Properties

Label 648.2.t.a.37.9
Level $648$
Weight $2$
Character 648.37
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 37.9
Character \(\chi\) \(=\) 648.37
Dual form 648.2.t.a.613.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.927104 + 1.06793i) q^{2} +(-0.280958 - 1.98017i) q^{4} +(-0.0465753 - 0.127965i) q^{5} +(-0.252128 - 1.42989i) q^{7} +(2.37516 + 1.53578i) q^{8} +(0.179838 + 0.0688972i) q^{10} +(-0.771344 + 2.11925i) q^{11} +(-0.634290 + 0.755917i) q^{13} +(1.76077 + 1.05640i) q^{14} +(-3.84213 + 1.11269i) q^{16} +(0.439205 - 0.760726i) q^{17} +(5.20298 - 3.00394i) q^{19} +(-0.240306 + 0.128180i) q^{20} +(-1.54810 - 2.78851i) q^{22} +(0.748645 - 4.24578i) q^{23} +(3.81602 - 3.20202i) q^{25} +(-0.219216 - 1.37819i) q^{26} +(-2.76058 + 0.900994i) q^{28} +(-0.146501 - 0.174594i) q^{29} +(1.15687 - 6.56095i) q^{31} +(2.37377 - 5.13471i) q^{32} +(0.405215 + 1.17431i) q^{34} +(-0.171232 + 0.0988610i) q^{35} +(9.25201 + 5.34165i) q^{37} +(-1.61569 + 8.34139i) q^{38} +(0.0859012 - 0.375466i) q^{40} +(1.19321 + 1.00123i) q^{41} +(1.11062 - 3.05141i) q^{43} +(4.41319 + 0.931971i) q^{44} +(3.84013 + 4.73578i) q^{46} +(-1.36645 - 7.74952i) q^{47} +(4.59683 - 1.67311i) q^{49} +(-0.118305 + 7.04385i) q^{50} +(1.67505 + 1.04362i) q^{52} -5.08895i q^{53} +0.307115 q^{55} +(1.59714 - 3.78343i) q^{56} +(0.322276 + 0.00541278i) q^{58} +(3.15956 + 8.68082i) q^{59} +(-12.3724 + 2.18158i) q^{61} +(5.93411 + 7.31814i) q^{62} +(3.28278 + 7.29543i) q^{64} +(0.126273 + 0.0459596i) q^{65} +(-5.90023 + 7.03162i) q^{67} +(-1.62976 - 0.655968i) q^{68} +(0.0531732 - 0.274519i) q^{70} +(5.93006 - 10.2712i) q^{71} +(4.88366 + 8.45874i) q^{73} +(-14.2821 + 4.92826i) q^{74} +(-7.41012 - 9.45878i) q^{76} +(3.22477 + 0.568614i) q^{77} +(5.49238 - 4.60866i) q^{79} +(0.321333 + 0.439832i) q^{80} +(-2.17548 + 0.346032i) q^{82} +(0.867764 + 1.03416i) q^{83} +(-0.117802 - 0.0207717i) q^{85} +(2.22904 + 4.01504i) q^{86} +(-5.08676 + 3.84895i) q^{88} +(3.19969 + 5.54203i) q^{89} +(1.24080 + 0.716376i) q^{91} +(-8.61769 - 0.289558i) q^{92} +(9.54280 + 5.72533i) q^{94} +(-0.626728 - 0.525888i) q^{95} +(0.779817 + 0.283830i) q^{97} +(-2.47497 + 6.46025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.927104 + 1.06793i −0.655561 + 0.755142i
\(3\) 0 0
\(4\) −0.280958 1.98017i −0.140479 0.990084i
\(5\) −0.0465753 0.127965i −0.0208291 0.0572275i 0.928842 0.370475i \(-0.120805\pi\)
−0.949671 + 0.313248i \(0.898583\pi\)
\(6\) 0 0
\(7\) −0.252128 1.42989i −0.0952954 0.540447i −0.994656 0.103240i \(-0.967079\pi\)
0.899361 0.437207i \(-0.144032\pi\)
\(8\) 2.37516 + 1.53578i 0.839746 + 0.542979i
\(9\) 0 0
\(10\) 0.179838 + 0.0688972i 0.0568697 + 0.0217872i
\(11\) −0.771344 + 2.11925i −0.232569 + 0.638978i −0.999998 0.00215610i \(-0.999314\pi\)
0.767429 + 0.641134i \(0.221536\pi\)
\(12\) 0 0
\(13\) −0.634290 + 0.755917i −0.175920 + 0.209654i −0.846798 0.531914i \(-0.821473\pi\)
0.670878 + 0.741568i \(0.265917\pi\)
\(14\) 1.76077 + 1.05640i 0.470586 + 0.282335i
\(15\) 0 0
\(16\) −3.84213 + 1.11269i −0.960531 + 0.278172i
\(17\) 0.439205 0.760726i 0.106523 0.184503i −0.807836 0.589407i \(-0.799362\pi\)
0.914359 + 0.404904i \(0.132695\pi\)
\(18\) 0 0
\(19\) 5.20298 3.00394i 1.19364 0.689151i 0.234513 0.972113i \(-0.424650\pi\)
0.959131 + 0.282962i \(0.0913170\pi\)
\(20\) −0.240306 + 0.128180i −0.0537340 + 0.0286618i
\(21\) 0 0
\(22\) −1.54810 2.78851i −0.330056 0.594512i
\(23\) 0.748645 4.24578i 0.156103 0.885306i −0.801667 0.597771i \(-0.796053\pi\)
0.957770 0.287535i \(-0.0928357\pi\)
\(24\) 0 0
\(25\) 3.81602 3.20202i 0.763203 0.640404i
\(26\) −0.219216 1.37819i −0.0429918 0.270286i
\(27\) 0 0
\(28\) −2.76058 + 0.900994i −0.521701 + 0.170272i
\(29\) −0.146501 0.174594i −0.0272046 0.0324212i 0.752271 0.658854i \(-0.228959\pi\)
−0.779475 + 0.626433i \(0.784514\pi\)
\(30\) 0 0
\(31\) 1.15687 6.56095i 0.207781 1.17838i −0.685223 0.728333i \(-0.740295\pi\)
0.893004 0.450049i \(-0.148593\pi\)
\(32\) 2.37377 5.13471i 0.419628 0.907696i
\(33\) 0 0
\(34\) 0.405215 + 1.17431i 0.0694937 + 0.201393i
\(35\) −0.171232 + 0.0988610i −0.0289435 + 0.0167106i
\(36\) 0 0
\(37\) 9.25201 + 5.34165i 1.52102 + 0.878162i 0.999692 + 0.0248069i \(0.00789709\pi\)
0.521330 + 0.853355i \(0.325436\pi\)
\(38\) −1.61569 + 8.34139i −0.262100 + 1.35315i
\(39\) 0 0
\(40\) 0.0859012 0.375466i 0.0135822 0.0593664i
\(41\) 1.19321 + 1.00123i 0.186349 + 0.156365i 0.731190 0.682174i \(-0.238965\pi\)
−0.544841 + 0.838540i \(0.683410\pi\)
\(42\) 0 0
\(43\) 1.11062 3.05141i 0.169368 0.465335i −0.825749 0.564038i \(-0.809247\pi\)
0.995117 + 0.0987027i \(0.0314693\pi\)
\(44\) 4.41319 + 0.931971i 0.665313 + 0.140500i
\(45\) 0 0
\(46\) 3.84013 + 4.73578i 0.566197 + 0.698253i
\(47\) −1.36645 7.74952i −0.199317 1.13038i −0.906135 0.422988i \(-0.860981\pi\)
0.706818 0.707395i \(-0.250130\pi\)
\(48\) 0 0
\(49\) 4.59683 1.67311i 0.656691 0.239016i
\(50\) −0.118305 + 7.04385i −0.0167308 + 0.996151i
\(51\) 0 0
\(52\) 1.67505 + 1.04362i 0.232288 + 0.144724i
\(53\) 5.08895i 0.699021i −0.936932 0.349510i \(-0.886348\pi\)
0.936932 0.349510i \(-0.113652\pi\)
\(54\) 0 0
\(55\) 0.307115 0.0414114
\(56\) 1.59714 3.78343i 0.213427 0.505582i
\(57\) 0 0
\(58\) 0.322276 + 0.00541278i 0.0423169 + 0.000710733i
\(59\) 3.15956 + 8.68082i 0.411340 + 1.13015i 0.956479 + 0.291801i \(0.0942546\pi\)
−0.545139 + 0.838346i \(0.683523\pi\)
\(60\) 0 0
\(61\) −12.3724 + 2.18158i −1.58412 + 0.279323i −0.895250 0.445563i \(-0.853003\pi\)
−0.688869 + 0.724886i \(0.741892\pi\)
\(62\) 5.93411 + 7.31814i 0.753633 + 0.929405i
\(63\) 0 0
\(64\) 3.28278 + 7.29543i 0.410348 + 0.911929i
\(65\) 0.126273 + 0.0459596i 0.0156622 + 0.00570059i
\(66\) 0 0
\(67\) −5.90023 + 7.03162i −0.720828 + 0.859049i −0.994711 0.102714i \(-0.967247\pi\)
0.273883 + 0.961763i \(0.411692\pi\)
\(68\) −1.62976 0.655968i −0.197638 0.0795478i
\(69\) 0 0
\(70\) 0.0531732 0.274519i 0.00635542 0.0328113i
\(71\) 5.93006 10.2712i 0.703769 1.21896i −0.263366 0.964696i \(-0.584833\pi\)
0.967134 0.254267i \(-0.0818341\pi\)
\(72\) 0 0
\(73\) 4.88366 + 8.45874i 0.571589 + 0.990021i 0.996403 + 0.0847405i \(0.0270061\pi\)
−0.424814 + 0.905281i \(0.639661\pi\)
\(74\) −14.2821 + 4.92826i −1.66026 + 0.572898i
\(75\) 0 0
\(76\) −7.41012 9.45878i −0.849999 1.08500i
\(77\) 3.22477 + 0.568614i 0.367497 + 0.0647996i
\(78\) 0 0
\(79\) 5.49238 4.60866i 0.617941 0.518514i −0.279214 0.960229i \(-0.590074\pi\)
0.897156 + 0.441714i \(0.145630\pi\)
\(80\) 0.321333 + 0.439832i 0.0359261 + 0.0491748i
\(81\) 0 0
\(82\) −2.17548 + 0.346032i −0.240241 + 0.0382129i
\(83\) 0.867764 + 1.03416i 0.0952494 + 0.113514i 0.811564 0.584264i \(-0.198617\pi\)
−0.716314 + 0.697778i \(0.754172\pi\)
\(84\) 0 0
\(85\) −0.117802 0.0207717i −0.0127774 0.00225301i
\(86\) 2.22904 + 4.01504i 0.240363 + 0.432953i
\(87\) 0 0
\(88\) −5.08676 + 3.84895i −0.542251 + 0.410300i
\(89\) 3.19969 + 5.54203i 0.339167 + 0.587454i 0.984276 0.176636i \(-0.0565216\pi\)
−0.645110 + 0.764090i \(0.723188\pi\)
\(90\) 0 0
\(91\) 1.24080 + 0.716376i 0.130071 + 0.0750966i
\(92\) −8.61769 0.289558i −0.898456 0.0301885i
\(93\) 0 0
\(94\) 9.54280 + 5.72533i 0.984264 + 0.590523i
\(95\) −0.626728 0.525888i −0.0643010 0.0539549i
\(96\) 0 0
\(97\) 0.779817 + 0.283830i 0.0791784 + 0.0288186i 0.381306 0.924449i \(-0.375475\pi\)
−0.302127 + 0.953268i \(0.597697\pi\)
\(98\) −2.47497 + 6.46025i −0.250010 + 0.652584i
\(99\) 0 0
\(100\) −7.41267 6.65672i −0.741267 0.665672i
\(101\) 7.06509 1.24577i 0.703003 0.123958i 0.189291 0.981921i \(-0.439381\pi\)
0.513712 + 0.857963i \(0.328270\pi\)
\(102\) 0 0
\(103\) −7.48465 + 2.72419i −0.737484 + 0.268422i −0.683329 0.730110i \(-0.739469\pi\)
−0.0541548 + 0.998533i \(0.517246\pi\)
\(104\) −2.66746 + 0.821298i −0.261566 + 0.0805349i
\(105\) 0 0
\(106\) 5.43465 + 4.71798i 0.527860 + 0.458251i
\(107\) 19.5243i 1.88748i −0.330687 0.943740i \(-0.607280\pi\)
0.330687 0.943740i \(-0.392720\pi\)
\(108\) 0 0
\(109\) 5.56480i 0.533011i 0.963833 + 0.266506i \(0.0858691\pi\)
−0.963833 + 0.266506i \(0.914131\pi\)
\(110\) −0.284727 + 0.327978i −0.0271477 + 0.0312715i
\(111\) 0 0
\(112\) 2.55973 + 5.21327i 0.241871 + 0.492608i
\(113\) −11.5278 + 4.19578i −1.08445 + 0.394706i −0.821561 0.570121i \(-0.806896\pi\)
−0.262885 + 0.964827i \(0.584674\pi\)
\(114\) 0 0
\(115\) −0.578178 + 0.101948i −0.0539154 + 0.00950674i
\(116\) −0.304564 + 0.339151i −0.0282780 + 0.0314894i
\(117\) 0 0
\(118\) −12.1998 4.67383i −1.12308 0.430261i
\(119\) −1.19849 0.436214i −0.109865 0.0399877i
\(120\) 0 0
\(121\) 4.53023 + 3.80132i 0.411840 + 0.345574i
\(122\) 9.14068 15.2354i 0.827558 1.37935i
\(123\) 0 0
\(124\) −13.3168 0.447451i −1.19589 0.0401823i
\(125\) −1.17714 0.679623i −0.105287 0.0607873i
\(126\) 0 0
\(127\) −4.15115 7.19001i −0.368355 0.638010i 0.620953 0.783848i \(-0.286746\pi\)
−0.989309 + 0.145838i \(0.953412\pi\)
\(128\) −10.8345 3.25783i −0.957644 0.287955i
\(129\) 0 0
\(130\) −0.166150 + 0.0922416i −0.0145723 + 0.00809013i
\(131\) 16.3299 + 2.87941i 1.42675 + 0.251575i 0.833090 0.553138i \(-0.186570\pi\)
0.593664 + 0.804713i \(0.297681\pi\)
\(132\) 0 0
\(133\) −5.60712 6.68230i −0.486199 0.579429i
\(134\) −2.03917 12.8201i −0.176157 1.10749i
\(135\) 0 0
\(136\) 2.21149 1.13233i 0.189633 0.0970961i
\(137\) −6.20446 + 5.20616i −0.530083 + 0.444792i −0.868130 0.496337i \(-0.834678\pi\)
0.338047 + 0.941129i \(0.390234\pi\)
\(138\) 0 0
\(139\) −3.76315 0.663545i −0.319186 0.0562811i 0.0117598 0.999931i \(-0.496257\pi\)
−0.330946 + 0.943650i \(0.607368\pi\)
\(140\) 0.243870 + 0.311293i 0.0206108 + 0.0263090i
\(141\) 0 0
\(142\) 5.47113 + 15.8553i 0.459127 + 1.33055i
\(143\) −1.11272 1.92729i −0.0930505 0.161168i
\(144\) 0 0
\(145\) −0.0155185 + 0.0268788i −0.00128874 + 0.00223216i
\(146\) −13.5610 2.62672i −1.12232 0.217389i
\(147\) 0 0
\(148\) 7.97794 19.8213i 0.655783 1.62930i
\(149\) −14.3501 + 17.1018i −1.17561 + 1.40104i −0.277807 + 0.960637i \(0.589608\pi\)
−0.897802 + 0.440400i \(0.854837\pi\)
\(150\) 0 0
\(151\) −17.9058 6.51719i −1.45716 0.530362i −0.512576 0.858642i \(-0.671309\pi\)
−0.944581 + 0.328280i \(0.893531\pi\)
\(152\) 16.9713 + 0.855766i 1.37655 + 0.0694118i
\(153\) 0 0
\(154\) −3.59694 + 2.91667i −0.289850 + 0.235032i
\(155\) −0.893452 + 0.157540i −0.0717638 + 0.0126539i
\(156\) 0 0
\(157\) −2.93811 8.07239i −0.234487 0.644247i −1.00000 0.000826492i \(-0.999737\pi\)
0.765513 0.643421i \(-0.222485\pi\)
\(158\) −0.170276 + 10.1382i −0.0135464 + 0.806552i
\(159\) 0 0
\(160\) −0.767620 0.0646086i −0.0606857 0.00510776i
\(161\) −6.25975 −0.493337
\(162\) 0 0
\(163\) 10.0518i 0.787315i −0.919257 0.393657i \(-0.871210\pi\)
0.919257 0.393657i \(-0.128790\pi\)
\(164\) 1.64735 2.64407i 0.128637 0.206467i
\(165\) 0 0
\(166\) −1.90892 0.0320612i −0.148161 0.00248843i
\(167\) −14.9465 + 5.44008i −1.15660 + 0.420966i −0.847880 0.530188i \(-0.822121\pi\)
−0.308715 + 0.951154i \(0.599899\pi\)
\(168\) 0 0
\(169\) 2.08834 + 11.8436i 0.160641 + 0.911043i
\(170\) 0.131398 0.106547i 0.0100777 0.00817179i
\(171\) 0 0
\(172\) −6.35434 1.34190i −0.484514 0.102319i
\(173\) 6.92421 19.0241i 0.526438 1.44638i −0.336798 0.941577i \(-0.609344\pi\)
0.863236 0.504800i \(-0.168434\pi\)
\(174\) 0 0
\(175\) −5.54065 4.64916i −0.418834 0.351444i
\(176\) 0.605538 9.00069i 0.0456441 0.678453i
\(177\) 0 0
\(178\) −8.88495 1.72098i −0.665956 0.128993i
\(179\) −19.1336 11.0468i −1.43011 0.825676i −0.432984 0.901402i \(-0.642539\pi\)
−0.997129 + 0.0757257i \(0.975873\pi\)
\(180\) 0 0
\(181\) 15.2536 8.80669i 1.13379 0.654596i 0.188907 0.981995i \(-0.439506\pi\)
0.944886 + 0.327399i \(0.106172\pi\)
\(182\) −1.91539 + 0.660935i −0.141978 + 0.0489918i
\(183\) 0 0
\(184\) 8.29872 8.93466i 0.611790 0.658672i
\(185\) 0.252627 1.43272i 0.0185735 0.105336i
\(186\) 0 0
\(187\) 1.27339 + 1.51757i 0.0931195 + 0.110976i
\(188\) −14.9614 + 4.88309i −1.09117 + 0.356136i
\(189\) 0 0
\(190\) 1.14265 0.181751i 0.0828969 0.0131856i
\(191\) 7.20145 6.04274i 0.521079 0.437237i −0.343929 0.938996i \(-0.611758\pi\)
0.865008 + 0.501759i \(0.167313\pi\)
\(192\) 0 0
\(193\) −1.28620 + 7.29438i −0.0925824 + 0.525061i 0.902879 + 0.429895i \(0.141449\pi\)
−0.995461 + 0.0951660i \(0.969662\pi\)
\(194\) −1.02608 + 0.569652i −0.0736684 + 0.0408986i
\(195\) 0 0
\(196\) −4.60456 8.63243i −0.328897 0.616602i
\(197\) −15.7746 + 9.10747i −1.12389 + 0.648881i −0.942392 0.334510i \(-0.891429\pi\)
−0.181502 + 0.983391i \(0.558096\pi\)
\(198\) 0 0
\(199\) −8.05228 + 13.9470i −0.570811 + 0.988674i 0.425672 + 0.904878i \(0.360038\pi\)
−0.996483 + 0.0837964i \(0.973295\pi\)
\(200\) 13.9812 1.74476i 0.988623 0.123373i
\(201\) 0 0
\(202\) −5.21968 + 8.70000i −0.367255 + 0.612130i
\(203\) −0.212712 + 0.253501i −0.0149295 + 0.0177923i
\(204\) 0 0
\(205\) 0.0725472 0.199322i 0.00506692 0.0139212i
\(206\) 4.02979 10.5187i 0.280769 0.732872i
\(207\) 0 0
\(208\) 1.59592 3.61009i 0.110657 0.250315i
\(209\) 2.35282 + 13.3435i 0.162748 + 0.922988i
\(210\) 0 0
\(211\) 6.47874 + 17.8002i 0.446015 + 1.22542i 0.935476 + 0.353390i \(0.114971\pi\)
−0.489461 + 0.872025i \(0.662807\pi\)
\(212\) −10.0770 + 1.42978i −0.692089 + 0.0981977i
\(213\) 0 0
\(214\) 20.8506 + 18.1010i 1.42532 + 1.23736i
\(215\) −0.442200 −0.0301578
\(216\) 0 0
\(217\) −9.67311 −0.656654
\(218\) −5.94283 5.15915i −0.402499 0.349422i
\(219\) 0 0
\(220\) −0.0862864 0.608139i −0.00581742 0.0410007i
\(221\) 0.296462 + 0.814523i 0.0199422 + 0.0547908i
\(222\) 0 0
\(223\) 2.02862 + 11.5049i 0.135847 + 0.770424i 0.974267 + 0.225399i \(0.0723686\pi\)
−0.838420 + 0.545025i \(0.816520\pi\)
\(224\) −7.94055 2.09963i −0.530551 0.140287i
\(225\) 0 0
\(226\) 6.20667 16.2009i 0.412862 1.07766i
\(227\) −0.619851 + 1.70303i −0.0411409 + 0.113034i −0.958562 0.284884i \(-0.908045\pi\)
0.917421 + 0.397918i \(0.130267\pi\)
\(228\) 0 0
\(229\) 7.88646 9.39872i 0.521152 0.621085i −0.439701 0.898144i \(-0.644915\pi\)
0.960853 + 0.277060i \(0.0893599\pi\)
\(230\) 0.427157 0.711972i 0.0281659 0.0469460i
\(231\) 0 0
\(232\) −0.0798278 0.639681i −0.00524095 0.0419971i
\(233\) 0.421533 0.730116i 0.0276155 0.0478315i −0.851887 0.523725i \(-0.824542\pi\)
0.879503 + 0.475894i \(0.157875\pi\)
\(234\) 0 0
\(235\) −0.928021 + 0.535793i −0.0605374 + 0.0349513i
\(236\) 16.3018 8.69541i 1.06116 0.566023i
\(237\) 0 0
\(238\) 1.57697 0.875489i 0.102220 0.0567495i
\(239\) 1.87603 10.6395i 0.121350 0.688211i −0.862059 0.506808i \(-0.830825\pi\)
0.983409 0.181402i \(-0.0580637\pi\)
\(240\) 0 0
\(241\) 6.85566 5.75258i 0.441612 0.370557i −0.394700 0.918810i \(-0.629152\pi\)
0.836312 + 0.548253i \(0.184707\pi\)
\(242\) −8.25955 + 1.31377i −0.530944 + 0.0844522i
\(243\) 0 0
\(244\) 7.79601 + 23.8864i 0.499088 + 1.52917i
\(245\) −0.428198 0.510307i −0.0273566 0.0326023i
\(246\) 0 0
\(247\) −1.02947 + 5.83839i −0.0655033 + 0.371488i
\(248\) 12.8239 13.8066i 0.814319 0.876721i
\(249\) 0 0
\(250\) 1.81712 0.627026i 0.114925 0.0396566i
\(251\) −6.48934 + 3.74662i −0.409603 + 0.236485i −0.690619 0.723219i \(-0.742662\pi\)
0.281016 + 0.959703i \(0.409329\pi\)
\(252\) 0 0
\(253\) 8.42041 + 4.86153i 0.529387 + 0.305641i
\(254\) 11.5270 + 2.23273i 0.723267 + 0.140094i
\(255\) 0 0
\(256\) 13.5239 8.55017i 0.845241 0.534385i
\(257\) 12.7573 + 10.7046i 0.795777 + 0.667736i 0.947168 0.320738i \(-0.103931\pi\)
−0.151391 + 0.988474i \(0.548375\pi\)
\(258\) 0 0
\(259\) 5.30528 14.5761i 0.329654 0.905717i
\(260\) 0.0555303 0.262954i 0.00344384 0.0163077i
\(261\) 0 0
\(262\) −18.2146 + 14.7698i −1.12530 + 0.912479i
\(263\) 3.21128 + 18.2121i 0.198016 + 1.12300i 0.908058 + 0.418844i \(0.137565\pi\)
−0.710042 + 0.704159i \(0.751324\pi\)
\(264\) 0 0
\(265\) −0.651206 + 0.237019i −0.0400032 + 0.0145600i
\(266\) 12.3346 + 0.207166i 0.756284 + 0.0127022i
\(267\) 0 0
\(268\) 15.5815 + 9.70785i 0.951792 + 0.593002i
\(269\) 25.3167i 1.54359i 0.635873 + 0.771793i \(0.280640\pi\)
−0.635873 + 0.771793i \(0.719360\pi\)
\(270\) 0 0
\(271\) 16.6229 1.00977 0.504884 0.863187i \(-0.331535\pi\)
0.504884 + 0.863187i \(0.331535\pi\)
\(272\) −0.841031 + 3.41150i −0.0509950 + 0.206853i
\(273\) 0 0
\(274\) 0.192352 11.4526i 0.0116204 0.691876i
\(275\) 3.84242 + 10.5570i 0.231707 + 0.636608i
\(276\) 0 0
\(277\) −17.4590 + 3.07849i −1.04901 + 0.184969i −0.671475 0.741027i \(-0.734339\pi\)
−0.377534 + 0.925996i \(0.623228\pi\)
\(278\) 4.19745 3.40361i 0.251746 0.204135i
\(279\) 0 0
\(280\) −0.558533 0.0281637i −0.0333787 0.00168310i
\(281\) 15.3990 + 5.60477i 0.918626 + 0.334352i 0.757692 0.652613i \(-0.226327\pi\)
0.160934 + 0.986965i \(0.448549\pi\)
\(282\) 0 0
\(283\) −11.8313 + 14.0999i −0.703295 + 0.838154i −0.992895 0.118993i \(-0.962033\pi\)
0.289600 + 0.957148i \(0.406478\pi\)
\(284\) −22.0047 8.85674i −1.30574 0.525551i
\(285\) 0 0
\(286\) 3.08983 + 0.598487i 0.182705 + 0.0353893i
\(287\) 1.13080 1.95860i 0.0667490 0.115613i
\(288\) 0 0
\(289\) 8.11420 + 14.0542i 0.477306 + 0.826718i
\(290\) −0.0143175 0.0414921i −0.000840751 0.00243650i
\(291\) 0 0
\(292\) 15.3776 12.0470i 0.899908 0.704998i
\(293\) −27.7186 4.88753i −1.61934 0.285533i −0.710818 0.703376i \(-0.751675\pi\)
−0.908519 + 0.417843i \(0.862786\pi\)
\(294\) 0 0
\(295\) 0.963681 0.808624i 0.0561077 0.0470799i
\(296\) 13.7714 + 26.8963i 0.800449 + 1.56332i
\(297\) 0 0
\(298\) −4.95953 31.1801i −0.287298 1.80622i
\(299\) 2.73460 + 3.25897i 0.158146 + 0.188471i
\(300\) 0 0
\(301\) −4.64319 0.818720i −0.267629 0.0471903i
\(302\) 23.5605 13.0801i 1.35575 0.752676i
\(303\) 0 0
\(304\) −16.6480 + 17.3308i −0.954831 + 0.993989i
\(305\) 0.855412 + 1.48162i 0.0489808 + 0.0848372i
\(306\) 0 0
\(307\) −14.1955 8.19580i −0.810182 0.467759i 0.0368369 0.999321i \(-0.488272\pi\)
−0.847019 + 0.531562i \(0.821605\pi\)
\(308\) 0.219926 6.54534i 0.0125315 0.372956i
\(309\) 0 0
\(310\) 0.660081 1.10020i 0.0374901 0.0624872i
\(311\) 23.5558 + 19.7657i 1.33573 + 1.12081i 0.982701 + 0.185197i \(0.0592924\pi\)
0.353028 + 0.935613i \(0.385152\pi\)
\(312\) 0 0
\(313\) −20.6090 7.50106i −1.16489 0.423985i −0.314048 0.949407i \(-0.601685\pi\)
−0.850842 + 0.525422i \(0.823907\pi\)
\(314\) 11.3447 + 4.34624i 0.640218 + 0.245273i
\(315\) 0 0
\(316\) −10.6690 9.58100i −0.600180 0.538973i
\(317\) 26.6872 4.70567i 1.49890 0.264297i 0.636799 0.771030i \(-0.280258\pi\)
0.862103 + 0.506733i \(0.169147\pi\)
\(318\) 0 0
\(319\) 0.483011 0.175802i 0.0270434 0.00984300i
\(320\) 0.780661 0.759867i 0.0436403 0.0424779i
\(321\) 0 0
\(322\) 5.80343 6.68498i 0.323413 0.372540i
\(323\) 5.27738i 0.293641i
\(324\) 0 0
\(325\) 4.91560i 0.272668i
\(326\) 10.7346 + 9.31902i 0.594534 + 0.516133i
\(327\) 0 0
\(328\) 1.29642 + 4.21058i 0.0715827 + 0.232491i
\(329\) −10.7364 + 3.90774i −0.591918 + 0.215441i
\(330\) 0 0
\(331\) 14.1842 2.50105i 0.779633 0.137470i 0.230351 0.973108i \(-0.426013\pi\)
0.549282 + 0.835637i \(0.314901\pi\)
\(332\) 1.80401 2.00887i 0.0990077 0.110251i
\(333\) 0 0
\(334\) 8.04732 21.0054i 0.440330 1.14936i
\(335\) 1.17460 + 0.427521i 0.0641755 + 0.0233580i
\(336\) 0 0
\(337\) −12.1559 10.2000i −0.662174 0.555630i 0.248564 0.968616i \(-0.420041\pi\)
−0.910737 + 0.412986i \(0.864486\pi\)
\(338\) −14.5842 8.75000i −0.793277 0.475937i
\(339\) 0 0
\(340\) −0.00803399 + 0.239104i −0.000435704 + 0.0129672i
\(341\) 13.0120 + 7.51246i 0.704637 + 0.406822i
\(342\) 0 0
\(343\) −8.63317 14.9531i −0.466147 0.807391i
\(344\) 7.32419 5.54192i 0.394894 0.298800i
\(345\) 0 0
\(346\) 13.8970 + 25.0319i 0.747107 + 1.34572i
\(347\) 14.4283 + 2.54411i 0.774554 + 0.136575i 0.546934 0.837175i \(-0.315795\pi\)
0.227619 + 0.973750i \(0.426906\pi\)
\(348\) 0 0
\(349\) −5.21744 6.21790i −0.279283 0.332837i 0.608108 0.793854i \(-0.291929\pi\)
−0.887391 + 0.461018i \(0.847484\pi\)
\(350\) 10.1017 1.60679i 0.539961 0.0858865i
\(351\) 0 0
\(352\) 9.05073 + 8.99125i 0.482406 + 0.479235i
\(353\) 9.20716 7.72572i 0.490047 0.411199i −0.363996 0.931401i \(-0.618588\pi\)
0.854043 + 0.520202i \(0.174143\pi\)
\(354\) 0 0
\(355\) −1.59054 0.280455i −0.0844171 0.0148850i
\(356\) 10.0752 7.89300i 0.533983 0.418328i
\(357\) 0 0
\(358\) 29.5361 10.1919i 1.56103 0.538657i
\(359\) 6.32415 + 10.9538i 0.333776 + 0.578117i 0.983249 0.182268i \(-0.0583438\pi\)
−0.649473 + 0.760385i \(0.725010\pi\)
\(360\) 0 0
\(361\) 8.54731 14.8044i 0.449858 0.779178i
\(362\) −4.73675 + 24.4545i −0.248958 + 1.28530i
\(363\) 0 0
\(364\) 1.06993 2.65826i 0.0560797 0.139331i
\(365\) 0.854962 1.01890i 0.0447508 0.0533319i
\(366\) 0 0
\(367\) 15.1415 + 5.51105i 0.790380 + 0.287675i 0.705494 0.708716i \(-0.250725\pi\)
0.0848857 + 0.996391i \(0.472947\pi\)
\(368\) 1.84783 + 17.1458i 0.0963250 + 0.893788i
\(369\) 0 0
\(370\) 1.29584 + 1.59807i 0.0673673 + 0.0830796i
\(371\) −7.27663 + 1.28307i −0.377784 + 0.0666135i
\(372\) 0 0
\(373\) 5.87846 + 16.1509i 0.304375 + 0.836263i 0.993727 + 0.111836i \(0.0356733\pi\)
−0.689352 + 0.724427i \(0.742105\pi\)
\(374\) −2.80122 0.0470479i −0.144848 0.00243279i
\(375\) 0 0
\(376\) 8.65599 20.5049i 0.446398 1.05746i
\(377\) 0.224903 0.0115831
\(378\) 0 0
\(379\) 12.8581i 0.660478i −0.943897 0.330239i \(-0.892871\pi\)
0.943897 0.330239i \(-0.107129\pi\)
\(380\) −0.865261 + 1.38878i −0.0443870 + 0.0712429i
\(381\) 0 0
\(382\) −0.223261 + 13.2929i −0.0114230 + 0.680124i
\(383\) −4.63308 + 1.68630i −0.236740 + 0.0861662i −0.457666 0.889124i \(-0.651314\pi\)
0.220926 + 0.975291i \(0.429092\pi\)
\(384\) 0 0
\(385\) −0.0774323 0.439140i −0.00394631 0.0223807i
\(386\) −6.59746 8.13621i −0.335802 0.414122i
\(387\) 0 0
\(388\) 0.342936 1.62391i 0.0174099 0.0824417i
\(389\) 5.45591 14.9900i 0.276625 0.760022i −0.721114 0.692817i \(-0.756369\pi\)
0.997739 0.0672055i \(-0.0214083\pi\)
\(390\) 0 0
\(391\) −2.90106 2.43428i −0.146713 0.123107i
\(392\) 13.4877 + 3.08580i 0.681234 + 0.155856i
\(393\) 0 0
\(394\) 4.89853 25.2898i 0.246784 1.27408i
\(395\) −0.845555 0.488181i −0.0425445 0.0245631i
\(396\) 0 0
\(397\) −18.8993 + 10.9115i −0.948529 + 0.547633i −0.892624 0.450803i \(-0.851138\pi\)
−0.0559050 + 0.998436i \(0.517804\pi\)
\(398\) −7.42911 21.5296i −0.372388 1.07918i
\(399\) 0 0
\(400\) −11.0988 + 16.5486i −0.554938 + 0.827429i
\(401\) 6.01001 34.0844i 0.300125 1.70210i −0.345481 0.938426i \(-0.612284\pi\)
0.645607 0.763670i \(-0.276605\pi\)
\(402\) 0 0
\(403\) 4.22574 + 5.03605i 0.210499 + 0.250863i
\(404\) −4.45182 13.6401i −0.221486 0.678618i
\(405\) 0 0
\(406\) −0.0735152 0.462184i −0.00364850 0.0229378i
\(407\) −18.4568 + 15.4871i −0.914869 + 0.767667i
\(408\) 0 0
\(409\) −0.701192 + 3.97666i −0.0346717 + 0.196633i −0.997224 0.0744641i \(-0.976275\pi\)
0.962552 + 0.271097i \(0.0873865\pi\)
\(410\) 0.145603 + 0.262267i 0.00719084 + 0.0129525i
\(411\) 0 0
\(412\) 7.49722 + 14.0555i 0.369361 + 0.692463i
\(413\) 11.6160 6.70650i 0.571586 0.330005i
\(414\) 0 0
\(415\) 0.0919196 0.159209i 0.00451216 0.00781529i
\(416\) 2.37575 + 5.05127i 0.116481 + 0.247659i
\(417\) 0 0
\(418\) −16.4312 9.85815i −0.803678 0.482178i
\(419\) −7.00112 + 8.34360i −0.342027 + 0.407612i −0.909449 0.415815i \(-0.863496\pi\)
0.567422 + 0.823427i \(0.307941\pi\)
\(420\) 0 0
\(421\) 1.92901 5.29990i 0.0940141 0.258302i −0.883768 0.467925i \(-0.845002\pi\)
0.977782 + 0.209624i \(0.0672239\pi\)
\(422\) −25.0158 9.58376i −1.21775 0.466530i
\(423\) 0 0
\(424\) 7.81549 12.0871i 0.379554 0.587000i
\(425\) −0.759843 4.30928i −0.0368578 0.209031i
\(426\) 0 0
\(427\) 6.23884 + 17.1411i 0.301919 + 0.829514i
\(428\) −38.6613 + 5.48549i −1.86876 + 0.265151i
\(429\) 0 0
\(430\) 0.409965 0.472240i 0.0197703 0.0227734i
\(431\) 12.2633 0.590701 0.295351 0.955389i \(-0.404564\pi\)
0.295351 + 0.955389i \(0.404564\pi\)
\(432\) 0 0
\(433\) −34.7890 −1.67185 −0.835927 0.548840i \(-0.815070\pi\)
−0.835927 + 0.548840i \(0.815070\pi\)
\(434\) 8.96798 10.3302i 0.430477 0.495867i
\(435\) 0 0
\(436\) 11.0192 1.56347i 0.527726 0.0748769i
\(437\) −8.85888 24.3396i −0.423778 1.16432i
\(438\) 0 0
\(439\) 3.29026 + 18.6600i 0.157036 + 0.890594i 0.956901 + 0.290414i \(0.0937931\pi\)
−0.799865 + 0.600180i \(0.795096\pi\)
\(440\) 0.729447 + 0.471660i 0.0347750 + 0.0224855i
\(441\) 0 0
\(442\) −1.14471 0.438546i −0.0544481 0.0208595i
\(443\) −8.57202 + 23.5514i −0.407269 + 1.11896i 0.551351 + 0.834274i \(0.314113\pi\)
−0.958620 + 0.284689i \(0.908110\pi\)
\(444\) 0 0
\(445\) 0.560157 0.667569i 0.0265540 0.0316458i
\(446\) −14.1672 8.49979i −0.670835 0.402477i
\(447\) 0 0
\(448\) 9.60398 6.53340i 0.453745 0.308674i
\(449\) −2.07187 + 3.58859i −0.0977777 + 0.169356i −0.910765 0.412926i \(-0.864507\pi\)
0.812987 + 0.582282i \(0.197840\pi\)
\(450\) 0 0
\(451\) −3.04223 + 1.75643i −0.143253 + 0.0827072i
\(452\) 11.5472 + 21.6482i 0.543134 + 1.01824i
\(453\) 0 0
\(454\) −1.24405 2.24084i −0.0583862 0.105168i
\(455\) 0.0338802 0.192144i 0.00158833 0.00900785i
\(456\) 0 0
\(457\) 11.4954 9.64582i 0.537734 0.451213i −0.333028 0.942917i \(-0.608070\pi\)
0.870762 + 0.491704i \(0.163626\pi\)
\(458\) 2.72563 + 17.1358i 0.127360 + 0.800703i
\(459\) 0 0
\(460\) 0.364319 + 1.11625i 0.0169864 + 0.0520452i
\(461\) −2.36115 2.81391i −0.109970 0.131057i 0.708252 0.705960i \(-0.249484\pi\)
−0.818221 + 0.574903i \(0.805040\pi\)
\(462\) 0 0
\(463\) −1.02545 + 5.81561i −0.0476566 + 0.270274i −0.999320 0.0368684i \(-0.988262\pi\)
0.951663 + 0.307143i \(0.0993729\pi\)
\(464\) 0.757145 + 0.507800i 0.0351496 + 0.0235740i
\(465\) 0 0
\(466\) 0.388910 + 1.12706i 0.0180159 + 0.0522101i
\(467\) 4.79342 2.76748i 0.221813 0.128064i −0.384976 0.922926i \(-0.625790\pi\)
0.606789 + 0.794863i \(0.292457\pi\)
\(468\) 0 0
\(469\) 11.5421 + 6.66381i 0.532962 + 0.307706i
\(470\) 0.288181 1.48780i 0.0132928 0.0686271i
\(471\) 0 0
\(472\) −5.82734 + 25.4707i −0.268225 + 1.17239i
\(473\) 5.61003 + 4.70737i 0.257949 + 0.216445i
\(474\) 0 0
\(475\) 10.2360 28.1231i 0.469659 1.29038i
\(476\) −0.527052 + 2.49577i −0.0241574 + 0.114393i
\(477\) 0 0
\(478\) 9.62297 + 11.8674i 0.440144 + 0.542801i
\(479\) −1.43530 8.13997i −0.0655804 0.371925i −0.999881 0.0154382i \(-0.995086\pi\)
0.934300 0.356487i \(-0.116025\pi\)
\(480\) 0 0
\(481\) −9.90631 + 3.60560i −0.451689 + 0.164401i
\(482\) −0.212540 + 12.6546i −0.00968095 + 0.576402i
\(483\) 0 0
\(484\) 6.25444 10.0386i 0.284293 0.456301i
\(485\) 0.113009i 0.00513145i
\(486\) 0 0
\(487\) 16.8387 0.763033 0.381517 0.924362i \(-0.375402\pi\)
0.381517 + 0.924362i \(0.375402\pi\)
\(488\) −32.7368 13.8196i −1.48192 0.625583i
\(489\) 0 0
\(490\) 0.941957 + 0.0158206i 0.0425533 + 0.000714702i
\(491\) −11.2492 30.9069i −0.507669 1.39481i −0.883636 0.468175i \(-0.844912\pi\)
0.375967 0.926633i \(-0.377311\pi\)
\(492\) 0 0
\(493\) −0.197162 + 0.0347650i −0.00887973 + 0.00156574i
\(494\) −5.28058 6.51219i −0.237585 0.292997i
\(495\) 0 0
\(496\) 2.85544 + 26.4952i 0.128213 + 1.18967i
\(497\) −16.1818 5.88968i −0.725851 0.264188i
\(498\) 0 0
\(499\) −5.09730 + 6.07473i −0.228187 + 0.271942i −0.867974 0.496610i \(-0.834578\pi\)
0.639787 + 0.768552i \(0.279022\pi\)
\(500\) −1.01504 + 2.52188i −0.0453940 + 0.112782i
\(501\) 0 0
\(502\) 2.01515 10.4037i 0.0899406 0.464339i
\(503\) −20.9414 + 36.2716i −0.933731 + 1.61727i −0.156850 + 0.987622i \(0.550134\pi\)
−0.776881 + 0.629647i \(0.783200\pi\)
\(504\) 0 0
\(505\) −0.488473 0.846060i −0.0217368 0.0376492i
\(506\) −12.9984 + 4.48529i −0.577848 + 0.199395i
\(507\) 0 0
\(508\) −13.0711 + 10.2401i −0.579937 + 0.454329i
\(509\) −1.32565 0.233747i −0.0587583 0.0103607i 0.144192 0.989550i \(-0.453942\pi\)
−0.202950 + 0.979189i \(0.565053\pi\)
\(510\) 0 0
\(511\) 10.8638 9.11578i 0.480584 0.403258i
\(512\) −3.40702 + 22.3694i −0.150570 + 0.988599i
\(513\) 0 0
\(514\) −23.2591 + 3.69961i −1.02592 + 0.163183i
\(515\) 0.697200 + 0.830890i 0.0307223 + 0.0366134i
\(516\) 0 0
\(517\) 17.4772 + 3.08170i 0.768645 + 0.135533i
\(518\) 10.6478 + 19.1793i 0.467836 + 0.842688i
\(519\) 0 0
\(520\) 0.229335 + 0.303088i 0.0100570 + 0.0132913i
\(521\) −13.6363 23.6187i −0.597416 1.03475i −0.993201 0.116412i \(-0.962861\pi\)
0.395785 0.918343i \(-0.370473\pi\)
\(522\) 0 0
\(523\) −26.9016 15.5317i −1.17633 0.679152i −0.221164 0.975237i \(-0.570986\pi\)
−0.955162 + 0.296085i \(0.904319\pi\)
\(524\) 1.11369 33.1450i 0.0486516 1.44795i
\(525\) 0 0
\(526\) −22.4264 13.4550i −0.977839 0.586667i
\(527\) −4.48298 3.76167i −0.195282 0.163861i
\(528\) 0 0
\(529\) 4.14676 + 1.50930i 0.180294 + 0.0656217i
\(530\) 0.350614 0.915185i 0.0152297 0.0397531i
\(531\) 0 0
\(532\) −11.6567 + 12.9805i −0.505383 + 0.562775i
\(533\) −1.51369 + 0.266904i −0.0655651 + 0.0115609i
\(534\) 0 0
\(535\) −2.49841 + 0.909349i −0.108016 + 0.0393146i
\(536\) −24.8130 + 7.63980i −1.07176 + 0.329989i
\(537\) 0 0
\(538\) −27.0365 23.4712i −1.16563 1.01192i
\(539\) 11.0324i 0.475199i
\(540\) 0 0
\(541\) 20.2507i 0.870645i 0.900274 + 0.435323i \(0.143366\pi\)
−0.900274 + 0.435323i \(0.856634\pi\)
\(542\) −15.4111 + 17.7521i −0.661965 + 0.762518i
\(543\) 0 0
\(544\) −2.86353 4.06098i −0.122773 0.174113i
\(545\) 0.712098 0.259182i 0.0305029 0.0111022i
\(546\) 0 0
\(547\) 13.5248 2.38478i 0.578278 0.101966i 0.123144 0.992389i \(-0.460702\pi\)
0.455134 + 0.890423i \(0.349591\pi\)
\(548\) 12.0523 + 10.8232i 0.514847 + 0.462342i
\(549\) 0 0
\(550\) −14.8364 5.68395i −0.632628 0.242364i
\(551\) −1.28671 0.468325i −0.0548158 0.0199513i
\(552\) 0 0
\(553\) −7.97465 6.69153i −0.339117 0.284553i
\(554\) 12.8987 21.4991i 0.548013 0.913410i
\(555\) 0 0
\(556\) −0.256643 + 7.63809i −0.0108841 + 0.323927i
\(557\) 8.93296 + 5.15745i 0.378502 + 0.218528i 0.677166 0.735830i \(-0.263208\pi\)
−0.298665 + 0.954358i \(0.596541\pi\)
\(558\) 0 0
\(559\) 1.60216 + 2.77502i 0.0677640 + 0.117371i
\(560\) 0.547895 0.570364i 0.0231528 0.0241023i
\(561\) 0 0
\(562\) −20.2620 + 11.2489i −0.854699 + 0.474505i
\(563\) 3.14086 + 0.553818i 0.132371 + 0.0233406i 0.239441 0.970911i \(-0.423036\pi\)
−0.107070 + 0.994251i \(0.534147\pi\)
\(564\) 0 0
\(565\) 1.07382 + 1.27973i 0.0451761 + 0.0538388i
\(566\) −4.08898 25.7071i −0.171873 1.08055i
\(567\) 0 0
\(568\) 29.8591 15.2884i 1.25286 0.641488i
\(569\) 7.37287 6.18657i 0.309087 0.259355i −0.475028 0.879971i \(-0.657562\pi\)
0.784114 + 0.620616i \(0.213118\pi\)
\(570\) 0 0
\(571\) −6.25643 1.10318i −0.261823 0.0461665i 0.0411954 0.999151i \(-0.486883\pi\)
−0.303019 + 0.952985i \(0.597995\pi\)
\(572\) −3.50373 + 2.74487i −0.146498 + 0.114769i
\(573\) 0 0
\(574\) 1.04329 + 3.02344i 0.0435459 + 0.126196i
\(575\) −10.7382 18.5991i −0.447815 0.775638i
\(576\) 0 0
\(577\) 16.7124 28.9468i 0.695748 1.20507i −0.274179 0.961679i \(-0.588406\pi\)
0.969928 0.243393i \(-0.0782604\pi\)
\(578\) −22.5316 4.36429i −0.937193 0.181531i
\(579\) 0 0
\(580\) 0.0575845 + 0.0231773i 0.00239107 + 0.000962387i
\(581\) 1.25995 1.50155i 0.0522714 0.0622947i
\(582\) 0 0
\(583\) 10.7848 + 3.92533i 0.446659 + 0.162571i
\(584\) −1.39126 + 27.5911i −0.0575709 + 1.14173i
\(585\) 0 0
\(586\) 30.9176 25.0703i 1.27719 1.03565i
\(587\) −11.4100 + 2.01190i −0.470943 + 0.0830399i −0.404083 0.914722i \(-0.632409\pi\)
−0.0668600 + 0.997762i \(0.521298\pi\)
\(588\) 0 0
\(589\) −13.6895 37.6117i −0.564067 1.54976i
\(590\) −0.0298762 + 1.77882i −0.00122998 + 0.0732330i
\(591\) 0 0
\(592\) −41.4910 10.2287i −1.70527 0.420397i
\(593\) 11.5506 0.474326 0.237163 0.971470i \(-0.423782\pi\)
0.237163 + 0.971470i \(0.423782\pi\)
\(594\) 0 0
\(595\) 0.173681i 0.00712023i
\(596\) 37.8963 + 23.6108i 1.55229 + 0.967135i
\(597\) 0 0
\(598\) −6.01561 0.101035i −0.245997 0.00413163i
\(599\) −27.1047 + 9.86532i −1.10747 + 0.403086i −0.830065 0.557667i \(-0.811697\pi\)
−0.277405 + 0.960753i \(0.589474\pi\)
\(600\) 0 0
\(601\) −1.58173 8.97043i −0.0645201 0.365911i −0.999924 0.0123304i \(-0.996075\pi\)
0.935404 0.353581i \(-0.115036\pi\)
\(602\) 5.17906 4.19958i 0.211083 0.171162i
\(603\) 0 0
\(604\) −7.87435 + 37.2876i −0.320403 + 1.51721i
\(605\) 0.275437 0.756758i 0.0111981 0.0307666i
\(606\) 0 0
\(607\) 22.8418 + 19.1665i 0.927119 + 0.777945i 0.975298 0.220894i \(-0.0708974\pi\)
−0.0481792 + 0.998839i \(0.515342\pi\)
\(608\) −3.07366 33.8464i −0.124653 1.37265i
\(609\) 0 0
\(610\) −2.37532 0.460091i −0.0961740 0.0186285i
\(611\) 6.72472 + 3.88252i 0.272053 + 0.157070i
\(612\) 0 0
\(613\) −2.09252 + 1.20812i −0.0845161 + 0.0487954i −0.541662 0.840596i \(-0.682205\pi\)
0.457146 + 0.889391i \(0.348872\pi\)
\(614\) 21.9133 7.56152i 0.884349 0.305158i
\(615\) 0 0
\(616\) 6.78609 + 6.30308i 0.273419 + 0.253958i
\(617\) 6.36070 36.0733i 0.256072 1.45226i −0.537233 0.843434i \(-0.680530\pi\)
0.793305 0.608824i \(-0.208359\pi\)
\(618\) 0 0
\(619\) 19.5701 + 23.3228i 0.786590 + 0.937421i 0.999211 0.0397133i \(-0.0126445\pi\)
−0.212621 + 0.977135i \(0.568200\pi\)
\(620\) 0.562977 + 1.72492i 0.0226097 + 0.0692745i
\(621\) 0 0
\(622\) −42.9471 + 6.83119i −1.72202 + 0.273906i
\(623\) 7.11775 5.97250i 0.285167 0.239283i
\(624\) 0 0
\(625\) 4.29296 24.3466i 0.171718 0.973864i
\(626\) 27.1173 15.0548i 1.08383 0.601709i
\(627\) 0 0
\(628\) −15.1592 + 8.08595i −0.604918 + 0.322665i
\(629\) 8.12706 4.69216i 0.324047 0.187089i
\(630\) 0 0
\(631\) −19.0463 + 32.9892i −0.758221 + 1.31328i 0.185536 + 0.982637i \(0.440598\pi\)
−0.943757 + 0.330640i \(0.892735\pi\)
\(632\) 20.1232 2.51123i 0.800457 0.0998914i
\(633\) 0 0
\(634\) −19.7165 + 32.8628i −0.783041 + 1.30515i
\(635\) −0.726725 + 0.866078i −0.0288392 + 0.0343692i
\(636\) 0 0
\(637\) −1.65099 + 4.53606i −0.0654147 + 0.179725i
\(638\) −0.260057 + 0.678809i −0.0102958 + 0.0268743i
\(639\) 0 0
\(640\) 0.0877331 + 1.53817i 0.00346796 + 0.0608014i
\(641\) −3.09962 17.5788i −0.122427 0.694321i −0.982803 0.184659i \(-0.940882\pi\)
0.860375 0.509661i \(-0.170229\pi\)
\(642\) 0 0
\(643\) −3.02218 8.30337i −0.119183 0.327453i 0.865728 0.500515i \(-0.166856\pi\)
−0.984911 + 0.173062i \(0.944634\pi\)
\(644\) 1.75873 + 12.3953i 0.0693035 + 0.488445i
\(645\) 0 0
\(646\) 5.63589 + 4.89268i 0.221741 + 0.192500i
\(647\) −20.3838 −0.801371 −0.400686 0.916216i \(-0.631228\pi\)
−0.400686 + 0.916216i \(0.631228\pi\)
\(648\) 0 0
\(649\) −20.8340 −0.817804
\(650\) −5.24953 4.55727i −0.205903 0.178751i
\(651\) 0 0
\(652\) −19.9042 + 2.82412i −0.779507 + 0.110601i
\(653\) −6.26659 17.2173i −0.245230 0.673765i −0.999845 0.0175970i \(-0.994398\pi\)
0.754615 0.656168i \(-0.227824\pi\)
\(654\) 0 0
\(655\) −0.392110 2.22376i −0.0153210 0.0868897i
\(656\) −5.69853 2.51916i −0.222490 0.0983567i
\(657\) 0 0
\(658\) 5.78058 15.0887i 0.225350 0.588217i
\(659\) 1.95819 5.38009i 0.0762803 0.209579i −0.895691 0.444676i \(-0.853319\pi\)
0.971972 + 0.235098i \(0.0755410\pi\)
\(660\) 0 0
\(661\) 15.7491 18.7691i 0.612569 0.730032i −0.367204 0.930140i \(-0.619685\pi\)
0.979774 + 0.200109i \(0.0641295\pi\)
\(662\) −10.4792 + 17.4665i −0.407287 + 0.678854i
\(663\) 0 0
\(664\) 0.472840 + 3.78899i 0.0183497 + 0.147041i
\(665\) −0.593945 + 1.02874i −0.0230322 + 0.0398929i
\(666\) 0 0
\(667\) −0.850963 + 0.491304i −0.0329494 + 0.0190234i
\(668\) 14.9716 + 28.0681i 0.579269 + 1.08599i
\(669\) 0 0
\(670\) −1.54554 + 0.858041i −0.0597095 + 0.0331490i
\(671\) 4.92003 27.9029i 0.189936 1.07718i
\(672\) 0 0
\(673\) −19.5576 + 16.4108i −0.753889 + 0.632588i −0.936528 0.350592i \(-0.885980\pi\)
0.182639 + 0.983180i \(0.441536\pi\)
\(674\) 22.1627 3.52521i 0.853675 0.135786i
\(675\) 0 0
\(676\) 22.8655 7.46280i 0.879442 0.287031i
\(677\) 14.0009 + 16.6857i 0.538100 + 0.641283i 0.964761 0.263129i \(-0.0847545\pi\)
−0.426660 + 0.904412i \(0.640310\pi\)
\(678\) 0 0
\(679\) 0.209232 1.18661i 0.00802959 0.0455380i
\(680\) −0.247898 0.230254i −0.00950647 0.00882983i
\(681\) 0 0
\(682\) −20.0862 + 6.93106i −0.769142 + 0.265404i
\(683\) 24.8360 14.3391i 0.950322 0.548669i 0.0571411 0.998366i \(-0.481802\pi\)
0.893181 + 0.449697i \(0.148468\pi\)
\(684\) 0 0
\(685\) 0.955179 + 0.551473i 0.0364955 + 0.0210707i
\(686\) 23.9727 + 4.64342i 0.915283 + 0.177287i
\(687\) 0 0
\(688\) −0.871885 + 12.9597i −0.0332403 + 0.494083i
\(689\) 3.84682 + 3.22787i 0.146552 + 0.122972i
\(690\) 0 0
\(691\) −10.5292 + 28.9287i −0.400549 + 1.10050i 0.561465 + 0.827501i \(0.310238\pi\)
−0.962014 + 0.273000i \(0.911984\pi\)
\(692\) −39.6163 8.36612i −1.50599 0.318032i
\(693\) 0 0
\(694\) −16.0935 + 13.0498i −0.610901 + 0.495365i
\(695\) 0.0903596 + 0.512455i 0.00342754 + 0.0194385i
\(696\) 0 0
\(697\) 1.28572 0.467965i 0.0487003 0.0177255i
\(698\) 11.4774 + 0.192768i 0.434426 + 0.00729639i
\(699\) 0 0
\(700\) −7.64943 + 12.2776i −0.289121 + 0.464051i
\(701\) 41.7650i 1.57744i 0.614751 + 0.788722i \(0.289257\pi\)
−0.614751 + 0.788722i \(0.710743\pi\)
\(702\) 0 0
\(703\) 64.1840 2.42075
\(704\) −17.9930 + 1.32975i −0.678137 + 0.0501168i
\(705\) 0 0
\(706\) −0.285442 + 16.9952i −0.0107427 + 0.639621i
\(707\) −3.56262 9.78821i −0.133986 0.368123i
\(708\) 0 0
\(709\) −11.9516 + 2.10739i −0.448852 + 0.0791446i −0.393505 0.919323i \(-0.628738\pi\)
−0.0553467 + 0.998467i \(0.517626\pi\)
\(710\) 1.77410 1.43858i 0.0665809 0.0539889i
\(711\) 0 0
\(712\) −0.911532 + 18.0772i −0.0341611 + 0.677472i
\(713\) −26.9903 9.82365i −1.01079 0.367899i
\(714\) 0 0
\(715\) −0.194800 + 0.232153i −0.00728510 + 0.00868205i
\(716\) −16.4988 + 40.9914i −0.616588 + 1.53192i
\(717\) 0 0
\(718\) −17.5610 3.40150i −0.655371 0.126943i
\(719\) 9.22099 15.9712i 0.343885 0.595626i −0.641266 0.767319i \(-0.721590\pi\)
0.985151 + 0.171693i \(0.0549236\pi\)
\(720\) 0 0
\(721\) 5.78238 + 10.0154i 0.215347 + 0.372992i
\(722\) 7.88583 + 22.8531i 0.293480 + 0.850506i
\(723\) 0 0
\(724\) −21.7243 27.7304i −0.807379 1.03059i
\(725\) −1.11810 0.197152i −0.0415253 0.00732204i
\(726\) 0 0
\(727\) −13.7551 + 11.5419i −0.510147 + 0.428065i −0.861181 0.508298i \(-0.830275\pi\)
0.351034 + 0.936363i \(0.385830\pi\)
\(728\) 1.84691 + 3.60710i 0.0684509 + 0.133688i
\(729\) 0 0
\(730\) 0.295482 + 1.85767i 0.0109363 + 0.0687555i
\(731\) −1.83349 2.18507i −0.0678142 0.0808178i
\(732\) 0 0
\(733\) 7.91675 + 1.39594i 0.292412 + 0.0515601i 0.317930 0.948114i \(-0.397012\pi\)
−0.0255180 + 0.999674i \(0.508123\pi\)
\(734\) −19.9232 + 11.0608i −0.735377 + 0.408260i
\(735\) 0 0
\(736\) −20.0237 13.9226i −0.738084 0.513194i
\(737\) −10.3507 17.9279i −0.381272 0.660382i
\(738\) 0 0
\(739\) −6.23912 3.60216i −0.229510 0.132508i 0.380836 0.924643i \(-0.375636\pi\)
−0.610346 + 0.792135i \(0.708970\pi\)
\(740\) −2.90800 0.0977101i −0.106900 0.00359190i
\(741\) 0 0
\(742\) 5.37596 8.96048i 0.197358 0.328950i
\(743\) 28.1102 + 23.5873i 1.03126 + 0.865334i 0.991001 0.133856i \(-0.0427358\pi\)
0.0402635 + 0.999189i \(0.487180\pi\)
\(744\) 0 0
\(745\) 2.85679 + 1.03979i 0.104665 + 0.0380949i
\(746\) −22.6980 8.69579i −0.831034 0.318375i
\(747\) 0 0
\(748\) 2.64727 2.94790i 0.0967937 0.107786i
\(749\) −27.9175 + 4.92261i −1.02008 + 0.179868i
\(750\) 0 0
\(751\) 34.3650 12.5079i 1.25400 0.456418i 0.372247 0.928134i \(-0.378587\pi\)
0.881751 + 0.471716i \(0.156365\pi\)
\(752\) 13.8729 + 28.2542i 0.505891 + 1.03032i
\(753\) 0 0
\(754\) −0.208508 + 0.240181i −0.00759342 + 0.00874687i
\(755\) 2.59486i 0.0944365i
\(756\) 0 0
\(757\) 36.5128i 1.32708i −0.748140 0.663541i \(-0.769053\pi\)
0.748140 0.663541i \(-0.230947\pi\)
\(758\) 13.7316 + 11.9208i 0.498755 + 0.432984i
\(759\) 0 0
\(760\) −0.680935 2.21158i −0.0247001 0.0802225i
\(761\) 4.63196 1.68589i 0.167908 0.0611136i −0.256698 0.966492i \(-0.582635\pi\)
0.424607 + 0.905378i \(0.360412\pi\)
\(762\) 0 0
\(763\) 7.95705 1.40304i 0.288065 0.0507935i
\(764\) −13.9889 12.5623i −0.506102 0.454489i
\(765\) 0 0
\(766\) 2.49449 6.51120i 0.0901296 0.235259i
\(767\) −8.56606 3.11779i −0.309303 0.112577i
\(768\) 0 0
\(769\) 37.4770 + 31.4469i 1.35145 + 1.13400i 0.978521 + 0.206146i \(0.0660921\pi\)
0.372932 + 0.927858i \(0.378352\pi\)
\(770\) 0.540760 + 0.324436i 0.0194876 + 0.0116919i
\(771\) 0 0
\(772\) 14.8055 + 0.497469i 0.532860 + 0.0179043i
\(773\) 8.17747 + 4.72126i 0.294123 + 0.169812i 0.639800 0.768542i \(-0.279017\pi\)
−0.345677 + 0.938354i \(0.612351\pi\)
\(774\) 0 0
\(775\) −16.5936 28.7410i −0.596061 1.03241i
\(776\) 1.41629 + 1.87177i 0.0508419 + 0.0671925i
\(777\) 0 0
\(778\) 10.9501 + 19.7238i 0.392580 + 0.707133i
\(779\) 9.21589 + 1.62501i 0.330194 + 0.0582220i
\(780\) 0 0
\(781\) 17.1931 + 20.4899i 0.615216 + 0.733186i
\(782\) 5.28923 0.841308i 0.189143 0.0300851i
\(783\) 0 0
\(784\) −15.8000 + 11.5431i −0.564284 + 0.412255i
\(785\) −0.896137 + 0.751949i −0.0319845 + 0.0268382i
\(786\) 0 0
\(787\) 15.6553 + 2.76045i 0.558050 + 0.0983993i 0.445558 0.895253i \(-0.353005\pi\)
0.112493 + 0.993653i \(0.464117\pi\)
\(788\) 22.4663 + 28.6775i 0.800330 + 1.02160i
\(789\) 0 0
\(790\) 1.30526 0.450401i 0.0464391 0.0160245i
\(791\) 8.90599 + 15.4256i 0.316661 + 0.548472i
\(792\) 0 0
\(793\) 6.19857 10.7362i 0.220118 0.381255i
\(794\) 5.86885 30.2993i 0.208278 1.07528i
\(795\) 0 0
\(796\) 29.8797 + 12.0264i 1.05906 + 0.426263i
\(797\) 9.18613 10.9476i 0.325389 0.387784i −0.578406 0.815749i \(-0.696325\pi\)
0.903795 + 0.427965i \(0.140769\pi\)
\(798\) 0 0
\(799\) −6.49541 2.36413i −0.229791 0.0836371i
\(800\) −7.38306 27.1950i −0.261031 0.961488i
\(801\) 0 0
\(802\) 30.8280 + 38.0181i 1.08857 + 1.34247i
\(803\) −21.6932 + 3.82509i −0.765536 + 0.134985i
\(804\) 0 0
\(805\) 0.291550 + 0.801026i 0.0102758 + 0.0282325i
\(806\) −9.29586 0.156128i −0.327433 0.00549939i
\(807\) 0 0
\(808\) 18.6940 + 7.89151i 0.657651 + 0.277622i
\(809\) −2.71159 −0.0953343 −0.0476672 0.998863i \(-0.515179\pi\)
−0.0476672 + 0.998863i \(0.515179\pi\)
\(810\) 0 0
\(811\) 38.7762i 1.36162i 0.732462 + 0.680808i \(0.238371\pi\)
−0.732462 + 0.680808i \(0.761629\pi\)
\(812\) 0.561737 + 0.349983i 0.0197131 + 0.0122820i
\(813\) 0 0
\(814\) 0.572201 34.0687i 0.0200556 1.19411i
\(815\) −1.28627 + 0.468164i −0.0450561 + 0.0163991i
\(816\) 0 0
\(817\) −3.38771 19.2126i −0.118521 0.672165i
\(818\) −3.59672 4.43560i −0.125757 0.155087i
\(819\) 0 0
\(820\) −0.415073 0.0876546i −0.0144950 0.00306103i
\(821\) −12.6956 + 34.8810i −0.443081 + 1.21736i 0.494374 + 0.869249i \(0.335397\pi\)
−0.937455 + 0.348106i \(0.886825\pi\)
\(822\) 0 0
\(823\) −16.3072 13.6834i −0.568433 0.476972i 0.312692 0.949854i \(-0.398769\pi\)
−0.881126 + 0.472882i \(0.843214\pi\)
\(824\) −21.9610 5.02436i −0.765047 0.175032i
\(825\) 0 0
\(826\) −3.60715 + 18.6227i −0.125509 + 0.647967i
\(827\) −7.73838 4.46776i −0.269090 0.155359i 0.359384 0.933190i \(-0.382987\pi\)
−0.628474 + 0.777831i \(0.716320\pi\)
\(828\) 0 0
\(829\) −19.4960 + 11.2560i −0.677124 + 0.390938i −0.798771 0.601636i \(-0.794516\pi\)
0.121647 + 0.992573i \(0.461183\pi\)
\(830\) 0.0848059 + 0.245768i 0.00294365 + 0.00853072i
\(831\) 0 0
\(832\) −7.59698 2.14591i −0.263378 0.0743960i
\(833\) 0.746175 4.23177i 0.0258534 0.146622i
\(834\) 0 0
\(835\) 1.39228 + 1.65925i 0.0481817 + 0.0574207i
\(836\) 25.7613 8.40793i 0.890973 0.290794i
\(837\) 0 0
\(838\) −2.41964 15.2121i −0.0835852 0.525493i
\(839\) 0.793395 0.665737i 0.0273910 0.0229838i −0.628989 0.777414i \(-0.716531\pi\)
0.656380 + 0.754430i \(0.272087\pi\)
\(840\) 0 0
\(841\) 5.02678 28.5083i 0.173337 0.983044i
\(842\) 3.87155 + 6.97361i 0.133422 + 0.240326i
\(843\) 0 0
\(844\) 33.4271 17.8301i 1.15061 0.613737i
\(845\) 1.41829 0.818851i 0.0487907 0.0281693i
\(846\) 0 0
\(847\) 4.29326 7.43615i 0.147518 0.255509i
\(848\) 5.66241 + 19.5524i 0.194448 + 0.671431i
\(849\) 0 0
\(850\) 5.30648 + 3.18369i 0.182011 + 0.109200i
\(851\) 29.6060 35.2830i 1.01488 1.20949i
\(852\) 0 0
\(853\) −8.12987 + 22.3366i −0.278361 + 0.764792i 0.719187 + 0.694816i \(0.244514\pi\)
−0.997549 + 0.0699754i \(0.977708\pi\)
\(854\) −24.0895 9.22889i −0.824327 0.315806i
\(855\) 0 0
\(856\) 29.9849 46.3733i 1.02486 1.58501i
\(857\) −4.07463 23.1084i −0.139187 0.789367i −0.971852 0.235591i \(-0.924297\pi\)
0.832666 0.553776i \(-0.186814\pi\)
\(858\) 0 0
\(859\) −11.7827 32.3728i −0.402022 1.10455i −0.961285 0.275555i \(-0.911138\pi\)
0.559264 0.828990i \(-0.311084\pi\)
\(860\) 0.124240 + 0.875630i 0.00423653 + 0.0298587i
\(861\) 0 0
\(862\) −11.3693 + 13.0963i −0.387241 + 0.446063i
\(863\) 26.5038 0.902199 0.451100 0.892474i \(-0.351032\pi\)
0.451100 + 0.892474i \(0.351032\pi\)
\(864\) 0 0
\(865\) −2.75691 −0.0937378
\(866\) 32.2530 37.1523i 1.09600 1.26249i
\(867\) 0 0
\(868\) 2.71774 + 19.1544i 0.0922460 + 0.650142i
\(869\) 5.53038 + 15.1946i 0.187605 + 0.515442i
\(870\) 0 0
\(871\) −1.57287 8.92017i −0.0532946 0.302248i
\(872\) −8.54629 + 13.2173i −0.289414 + 0.447594i
\(873\) 0 0
\(874\) 34.2061 + 13.1046i 1.15704 + 0.443270i
\(875\) −0.674995 + 1.85453i −0.0228190 + 0.0626947i
\(876\) 0 0
\(877\) 12.6506 15.0765i 0.427182 0.509096i −0.508925 0.860811i \(-0.669957\pi\)
0.936107 + 0.351715i \(0.114401\pi\)
\(878\) −22.9780 13.7860i −0.775471 0.465255i
\(879\) 0 0
\(880\) −1.17997 + 0.341723i −0.0397769 + 0.0115195i
\(881\) 0.970676 1.68126i 0.0327029 0.0566431i −0.849211 0.528054i \(-0.822922\pi\)
0.881914 + 0.471411i \(0.156255\pi\)
\(882\) 0 0
\(883\) −3.58570 + 2.07021i −0.120669 + 0.0696680i −0.559119 0.829087i \(-0.688861\pi\)
0.438451 + 0.898755i \(0.355527\pi\)
\(884\) 1.52960 0.815891i 0.0514460 0.0274414i
\(885\) 0 0
\(886\) −17.2042 30.9890i −0.577986 1.04109i
\(887\) −4.24470 + 24.0729i −0.142523 + 0.808289i 0.826799 + 0.562497i \(0.190159\pi\)
−0.969323 + 0.245792i \(0.920952\pi\)
\(888\) 0 0
\(889\) −9.23429 + 7.74849i −0.309708 + 0.259876i
\(890\) 0.193595 + 1.21712i 0.00648932 + 0.0407978i
\(891\) 0 0
\(892\) 22.2116 7.24940i 0.743700 0.242728i
\(893\) −30.3887 36.2158i −1.01692 1.21192i
\(894\) 0 0
\(895\) −0.522445 + 2.96293i −0.0174634 + 0.0990399i
\(896\) −1.92666 + 16.3135i −0.0643651 + 0.544997i
\(897\) 0 0
\(898\) −1.91153 5.53961i −0.0637885 0.184859i
\(899\) −1.31498 + 0.759206i −0.0438572 + 0.0253209i
\(900\) 0 0
\(901\) −3.87129 2.23509i −0.128971 0.0744617i
\(902\) 0.944712 4.87729i 0.0314555 0.162396i
\(903\) 0 0
\(904\) −33.8242 7.73849i −1.12498 0.257378i
\(905\) −1.83739 1.54175i −0.0610768 0.0512495i
\(906\) 0 0
\(907\) −19.8264 + 54.4726i −0.658325 + 1.80873i −0.0739328 + 0.997263i \(0.523555\pi\)
−0.584393 + 0.811471i \(0.698667\pi\)
\(908\) 3.54643 + 0.748929i 0.117692 + 0.0248541i
\(909\) 0 0
\(910\) 0.173786 + 0.214319i 0.00576096 + 0.00710461i
\(911\) −1.13796 6.45371i −0.0377024 0.213821i 0.960136 0.279532i \(-0.0901794\pi\)
−0.997839 + 0.0657114i \(0.979068\pi\)
\(912\) 0 0
\(913\) −2.86099 + 1.04132i −0.0946850 + 0.0344625i
\(914\) −0.356384 + 21.2190i −0.0117881 + 0.701863i
\(915\) 0 0
\(916\) −20.8268 12.9759i −0.688137 0.428735i
\(917\) 24.0760i 0.795059i
\(918\) 0 0
\(919\) −17.7731 −0.586281 −0.293140 0.956069i \(-0.594700\pi\)
−0.293140 + 0.956069i \(0.594700\pi\)
\(920\) −1.52984 0.645808i −0.0504372 0.0212917i
\(921\) 0 0
\(922\) 5.19410 + 0.0872373i 0.171058 + 0.00287301i
\(923\) 4.00277 + 10.9975i 0.131753 + 0.361988i
\(924\) 0 0
\(925\) 52.4099 9.24128i 1.72323 0.303851i
\(926\) −5.25998 6.48678i −0.172854 0.213169i
\(927\) 0 0
\(928\) −1.24425 + 0.337796i −0.0408444 + 0.0110887i
\(929\) 53.7456 + 19.5618i 1.76333 + 0.641801i 0.999991 0.00419109i \(-0.00133407\pi\)
0.763344 + 0.645993i \(0.223556\pi\)
\(930\) 0 0
\(931\) 18.8913 22.5138i 0.619137 0.737859i
\(932\) −1.56418 0.629573i −0.0512366 0.0206224i
\(933\) 0 0
\(934\) −1.48851 + 7.68479i −0.0487056 + 0.251454i
\(935\) 0.134886 0.233630i 0.00441126 0.00764052i
\(936\) 0 0
\(937\) 13.7103 + 23.7470i 0.447897 + 0.775780i 0.998249 0.0591527i \(-0.0188399\pi\)
−0.550352 + 0.834933i \(0.685507\pi\)
\(938\) −17.8172 + 6.14809i −0.581751 + 0.200742i
\(939\) 0 0
\(940\) 1.32170 + 1.68710i 0.0431090 + 0.0550272i
\(941\) 47.0141 + 8.28985i 1.53261 + 0.270241i 0.875376 0.483442i \(-0.160614\pi\)
0.657238 + 0.753683i \(0.271725\pi\)
\(942\) 0 0
\(943\) 5.14428 4.31656i 0.167521 0.140567i
\(944\) −21.7985 29.8372i −0.709480 0.971118i
\(945\) 0 0
\(946\) −10.2282 + 1.62691i −0.332549 + 0.0528953i
\(947\) −9.31764 11.1043i −0.302783 0.360842i 0.593103 0.805126i \(-0.297903\pi\)
−0.895886 + 0.444284i \(0.853458\pi\)
\(948\) 0 0
\(949\) −9.49177 1.67365i −0.308116 0.0543291i
\(950\) 20.5438 + 37.0044i 0.666528 + 1.20058i
\(951\) 0 0
\(952\) −2.17668 2.87669i −0.0705465 0.0932341i
\(953\) 17.4033 + 30.1434i 0.563749 + 0.976442i 0.997165 + 0.0752476i \(0.0239747\pi\)
−0.433416 + 0.901194i \(0.642692\pi\)
\(954\) 0 0
\(955\) −1.10867 0.640089i −0.0358756 0.0207128i
\(956\) −21.5950 0.725602i −0.698433 0.0234677i
\(957\) 0 0
\(958\) 10.0236 + 6.01380i 0.323848 + 0.194297i
\(959\) 9.00855 + 7.55907i 0.290901 + 0.244095i
\(960\) 0 0
\(961\) −12.5773 4.57775i −0.405718 0.147669i
\(962\) 5.33364 13.9220i 0.171963 0.448864i
\(963\) 0 0
\(964\) −13.3172 11.9591i −0.428919 0.385178i
\(965\) 0.993327 0.175150i 0.0319763 0.00563829i
\(966\) 0 0
\(967\) −7.31794 + 2.66351i −0.235329 + 0.0856527i −0.456993 0.889470i \(-0.651073\pi\)
0.221664 + 0.975123i \(0.428851\pi\)
\(968\) 4.92206 + 15.9862i 0.158201 + 0.513815i
\(969\) 0 0
\(970\) 0.120685 + 0.104771i 0.00387498 + 0.00336398i
\(971\) 2.23282i 0.0716547i 0.999358 + 0.0358273i \(0.0114066\pi\)
−0.999358 + 0.0358273i \(0.988593\pi\)
\(972\) 0 0
\(973\) 5.54818i 0.177867i
\(974\) −15.6112 + 17.9826i −0.500215 + 0.576199i
\(975\) 0 0
\(976\) 45.1088 22.1485i 1.44390 0.708956i
\(977\) −42.2729 + 15.3861i −1.35243 + 0.492244i −0.913706 0.406377i \(-0.866792\pi\)
−0.438725 + 0.898621i \(0.644570\pi\)
\(978\) 0 0
\(979\) −14.2130 + 2.50614i −0.454250 + 0.0800965i
\(980\) −0.890187 + 0.991279i −0.0284360 + 0.0316652i
\(981\) 0 0
\(982\) 43.4356 + 16.6405i 1.38609 + 0.531020i
\(983\) 11.4136 + 4.15422i 0.364038 + 0.132499i 0.517562 0.855646i \(-0.326840\pi\)
−0.153523 + 0.988145i \(0.549062\pi\)
\(984\) 0 0
\(985\) 1.90014 + 1.59441i 0.0605436 + 0.0508021i
\(986\) 0.145663 0.242786i 0.00463885 0.00773189i
\(987\) 0 0
\(988\) 11.8502 + 0.398173i 0.377006 + 0.0126676i
\(989\) −12.1241 6.99988i −0.385525 0.222583i
\(990\) 0 0
\(991\) −24.4431 42.3367i −0.776462 1.34487i −0.933969 0.357353i \(-0.883679\pi\)
0.157508 0.987518i \(-0.449654\pi\)
\(992\) −30.9424 21.5144i −0.982422 0.683083i
\(993\) 0 0
\(994\) 21.2919 11.8207i 0.675339 0.374929i
\(995\) 2.15976 + 0.380823i 0.0684689 + 0.0120729i
\(996\) 0 0
\(997\) −3.84922 4.58733i −0.121906 0.145282i 0.701639 0.712532i \(-0.252452\pi\)
−0.823546 + 0.567250i \(0.808007\pi\)
\(998\) −1.76167 11.0755i −0.0557647 0.350588i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.37.9 204
3.2 odd 2 216.2.t.a.157.26 204
8.5 even 2 inner 648.2.t.a.37.6 204
12.11 even 2 864.2.bf.a.49.24 204
24.5 odd 2 216.2.t.a.157.29 yes 204
24.11 even 2 864.2.bf.a.49.11 204
27.11 odd 18 216.2.t.a.205.29 yes 204
27.16 even 9 inner 648.2.t.a.613.6 204
108.11 even 18 864.2.bf.a.529.11 204
216.11 even 18 864.2.bf.a.529.24 204
216.173 odd 18 216.2.t.a.205.26 yes 204
216.205 even 18 inner 648.2.t.a.613.9 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.26 204 3.2 odd 2
216.2.t.a.157.29 yes 204 24.5 odd 2
216.2.t.a.205.26 yes 204 216.173 odd 18
216.2.t.a.205.29 yes 204 27.11 odd 18
648.2.t.a.37.6 204 8.5 even 2 inner
648.2.t.a.37.9 204 1.1 even 1 trivial
648.2.t.a.613.6 204 27.16 even 9 inner
648.2.t.a.613.9 204 216.205 even 18 inner
864.2.bf.a.49.11 204 24.11 even 2
864.2.bf.a.49.24 204 12.11 even 2
864.2.bf.a.529.11 204 108.11 even 18
864.2.bf.a.529.24 204 216.11 even 18