0.0649316i
\(51\) 0 0
\(52\) −5.60467 1.35822i −0.777227 0.188352i
\(53\) 7.38929i 1.01500i 0.861653 + 0.507498i \(0.169430\pi\)
−0.861653 + 0.507498i \(0.830570\pi\)
\(54\) 0 0
\(55\) 8.40834 1.13378
\(56\) 0.611922 2.21651i 0.0817716 0.296194i
\(57\) 0 0
\(58\) 3.51907 8.79334i 0.462077 1.15462i
\(59\) 4.72368 + 5.62947i 0.614971 + 0.732894i 0.980197 0.198025i \(-0.0634526\pi\)
−0.365226 + 0.930919i \(0.619008\pi\)
\(60\) 0 0
\(61\) 0.0900385 + 0.247379i 0.0115283 + 0.0316736i 0.945323 0.326135i \(-0.105746\pi\)
−0.933795 + 0.357808i \(0.883524\pi\)
\(62\) −2.02867 + 3.27048i −0.257641 + 0.415351i
\(63\) 0 0
\(64\) −2.62210 7.55808i −0.327762 0.944760i
\(65\) 5.35335 + 4.49199i 0.664001 + 0.557163i
\(66\) 0 0
\(67\) 2.20513 0.388825i 0.269400 0.0475025i −0.0373162 0.999304i \(-0.511881\pi\)
0.306716 + 0.951801i \(0.400770\pi\)
\(68\) −1.57793 14.1172i −0.191352 1.71196i
\(69\) 0 0
\(70\) −1.85765 + 2.07686i −0.222032 + 0.248232i
\(71\) −2.69918 4.67512i −0.320334 0.554835i 0.660223 0.751070i \(-0.270462\pi\)
−0.980557 + 0.196235i \(0.937129\pi\)
\(72\) 0 0
\(73\) −1.97245 + 3.41639i −0.230858 + 0.399858i −0.958061 0.286565i \(-0.907487\pi\)
0.727203 + 0.686423i \(0.240820\pi\)
\(74\) 1.83217 + 5.57624i 0.212986 + 0.648225i
\(75\) 0 0
\(76\) 7.07283 + 9.60118i 0.811309 + 1.10133i
\(77\) 0.964666 2.65040i 0.109934 0.302041i
\(78\) 0 0
\(79\) 1.76846 10.0295i 0.198968 1.12840i −0.707686 0.706527i \(-0.750261\pi\)
0.906654 0.421875i \(-0.138628\pi\)
\(80\) −1.22252 + 9.61697i −0.136682 + 1.07521i
\(81\) 0 0
\(82\) −6.04094 0.191022i −0.667110 0.0210949i
\(83\) −7.86515 1.38684i −0.863312 0.152225i −0.275577 0.961279i \(-0.588869\pi\)
−0.587735 + 0.809054i \(0.699980\pi\)
\(84\) 0 0
\(85\) −5.88742 + 16.1756i −0.638581 + 1.75449i
\(86\) −2.40809 3.06136i −0.259671 0.330115i
\(87\) 0 0
\(88\) −2.46797 9.49744i −0.263087 1.01243i
\(89\) −2.14833 + 3.72101i −0.227722 + 0.394426i −0.957133 0.289650i \(-0.906461\pi\)
0.729410 + 0.684076i \(0.239794\pi\)
\(90\) 0 0
\(91\) 2.03010 1.17208i 0.212812 0.122867i
\(92\) −10.1533 9.67643i −1.05856 1.00884i
\(93\) 0 0
\(94\) −0.600276 4.17138i −0.0619137 0.430245i
\(95\) −2.50935 14.2312i −0.257454 1.46009i
\(96\) 0 0
\(97\) 4.28345 + 3.59424i 0.434918 + 0.364940i 0.833804 0.552061i \(-0.186159\pi\)
−0.398886 + 0.917001i \(0.630603\pi\)
\(98\) −4.23479 7.90155i −0.427778 0.798177i
\(99\) 0 0
\(100\) 0.967670 1.45523i 0.0967670 0.145523i
\(101\) −5.64914 15.5209i −0.562110 1.54438i −0.816537 0.577293i \(-0.804109\pi\)
0.254427 0.967092i \(-0.418113\pi\)
\(102\) 0 0
\(103\) 14.0312 11.7736i 1.38254 1.16009i 0.414278 0.910151i \(-0.364034\pi\)
0.968262 0.249938i \(-0.0804101\pi\)
\(104\) 3.50254 7.36521i 0.343452 0.722218i
\(105\) 0 0
\(106\) −10.2288 2.13898i −0.993506 0.207756i
\(107\) 17.0660i 1.64983i −0.565254 0.824917i \(-0.691222\pi\)
0.565254 0.824917i \(-0.308778\pi\)
\(108\) 0 0
\(109\) 18.3759i 1.76009i −0.474890 0.880045i \(-0.657512\pi\)
0.474890 0.880045i \(-0.342488\pi\)
\(110\) −2.43397 + 11.6394i −0.232070 + 1.10978i
\(111\) 0 0
\(112\) 2.89112 + 1.48868i 0.273185 + 0.140667i
\(113\) −6.55711 + 5.50207i −0.616841 + 0.517591i −0.896809 0.442418i \(-0.854121\pi\)
0.279968 + 0.960009i \(0.409676\pi\)
\(114\) 0 0
\(115\) 5.81311 + 15.9714i 0.542076 + 1.48934i
\(116\) 11.1537 + 7.41677i 1.03560 + 0.688630i
\(117\) 0 0
\(118\) −9.16008 + 4.90929i −0.843254 + 0.451937i
\(119\) 4.42326 + 3.71156i 0.405480 + 0.340238i
\(120\) 0 0
\(121\) −0.179992 1.02079i −0.0163629 0.0927987i
\(122\) −0.368503 + 0.0530288i −0.0333627 + 0.00480100i
\(123\) 0 0
\(124\) −3.93999 3.75493i −0.353822 0.337203i
\(125\) 8.66046 5.00012i 0.774615 0.447224i
\(126\) 0 0
\(127\) −2.28240 + 3.95324i −0.202530 + 0.350793i −0.949343 0.314242i \(-0.898250\pi\)
0.746813 + 0.665034i \(0.231583\pi\)
\(128\) 11.2215 1.44185i 0.991846 0.127443i
\(129\) 0 0
\(130\) −7.76777 + 6.11018i −0.681278 + 0.535898i
\(131\) −4.55139 + 12.5048i −0.397657 + 1.09255i 0.565766 + 0.824566i \(0.308581\pi\)
−0.963422 + 0.267987i \(0.913641\pi\)
\(132\) 0 0
\(133\) −4.77372 0.841736i −0.413934 0.0729878i
\(134\) −0.100083 + 3.16506i −0.00864587 + 0.273419i
\(135\) 0 0
\(136\) 19.9988 + 1.90223i 1.71488 + 0.163115i
\(137\) 0.374428 2.12348i 0.0319895 0.181422i −0.964626 0.263621i \(-0.915083\pi\)
0.996616 + 0.0821992i \(0.0261944\pi\)
\(138\) 0 0
\(139\) −0.200125 + 0.549839i −0.0169744 + 0.0466367i −0.947890 0.318596i \(-0.896789\pi\)
0.930916 + 0.365233i \(0.119011\pi\)
\(140\) −2.33720 3.17269i −0.197529 0.268141i
\(141\) 0 0
\(142\) 7.25297 2.38309i 0.608656 0.199985i
\(143\) 5.00187 8.66350i 0.418278 0.724478i
\(144\) 0 0
\(145\) −8.11572 14.0568i −0.673974 1.16736i
\(146\) −4.15824 3.71936i −0.344139 0.307816i
\(147\) 0 0
\(148\) −8.24940 + 0.922063i −0.678096 + 0.0757931i
\(149\) 21.5708 3.80351i 1.76715 0.311596i 0.806888 0.590705i \(-0.201150\pi\)
0.960259 + 0.279109i \(0.0900390\pi\)
\(150\) 0 0
\(151\) 5.91767 + 4.96552i 0.481573 + 0.404088i 0.850995 0.525174i \(-0.176000\pi\)
−0.369422 + 0.929262i \(0.620444\pi\)
\(152\) −15.3380 + 7.01145i −1.24408 + 0.568704i
\(153\) 0 0
\(154\) 3.38963 + 2.10257i 0.273144 + 0.169430i
\(155\) 2.25578 + 6.19769i 0.181188 + 0.497811i
\(156\) 0 0
\(157\) −0.882254 1.05143i −0.0704116 0.0839132i 0.729689 0.683779i \(-0.239665\pi\)
−0.800100 + 0.599866i \(0.795220\pi\)
\(158\) 13.3716 + 5.35127i 1.06378 + 0.425724i
\(159\) 0 0
\(160\) −12.9586 4.47613i −1.02447 0.353869i
\(161\) 5.70128 0.449324
\(162\) 0 0
\(163\) 13.5989i 1.06515i −0.846383 0.532574i \(-0.821225\pi\)
0.846383 0.532574i \(-0.178775\pi\)
\(164\) 2.01310 8.30700i 0.157197 0.648668i
\(165\) 0 0
\(166\) 4.19649 10.4861i 0.325711 0.813875i
\(167\) −3.38292 + 2.83861i −0.261778 + 0.219658i −0.764224 0.644950i \(-0.776878\pi\)
0.502446 + 0.864609i \(0.332434\pi\)
\(168\) 0 0
\(169\) −4.40315 + 1.60262i −0.338704 + 0.123278i
\(170\) −20.6871 12.8321i −1.58663 0.984180i
\(171\) 0 0
\(172\) 4.93483 2.44727i 0.376277 0.186603i
\(173\) −12.4793 + 14.8722i −0.948781 + 1.13071i 0.0425201 + 0.999096i \(0.486461\pi\)
−0.991301 + 0.131617i \(0.957983\pi\)
\(174\) 0 0
\(175\) 0.123355 + 0.699578i 0.00932472 + 0.0528831i
\(176\) 13.8614 0.667109i 1.04485 0.0502853i
\(177\) 0 0
\(178\) −4.52901 4.05099i −0.339464 0.303635i
\(179\) −4.00038 + 2.30962i −0.299002 + 0.172629i −0.641995 0.766709i \(-0.721893\pi\)
0.342992 + 0.939338i \(0.388559\pi\)
\(180\) 0 0
\(181\) 5.55052 + 3.20459i 0.412567 + 0.238195i 0.691892 0.722001i \(-0.256777\pi\)
−0.279325 + 0.960197i \(0.590111\pi\)
\(182\) 1.03482 + 3.14949i 0.0767059 + 0.233456i
\(183\) 0 0
\(184\) 16.3339 11.2539i 1.20415 0.829649i
\(185\) 9.45221 + 3.44032i 0.694940 + 0.252938i
\(186\) 0 0
\(187\) 24.2670 + 4.27893i 1.77458 + 0.312906i
\(188\) 5.94809 + 0.376549i 0.433809 + 0.0274626i
\(189\) 0 0
\(190\) 20.4263 + 0.645905i 1.48188 + 0.0468588i
\(191\) 3.51460 19.9323i 0.254307 1.44225i −0.543537 0.839385i \(-0.682915\pi\)
0.797844 0.602864i \(-0.205974\pi\)
\(192\) 0 0
\(193\) 5.28857 + 1.92488i 0.380680 + 0.138556i 0.525270 0.850935i \(-0.323964\pi\)
−0.144590 + 0.989492i \(0.546186\pi\)
\(194\) −6.21533 + 4.88902i −0.446235 + 0.351011i
\(195\) 0 0
\(196\) 12.1637 3.57483i 0.868838 0.255345i
\(197\) −3.79439 2.19069i −0.270339 0.156080i 0.358703 0.933452i \(-0.383219\pi\)
−0.629042 + 0.777371i \(0.716553\pi\)
\(198\) 0 0
\(199\) −6.64564 11.5106i −0.471097 0.815963i 0.528357 0.849022i \(-0.322808\pi\)
−0.999453 + 0.0330592i \(0.989475\pi\)
\(200\) 1.73432 + 1.76076i 0.122635 + 0.124505i
\(201\) 0 0
\(202\) 23.1204 3.32710i 1.62674 0.234094i
\(203\) −5.36196 + 0.945458i −0.376336 + 0.0663582i
\(204\) 0 0
\(205\) −6.65784 + 7.93450i −0.465004 + 0.554170i
\(206\) 12.2362 + 22.8312i 0.852539 + 1.59072i
\(207\) 0 0
\(208\) 9.18157 + 6.98047i 0.636627 + 0.484009i
\(209\) −19.4387 + 7.07512i −1.34460 + 0.489396i
\(210\) 0 0
\(211\) −16.0858 19.1703i −1.10739 1.31974i −0.942794 0.333376i \(-0.891812\pi\)
−0.164597 0.986361i \(-0.552632\pi\)
\(212\) 5.92186 13.5402i 0.406715 0.929946i
\(213\) 0 0
\(214\) 23.6240 + 4.94011i 1.61490 + 0.337699i
\(215\) −6.67497 −0.455229
\(216\) 0 0
\(217\) 2.21238 0.150186
\(218\) 25.4372 + 5.31928i 1.72283 + 0.360267i
\(219\) 0 0
\(220\) −15.4076 6.73854i −1.03878 0.454313i
\(221\) 13.1642 + 15.6884i 0.885518 + 1.05532i
\(222\) 0 0
\(223\) 1.52221 0.554040i 0.101935 0.0371013i −0.290549 0.956860i \(-0.593838\pi\)
0.392484 + 0.919759i \(0.371616\pi\)
\(224\) −2.89763 + 3.57116i −0.193606 + 0.238608i
\(225\) 0 0
\(226\) −5.71827 10.6695i −0.380373 0.709725i
\(227\) −4.47903 + 5.33790i −0.297284 + 0.354289i −0.893923 0.448221i \(-0.852058\pi\)
0.596639 + 0.802510i \(0.296502\pi\)
\(228\) 0 0
\(229\) −24.7618 + 4.36618i −1.63631 + 0.288525i −0.914808 0.403890i \(-0.867658\pi\)
−0.721500 + 0.692415i \(0.756547\pi\)
\(230\) −23.7915 + 3.42367i −1.56876 + 0.225750i
\(231\) 0 0
\(232\) −13.4955 + 13.2928i −0.886022 + 0.872716i
\(233\) −7.86096 13.6156i −0.514989 0.891987i −0.999849 0.0173948i \(-0.994463\pi\)
0.484860 0.874592i \(-0.338871\pi\)
\(234\) 0 0
\(235\) −6.25469 3.61115i −0.408011 0.235565i
\(236\) −4.14422 14.1011i −0.269766 0.917905i
\(237\) 0 0
\(238\) −6.41821 + 5.04861i −0.416031 + 0.327253i
\(239\) −14.6050 5.31579i −0.944720 0.343850i −0.176692 0.984266i \(-0.556540\pi\)
−0.768028 + 0.640416i \(0.778762\pi\)
\(240\) 0 0
\(241\) −2.19088 + 12.4251i −0.141127 + 0.800370i 0.829269 + 0.558850i \(0.188757\pi\)
−0.970396 + 0.241520i \(0.922354\pi\)
\(242\) 1.46515 + 0.0463299i 0.0941832 + 0.00297820i
\(243\) 0 0
\(244\) 0.0332646 0.525458i 0.00212955 0.0336390i
\(245\) −15.1299 2.66782i −0.966616 0.170441i
\(246\) 0 0
\(247\) −16.1558 5.88024i −1.02797 0.374151i
\(248\) 6.33836 4.36707i 0.402486 0.277309i
\(249\) 0 0
\(250\) 4.41457 + 13.4358i 0.279202 + 0.849755i
\(251\) −4.86765 2.81034i −0.307244 0.177387i 0.338449 0.940985i \(-0.390098\pi\)
−0.645692 + 0.763598i \(0.723431\pi\)
\(252\) 0 0
\(253\) 21.0707 12.1652i 1.32470 0.764818i
\(254\) −4.81166 4.30381i −0.301910 0.270045i
\(255\) 0 0
\(256\) −1.25237 + 15.9509i −0.0782730 + 0.996932i
\(257\) −3.35726 19.0399i −0.209420 1.18768i −0.890331 0.455313i \(-0.849527\pi\)
0.680911 0.732366i \(-0.261584\pi\)
\(258\) 0 0
\(259\) 2.16885 2.58474i 0.134766 0.160608i
\(260\) −6.20961 12.5214i −0.385103 0.776545i
\(261\) 0 0
\(262\) −15.9926 9.92015i −0.988026 0.612869i
\(263\) −10.8424 + 3.94631i −0.668571 + 0.243340i −0.653932 0.756553i \(-0.726882\pi\)
−0.0146383 + 0.999893i \(0.504660\pi\)
\(264\) 0 0
\(265\) −13.7188 + 11.5114i −0.842739 + 0.707142i
\(266\) 2.54705 6.36447i 0.156169 0.390231i
\(267\) 0 0
\(268\) −4.35233 1.05473i −0.265861 0.0644281i
\(269\) 13.3630i 0.814758i 0.913259 + 0.407379i \(0.133557\pi\)
−0.913259 + 0.407379i \(0.866443\pi\)
\(270\) 0 0
\(271\) 3.26667 0.198436 0.0992182 0.995066i \(-0.468366\pi\)
0.0992182 + 0.995066i \(0.468366\pi\)
\(272\) −8.42227 + 27.1331i −0.510675 + 1.64518i
\(273\) 0 0
\(274\) 2.83109 + 1.13300i 0.171033 + 0.0684468i
\(275\) 1.94863 + 2.32228i 0.117507 + 0.140039i
\(276\) 0 0
\(277\) 0.102104 + 0.280528i 0.00613482 + 0.0168553i 0.942722 0.333579i \(-0.108256\pi\)
−0.936587 + 0.350434i \(0.886034\pi\)
\(278\) −0.703196 0.436190i −0.0421749 0.0261609i
\(279\) 0 0
\(280\) 5.06841 2.31692i 0.302895 0.138462i
\(281\) 13.3262 + 11.1820i 0.794976 + 0.667064i 0.946972 0.321317i \(-0.104126\pi\)
−0.151996 + 0.988381i \(0.548570\pi\)
\(282\) 0 0
\(283\) −1.31422 + 0.231732i −0.0781220 + 0.0137750i −0.212573 0.977145i \(-0.568184\pi\)
0.134451 + 0.990920i \(0.457073\pi\)
\(284\) 1.19932 + 10.7299i 0.0711665 + 0.636704i
\(285\) 0 0
\(286\) 10.5447 + 9.43178i 0.623523 + 0.557713i
\(287\) 1.73720 + 3.00893i 0.102544 + 0.177611i
\(288\) 0 0
\(289\) −16.7231 + 28.9652i −0.983711 + 1.70384i
\(290\) 21.8077 7.16531i 1.28059 0.420762i
\(291\) 0 0
\(292\) 6.35229 4.67949i 0.371739 0.273846i
\(293\) 2.77744 7.63095i 0.162260 0.445805i −0.831743 0.555161i \(-0.812657\pi\)
0.994003 + 0.109356i \(0.0348789\pi\)
\(294\) 0 0
\(295\) −3.09274 + 17.5398i −0.180066 + 1.02121i
\(296\) 1.11157 11.6863i 0.0646089 0.679253i
\(297\) 0 0
\(298\) −0.979021 + 30.9608i −0.0567132 + 1.79351i
\(299\) 19.9141 + 3.51140i 1.15166 + 0.203069i
\(300\) 0 0
\(301\) −0.765801 + 2.10402i −0.0441400 + 0.121274i
\(302\) −8.58661 + 6.75429i −0.494104 + 0.388666i
\(303\) 0 0
\(304\) −5.26584 23.2616i −0.302017 1.33414i
\(305\) −0.319011 + 0.552544i −0.0182665 + 0.0316386i
\(306\) 0 0
\(307\) −22.1985 + 12.8163i −1.26693 + 0.731464i −0.974406 0.224793i \(-0.927829\pi\)
−0.292527 + 0.956257i \(0.594496\pi\)
\(308\) −3.89173 + 4.08353i −0.221752 + 0.232681i
\(309\) 0 0
\(310\) −9.23227 + 1.32855i −0.524358 + 0.0754568i
\(311\) 3.08781 + 17.5119i 0.175094 + 0.993007i 0.938035 + 0.346539i \(0.112643\pi\)
−0.762942 + 0.646467i \(0.776246\pi\)
\(312\) 0 0
\(313\) −25.2201 21.1622i −1.42553 1.19616i −0.948299 0.317377i \(-0.897198\pi\)
−0.477226 0.878781i \(-0.658358\pi\)
\(314\) 1.71085 0.916921i 0.0965489 0.0517448i
\(315\) 0 0
\(316\) −11.2783 + 16.9608i −0.634453 + 0.954122i
\(317\) 2.41535 + 6.63611i 0.135659 + 0.372721i 0.988857 0.148866i \(-0.0475624\pi\)
−0.853198 + 0.521587i \(0.825340\pi\)
\(318\) 0 0
\(319\) −17.7993 + 14.9354i −0.996568 + 0.836220i
\(320\) 9.94732 16.6425i 0.556072 0.930346i
\(321\) 0 0
\(322\) −1.65035 + 7.89212i −0.0919706 + 0.439810i
\(323\) 42.3492i 2.35637i
\(324\) 0 0
\(325\) 2.51954i 0.139759i
\(326\) 18.8246 + 3.93649i 1.04260 + 0.218022i
\(327\) 0 0
\(328\) 10.9164 + 5.19131i 0.602758 + 0.286642i
\(329\) −1.85586 + 1.55725i −0.102317 + 0.0858539i
\(330\) 0 0
\(331\) 4.15163 + 11.4065i 0.228194 + 0.626958i 0.999960 0.00894876i \(-0.00284852\pi\)
−0.771766 + 0.635907i \(0.780626\pi\)
\(332\) 13.3008 + 8.84449i 0.729975 + 0.485404i
\(333\) 0 0
\(334\) −2.95015 5.50457i −0.161425 0.301197i
\(335\) 4.15716 + 3.48827i 0.227130 + 0.190585i
\(336\) 0 0
\(337\) −4.48506 25.4361i −0.244317 1.38559i −0.822074 0.569381i \(-0.807183\pi\)
0.577757 0.816209i \(-0.303928\pi\)
\(338\) −0.943872 6.55907i −0.0513399 0.356766i
\(339\) 0 0
\(340\) 23.7515 24.9221i 1.28811 1.35159i
\(341\) 8.17648 4.72069i 0.442781 0.255640i
\(342\) 0 0
\(343\) −5.42214 + 9.39142i −0.292768 + 0.507089i
\(344\) 1.95920 + 7.53955i 0.105633 + 0.406506i
\(345\) 0 0
\(346\) −16.9748 21.5797i −0.912570 1.16013i
\(347\) −4.43311 + 12.1799i −0.237982 + 0.653849i 0.761999 + 0.647578i \(0.224218\pi\)
−0.999980 + 0.00627055i \(0.998004\pi\)
\(348\) 0 0
\(349\) 1.00479 + 0.177171i 0.0537849 + 0.00948374i 0.200476 0.979699i \(-0.435751\pi\)
−0.146691 + 0.989182i \(0.546862\pi\)
\(350\) −1.00411 0.0317514i −0.0536721 0.00169718i
\(351\) 0 0
\(352\) −3.08902 + 19.3811i −0.164645 + 1.03302i
\(353\) 2.87234 16.2899i 0.152879 0.867022i −0.807820 0.589430i \(-0.799352\pi\)
0.960699 0.277592i \(-0.0895364\pi\)
\(354\) 0 0
\(355\) 4.47480 12.2944i 0.237498 0.652520i
\(356\) 6.91869 5.09673i 0.366690 0.270126i
\(357\) 0 0
\(358\) −2.03915 6.20617i −0.107772 0.328006i
\(359\) −9.03871 + 15.6555i −0.477045 + 0.826266i −0.999654 0.0263063i \(-0.991625\pi\)
0.522609 + 0.852573i \(0.324959\pi\)
\(360\) 0 0
\(361\) 8.27594 + 14.3343i 0.435576 + 0.754439i
\(362\) −6.04274 + 6.75579i −0.317599 + 0.355076i
\(363\) 0 0
\(364\) −4.65930 + 0.520786i −0.244213 + 0.0272966i
\(365\) −9.41559 + 1.66022i −0.492835 + 0.0869000i
\(366\) 0 0
\(367\) −15.6345 13.1189i −0.816112 0.684799i 0.135946 0.990716i \(-0.456593\pi\)
−0.952058 + 0.305917i \(0.901037\pi\)
\(368\) 10.8503 + 25.8682i 0.565610 + 1.34847i
\(369\) 0 0
\(370\) −7.49848 + 12.0886i −0.389827 + 0.628454i
\(371\) 2.05461 + 5.64499i 0.106670 + 0.293073i
\(372\) 0 0
\(373\) 18.6443 + 22.2194i 0.965366 + 1.15048i 0.988572 + 0.150748i \(0.0481681\pi\)
−0.0232061 + 0.999731i \(0.507387\pi\)
\(374\) −12.9478 + 32.3535i −0.669514 + 1.67296i
\(375\) 0 0
\(376\) −2.24304 + 8.12476i −0.115676 + 0.419003i
\(377\) −19.3112 −0.994578
\(378\) 0 0
\(379\) 18.7878i 0.965062i 0.875879 + 0.482531i \(0.160282\pi\)
−0.875879 + 0.482531i \(0.839718\pi\)
\(380\) −6.80691 + 28.0885i −0.349187 + 1.44091i
\(381\) 0 0
\(382\) 26.5743 + 10.6350i 1.35966 + 0.544132i
\(383\) 11.4097 9.57391i 0.583010 0.489204i −0.302924 0.953015i \(-0.597963\pi\)
0.885934 + 0.463811i \(0.153518\pi\)
\(384\) 0 0
\(385\) 6.42348 2.33796i 0.327371 0.119153i
\(386\) −4.19545 + 6.76362i −0.213543 + 0.344259i
\(387\) 0 0
\(388\) −4.96858 10.0189i −0.252241 0.508634i
\(389\) 11.3184 13.4888i 0.573866 0.683907i −0.398553 0.917145i \(-0.630488\pi\)
0.972420 + 0.233238i \(0.0749321\pi\)
\(390\) 0 0
\(391\) 8.64932 + 49.0527i 0.437415 + 2.48070i
\(392\) 1.42749 + 17.8727i 0.0720992 + 0.902708i
\(393\) 0 0
\(394\) 4.13088 4.61833i 0.208111 0.232668i
\(395\) 21.3755 12.3411i 1.07552 0.620950i
\(396\) 0 0
\(397\) 13.1290 + 7.58002i 0.658924 + 0.380430i 0.791867 0.610694i \(-0.209109\pi\)
−0.132943 + 0.991124i \(0.542443\pi\)
\(398\) 17.8575 5.86739i 0.895115 0.294105i
\(399\) 0 0
\(400\) −2.93941 + 1.89108i −0.146971 + 0.0945540i
\(401\) −0.563391 0.205057i −0.0281344 0.0102401i 0.327915 0.944707i \(-0.393654\pi\)
−0.356049 + 0.934467i \(0.615876\pi\)
\(402\) 0 0
\(403\) 7.72766 + 1.36260i 0.384942 + 0.0678757i
\(404\) −2.08706 + 32.9679i −0.103835 + 1.64022i
\(405\) 0 0
\(406\) 0.243360 7.69609i 0.0120778 0.381951i
\(407\) 2.50040 14.1805i 0.123940 0.702899i
\(408\) 0 0
\(409\) 26.7235 + 9.72655i 1.32139 + 0.480947i 0.903904 0.427736i \(-0.140689\pi\)
0.417487 + 0.908683i \(0.362911\pi\)
\(410\) −9.05626 11.5131i −0.447257 0.568590i
\(411\) 0 0
\(412\) −35.1466 + 10.3293i −1.73155 + 0.508889i
\(413\) 5.17391 + 2.98716i 0.254591 + 0.146988i
\(414\) 0 0
\(415\) −9.67799 16.7628i −0.475074 0.822852i
\(416\) −12.3207 + 10.6891i −0.604070 + 0.524078i
\(417\) 0 0
\(418\) −4.16694 28.9565i −0.203812 1.41631i
\(419\) −27.5479 + 4.85743i −1.34580 + 0.237301i −0.799691 0.600412i \(-0.795003\pi\)
−0.546110 + 0.837713i \(0.683892\pi\)
\(420\) 0 0
\(421\) 21.0378 25.0719i 1.02532 1.22193i 0.0505502 0.998722i \(-0.483903\pi\)
0.974771 0.223208i \(-0.0716530\pi\)
\(422\) 31.1932 16.7178i 1.51846 0.813812i
\(423\) 0 0
\(424\) 17.0291 + 12.1170i 0.827008 + 0.588452i
\(425\) −5.83190 + 2.12264i −0.282889 + 0.102963i
\(426\) 0 0
\(427\) 0.137568 + 0.163948i 0.00665740 + 0.00793398i
\(428\) −13.6769 + 31.2720i −0.661098 + 1.51159i
\(429\) 0 0
\(430\) 1.93221 9.23997i 0.0931794 0.445591i
\(431\) 9.98011 0.480725 0.240363 0.970683i \(-0.422734\pi\)
0.240363 + 0.970683i \(0.422734\pi\)
\(432\) 0 0
\(433\) 17.4899 0.840513 0.420257 0.907405i \(-0.361940\pi\)
0.420257 + 0.907405i \(0.361940\pi\)
\(434\) −0.640419 + 3.06253i −0.0307411 + 0.147006i
\(435\) 0 0
\(436\) −14.7267 + 33.6722i −0.705279 + 1.61261i
\(437\) −26.8780 32.0319i −1.28575 1.53229i
\(438\) 0 0
\(439\) 7.21777 2.62705i 0.344485 0.125382i −0.163983 0.986463i \(-0.552434\pi\)
0.508468 + 0.861081i \(0.330212\pi\)
\(440\) 13.7880 19.3776i 0.657317 0.923792i
\(441\) 0 0
\(442\) −25.5277 + 13.6814i −1.21423 + 0.650759i
\(443\) −3.13735 + 3.73895i −0.149060 + 0.177643i −0.835408 0.549631i \(-0.814768\pi\)
0.686348 + 0.727274i \(0.259213\pi\)
\(444\) 0 0
\(445\) −10.2551 + 1.80826i −0.486140 + 0.0857196i
\(446\) 0.326306 + 2.26753i 0.0154510 + 0.107371i
\(447\) 0 0
\(448\) −4.10467 5.04486i −0.193928 0.238347i
\(449\) 2.49179 + 4.31590i 0.117595 + 0.203680i 0.918814 0.394691i \(-0.129148\pi\)
−0.801219 + 0.598371i \(0.795815\pi\)
\(450\) 0 0
\(451\) 12.8407 + 7.41357i 0.604644 + 0.349091i
\(452\) 16.4248 4.82712i 0.772556 0.227049i
\(453\) 0 0
\(454\) −6.09255 7.74536i −0.285938 0.363508i
\(455\) 5.33865 + 1.94311i 0.250280 + 0.0910944i
\(456\) 0 0
\(457\) 3.50014 19.8503i 0.163729 0.928556i −0.786635 0.617418i \(-0.788179\pi\)
0.950365 0.311138i \(-0.100710\pi\)
\(458\) 1.12385 35.5410i 0.0525141 1.66072i
\(459\) 0 0
\(460\) 2.14765 33.9249i 0.100135 1.58176i
\(461\) −33.4428 5.89687i −1.55759 0.274645i −0.672510 0.740088i \(-0.734784\pi\)
−0.885077 + 0.465444i \(0.845895\pi\)
\(462\) 0 0
\(463\) −35.9891 13.0990i −1.67256 0.608760i −0.680295 0.732938i \(-0.738148\pi\)
−0.992260 + 0.124178i \(0.960371\pi\)
\(464\) −14.4943 22.5293i −0.672881 1.04590i
\(465\) 0 0
\(466\) 21.1232 6.94039i 0.978512 0.321507i
\(467\) 9.53283 + 5.50378i 0.441127 + 0.254685i 0.704075 0.710125i \(-0.251362\pi\)
−0.262949 + 0.964810i \(0.584695\pi\)
\(468\) 0 0
\(469\) 1.57648 0.910182i 0.0727951 0.0420283i
\(470\) 6.80936 7.61287i 0.314092 0.351155i
\(471\) 0 0
\(472\) 20.7194 1.65486i 0.953689 0.0761710i
\(473\) 1.65925 + 9.41005i 0.0762922 + 0.432675i
\(474\) 0 0
\(475\) 3.34895 3.99113i 0.153660 0.183125i
\(476\) −5.13076 10.3460i −0.235168 0.474206i
\(477\) 0 0
\(478\) 11.5862 18.6785i 0.529942 0.854337i
\(479\) −21.5794 + 7.85427i −0.985989 + 0.358871i −0.784166 0.620551i \(-0.786909\pi\)
−0.201823 + 0.979422i \(0.564687\pi\)
\(480\) 0 0
\(481\) 9.16757 7.69250i 0.418005 0.350748i
\(482\) −16.5655 6.62947i −0.754537 0.301964i
\(483\) 0 0
\(484\) −0.488250 + 2.01475i −0.0221932 + 0.0915795i
\(485\) 13.5519i 0.615358i
\(486\) 0 0
\(487\) 8.81274 0.399343 0.199672 0.979863i \(-0.436012\pi\)
0.199672 + 0.979863i \(0.436012\pi\)
\(488\) 0.717747 + 0.198152i 0.0324909 + 0.00896992i
\(489\) 0 0
\(490\) 8.07266 20.1717i 0.364685 0.911264i
\(491\) −7.55920 9.00870i −0.341142 0.406557i 0.568010 0.823022i \(-0.307713\pi\)
−0.909152 + 0.416465i \(0.863269\pi\)
\(492\) 0 0
\(493\) −16.2691 44.6990i −0.732723 2.01314i
\(494\) 12.8165 20.6619i 0.576641 0.929622i
\(495\) 0 0
\(496\) 4.21044 + 10.0381i 0.189055 + 0.450726i
\(497\) −3.36195 2.82101i −0.150804 0.126540i
\(498\) 0 0
\(499\) −17.3768 + 3.06399i −0.777891 + 0.137163i −0.548477 0.836166i \(-0.684792\pi\)
−0.229414 + 0.973329i \(0.573681\pi\)
\(500\) −19.8767 + 2.22169i −0.888913 + 0.0993568i
\(501\) 0 0
\(502\) 5.29932 5.92464i 0.236520 0.264430i
\(503\) 10.0037 + 17.3268i 0.446041 + 0.772565i 0.998124 0.0612236i \(-0.0195003\pi\)
−0.552083 + 0.833789i \(0.686167\pi\)
\(504\) 0 0
\(505\) 20.0152 34.6673i 0.890664 1.54268i
\(506\) 10.7406 + 32.6890i 0.477476 + 1.45320i
\(507\) 0 0
\(508\) 7.35047 5.41482i 0.326125 0.240244i
\(509\) 3.57485 9.82182i 0.158452 0.435345i −0.834908 0.550390i \(-0.814479\pi\)
0.993360 + 0.115045i \(0.0367013\pi\)
\(510\) 0 0
\(511\) −0.556906 + 3.15837i −0.0246361 + 0.139718i
\(512\) −21.7179 6.35094i −0.959803 0.280675i
\(513\) 0 0
\(514\) 27.3283 + 0.864155i 1.20540 + 0.0381163i
\(515\) 43.7173 + 7.70853i 1.92641 + 0.339679i
\(516\) 0 0
\(517\) −3.53605 + 9.71521i −0.155515 + 0.427274i
\(518\) 2.95016 + 3.75049i 0.129623 + 0.164787i
\(519\) 0 0
\(520\) 19.1305 4.97119i 0.838930 0.218001i
\(521\) 10.0111 17.3397i 0.438593 0.759665i −0.558988 0.829175i \(-0.688810\pi\)
0.997581 + 0.0695105i \(0.0221437\pi\)
\(522\) 0 0
\(523\) −17.8863 + 10.3267i −0.782114 + 0.451554i −0.837179 0.546929i \(-0.815797\pi\)
0.0550649 + 0.998483i \(0.482463\pi\)
\(524\) 18.3616 19.2665i 0.802129 0.841661i
\(525\) 0 0
\(526\) −2.32421 16.1512i −0.101340 0.704224i
\(527\) 3.35636 + 19.0349i 0.146206 + 0.829173i
\(528\) 0 0
\(529\) 20.0556 + 16.8287i 0.871985 + 0.731682i
\(530\) −11.9638 22.3228i −0.519672 0.969638i
\(531\) 0 0
\(532\) 8.07286 + 5.36813i 0.350003 + 0.232738i
\(533\) 4.21473 + 11.5799i 0.182560 + 0.501580i
\(534\) 0 0
\(535\) 31.6844 26.5864i 1.36984 1.14943i
\(536\) 2.71991 5.71949i 0.117482 0.247044i
\(537\) 0 0
\(538\) −18.4981 3.86821i −0.797508 0.166770i
\(539\) 21.9926i 0.947289i
\(540\) 0 0
\(541\) 31.7185i 1.36368i 0.731499 + 0.681842i \(0.238821\pi\)
−0.731499 + 0.681842i \(0.761179\pi\)
\(542\) −0.945607 + 4.52196i −0.0406173 + 0.194235i
\(543\) 0 0
\(544\) −35.1215 19.5129i −1.50582 0.836610i
\(545\) 34.1163 28.6270i 1.46138 1.22624i
\(546\) 0 0
\(547\) −2.69951 7.41685i −0.115423 0.317122i 0.868507 0.495677i \(-0.165080\pi\)
−0.983930 + 0.178555i \(0.942858\pi\)
\(548\) −2.38789 + 3.59103i −0.102006 + 0.153401i
\(549\) 0 0
\(550\) −3.77874 + 2.02519i −0.161126 + 0.0863545i
\(551\) 30.5902 + 25.6683i 1.30319 + 1.09350i
\(552\) 0 0
\(553\) −1.43771 8.15365i −0.0611376 0.346728i
\(554\) −0.417883 + 0.0601347i −0.0177541 + 0.00255488i
\(555\) 0 0
\(556\) 0.807359 0.847150i 0.0342397 0.0359271i
\(557\) −11.9380 + 6.89241i −0.505829 + 0.292041i −0.731118 0.682251i \(-0.761001\pi\)
0.225288 + 0.974292i \(0.427668\pi\)
\(558\) 0 0
\(559\) −3.97074 + 6.87753i −0.167944 + 0.290888i
\(560\) 1.74008 + 7.68673i 0.0735320 + 0.324824i
\(561\) 0 0
\(562\) −19.3365 + 15.2102i −0.815662 + 0.641605i
\(563\) −4.49431 + 12.3480i −0.189413 + 0.520407i −0.997655 0.0684431i \(-0.978197\pi\)
0.808242 + 0.588850i \(0.200419\pi\)
\(564\) 0 0
\(565\) −20.4301 3.60237i −0.859499 0.151553i
\(566\) 0.0596476 1.88631i 0.00250718 0.0792876i
\(567\) 0 0
\(568\) −15.2003 1.44581i −0.637790 0.0606650i
\(569\) 6.12718 34.7490i 0.256865 1.45675i −0.534376 0.845247i \(-0.679453\pi\)
0.791241 0.611505i \(-0.209436\pi\)
\(570\) 0 0
\(571\) 13.0508 35.8568i 0.546159 1.50056i −0.292697 0.956205i \(-0.594553\pi\)
0.838856 0.544354i \(-0.183225\pi\)
\(572\) −16.1085 + 11.8665i −0.673531 + 0.496165i
\(573\) 0 0
\(574\) −4.66804 + 1.53377i −0.194840 + 0.0640182i
\(575\) −3.06392 + 5.30687i −0.127774 + 0.221312i
\(576\) 0 0
\(577\) −13.9536 24.1683i −0.580895 1.00614i −0.995374 0.0960807i \(-0.969369\pi\)
0.414478 0.910059i \(-0.363964\pi\)
\(578\) −35.2549 31.5339i −1.46641 1.31164i
\(579\) 0 0
\(580\) 3.60603 + 32.2620i 0.149732 + 1.33961i
\(581\) −6.39413 + 1.12746i −0.265273 + 0.0467748i
\(582\) 0 0
\(583\) 19.6384 + 16.4786i 0.813341 + 0.682474i
\(584\) 4.63888 + 10.1479i 0.191958 + 0.419921i
\(585\) 0 0
\(586\) 9.75931 + 6.05366i 0.403153 + 0.250074i
\(587\) 3.04495 + 8.36592i 0.125678 + 0.345299i 0.986535 0.163549i \(-0.0522941\pi\)
−0.860857 + 0.508847i \(0.830072\pi\)
\(588\) 0 0
\(589\) −10.4300 12.4300i −0.429760 0.512168i
\(590\) −23.3846 9.35844i −0.962727 0.385281i
\(591\) 0 0
\(592\) 15.8553 + 4.92156i 0.651647 + 0.202275i
\(593\) 13.6477 0.560446 0.280223 0.959935i \(-0.409592\pi\)
0.280223 + 0.959935i \(0.409592\pi\)
\(594\) 0 0
\(595\) 13.9942i 0.573706i
\(596\) −42.5748 10.3175i −1.74393 0.422621i
\(597\) 0 0
\(598\) −10.6253 + 26.5501i −0.434500 + 1.08571i
\(599\) −23.2233 + 19.4867i −0.948878 + 0.796203i −0.979108 0.203340i \(-0.934820\pi\)
0.0302302 + 0.999543i \(0.490376\pi\)
\(600\) 0 0
\(601\) 2.85426 1.03887i 0.116428 0.0423762i −0.283149 0.959076i \(-0.591379\pi\)
0.399577 + 0.916700i \(0.369157\pi\)
\(602\) −2.69086 1.66913i −0.109671 0.0680286i
\(603\) 0 0
\(604\) −6.86419 13.8414i −0.279300 0.563197i
\(605\) 1.61477 1.92441i 0.0656497 0.0782382i
\(606\) 0 0
\(607\) −4.34423 24.6374i −0.176327 0.999999i −0.936601 0.350397i \(-0.886047\pi\)
0.760274 0.649602i \(-0.225065\pi\)
\(608\) 33.7246 0.555803i 1.36771 0.0225408i
\(609\) 0 0
\(610\) −0.672526 0.601543i −0.0272298 0.0243558i
\(611\) −7.44146 + 4.29633i −0.301049 + 0.173811i
\(612\) 0 0
\(613\) −11.1629 6.44490i −0.450865 0.260307i 0.257331 0.966323i \(-0.417157\pi\)
−0.708195 + 0.706017i \(0.750490\pi\)
\(614\) −11.3154 34.4386i −0.456653 1.38983i
\(615\) 0 0
\(616\) −4.52617 6.56927i −0.182365 0.264683i
\(617\) −23.2620 8.46669i −0.936495 0.340856i −0.171714 0.985147i \(-0.554930\pi\)
−0.764781 + 0.644291i \(0.777153\pi\)
\(618\) 0 0
\(619\) −7.07392 1.24732i −0.284325 0.0501341i 0.0296670 0.999560i \(-0.490555\pi\)
−0.313992 + 0.949426i \(0.601666\pi\)
\(620\) 0.833393 13.1645i 0.0334699 0.528701i
\(621\) 0 0
\(622\) −25.1350 0.794801i −1.00782 0.0318686i
\(623\) −0.606562 + 3.43998i −0.0243014 + 0.137820i
\(624\) 0 0
\(625\) 26.8803 + 9.78364i 1.07521 + 0.391346i
\(626\) 36.5947 28.7856i 1.46262 1.15051i
\(627\) 0 0
\(628\) 0.774026 + 2.63370i 0.0308870 + 0.105096i
\(629\) 25.5289 + 14.7391i 1.01791 + 0.587688i
\(630\) 0 0
\(631\) 19.7806 + 34.2610i 0.787453 + 1.36391i 0.927523 + 0.373767i \(0.121934\pi\)
−0.140070 + 0.990142i \(0.544733\pi\)
\(632\) −20.2137 20.5219i −0.804057 0.816316i
\(633\) 0 0
\(634\) −9.88534 + 1.42253i −0.392597 + 0.0564960i
\(635\) −10.8951 + 1.92111i −0.432361 + 0.0762368i
\(636\) 0 0
\(637\) −11.7491 + 14.0021i −0.465517 + 0.554782i
\(638\) −15.5222 28.9624i −0.614531 1.14663i
\(639\) 0 0
\(640\) 20.1583 + 18.5873i 0.796827 + 0.734728i
\(641\) −20.4795 + 7.45392i −0.808891 + 0.294412i −0.713166 0.700995i \(-0.752739\pi\)
−0.0957255 + 0.995408i \(0.530517\pi\)
\(642\) 0 0
\(643\) 24.0829 + 28.7008i 0.949735 + 1.13185i 0.991155 + 0.132709i \(0.0423675\pi\)
−0.0414197 + 0.999142i \(0.513188\pi\)
\(644\) −10.4471 4.56907i −0.411673 0.180047i
\(645\) 0 0
\(646\) 58.6228 + 12.2589i 2.30648 + 0.482318i
\(647\) 13.9531 0.548554 0.274277 0.961651i \(-0.411561\pi\)
0.274277 + 0.961651i \(0.411561\pi\)
\(648\) 0 0
\(649\) 25.4955 1.00079
\(650\) −3.48773 0.729335i −0.136800 0.0286069i
\(651\) 0 0
\(652\) −10.8983 + 24.9188i −0.426812 + 0.975896i
\(653\) 16.3129 + 19.4409i 0.638372 + 0.760782i 0.984112 0.177548i \(-0.0568166\pi\)
−0.345740 + 0.938330i \(0.612372\pi\)
\(654\) 0 0
\(655\) −30.3066 + 11.0307i −1.18418 + 0.431006i
\(656\) −10.3462 + 13.6085i −0.403950 + 0.531324i
\(657\) 0 0
\(658\) −1.61844 3.01979i −0.0630933 0.117724i
\(659\) 23.0007 27.4112i 0.895981 1.06779i −0.101355 0.994850i \(-0.532318\pi\)
0.997336 0.0729384i \(-0.0232376\pi\)
\(660\) 0 0
\(661\) 29.1329 5.13692i 1.13314 0.199803i 0.424536 0.905411i \(-0.360437\pi\)
0.708603 + 0.705608i \(0.249326\pi\)
\(662\) −16.9915 + 2.44513i −0.660392 + 0.0950326i
\(663\) 0 0
\(664\) −16.0934 + 15.8517i −0.624543 + 0.615164i
\(665\) −5.87402 10.1741i −0.227785 0.394535i
\(666\) 0 0
\(667\) −40.6749 23.4836i −1.57494 0.909290i
\(668\) 8.47380 2.49039i 0.327861 0.0963560i
\(669\) 0 0
\(670\) −6.03209 + 4.74489i −0.233040 + 0.183311i
\(671\) 0.858249 + 0.312377i 0.0331323 + 0.0120592i
\(672\) 0 0
\(673\) 3.21781 18.2491i 0.124038 0.703452i −0.857837 0.513922i \(-0.828192\pi\)
0.981875 0.189531i \(-0.0606967\pi\)
\(674\) 36.5087 + 1.15445i 1.40626 + 0.0444678i
\(675\) 0 0
\(676\) 9.35275 + 0.592084i 0.359721 + 0.0227725i
\(677\) 31.1495 + 5.49250i 1.19717 + 0.211094i 0.736477 0.676463i \(-0.236488\pi\)
0.460698 + 0.887557i \(0.347599\pi\)
\(678\) 0 0
\(679\) 4.27169 + 1.55477i 0.163932 + 0.0596665i
\(680\) 27.6235 + 40.0927i 1.05931 + 1.53748i
\(681\) 0 0
\(682\) 4.16787 + 12.6850i 0.159596 + 0.485732i
\(683\) −29.5187 17.0426i −1.12950 0.652117i −0.185691 0.982608i \(-0.559452\pi\)
−0.943809 + 0.330491i \(0.892786\pi\)
\(684\) 0 0
\(685\) 4.52572 2.61293i 0.172919 0.0998348i
\(686\) −11.4307 10.2242i −0.436427 0.390364i
\(687\) 0 0
\(688\) −11.0039 + 0.529586i −0.419520 + 0.0201903i
\(689\) 3.69985 + 20.9829i 0.140953 + 0.799385i
\(690\) 0 0
\(691\) 5.27112 6.28188i 0.200523 0.238974i −0.656407 0.754407i \(-0.727925\pi\)
0.856930 + 0.515433i \(0.172369\pi\)
\(692\) 34.7859 17.2510i 1.32236 0.655784i
\(693\) 0 0
\(694\) −15.5770 9.66233i −0.591294 0.366777i
\(695\) −1.33259 + 0.485021i −0.0505478 + 0.0183979i
\(696\) 0 0
\(697\) −23.2528 + 19.5114i −0.880761 + 0.739046i
\(698\) −0.536109 + 1.33961i −0.0202920 + 0.0507050i
\(699\) 0 0
\(700\) 0.334614 1.38077i 0.0126472 0.0521884i
\(701\) 1.97965i 0.0747704i −0.999301 0.0373852i \(-0.988097\pi\)
0.999301 0.0373852i \(-0.0119029\pi\)
\(702\) 0 0
\(703\) −24.7468 −0.933344
\(704\) −25.9345 9.88631i −0.977444 0.372604i
\(705\) 0 0
\(706\) 21.7181 + 8.69154i 0.817373 + 0.327110i
\(707\) −8.63122 10.2863i −0.324611 0.386856i
\(708\) 0 0
\(709\) 5.97488 + 16.4158i 0.224391 + 0.616510i 0.999890 0.0148394i \(-0.00472370\pi\)
−0.775499 + 0.631349i \(0.782501\pi\)
\(710\) 15.7235 + 9.75321i 0.590092 + 0.366031i
\(711\) 0 0
\(712\) 5.05251 + 11.0527i 0.189351 + 0.414217i
\(713\) 14.6196 + 12.2673i 0.547510 + 0.459415i
\(714\) 0 0
\(715\) 23.8767 4.21010i 0.892936 0.157449i
\(716\) 9.18130 1.02622i 0.343121 0.0383518i
\(717\) 0 0
\(718\) −19.0550 17.0438i −0.711127 0.636071i
\(719\) −17.2073 29.8038i −0.641722 1.11150i −0.985048 0.172279i \(-0.944887\pi\)
0.343326 0.939216i \(-0.388446\pi\)
\(720\) 0 0
\(721\) 7.44538 12.8958i 0.277280 0.480264i
\(722\) −22.2383 + 7.30677i −0.827623 + 0.271930i
\(723\) 0 0
\(724\) −7.60264 10.3204i −0.282550 0.383554i
\(725\) 2.00152 5.49913i 0.0743345 0.204232i
\(726\) 0 0
\(727\) 4.21802 23.9216i 0.156438 0.887203i −0.801022 0.598635i \(-0.795710\pi\)
0.957460 0.288567i \(-0.0931789\pi\)
\(728\) 0.627822 6.60048i 0.0232686 0.244630i
\(729\) 0 0
\(730\) 0.427340 13.5143i 0.0158166 0.500187i
\(731\) −19.2644 3.39683i −0.712519 0.125636i
\(732\) 0 0
\(733\) 7.76866 21.3442i 0.286942 0.788366i −0.709548 0.704657i \(-0.751101\pi\)
0.996490 0.0837095i \(-0.0266768\pi\)
\(734\) 22.6858 17.8448i 0.837348 0.658663i
\(735\) 0 0
\(736\) −38.9494 + 7.53164i −1.43570 + 0.277620i
\(737\) 3.88422 6.72767i 0.143077 0.247817i
\(738\) 0 0
\(739\) 0.214406 0.123787i 0.00788706 0.00455360i −0.496051 0.868293i \(-0.665217\pi\)
0.503938 + 0.863740i \(0.331884\pi\)
\(740\) −14.5632 13.8792i −0.535355 0.510210i
\(741\) 0 0
\(742\) −8.40894 + 1.21007i −0.308702 + 0.0444232i
\(743\) −0.843956 4.78631i −0.0309618 0.175593i 0.965406 0.260753i \(-0.0839709\pi\)
−0.996367 + 0.0851603i \(0.972860\pi\)
\(744\) 0 0
\(745\) 40.6657 + 34.1225i 1.48987 + 1.25015i
\(746\) −36.1547 + 19.3769i −1.32372 + 0.709439i
\(747\) 0 0
\(748\) −41.0380 27.2886i −1.50050 0.997772i
\(749\) −4.74524 13.0374i −0.173387 0.476378i
\(750\) 0 0
\(751\) 23.6852 19.8743i 0.864287 0.725223i −0.0986005 0.995127i \(-0.531437\pi\)
0.962887 + 0.269905i \(0.0869921\pi\)
\(752\) −10.5976 5.45686i −0.386454 0.198991i
\(753\) 0 0
\(754\) 5.59003 26.7320i 0.203577 0.973520i
\(755\) 18.7222i 0.681370i
\(756\) 0 0
\(757\) 15.9221i 0.578697i −0.957224 0.289349i \(-0.906561\pi\)
0.957224 0.289349i \(-0.0934387\pi\)
\(758\) −26.0074 5.43851i −0.944630 0.197535i
\(759\) 0 0
\(760\) −36.9117 17.5534i −1.33893 0.636729i
\(761\) −12.1040 + 10.1564i −0.438768 + 0.368170i −0.835248 0.549873i \(-0.814676\pi\)
0.396480 + 0.918043i \(0.370232\pi\)
\(762\) 0 0
\(763\) −5.10946 14.0381i −0.184975 0.508214i
\(764\) −22.4142 + 33.7075i −0.810916 + 1.21950i
\(765\) 0 0
\(766\) 9.95010 + 18.5655i 0.359512 + 0.670800i
\(767\) 16.2323 + 13.6205i 0.586113 + 0.491807i
\(768\) 0 0
\(769\) −7.98567 45.2890i −0.287970 1.63316i −0.694478 0.719514i \(-0.744365\pi\)
0.406507 0.913648i \(-0.366747\pi\)
\(770\) 1.37696 + 9.56861i 0.0496220 + 0.344829i
\(771\) 0 0
\(772\) −8.14823 7.76551i −0.293261 0.279487i
\(773\) −35.6666 + 20.5921i −1.28284 + 0.740647i −0.977366 0.211554i \(-0.932147\pi\)
−0.305472 + 0.952201i \(0.598814\pi\)
\(774\) 0 0
\(775\) −1.18895 + 2.05933i −0.0427085 + 0.0739733i
\(776\) 15.3072 3.97767i 0.549496 0.142790i
\(777\) 0 0
\(778\) 15.3957 + 19.5724i 0.551964 + 0.701703i
\(779\) 8.71544 23.9455i 0.312263 0.857936i
\(780\) 0 0
\(781\) −18.4444 3.25225i −0.659993 0.116375i
\(782\) −70.4060 2.22633i −2.51771 0.0796134i
\(783\) 0 0
\(784\) −25.1539 3.19759i −0.898353 0.114200i
\(785\) 0.577638 3.27595i 0.0206168 0.116924i
\(786\) 0 0
\(787\) 6.23669 17.1352i 0.222314 0.610803i −0.777523 0.628854i \(-0.783524\pi\)
0.999837 + 0.0180518i \(0.00574638\pi\)
\(788\) 5.19725 + 7.05513i 0.185144 + 0.251329i
\(789\) 0 0
\(790\) 10.8959 + 33.1619i 0.387659 + 1.17985i
\(791\) −3.47939 + 6.02648i −0.123713 + 0.214277i
\(792\) 0 0
\(793\) 0.379541 + 0.657384i 0.0134779 + 0.0233444i
\(794\) −14.2933 + 15.9799i −0.507249 + 0.567104i
\(795\) 0 0
\(796\) 2.95283 + 26.4180i 0.104660 + 0.936362i
\(797\) 40.7976 7.19372i 1.44512 0.254814i 0.604575 0.796548i \(-0.293343\pi\)
0.840550 + 0.541734i \(0.182232\pi\)
\(798\) 0 0
\(799\) −16.2138 13.6050i −0.573602 0.481309i
\(800\) −1.76689 4.61635i −0.0624692 0.163213i
\(801\) 0 0
\(802\) 0.446940 0.720527i 0.0157820 0.0254427i
\(803\) 4.68101 + 12.8610i 0.165189 + 0.453853i
\(804\) 0 0
\(805\) 8.88176 + 10.5849i 0.313041 + 0.373068i
\(806\) −4.12313 + 10.3027i −0.145231 + 0.362899i
\(807\) 0 0
\(808\) −45.0324 12.4323i −1.58424 0.437367i
\(809\) 19.2719 0.677564 0.338782 0.940865i \(-0.389985\pi\)
0.338782 + 0.940865i \(0.389985\pi\)
\(810\) 0 0
\(811\) 15.7750i 0.553935i 0.960879 + 0.276968i \(0.0893295\pi\)
−0.960879 + 0.276968i \(0.910671\pi\)
\(812\) 10.5830 + 2.56467i 0.371392 + 0.0900023i
\(813\) 0 0
\(814\) 18.9058 + 7.56606i 0.662648 + 0.265190i
\(815\) 25.2474 21.1851i 0.884380 0.742083i
\(816\) 0 0
\(817\) 15.4315 5.61659i 0.539878 0.196500i
\(818\) −21.1999 + 34.1770i −0.741236 + 1.19497i
\(819\) 0 0
\(820\) 18.5587 9.20362i 0.648099 0.321404i
\(821\) 6.66717 7.94562i 0.232686 0.277304i −0.637049 0.770823i \(-0.719845\pi\)
0.869735 + 0.493519i \(0.164290\pi\)
\(822\) 0 0
\(823\) 9.20557 + 52.2074i 0.320886 + 1.81983i 0.537135 + 0.843496i \(0.319507\pi\)
−0.216249 + 0.976338i \(0.569382\pi\)
\(824\) −4.12467 51.6424i −0.143690 1.79905i
\(825\) 0 0
\(826\) −5.63273 + 6.29740i −0.195988 + 0.219114i
\(827\) −23.9359 + 13.8194i −0.832332 + 0.480547i −0.854650 0.519204i \(-0.826229\pi\)
0.0223184 + 0.999751i \(0.492895\pi\)
\(828\) 0 0
\(829\) 34.2649 + 19.7829i 1.19007 + 0.687088i 0.958323 0.285688i \(-0.0922221\pi\)
0.231748 + 0.972776i \(0.425555\pi\)
\(830\) 26.0057 8.54463i 0.902671 0.296588i
\(831\) 0 0
\(832\) −11.2302 20.1493i −0.389337 0.698552i
\(833\) −42.3084 15.3990i −1.46590 0.533543i
\(834\) 0 0
\(835\) −10.5402 1.85852i −0.364759 0.0643168i
\(836\) 41.2899 + 2.61389i 1.42804 + 0.0904033i
\(837\) 0 0
\(838\) 1.25030 39.5398i 0.0431909 1.36588i
\(839\) −4.95699 + 28.1125i −0.171134 + 0.970551i 0.771378 + 0.636378i \(0.219568\pi\)
−0.942512 + 0.334173i \(0.891543\pi\)
\(840\) 0 0
\(841\) 14.8973 + 5.42218i 0.513700 + 0.186972i
\(842\) 28.6165 + 36.3796i 0.986189 + 1.25373i
\(843\) 0 0
\(844\) 14.1125 + 48.0192i 0.485772 + 1.65289i
\(845\) −9.83486 5.67816i −0.338329 0.195335i
\(846\) 0 0
\(847\) −0.421335 0.729774i −0.0144773 0.0250753i
\(848\) −21.7026 + 20.0654i −0.745270 + 0.689050i
\(849\) 0 0
\(850\) −1.25014 8.68737i −0.0428795 0.297974i
\(851\) 28.6640 5.05424i 0.982591 0.173257i
\(852\) 0 0
\(853\) −4.41611 + 5.26292i −0.151205 + 0.180199i −0.836330 0.548227i \(-0.815303\pi\)
0.685125 + 0.728425i \(0.259748\pi\)
\(854\) −0.266770 + 0.142974i −0.00912868 + 0.00489247i
\(855\) 0 0
\(856\) −39.3298 27.9849i −1.34427 0.956503i
\(857\) 26.6254 9.69084i 0.909505 0.331033i 0.155450 0.987844i \(-0.450317\pi\)
0.754055 + 0.656811i \(0.228095\pi\)
\(858\) 0 0
\(859\) −14.7282 17.5524i −0.502520 0.598879i 0.453836 0.891085i \(-0.350055\pi\)
−0.956355 + 0.292206i \(0.905611\pi\)
\(860\) 12.2313 + 5.34940i 0.417084 + 0.182413i
\(861\) 0 0
\(862\) −2.88895 + 13.8152i −0.0983981 + 0.470547i
\(863\) −24.0297 −0.817980 −0.408990 0.912539i \(-0.634119\pi\)
−0.408990 + 0.912539i \(0.634119\pi\)
\(864\) 0 0
\(865\) −47.0523 −1.59983
\(866\) −5.06283 + 24.2108i −0.172042 + 0.822717i
\(867\) 0 0
\(868\) −4.05399 1.77303i −0.137601 0.0601805i
\(869\) −22.7114 27.0664i −0.770432 0.918165i
\(870\) 0 0
\(871\) 6.06710 2.20824i 0.205576 0.0748235i
\(872\) −42.3485 30.1328i −1.43410 1.02043i
\(873\) 0 0
\(874\) 52.1213 27.9341i 1.76303 0.944885i
\(875\) 5.22579 6.22786i 0.176664 0.210540i
\(876\) 0 0
\(877\) 0.500115 0.0881838i 0.0168877 0.00297776i −0.165198 0.986260i \(-0.552826\pi\)
0.182086 + 0.983283i \(0.441715\pi\)
\(878\) 1.54722 + 10.7518i 0.0522162 + 0.362856i
\(879\) 0 0
\(880\) 22.8326 + 24.6956i 0.769688 + 0.832488i
\(881\) 11.2219 + 19.4369i 0.378076 + 0.654847i 0.990782 0.135464i \(-0.0432525\pi\)
−0.612706 + 0.790311i \(0.709919\pi\)
\(882\) 0 0
\(883\) 45.9402 + 26.5236i 1.54601 + 0.892589i 0.998440 + 0.0558294i \(0.0177803\pi\)
0.547570 + 0.836760i \(0.315553\pi\)
\(884\) −11.5493 39.2976i −0.388445 1.32172i
\(885\) 0 0
\(886\) −4.26755 5.42526i −0.143371 0.182265i
\(887\) 26.2975 + 9.57151i 0.882984 + 0.321380i 0.743413 0.668832i \(-0.233206\pi\)
0.139571 + 0.990212i \(0.455428\pi\)
\(888\) 0 0
\(889\) −0.644417 + 3.65467i −0.0216130 + 0.122574i
\(890\) 0.465444 14.7193i 0.0156017 0.493393i
\(891\) 0 0
\(892\) −3.23334 0.204689i −0.108260 0.00685351i
\(893\) 17.4984 + 3.08544i 0.585562 + 0.103250i
\(894\) 0 0
\(895\) −10.5200 3.82896i −0.351644 0.127988i
\(896\) 8.17163 4.22164i 0.272995 0.141035i
\(897\) 0 0
\(898\) −6.69567 + 2.19998i −0.223438 + 0.0734143i
\(899\) −15.7839 9.11281i −0.526421 0.303929i
\(900\) 0 0
\(901\) −45.4514 + 26.2414i −1.51421 + 0.874227i
\(902\) −13.9794 + 15.6290i −0.465463 + 0.520387i
\(903\) 0 0
\(904\) 1.92755 + 24.1336i 0.0641094 + 0.802673i
\(905\) 2.69732 + 15.2973i 0.0896620 + 0.508498i
\(906\) 0 0
\(907\) −17.3874 + 20.7215i −0.577338 + 0.688045i −0.973120 0.230300i \(-0.926029\pi\)
0.395781 + 0.918345i \(0.370474\pi\)
\(908\) 12.4853 6.19169i 0.414339 0.205478i
\(909\) 0 0
\(910\) −4.23518 + 6.82767i −0.140395 + 0.226335i
\(911\) −9.03367 + 3.28799i −0.299299 + 0.108936i −0.487305 0.873232i \(-0.662020\pi\)
0.188006 + 0.982168i \(0.439798\pi\)
\(912\) 0 0
\(913\) −21.2256 + 17.8104i −0.702465 + 0.589438i
\(914\) 26.4649 + 10.5912i 0.875383 + 0.350326i
\(915\) 0 0
\(916\) 48.8730 + 11.8438i 1.61481 + 0.391330i
\(917\) 10.8185i 0.357258i
\(918\) 0 0
\(919\) 0.257674 0.00849989 0.00424994 0.999991i \(-0.498647\pi\)
0.00424994 + 0.999991i \(0.498647\pi\)
\(920\) 46.3396 + 12.7932i 1.52777 + 0.421779i
\(921\) 0 0
\(922\) 17.8436 44.5870i 0.587647 1.46839i
\(923\) −10.0056 11.9242i −0.329337 0.392489i
\(924\) 0 0
\(925\) 1.24037 + 3.40788i 0.0407830 + 0.112050i
\(926\) 28.5503 46.0269i 0.938221 1.51254i
\(927\) 0 0
\(928\) 35.3823 13.5425i 1.16148 0.444554i
\(929\) 27.9758 + 23.4745i 0.917856 + 0.770173i 0.973597 0.228273i \(-0.0733077\pi\)
−0.0557411 + 0.998445i \(0.517752\pi\)
\(930\) 0 0
\(931\) 37.2228 6.56338i 1.21993 0.215106i
\(932\) 3.49284 + 31.2492i 0.114412 + 1.02360i
\(933\) 0 0
\(934\) −10.3782 + 11.6028i −0.339585 + 0.379656i
\(935\) 29.8603 + 51.7196i 0.976536 + 1.69141i
\(936\) 0 0
\(937\) −4.21635 + 7.30293i −0.137742 + 0.238576i −0.926642 0.375946i \(-0.877318\pi\)
0.788899 + 0.614522i \(0.210651\pi\)
\(938\) 0.803593 + 2.44575i 0.0262382 + 0.0798565i
\(939\) 0 0
\(940\) 8.56716 + 11.6297i 0.279430 + 0.379319i
\(941\) 6.23285 17.1246i 0.203185 0.558246i −0.795688 0.605707i \(-0.792891\pi\)
0.998873 + 0.0474602i \(0.0151127\pi\)
\(942\) 0 0
\(943\) −5.20444 + 29.5159i −0.169480 + 0.961169i
\(944\) −3.70690 + 29.1603i −0.120649 + 0.949088i
\(945\) 0 0
\(946\) −13.5064 0.427089i −0.439130 0.0138859i
\(947\) −30.4479 5.36879i −0.989424 0.174462i −0.344564 0.938763i \(-0.611973\pi\)
−0.644860 + 0.764301i \(0.723084\pi\)
\(948\) 0 0
\(949\) −3.89045 + 10.6889i −0.126289 + 0.346977i
\(950\) 4.55538 + 5.79117i 0.147796 + 0.187890i
\(951\) 0 0
\(952\) 15.8068 4.10750i 0.512302 0.133125i
\(953\) −17.3439 + 30.0406i −0.561825 + 0.973109i 0.435512 + 0.900183i \(0.356567\pi\)
−0.997337 + 0.0729266i \(0.976766\pi\)
\(954\) 0 0
\(955\) 42.4811 24.5265i 1.37466 0.793658i
\(956\) 22.5023 + 21.4454i 0.727776 + 0.693593i
\(957\) 0 0
\(958\) −4.62583 32.1454i −0.149454 1.03857i
\(959\) −0.304398 1.72633i −0.00982954 0.0557461i
\(960\) 0 0
\(961\) −18.0742 15.1661i −0.583040 0.489229i
\(962\) 7.99476 + 14.9172i 0.257762 + 0.480948i
\(963\) 0 0
\(964\) 13.9722 21.0121i 0.450015 0.676754i
\(965\) 4.66513 + 12.8173i 0.150176 + 0.412605i
\(966\) 0 0
\(967\) 23.6086 19.8100i 0.759202 0.637046i −0.178717 0.983901i \(-0.557195\pi\)
0.937919 + 0.346854i \(0.112750\pi\)
\(968\) −2.64763 1.25908i −0.0850979 0.0404684i
\(969\) 0 0
\(970\) −18.7594 3.92287i −0.602329 0.125956i
\(971\) 43.2999i 1.38956i 0.719223 + 0.694779i \(0.244498\pi\)
−0.719223 + 0.694779i \(0.755502\pi\)
\(972\) 0 0
\(973\) 0.475690i 0.0152499i
\(974\) −2.55103 + 12.1992i −0.0817403 + 0.390888i
\(975\) 0 0
\(976\) −0.482063 + 0.936198i −0.0154305 + 0.0299670i
\(977\) −4.11710 + 3.45466i −0.131718 + 0.110524i −0.706267 0.707946i \(-0.749622\pi\)
0.574549 + 0.818470i \(0.305178\pi\)
\(978\) 0 0
\(979\) 5.09839 + 14.0077i 0.162945 + 0.447688i
\(980\) 25.5863 + 17.0139i 0.817324 + 0.543488i
\(981\) 0 0
\(982\) 14.6587 7.85622i 0.467776 0.250702i
\(983\) −0.806129 0.676422i −0.0257115 0.0215745i 0.629841 0.776724i \(-0.283120\pi\)
−0.655553 + 0.755149i \(0.727564\pi\)
\(984\) 0 0
\(985\) −1.84392 10.4574i −0.0587521 0.333200i
\(986\) 66.5849 9.58179i 2.12050 0.305146i
\(987\) 0 0
\(988\) 24.8916 + 23.7225i 0.791909 + 0.754713i
\(989\) −16.7270 + 9.65734i −0.531888 + 0.307086i
\(990\) 0 0
\(991\) 10.7235 18.5737i 0.340644 0.590013i −0.643908 0.765103i \(-0.722688\pi\)
0.984553 + 0.175090i \(0.0560215\pi\)
\(992\) −15.1143 + 2.92265i −0.479880 + 0.0927942i
\(993\) 0 0
\(994\) 4.87823 3.83725i 0.154728 0.121710i
\(995\) 11.0174 30.2700i 0.349274 0.959622i
\(996\) 0 0
\(997\) −9.02724 1.59175i −0.285896 0.0504111i 0.0288614 0.999583i \(-0.490812\pi\)
−0.314757 + 0.949172i \(0.601923\pi\)
\(998\) 0.788669 24.9411i 0.0249649 0.789496i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.397.15 204
3.2 odd 2 216.2.t.a.133.20 yes 204
8.5 even 2 inner 648.2.t.a.397.16 204
12.11 even 2 864.2.bf.a.241.29 204
24.5 odd 2 216.2.t.a.133.19 yes 204
24.11 even 2 864.2.bf.a.241.6 204
27.13 even 9 inner 648.2.t.a.253.16 204
27.14 odd 18 216.2.t.a.13.19 204
108.95 even 18 864.2.bf.a.337.6 204
216.13 even 18 inner 648.2.t.a.253.15 204
216.149 odd 18 216.2.t.a.13.20 yes 204
216.203 even 18 864.2.bf.a.337.29 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.19 204 27.14 odd 18
216.2.t.a.13.20 yes 204 216.149 odd 18
216.2.t.a.133.19 yes 204 24.5 odd 2
216.2.t.a.133.20 yes 204 3.2 odd 2
648.2.t.a.253.15 204 216.13 even 18 inner
648.2.t.a.253.16 204 27.13 even 9 inner
648.2.t.a.397.15 204 1.1 even 1 trivial
648.2.t.a.397.16 204 8.5 even 2 inner
864.2.bf.a.241.6 204 24.11 even 2
864.2.bf.a.241.29 204 12.11 even 2
864.2.bf.a.337.6 204 108.95 even 18
864.2.bf.a.337.29 204 216.203 even 18