Properties

Label 648.2.t.a.37.4
Level $648$
Weight $2$
Character 648.37
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 37.4
Character \(\chi\) \(=\) 648.37
Dual form 648.2.t.a.613.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30848 - 0.536554i) q^{2} +(1.42422 + 1.40414i) q^{4} +(-1.34230 - 3.68793i) q^{5} +(-0.499959 - 2.83541i) q^{7} +(-1.11016 - 2.60145i) q^{8} +(-0.222412 + 5.54579i) q^{10} +(0.996019 - 2.73654i) q^{11} +(2.55767 - 3.04812i) q^{13} +(-0.867166 + 3.97832i) q^{14} +(0.0567986 + 3.99960i) q^{16} +(-2.48745 + 4.30839i) q^{17} +(-1.78004 + 1.02771i) q^{19} +(3.26664 - 7.13719i) q^{20} +(-2.77157 + 3.04628i) q^{22} +(-0.165146 + 0.936587i) q^{23} +(-7.96887 + 6.68667i) q^{25} +(-4.98214 + 2.61606i) q^{26} +(3.26925 - 4.74025i) q^{28} +(5.18495 + 6.17919i) q^{29} +(0.331534 - 1.88022i) q^{31} +(2.07168 - 5.26385i) q^{32} +(5.56646 - 4.30278i) q^{34} +(-9.78570 + 5.64977i) q^{35} +(-8.31066 - 4.79816i) q^{37} +(2.88056 - 0.389641i) q^{38} +(-8.10381 + 7.58612i) q^{40} +(-0.581151 - 0.487644i) q^{41} +(2.14125 - 5.88303i) q^{43} +(5.26103 - 2.49888i) q^{44} +(0.718619 - 1.13689i) q^{46} +(-0.932102 - 5.28621i) q^{47} +(-1.21172 + 0.441031i) q^{49} +(14.0148 - 4.47362i) q^{50} +(7.92266 - 0.749861i) q^{52} +3.54207i q^{53} -11.4291 q^{55} +(-6.82113 + 4.44837i) q^{56} +(-3.46892 - 10.8673i) q^{58} +(-2.13303 - 5.86045i) q^{59} +(3.22446 - 0.568559i) q^{61} +(-1.44265 + 2.28234i) q^{62} +(-5.53509 + 5.77605i) q^{64} +(-14.6744 - 5.34105i) q^{65} +(-4.40861 + 5.25398i) q^{67} +(-9.59225 + 2.64337i) q^{68} +(15.8358 - 2.14204i) q^{70} +(-3.83709 + 6.64603i) q^{71} +(3.46824 + 6.00718i) q^{73} +(8.29983 + 10.7374i) q^{74} +(-3.97821 - 1.03574i) q^{76} +(-8.25717 - 1.45596i) q^{77} +(0.205269 - 0.172241i) q^{79} +(14.6740 - 5.57812i) q^{80} +(0.498775 + 0.949889i) q^{82} +(-7.91149 - 9.42855i) q^{83} +(19.2280 + 3.39041i) q^{85} +(-5.95834 + 6.54891i) q^{86} +(-8.22471 + 0.446904i) q^{88} +(4.11349 + 7.12477i) q^{89} +(-9.92138 - 5.72811i) q^{91} +(-1.55030 + 1.10202i) q^{92} +(-1.61671 + 7.41700i) q^{94} +(6.17946 + 5.18518i) q^{95} +(5.06123 + 1.84214i) q^{97} +(1.82215 + 0.0730766i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30848 0.536554i −0.925232 0.379401i
\(3\) 0 0
\(4\) 1.42422 + 1.40414i 0.712109 + 0.702069i
\(5\) −1.34230 3.68793i −0.600294 1.64929i −0.750679 0.660667i \(-0.770274\pi\)
0.150386 0.988627i \(-0.451948\pi\)
\(6\) 0 0
\(7\) −0.499959 2.83541i −0.188967 1.07168i −0.920752 0.390148i \(-0.872424\pi\)
0.731786 0.681535i \(-0.238687\pi\)
\(8\) −1.11016 2.60145i −0.392501 0.919752i
\(9\) 0 0
\(10\) −0.222412 + 5.54579i −0.0703329 + 1.75373i
\(11\) 0.996019 2.73654i 0.300311 0.825098i −0.694135 0.719845i \(-0.744213\pi\)
0.994446 0.105252i \(-0.0335650\pi\)
\(12\) 0 0
\(13\) 2.55767 3.04812i 0.709371 0.845396i −0.284181 0.958771i \(-0.591722\pi\)
0.993552 + 0.113375i \(0.0361661\pi\)
\(14\) −0.867166 + 3.97832i −0.231760 + 1.06325i
\(15\) 0 0
\(16\) 0.0567986 + 3.99960i 0.0141996 + 0.999899i
\(17\) −2.48745 + 4.30839i −0.603296 + 1.04494i 0.389022 + 0.921228i \(0.372813\pi\)
−0.992318 + 0.123711i \(0.960520\pi\)
\(18\) 0 0
\(19\) −1.78004 + 1.02771i −0.408369 + 0.235772i −0.690089 0.723725i \(-0.742429\pi\)
0.281720 + 0.959497i \(0.409095\pi\)
\(20\) 3.26664 7.13719i 0.730442 1.59593i
\(21\) 0 0
\(22\) −2.77157 + 3.04628i −0.590900 + 0.649469i
\(23\) −0.165146 + 0.936587i −0.0344352 + 0.195292i −0.997173 0.0751465i \(-0.976058\pi\)
0.962737 + 0.270438i \(0.0871687\pi\)
\(24\) 0 0
\(25\) −7.96887 + 6.68667i −1.59377 + 1.33733i
\(26\) −4.98214 + 2.61606i −0.977077 + 0.513051i
\(27\) 0 0
\(28\) 3.26925 4.74025i 0.617830 0.895823i
\(29\) 5.18495 + 6.17919i 0.962821 + 1.14745i 0.989019 + 0.147789i \(0.0472157\pi\)
−0.0261974 + 0.999657i \(0.508340\pi\)
\(30\) 0 0
\(31\) 0.331534 1.88022i 0.0595453 0.337698i −0.940452 0.339926i \(-0.889598\pi\)
0.999998 + 0.00222778i \(0.000709125\pi\)
\(32\) 2.07168 5.26385i 0.366225 0.930526i
\(33\) 0 0
\(34\) 5.56646 4.30278i 0.954640 0.737920i
\(35\) −9.78570 + 5.64977i −1.65408 + 0.954986i
\(36\) 0 0
\(37\) −8.31066 4.79816i −1.36626 0.788813i −0.375816 0.926694i \(-0.622637\pi\)
−0.990449 + 0.137881i \(0.955971\pi\)
\(38\) 2.88056 0.389641i 0.467289 0.0632082i
\(39\) 0 0
\(40\) −8.10381 + 7.58612i −1.28132 + 1.19947i
\(41\) −0.581151 0.487644i −0.0907605 0.0761571i 0.596278 0.802778i \(-0.296645\pi\)
−0.687039 + 0.726621i \(0.741090\pi\)
\(42\) 0 0
\(43\) 2.14125 5.88303i 0.326537 0.897154i −0.662444 0.749112i \(-0.730481\pi\)
0.988981 0.148042i \(-0.0472972\pi\)
\(44\) 5.26103 2.49888i 0.793129 0.376721i
\(45\) 0 0
\(46\) 0.718619 1.13689i 0.105955 0.167626i
\(47\) −0.932102 5.28621i −0.135961 0.771073i −0.974186 0.225748i \(-0.927517\pi\)
0.838225 0.545325i \(-0.183594\pi\)
\(48\) 0 0
\(49\) −1.21172 + 0.441031i −0.173103 + 0.0630044i
\(50\) 14.0148 4.47362i 1.98200 0.632666i
\(51\) 0 0
\(52\) 7.92266 0.749861i 1.09868 0.103987i
\(53\) 3.54207i 0.486541i 0.969959 + 0.243270i \(0.0782202\pi\)
−0.969959 + 0.243270i \(0.921780\pi\)
\(54\) 0 0
\(55\) −11.4291 −1.54110
\(56\) −6.82113 + 4.44837i −0.911513 + 0.594439i
\(57\) 0 0
\(58\) −3.46892 10.8673i −0.455491 1.42695i
\(59\) −2.13303 5.86045i −0.277697 0.762966i −0.997623 0.0689146i \(-0.978046\pi\)
0.719926 0.694051i \(-0.244176\pi\)
\(60\) 0 0
\(61\) 3.22446 0.568559i 0.412849 0.0727965i 0.0366341 0.999329i \(-0.488336\pi\)
0.376215 + 0.926532i \(0.377225\pi\)
\(62\) −1.44265 + 2.28234i −0.183216 + 0.289858i
\(63\) 0 0
\(64\) −5.53509 + 5.77605i −0.691886 + 0.722007i
\(65\) −14.6744 5.34105i −1.82014 0.662476i
\(66\) 0 0
\(67\) −4.40861 + 5.25398i −0.538598 + 0.641876i −0.964873 0.262718i \(-0.915381\pi\)
0.426275 + 0.904594i \(0.359826\pi\)
\(68\) −9.59225 + 2.64337i −1.16323 + 0.320556i
\(69\) 0 0
\(70\) 15.8358 2.14204i 1.89274 0.256022i
\(71\) −3.83709 + 6.64603i −0.455378 + 0.788738i −0.998710 0.0507798i \(-0.983829\pi\)
0.543332 + 0.839518i \(0.317163\pi\)
\(72\) 0 0
\(73\) 3.46824 + 6.00718i 0.405927 + 0.703087i 0.994429 0.105409i \(-0.0336153\pi\)
−0.588502 + 0.808496i \(0.700282\pi\)
\(74\) 8.29983 + 10.7374i 0.964835 + 1.24820i
\(75\) 0 0
\(76\) −3.97821 1.03574i −0.456332 0.118808i
\(77\) −8.25717 1.45596i −0.940992 0.165922i
\(78\) 0 0
\(79\) 0.205269 0.172241i 0.0230945 0.0193786i −0.631167 0.775647i \(-0.717424\pi\)
0.654262 + 0.756268i \(0.272979\pi\)
\(80\) 14.6740 5.57812i 1.64060 0.623653i
\(81\) 0 0
\(82\) 0.498775 + 0.949889i 0.0550805 + 0.104898i
\(83\) −7.91149 9.42855i −0.868399 1.03492i −0.999054 0.0434896i \(-0.986152\pi\)
0.130655 0.991428i \(-0.458292\pi\)
\(84\) 0 0
\(85\) 19.2280 + 3.39041i 2.08557 + 0.367742i
\(86\) −5.95834 + 6.54891i −0.642504 + 0.706187i
\(87\) 0 0
\(88\) −8.22471 + 0.446904i −0.876757 + 0.0476401i
\(89\) 4.11349 + 7.12477i 0.436029 + 0.755224i 0.997379 0.0723541i \(-0.0230512\pi\)
−0.561350 + 0.827578i \(0.689718\pi\)
\(90\) 0 0
\(91\) −9.92138 5.72811i −1.04004 0.600469i
\(92\) −1.55030 + 1.10202i −0.161630 + 0.114893i
\(93\) 0 0
\(94\) −1.61671 + 7.41700i −0.166751 + 0.765005i
\(95\) 6.17946 + 5.18518i 0.633999 + 0.531988i
\(96\) 0 0
\(97\) 5.06123 + 1.84214i 0.513891 + 0.187041i 0.585931 0.810361i \(-0.300729\pi\)
−0.0720406 + 0.997402i \(0.522951\pi\)
\(98\) 1.82215 + 0.0730766i 0.184065 + 0.00738186i
\(99\) 0 0
\(100\) −20.7384 1.66609i −2.07384 0.166609i
\(101\) −3.98336 + 0.702375i −0.396360 + 0.0698889i −0.368276 0.929717i \(-0.620052\pi\)
−0.0280840 + 0.999606i \(0.508941\pi\)
\(102\) 0 0
\(103\) 1.07241 0.390325i 0.105668 0.0384599i −0.288645 0.957436i \(-0.593205\pi\)
0.394313 + 0.918976i \(0.370983\pi\)
\(104\) −10.7690 3.26976i −1.05598 0.320627i
\(105\) 0 0
\(106\) 1.90051 4.63471i 0.184594 0.450163i
\(107\) 4.87553i 0.471335i −0.971834 0.235667i \(-0.924272\pi\)
0.971834 0.235667i \(-0.0757276\pi\)
\(108\) 0 0
\(109\) 2.52010i 0.241382i 0.992690 + 0.120691i \(0.0385111\pi\)
−0.992690 + 0.120691i \(0.961489\pi\)
\(110\) 14.9547 + 6.13235i 1.42588 + 0.584697i
\(111\) 0 0
\(112\) 11.3121 2.16068i 1.06889 0.204165i
\(113\) 6.79620 2.47361i 0.639332 0.232698i −0.00195583 0.999998i \(-0.500623\pi\)
0.641288 + 0.767300i \(0.278400\pi\)
\(114\) 0 0
\(115\) 3.67575 0.648133i 0.342765 0.0604387i
\(116\) −1.29192 + 16.0809i −0.119951 + 1.49307i
\(117\) 0 0
\(118\) −0.353432 + 8.81275i −0.0325361 + 0.811279i
\(119\) 13.4597 + 4.89892i 1.23385 + 0.449083i
\(120\) 0 0
\(121\) 1.92989 + 1.61937i 0.175445 + 0.147216i
\(122\) −4.52419 0.986151i −0.409601 0.0892819i
\(123\) 0 0
\(124\) 3.11227 2.21233i 0.279490 0.198673i
\(125\) 18.3625 + 10.6016i 1.64239 + 0.948236i
\(126\) 0 0
\(127\) −2.38507 4.13106i −0.211641 0.366573i 0.740587 0.671960i \(-0.234547\pi\)
−0.952228 + 0.305387i \(0.901214\pi\)
\(128\) 10.3417 4.58795i 0.914086 0.405522i
\(129\) 0 0
\(130\) 16.3354 + 14.8623i 1.43271 + 1.30351i
\(131\) −3.45051 0.608417i −0.301472 0.0531577i 0.0208660 0.999782i \(-0.493358\pi\)
−0.322338 + 0.946625i \(0.604469\pi\)
\(132\) 0 0
\(133\) 3.80391 + 4.53333i 0.329841 + 0.393089i
\(134\) 8.58761 4.50925i 0.741857 0.389540i
\(135\) 0 0
\(136\) 13.9695 + 1.68798i 1.19788 + 0.144743i
\(137\) 12.6574 10.6208i 1.08140 0.907400i 0.0853611 0.996350i \(-0.472796\pi\)
0.996036 + 0.0889501i \(0.0283512\pi\)
\(138\) 0 0
\(139\) −19.5648 3.44981i −1.65947 0.292609i −0.736199 0.676765i \(-0.763381\pi\)
−0.923268 + 0.384157i \(0.874492\pi\)
\(140\) −21.8700 5.69394i −1.84836 0.481226i
\(141\) 0 0
\(142\) 8.58669 6.63736i 0.720579 0.556995i
\(143\) −5.79380 10.0352i −0.484502 0.839182i
\(144\) 0 0
\(145\) 15.8287 27.4161i 1.31450 2.27678i
\(146\) −1.31494 9.72115i −0.108825 0.804528i
\(147\) 0 0
\(148\) −5.09892 18.5029i −0.419129 1.52093i
\(149\) 7.39950 8.81838i 0.606190 0.722429i −0.372440 0.928056i \(-0.621479\pi\)
0.978630 + 0.205627i \(0.0659233\pi\)
\(150\) 0 0
\(151\) −3.42462 1.24646i −0.278692 0.101436i 0.198893 0.980021i \(-0.436265\pi\)
−0.477585 + 0.878586i \(0.658488\pi\)
\(152\) 4.64966 + 3.48977i 0.377137 + 0.283058i
\(153\) 0 0
\(154\) 10.0231 + 6.33551i 0.807685 + 0.510530i
\(155\) −7.37916 + 1.30114i −0.592708 + 0.104510i
\(156\) 0 0
\(157\) −5.00630 13.7547i −0.399546 1.09774i −0.962506 0.271259i \(-0.912560\pi\)
0.562960 0.826484i \(-0.309662\pi\)
\(158\) −0.361005 + 0.115235i −0.0287201 + 0.00916762i
\(159\) 0 0
\(160\) −22.1935 0.574566i −1.75455 0.0454234i
\(161\) 2.73817 0.215798
\(162\) 0 0
\(163\) 5.93891i 0.465171i −0.972576 0.232586i \(-0.925281\pi\)
0.972576 0.232586i \(-0.0747186\pi\)
\(164\) −0.142968 1.51053i −0.0111639 0.117952i
\(165\) 0 0
\(166\) 5.29307 + 16.5820i 0.410822 + 1.28701i
\(167\) 18.7096 6.80974i 1.44779 0.526953i 0.505818 0.862640i \(-0.331191\pi\)
0.941974 + 0.335687i \(0.108968\pi\)
\(168\) 0 0
\(169\) −0.491897 2.78968i −0.0378382 0.214591i
\(170\) −23.3402 14.7531i −1.79011 1.13151i
\(171\) 0 0
\(172\) 11.3102 5.37212i 0.862394 0.409620i
\(173\) 3.76876 10.3546i 0.286534 0.787245i −0.710011 0.704190i \(-0.751310\pi\)
0.996545 0.0830547i \(-0.0264676\pi\)
\(174\) 0 0
\(175\) 22.9435 + 19.2519i 1.73437 + 1.45531i
\(176\) 11.0016 + 3.82824i 0.829279 + 0.288565i
\(177\) 0 0
\(178\) −1.55957 11.5297i −0.116895 0.864188i
\(179\) 3.66363 + 2.11520i 0.273832 + 0.158097i 0.630628 0.776085i \(-0.282797\pi\)
−0.356796 + 0.934182i \(0.616131\pi\)
\(180\) 0 0
\(181\) 16.4676 9.50759i 1.22403 0.706694i 0.258255 0.966077i \(-0.416853\pi\)
0.965775 + 0.259383i \(0.0835192\pi\)
\(182\) 9.90845 + 12.8185i 0.734463 + 0.950168i
\(183\) 0 0
\(184\) 2.61982 0.610144i 0.193136 0.0449804i
\(185\) −6.53992 + 37.0897i −0.480825 + 2.72689i
\(186\) 0 0
\(187\) 9.31254 + 11.0983i 0.681000 + 0.811585i
\(188\) 6.09505 8.83752i 0.444527 0.644542i
\(189\) 0 0
\(190\) −5.30354 10.1003i −0.384759 0.732753i
\(191\) −6.22796 + 5.22588i −0.450639 + 0.378131i −0.839673 0.543092i \(-0.817253\pi\)
0.389034 + 0.921224i \(0.372809\pi\)
\(192\) 0 0
\(193\) −2.29037 + 12.9893i −0.164864 + 0.934993i 0.784340 + 0.620332i \(0.213002\pi\)
−0.949204 + 0.314661i \(0.898109\pi\)
\(194\) −5.63410 5.12602i −0.404505 0.368027i
\(195\) 0 0
\(196\) −2.34503 1.07330i −0.167502 0.0766643i
\(197\) −5.35211 + 3.09004i −0.381322 + 0.220156i −0.678393 0.734699i \(-0.737323\pi\)
0.297071 + 0.954855i \(0.403990\pi\)
\(198\) 0 0
\(199\) 4.43708 7.68525i 0.314537 0.544793i −0.664802 0.747019i \(-0.731484\pi\)
0.979339 + 0.202226i \(0.0648176\pi\)
\(200\) 26.2418 + 13.3073i 1.85557 + 0.940971i
\(201\) 0 0
\(202\) 5.58900 + 1.21825i 0.393241 + 0.0857159i
\(203\) 14.9282 17.7908i 1.04776 1.24867i
\(204\) 0 0
\(205\) −1.01832 + 2.79781i −0.0711225 + 0.195407i
\(206\) −1.61265 0.0646749i −0.112359 0.00450612i
\(207\) 0 0
\(208\) 12.3365 + 10.0565i 0.855383 + 0.697295i
\(209\) 1.03941 + 5.89477i 0.0718972 + 0.407750i
\(210\) 0 0
\(211\) 6.04444 + 16.6070i 0.416116 + 1.14327i 0.953884 + 0.300177i \(0.0970457\pi\)
−0.537767 + 0.843093i \(0.680732\pi\)
\(212\) −4.97355 + 5.04468i −0.341585 + 0.346470i
\(213\) 0 0
\(214\) −2.61598 + 6.37951i −0.178825 + 0.436094i
\(215\) −24.5704 −1.67569
\(216\) 0 0
\(217\) −5.49695 −0.373157
\(218\) 1.35217 3.29750i 0.0915807 0.223335i
\(219\) 0 0
\(220\) −16.2776 16.0481i −1.09743 1.08196i
\(221\) 6.77040 + 18.6015i 0.455426 + 1.25127i
\(222\) 0 0
\(223\) −4.05080 22.9732i −0.271262 1.53840i −0.750592 0.660767i \(-0.770231\pi\)
0.479330 0.877635i \(-0.340880\pi\)
\(224\) −15.9609 3.24235i −1.06643 0.216639i
\(225\) 0 0
\(226\) −10.2199 0.409865i −0.679817 0.0272638i
\(227\) −8.48739 + 23.3189i −0.563328 + 1.54773i 0.251398 + 0.967884i \(0.419110\pi\)
−0.814726 + 0.579846i \(0.803113\pi\)
\(228\) 0 0
\(229\) −3.58229 + 4.26921i −0.236724 + 0.282117i −0.871307 0.490738i \(-0.836727\pi\)
0.634583 + 0.772855i \(0.281172\pi\)
\(230\) −5.15738 1.12417i −0.340068 0.0741256i
\(231\) 0 0
\(232\) 10.3187 20.3483i 0.677457 1.33593i
\(233\) 3.32571 5.76031i 0.217875 0.377370i −0.736283 0.676673i \(-0.763421\pi\)
0.954158 + 0.299303i \(0.0967542\pi\)
\(234\) 0 0
\(235\) −18.2440 + 10.5332i −1.19011 + 0.687110i
\(236\) 5.19097 11.3416i 0.337904 0.738277i
\(237\) 0 0
\(238\) −14.9831 13.6320i −0.971211 0.883629i
\(239\) 4.54329 25.7663i 0.293881 1.66668i −0.377836 0.925872i \(-0.623332\pi\)
0.671717 0.740808i \(-0.265557\pi\)
\(240\) 0 0
\(241\) −19.2391 + 16.1435i −1.23930 + 1.03989i −0.241718 + 0.970347i \(0.577711\pi\)
−0.997579 + 0.0695464i \(0.977845\pi\)
\(242\) −1.65634 3.15440i −0.106473 0.202773i
\(243\) 0 0
\(244\) 5.39067 + 3.71783i 0.345102 + 0.238010i
\(245\) 3.25299 + 3.87676i 0.207826 + 0.247677i
\(246\) 0 0
\(247\) −1.42019 + 8.05431i −0.0903647 + 0.512484i
\(248\) −5.25936 + 1.22488i −0.333970 + 0.0777799i
\(249\) 0 0
\(250\) −18.3386 23.7244i −1.15983 1.50046i
\(251\) 25.2441 14.5747i 1.59339 0.919945i 0.600672 0.799495i \(-0.294900\pi\)
0.992719 0.120450i \(-0.0384337\pi\)
\(252\) 0 0
\(253\) 2.39852 + 1.38479i 0.150794 + 0.0870608i
\(254\) 0.904268 + 6.68512i 0.0567388 + 0.419462i
\(255\) 0 0
\(256\) −15.9935 + 0.454343i −0.999597 + 0.0283964i
\(257\) 5.42626 + 4.55318i 0.338481 + 0.284019i 0.796145 0.605106i \(-0.206869\pi\)
−0.457664 + 0.889125i \(0.651314\pi\)
\(258\) 0 0
\(259\) −9.44975 + 25.9630i −0.587179 + 1.61326i
\(260\) −13.4000 28.2117i −0.831034 1.74962i
\(261\) 0 0
\(262\) 4.18845 + 2.64748i 0.258764 + 0.163562i
\(263\) −1.99223 11.2985i −0.122846 0.696695i −0.982564 0.185926i \(-0.940472\pi\)
0.859718 0.510770i \(-0.170639\pi\)
\(264\) 0 0
\(265\) 13.0629 4.75451i 0.802449 0.292067i
\(266\) −2.54495 7.97276i −0.156041 0.488841i
\(267\) 0 0
\(268\) −13.6561 + 1.29252i −0.834182 + 0.0789533i
\(269\) 15.1820i 0.925661i 0.886447 + 0.462831i \(0.153166\pi\)
−0.886447 + 0.462831i \(0.846834\pi\)
\(270\) 0 0
\(271\) 13.2808 0.806753 0.403376 0.915034i \(-0.367837\pi\)
0.403376 + 0.915034i \(0.367837\pi\)
\(272\) −17.3731 9.70410i −1.05340 0.588397i
\(273\) 0 0
\(274\) −22.2606 + 7.10572i −1.34481 + 0.429272i
\(275\) 10.3612 + 28.4672i 0.624804 + 1.71664i
\(276\) 0 0
\(277\) −2.53413 + 0.446836i −0.152261 + 0.0268478i −0.249259 0.968437i \(-0.580187\pi\)
0.0969979 + 0.995285i \(0.469076\pi\)
\(278\) 23.7491 + 15.0116i 1.42438 + 0.900335i
\(279\) 0 0
\(280\) 25.5613 + 19.1848i 1.52758 + 1.14651i
\(281\) −25.4277 9.25491i −1.51689 0.552102i −0.556518 0.830835i \(-0.687863\pi\)
−0.960368 + 0.278734i \(0.910085\pi\)
\(282\) 0 0
\(283\) 17.1845 20.4797i 1.02151 1.21739i 0.0456626 0.998957i \(-0.485460\pi\)
0.975851 0.218436i \(-0.0700955\pi\)
\(284\) −14.7968 + 4.07760i −0.878028 + 0.241961i
\(285\) 0 0
\(286\) 2.19664 + 16.2395i 0.129890 + 0.960259i
\(287\) −1.09212 + 1.89160i −0.0644656 + 0.111658i
\(288\) 0 0
\(289\) −3.87484 6.71142i −0.227932 0.394789i
\(290\) −35.4217 + 27.3803i −2.08003 + 1.60783i
\(291\) 0 0
\(292\) −3.49536 + 13.4254i −0.204550 + 0.785663i
\(293\) −17.3330 3.05628i −1.01261 0.178550i −0.357361 0.933966i \(-0.616323\pi\)
−0.655245 + 0.755416i \(0.727435\pi\)
\(294\) 0 0
\(295\) −18.7498 + 15.7329i −1.09166 + 0.916007i
\(296\) −3.25602 + 26.9465i −0.189252 + 1.56623i
\(297\) 0 0
\(298\) −14.4136 + 7.56840i −0.834957 + 0.438426i
\(299\) 2.43244 + 2.89887i 0.140672 + 0.167646i
\(300\) 0 0
\(301\) −17.7513 3.13004i −1.02317 0.180412i
\(302\) 3.81224 + 3.46846i 0.219370 + 0.199587i
\(303\) 0 0
\(304\) −4.21152 7.06107i −0.241547 0.404980i
\(305\) −6.42499 11.1284i −0.367894 0.637211i
\(306\) 0 0
\(307\) 10.1962 + 5.88676i 0.581926 + 0.335975i 0.761898 0.647696i \(-0.224268\pi\)
−0.179972 + 0.983672i \(0.557601\pi\)
\(308\) −9.71565 13.6678i −0.553600 0.778796i
\(309\) 0 0
\(310\) 10.3536 + 2.25680i 0.588044 + 0.128178i
\(311\) −26.0496 21.8582i −1.47714 1.23947i −0.909175 0.416414i \(-0.863287\pi\)
−0.567965 0.823053i \(-0.692269\pi\)
\(312\) 0 0
\(313\) 6.64081 + 2.41706i 0.375361 + 0.136620i 0.522809 0.852450i \(-0.324884\pi\)
−0.147449 + 0.989070i \(0.547106\pi\)
\(314\) −0.829518 + 20.6838i −0.0468124 + 1.16726i
\(315\) 0 0
\(316\) 0.534197 + 0.0429166i 0.0300509 + 0.00241425i
\(317\) 5.34112 0.941783i 0.299987 0.0528958i −0.0216287 0.999766i \(-0.506885\pi\)
0.321616 + 0.946870i \(0.395774\pi\)
\(318\) 0 0
\(319\) 22.0739 8.03424i 1.23590 0.449831i
\(320\) 28.7314 + 12.6599i 1.60614 + 0.707707i
\(321\) 0 0
\(322\) −3.58283 1.46918i −0.199663 0.0818741i
\(323\) 10.2255i 0.568961i
\(324\) 0 0
\(325\) 41.3924i 2.29604i
\(326\) −3.18655 + 7.77092i −0.176486 + 0.430391i
\(327\) 0 0
\(328\) −0.623410 + 2.05320i −0.0344220 + 0.113369i
\(329\) −14.5225 + 5.28577i −0.800654 + 0.291414i
\(330\) 0 0
\(331\) −5.34260 + 0.942044i −0.293656 + 0.0517794i −0.318535 0.947911i \(-0.603191\pi\)
0.0248795 + 0.999690i \(0.492080\pi\)
\(332\) 1.97128 24.5371i 0.108188 1.34665i
\(333\) 0 0
\(334\) −28.1348 1.12834i −1.53947 0.0617400i
\(335\) 25.2940 + 9.20627i 1.38196 + 0.502992i
\(336\) 0 0
\(337\) −22.3325 18.7392i −1.21653 1.02079i −0.998999 0.0447328i \(-0.985756\pi\)
−0.217528 0.976054i \(-0.569799\pi\)
\(338\) −0.853182 + 3.91416i −0.0464070 + 0.212902i
\(339\) 0 0
\(340\) 22.6242 + 31.8274i 1.22697 + 1.72608i
\(341\) −4.81509 2.77999i −0.260752 0.150545i
\(342\) 0 0
\(343\) −8.22070 14.2387i −0.443876 0.768816i
\(344\) −17.6816 + 0.960757i −0.953325 + 0.0518006i
\(345\) 0 0
\(346\) −10.4871 + 11.5266i −0.563792 + 0.619673i
\(347\) −17.1238 3.01939i −0.919255 0.162089i −0.306052 0.952015i \(-0.599008\pi\)
−0.613203 + 0.789925i \(0.710119\pi\)
\(348\) 0 0
\(349\) −3.38478 4.03383i −0.181183 0.215926i 0.667807 0.744335i \(-0.267233\pi\)
−0.848990 + 0.528409i \(0.822789\pi\)
\(350\) −19.6914 37.5011i −1.05255 2.00452i
\(351\) 0 0
\(352\) −12.3413 10.9121i −0.657794 0.581619i
\(353\) 7.22029 6.05854i 0.384297 0.322463i −0.430090 0.902786i \(-0.641518\pi\)
0.814387 + 0.580323i \(0.197074\pi\)
\(354\) 0 0
\(355\) 29.6606 + 5.22997i 1.57422 + 0.277578i
\(356\) −4.14565 + 15.9231i −0.219719 + 0.843925i
\(357\) 0 0
\(358\) −3.65885 4.73342i −0.193376 0.250169i
\(359\) 8.12377 + 14.0708i 0.428756 + 0.742628i 0.996763 0.0803962i \(-0.0256186\pi\)
−0.568007 + 0.823024i \(0.692285\pi\)
\(360\) 0 0
\(361\) −7.38764 + 12.7958i −0.388823 + 0.673461i
\(362\) −26.6488 + 3.60468i −1.40063 + 0.189458i
\(363\) 0 0
\(364\) −6.08717 22.0891i −0.319054 1.15778i
\(365\) 17.4986 20.8541i 0.915921 1.09155i
\(366\) 0 0
\(367\) 12.0315 + 4.37912i 0.628042 + 0.228588i 0.636379 0.771377i \(-0.280432\pi\)
−0.00833711 + 0.999965i \(0.502654\pi\)
\(368\) −3.75535 0.607319i −0.195761 0.0316587i
\(369\) 0 0
\(370\) 28.4580 45.0220i 1.47946 2.34058i
\(371\) 10.0432 1.77089i 0.521417 0.0919400i
\(372\) 0 0
\(373\) 2.16442 + 5.94669i 0.112069 + 0.307908i 0.983030 0.183445i \(-0.0587248\pi\)
−0.870961 + 0.491353i \(0.836503\pi\)
\(374\) −6.23042 19.5185i −0.322167 1.00928i
\(375\) 0 0
\(376\) −12.7170 + 8.29336i −0.655831 + 0.427697i
\(377\) 32.0963 1.65304
\(378\) 0 0
\(379\) 28.5066i 1.46428i −0.681152 0.732142i \(-0.738521\pi\)
0.681152 0.732142i \(-0.261479\pi\)
\(380\) 1.52020 + 16.0616i 0.0779844 + 0.823945i
\(381\) 0 0
\(382\) 10.9531 3.49630i 0.560410 0.178886i
\(383\) 29.5410 10.7521i 1.50948 0.549405i 0.550983 0.834517i \(-0.314253\pi\)
0.958494 + 0.285112i \(0.0920308\pi\)
\(384\) 0 0
\(385\) 5.71409 + 32.4062i 0.291217 + 1.65157i
\(386\) 9.96638 15.7673i 0.507275 0.802536i
\(387\) 0 0
\(388\) 4.62169 + 9.73028i 0.234631 + 0.493980i
\(389\) 1.34416 3.69306i 0.0681518 0.187246i −0.900941 0.433941i \(-0.857123\pi\)
0.969093 + 0.246696i \(0.0793448\pi\)
\(390\) 0 0
\(391\) −3.62440 3.04123i −0.183294 0.153802i
\(392\) 2.49253 + 2.66262i 0.125892 + 0.134483i
\(393\) 0 0
\(394\) 8.66108 1.17155i 0.436339 0.0590217i
\(395\) −0.910744 0.525818i −0.0458245 0.0264568i
\(396\) 0 0
\(397\) −17.9961 + 10.3901i −0.903200 + 0.521463i −0.878237 0.478226i \(-0.841280\pi\)
−0.0249629 + 0.999688i \(0.507947\pi\)
\(398\) −9.92937 + 7.67523i −0.497715 + 0.384725i
\(399\) 0 0
\(400\) −27.1966 31.4925i −1.35983 1.57462i
\(401\) 4.02373 22.8197i 0.200935 1.13956i −0.702774 0.711413i \(-0.748055\pi\)
0.903709 0.428147i \(-0.140834\pi\)
\(402\) 0 0
\(403\) −4.88319 5.81955i −0.243249 0.289893i
\(404\) −6.65941 4.59285i −0.331318 0.228503i
\(405\) 0 0
\(406\) −29.0790 + 15.2690i −1.44316 + 0.757788i
\(407\) −21.4079 + 17.9634i −1.06115 + 0.890412i
\(408\) 0 0
\(409\) 5.07096 28.7589i 0.250743 1.42203i −0.556025 0.831165i \(-0.687674\pi\)
0.806768 0.590868i \(-0.201215\pi\)
\(410\) 2.83362 3.11448i 0.139943 0.153813i
\(411\) 0 0
\(412\) 2.07542 + 0.949901i 0.102248 + 0.0467983i
\(413\) −15.5503 + 8.97799i −0.765182 + 0.441778i
\(414\) 0 0
\(415\) −24.1523 + 41.8330i −1.18559 + 2.05350i
\(416\) −10.7462 19.7779i −0.526873 0.969694i
\(417\) 0 0
\(418\) 1.80282 8.27086i 0.0881790 0.404541i
\(419\) 8.33906 9.93810i 0.407390 0.485508i −0.522869 0.852413i \(-0.675138\pi\)
0.930258 + 0.366905i \(0.119583\pi\)
\(420\) 0 0
\(421\) 1.49536 4.10848i 0.0728795 0.200235i −0.897904 0.440191i \(-0.854911\pi\)
0.970784 + 0.239956i \(0.0771330\pi\)
\(422\) 1.00153 24.9730i 0.0487539 1.21567i
\(423\) 0 0
\(424\) 9.21452 3.93227i 0.447497 0.190968i
\(425\) −8.98665 50.9658i −0.435916 2.47220i
\(426\) 0 0
\(427\) −3.22419 8.85839i −0.156030 0.428688i
\(428\) 6.84591 6.94382i 0.330909 0.335642i
\(429\) 0 0
\(430\) 32.1498 + 13.1834i 1.55040 + 0.635759i
\(431\) −1.15854 −0.0558051 −0.0279025 0.999611i \(-0.508883\pi\)
−0.0279025 + 0.999611i \(0.508883\pi\)
\(432\) 0 0
\(433\) 37.7498 1.81414 0.907069 0.420982i \(-0.138314\pi\)
0.907069 + 0.420982i \(0.138314\pi\)
\(434\) 7.19263 + 2.94941i 0.345257 + 0.141576i
\(435\) 0 0
\(436\) −3.53857 + 3.58918i −0.169467 + 0.171891i
\(437\) −0.668571 1.83688i −0.0319821 0.0878701i
\(438\) 0 0
\(439\) −4.69964 26.6530i −0.224301 1.27208i −0.864016 0.503464i \(-0.832059\pi\)
0.639715 0.768612i \(-0.279052\pi\)
\(440\) 12.6882 + 29.7323i 0.604885 + 1.41743i
\(441\) 0 0
\(442\) 1.12182 27.9723i 0.0533596 1.33051i
\(443\) −10.3614 + 28.4677i −0.492285 + 1.35254i 0.406299 + 0.913740i \(0.366819\pi\)
−0.898584 + 0.438802i \(0.855403\pi\)
\(444\) 0 0
\(445\) 20.7542 24.7338i 0.983841 1.17250i
\(446\) −7.02601 + 32.2334i −0.332691 + 1.52630i
\(447\) 0 0
\(448\) 19.1448 + 12.8064i 0.904506 + 0.605047i
\(449\) 1.70434 2.95201i 0.0804330 0.139314i −0.823003 0.568037i \(-0.807703\pi\)
0.903436 + 0.428723i \(0.141036\pi\)
\(450\) 0 0
\(451\) −1.91329 + 1.10464i −0.0900934 + 0.0520155i
\(452\) 13.1526 + 6.01982i 0.618644 + 0.283149i
\(453\) 0 0
\(454\) 23.6174 25.9583i 1.10842 1.21828i
\(455\) −7.80745 + 44.2782i −0.366019 + 2.07580i
\(456\) 0 0
\(457\) 7.27754 6.10658i 0.340429 0.285654i −0.456504 0.889721i \(-0.650899\pi\)
0.796933 + 0.604068i \(0.206454\pi\)
\(458\) 6.97800 3.66406i 0.326060 0.171210i
\(459\) 0 0
\(460\) 6.14514 + 4.23817i 0.286518 + 0.197606i
\(461\) −19.8885 23.7021i −0.926298 1.10392i −0.994341 0.106236i \(-0.966120\pi\)
0.0680433 0.997682i \(-0.478324\pi\)
\(462\) 0 0
\(463\) −4.27095 + 24.2217i −0.198488 + 1.12568i 0.708876 + 0.705333i \(0.249203\pi\)
−0.907364 + 0.420347i \(0.861908\pi\)
\(464\) −24.4198 + 21.0887i −1.13366 + 0.979018i
\(465\) 0 0
\(466\) −7.44233 + 5.75280i −0.344759 + 0.266493i
\(467\) −0.849394 + 0.490398i −0.0393052 + 0.0226929i −0.519524 0.854456i \(-0.673891\pi\)
0.480219 + 0.877149i \(0.340557\pi\)
\(468\) 0 0
\(469\) 17.1013 + 9.87344i 0.789665 + 0.455913i
\(470\) 29.5235 3.99352i 1.36182 0.184207i
\(471\) 0 0
\(472\) −12.8777 + 12.0550i −0.592743 + 0.554877i
\(473\) −13.9664 11.7192i −0.642177 0.538851i
\(474\) 0 0
\(475\) 7.31297 20.0922i 0.335542 0.921894i
\(476\) 12.2908 + 25.8764i 0.563346 + 1.18604i
\(477\) 0 0
\(478\) −19.7698 + 31.2768i −0.904248 + 1.43057i
\(479\) 1.26087 + 7.15074i 0.0576105 + 0.326726i 0.999969 0.00787960i \(-0.00250818\pi\)
−0.942358 + 0.334605i \(0.891397\pi\)
\(480\) 0 0
\(481\) −35.8813 + 13.0597i −1.63605 + 0.595473i
\(482\) 33.8357 10.8006i 1.54117 0.491952i
\(483\) 0 0
\(484\) 0.474769 + 5.01618i 0.0215804 + 0.228008i
\(485\) 21.1382i 0.959836i
\(486\) 0 0
\(487\) 0.153837 0.00697103 0.00348552 0.999994i \(-0.498891\pi\)
0.00348552 + 0.999994i \(0.498891\pi\)
\(488\) −5.05874 7.75707i −0.228999 0.351146i
\(489\) 0 0
\(490\) −2.17636 6.81805i −0.0983181 0.308008i
\(491\) 7.10851 + 19.5305i 0.320802 + 0.881398i 0.990345 + 0.138624i \(0.0442679\pi\)
−0.669543 + 0.742774i \(0.733510\pi\)
\(492\) 0 0
\(493\) −39.5197 + 6.96839i −1.77988 + 0.313840i
\(494\) 6.17986 9.77686i 0.278045 0.439882i
\(495\) 0 0
\(496\) 7.53897 + 1.21921i 0.338510 + 0.0547441i
\(497\) 20.7626 + 7.55696i 0.931329 + 0.338976i
\(498\) 0 0
\(499\) −12.0312 + 14.3382i −0.538588 + 0.641865i −0.964871 0.262726i \(-0.915379\pi\)
0.426282 + 0.904590i \(0.359823\pi\)
\(500\) 11.2661 + 40.8825i 0.503837 + 1.82832i
\(501\) 0 0
\(502\) −40.8514 + 5.52579i −1.82329 + 0.246628i
\(503\) −15.2553 + 26.4230i −0.680200 + 1.17814i 0.294719 + 0.955584i \(0.404774\pi\)
−0.974919 + 0.222558i \(0.928559\pi\)
\(504\) 0 0
\(505\) 7.93717 + 13.7476i 0.353200 + 0.611760i
\(506\) −2.39539 3.09890i −0.106488 0.137763i
\(507\) 0 0
\(508\) 2.40372 9.23250i 0.106648 0.409626i
\(509\) 25.1247 + 4.43017i 1.11363 + 0.196364i 0.700044 0.714099i \(-0.253164\pi\)
0.413590 + 0.910463i \(0.364275\pi\)
\(510\) 0 0
\(511\) 15.2988 12.8372i 0.676779 0.567885i
\(512\) 21.1710 + 7.98691i 0.935633 + 0.352975i
\(513\) 0 0
\(514\) −4.65711 8.86921i −0.205416 0.391204i
\(515\) −2.87899 3.43104i −0.126863 0.151190i
\(516\) 0 0
\(517\) −15.3943 2.71443i −0.677041 0.119381i
\(518\) 26.2953 28.9016i 1.15535 1.26987i
\(519\) 0 0
\(520\) 2.39648 + 44.1042i 0.105092 + 1.93410i
\(521\) 8.58140 + 14.8634i 0.375958 + 0.651178i 0.990470 0.137729i \(-0.0439803\pi\)
−0.614512 + 0.788908i \(0.710647\pi\)
\(522\) 0 0
\(523\) 35.9656 + 20.7647i 1.57266 + 0.907978i 0.995841 + 0.0911099i \(0.0290415\pi\)
0.576824 + 0.816869i \(0.304292\pi\)
\(524\) −4.05997 5.71150i −0.177361 0.249508i
\(525\) 0 0
\(526\) −3.45547 + 15.8528i −0.150666 + 0.691213i
\(527\) 7.27607 + 6.10535i 0.316950 + 0.265953i
\(528\) 0 0
\(529\) 20.7630 + 7.55712i 0.902739 + 0.328570i
\(530\) −19.6436 0.787799i −0.853262 0.0342198i
\(531\) 0 0
\(532\) −0.947808 + 11.7977i −0.0410927 + 0.511494i
\(533\) −2.97279 + 0.524183i −0.128766 + 0.0227049i
\(534\) 0 0
\(535\) −17.9806 + 6.54441i −0.777370 + 0.282939i
\(536\) 18.5622 + 5.63603i 0.801767 + 0.243439i
\(537\) 0 0
\(538\) 8.14595 19.8652i 0.351197 0.856452i
\(539\) 3.75520i 0.161748i
\(540\) 0 0
\(541\) 11.2309i 0.482852i 0.970419 + 0.241426i \(0.0776152\pi\)
−0.970419 + 0.241426i \(0.922385\pi\)
\(542\) −17.3776 7.12589i −0.746434 0.306083i
\(543\) 0 0
\(544\) 17.5255 + 22.0192i 0.751401 + 0.944065i
\(545\) 9.29398 3.38273i 0.398110 0.144900i
\(546\) 0 0
\(547\) 19.8704 3.50369i 0.849599 0.149807i 0.268137 0.963381i \(-0.413592\pi\)
0.581462 + 0.813574i \(0.302481\pi\)
\(548\) 32.9401 + 2.64636i 1.40713 + 0.113047i
\(549\) 0 0
\(550\) 1.71680 42.8080i 0.0732046 1.82534i
\(551\) −15.5798 5.67059i −0.663722 0.241575i
\(552\) 0 0
\(553\) −0.590998 0.495906i −0.0251318 0.0210881i
\(554\) 3.55560 + 0.775026i 0.151063 + 0.0329277i
\(555\) 0 0
\(556\) −23.0206 32.3850i −0.976290 1.37343i
\(557\) −26.7781 15.4604i −1.13463 0.655076i −0.189532 0.981875i \(-0.560697\pi\)
−0.945094 + 0.326798i \(0.894030\pi\)
\(558\) 0 0
\(559\) −12.4556 21.5737i −0.526814 0.912469i
\(560\) −23.1526 38.8179i −0.978377 1.64036i
\(561\) 0 0
\(562\) 28.3057 + 25.7531i 1.19400 + 1.08633i
\(563\) 20.3052 + 3.58035i 0.855761 + 0.150894i 0.584282 0.811551i \(-0.301376\pi\)
0.271479 + 0.962444i \(0.412487\pi\)
\(564\) 0 0
\(565\) −18.2450 21.7436i −0.767575 0.914760i
\(566\) −33.4740 + 17.5768i −1.40702 + 0.738808i
\(567\) 0 0
\(568\) 21.5491 + 2.60383i 0.904180 + 0.109254i
\(569\) 3.82688 3.21114i 0.160431 0.134618i −0.559038 0.829142i \(-0.688829\pi\)
0.719469 + 0.694524i \(0.244385\pi\)
\(570\) 0 0
\(571\) 7.54047 + 1.32959i 0.315559 + 0.0556415i 0.329184 0.944266i \(-0.393226\pi\)
−0.0136257 + 0.999907i \(0.504337\pi\)
\(572\) 5.83910 22.4276i 0.244145 0.937743i
\(573\) 0 0
\(574\) 2.44395 1.88913i 0.102009 0.0788509i
\(575\) −4.94663 8.56781i −0.206289 0.357303i
\(576\) 0 0
\(577\) 6.53703 11.3225i 0.272140 0.471361i −0.697269 0.716809i \(-0.745602\pi\)
0.969410 + 0.245449i \(0.0789352\pi\)
\(578\) 1.46909 + 10.8608i 0.0611062 + 0.451749i
\(579\) 0 0
\(580\) 61.0394 16.8209i 2.53452 0.698448i
\(581\) −22.7783 + 27.1462i −0.945005 + 1.12621i
\(582\) 0 0
\(583\) 9.69302 + 3.52797i 0.401444 + 0.146114i
\(584\) 11.7771 15.6914i 0.487338 0.649314i
\(585\) 0 0
\(586\) 21.0400 + 13.2992i 0.869154 + 0.549384i
\(587\) −20.2706 + 3.57425i −0.836657 + 0.147525i −0.575532 0.817780i \(-0.695205\pi\)
−0.261126 + 0.965305i \(0.584094\pi\)
\(588\) 0 0
\(589\) 1.34217 + 3.68759i 0.0553033 + 0.151945i
\(590\) 32.9752 10.5259i 1.35757 0.433344i
\(591\) 0 0
\(592\) 18.7187 33.5118i 0.769333 1.37733i
\(593\) −35.4674 −1.45647 −0.728237 0.685326i \(-0.759660\pi\)
−0.728237 + 0.685326i \(0.759660\pi\)
\(594\) 0 0
\(595\) 56.2142i 2.30456i
\(596\) 22.9207 2.16939i 0.938869 0.0888617i
\(597\) 0 0
\(598\) −1.62739 5.09824i −0.0665489 0.208482i
\(599\) −4.95171 + 1.80227i −0.202321 + 0.0736389i −0.441193 0.897412i \(-0.645445\pi\)
0.238872 + 0.971051i \(0.423222\pi\)
\(600\) 0 0
\(601\) −6.16086 34.9400i −0.251307 1.42523i −0.805378 0.592762i \(-0.798038\pi\)
0.554071 0.832469i \(-0.313074\pi\)
\(602\) 21.5478 + 13.6201i 0.878221 + 0.555115i
\(603\) 0 0
\(604\) −3.12721 6.58387i −0.127244 0.267894i
\(605\) 3.38165 9.29100i 0.137484 0.377733i
\(606\) 0 0
\(607\) −6.68660 5.61072i −0.271401 0.227732i 0.496922 0.867795i \(-0.334464\pi\)
−0.768322 + 0.640063i \(0.778908\pi\)
\(608\) 1.72202 + 11.4990i 0.0698371 + 0.466344i
\(609\) 0 0
\(610\) 2.43595 + 18.0086i 0.0986287 + 0.729147i
\(611\) −18.4970 10.6793i −0.748309 0.432036i
\(612\) 0 0
\(613\) 28.4795 16.4426i 1.15028 0.664112i 0.201321 0.979525i \(-0.435477\pi\)
0.948954 + 0.315414i \(0.102143\pi\)
\(614\) −10.1829 13.1735i −0.410947 0.531639i
\(615\) 0 0
\(616\) 5.37917 + 23.0970i 0.216733 + 0.930603i
\(617\) −5.77150 + 32.7318i −0.232352 + 1.31773i 0.615767 + 0.787928i \(0.288846\pi\)
−0.848119 + 0.529805i \(0.822265\pi\)
\(618\) 0 0
\(619\) 22.6481 + 26.9910i 0.910305 + 1.08486i 0.996072 + 0.0885446i \(0.0282216\pi\)
−0.0857667 + 0.996315i \(0.527334\pi\)
\(620\) −12.3365 8.50823i −0.495446 0.341699i
\(621\) 0 0
\(622\) 22.3572 + 42.5780i 0.896442 + 1.70722i
\(623\) 18.1451 15.2255i 0.726966 0.609997i
\(624\) 0 0
\(625\) 5.41806 30.7273i 0.216722 1.22909i
\(626\) −7.39246 6.72582i −0.295462 0.268818i
\(627\) 0 0
\(628\) 12.1834 26.6192i 0.486171 1.06222i
\(629\) 41.3448 23.8704i 1.64852 0.951775i
\(630\) 0 0
\(631\) −20.3613 + 35.2667i −0.810569 + 1.40395i 0.101898 + 0.994795i \(0.467509\pi\)
−0.912466 + 0.409152i \(0.865825\pi\)
\(632\) −0.675957 0.342781i −0.0268881 0.0136351i
\(633\) 0 0
\(634\) −7.49404 1.63350i −0.297626 0.0648746i
\(635\) −12.0336 + 14.3411i −0.477539 + 0.569109i
\(636\) 0 0
\(637\) −1.75488 + 4.82149i −0.0695308 + 0.191034i
\(638\) −33.1940 1.33123i −1.31416 0.0527040i
\(639\) 0 0
\(640\) −30.8017 31.9811i −1.21754 1.26416i
\(641\) 8.76821 + 49.7270i 0.346323 + 1.96410i 0.246823 + 0.969061i \(0.420613\pi\)
0.0995006 + 0.995038i \(0.468275\pi\)
\(642\) 0 0
\(643\) −15.1261 41.5587i −0.596517 1.63892i −0.758162 0.652067i \(-0.773902\pi\)
0.161645 0.986849i \(-0.448320\pi\)
\(644\) 3.89976 + 3.84477i 0.153672 + 0.151505i
\(645\) 0 0
\(646\) −5.48653 + 13.3798i −0.215865 + 0.526421i
\(647\) −2.96214 −0.116454 −0.0582268 0.998303i \(-0.518545\pi\)
−0.0582268 + 0.998303i \(0.518545\pi\)
\(648\) 0 0
\(649\) −18.1619 −0.712917
\(650\) 22.2093 54.1609i 0.871119 2.12437i
\(651\) 0 0
\(652\) 8.33904 8.45830i 0.326582 0.331253i
\(653\) −0.829258 2.27837i −0.0324514 0.0891594i 0.922409 0.386215i \(-0.126218\pi\)
−0.954860 + 0.297055i \(0.903995\pi\)
\(654\) 0 0
\(655\) 2.38780 + 13.5419i 0.0932992 + 0.529126i
\(656\) 1.91737 2.35207i 0.0748607 0.0918328i
\(657\) 0 0
\(658\) 21.8385 + 0.875826i 0.851354 + 0.0341433i
\(659\) 14.7728 40.5879i 0.575466 1.58108i −0.220272 0.975438i \(-0.570695\pi\)
0.795738 0.605641i \(-0.207083\pi\)
\(660\) 0 0
\(661\) −11.3612 + 13.5398i −0.441901 + 0.526637i −0.940317 0.340301i \(-0.889471\pi\)
0.498415 + 0.866938i \(0.333915\pi\)
\(662\) 7.49612 + 1.63395i 0.291345 + 0.0635053i
\(663\) 0 0
\(664\) −15.7449 + 31.0485i −0.611020 + 1.20492i
\(665\) 11.6126 20.1137i 0.450318 0.779974i
\(666\) 0 0
\(667\) −6.64362 + 3.83570i −0.257242 + 0.148519i
\(668\) 36.2084 + 16.5723i 1.40094 + 0.641201i
\(669\) 0 0
\(670\) −28.1569 25.6178i −1.08780 0.989702i
\(671\) 1.65574 9.39015i 0.0639190 0.362503i
\(672\) 0 0
\(673\) 1.22568 1.02847i 0.0472465 0.0396445i −0.618859 0.785502i \(-0.712405\pi\)
0.666105 + 0.745858i \(0.267960\pi\)
\(674\) 19.1669 + 36.5023i 0.738282 + 1.40602i
\(675\) 0 0
\(676\) 3.21653 4.66381i 0.123713 0.179377i
\(677\) 4.41092 + 5.25673i 0.169526 + 0.202033i 0.844118 0.536158i \(-0.180125\pi\)
−0.674592 + 0.738191i \(0.735680\pi\)
\(678\) 0 0
\(679\) 2.69280 15.2717i 0.103340 0.586072i
\(680\) −12.5261 53.7845i −0.480356 2.06254i
\(681\) 0 0
\(682\) 4.80881 + 6.22111i 0.184139 + 0.238219i
\(683\) −4.11971 + 2.37852i −0.157636 + 0.0910113i −0.576743 0.816926i \(-0.695677\pi\)
0.419107 + 0.907937i \(0.362343\pi\)
\(684\) 0 0
\(685\) −56.1590 32.4234i −2.14573 1.23884i
\(686\) 3.11677 + 23.0418i 0.118999 + 0.879741i
\(687\) 0 0
\(688\) 23.6514 + 8.22999i 0.901701 + 0.313765i
\(689\) 10.7966 + 9.05946i 0.411320 + 0.345138i
\(690\) 0 0
\(691\) 4.35017 11.9520i 0.165488 0.454675i −0.829034 0.559198i \(-0.811109\pi\)
0.994523 + 0.104523i \(0.0333315\pi\)
\(692\) 19.9068 9.45535i 0.756743 0.359438i
\(693\) 0 0
\(694\) 20.7860 + 13.1387i 0.789027 + 0.498737i
\(695\) 13.5392 + 76.7844i 0.513570 + 2.91260i
\(696\) 0 0
\(697\) 3.54655 1.29084i 0.134335 0.0488939i
\(698\) 2.26454 + 7.09429i 0.0857141 + 0.268523i
\(699\) 0 0
\(700\) 5.64429 + 59.6348i 0.213334 + 2.25398i
\(701\) 12.2688i 0.463386i 0.972789 + 0.231693i \(0.0744265\pi\)
−0.972789 + 0.231693i \(0.925573\pi\)
\(702\) 0 0
\(703\) 19.7244 0.743921
\(704\) 10.2933 + 20.9000i 0.387945 + 0.787700i
\(705\) 0 0
\(706\) −12.6983 + 4.05338i −0.477907 + 0.152551i
\(707\) 3.98304 + 10.9433i 0.149797 + 0.411565i
\(708\) 0 0
\(709\) −25.9792 + 4.58083i −0.975668 + 0.172037i −0.638680 0.769473i \(-0.720519\pi\)
−0.336988 + 0.941509i \(0.609408\pi\)
\(710\) −36.0041 22.7578i −1.35121 0.854086i
\(711\) 0 0
\(712\) 13.9681 18.6107i 0.523477 0.697465i
\(713\) 1.70624 + 0.621021i 0.0638993 + 0.0232574i
\(714\) 0 0
\(715\) −29.2320 + 34.8373i −1.09321 + 1.30284i
\(716\) 2.24778 + 8.15674i 0.0840036 + 0.304832i
\(717\) 0 0
\(718\) −3.08002 22.7701i −0.114945 0.849774i
\(719\) 15.9411 27.6108i 0.594502 1.02971i −0.399115 0.916901i \(-0.630683\pi\)
0.993617 0.112807i \(-0.0359841\pi\)
\(720\) 0 0
\(721\) −1.64289 2.84557i −0.0611845 0.105975i
\(722\) 16.5322 12.7791i 0.615264 0.475588i
\(723\) 0 0
\(724\) 36.8035 + 9.58192i 1.36779 + 0.356109i
\(725\) −82.6364 14.5710i −3.06904 0.541154i
\(726\) 0 0
\(727\) 30.8679 25.9013i 1.14483 0.960625i 0.145243 0.989396i \(-0.453604\pi\)
0.999586 + 0.0287706i \(0.00915924\pi\)
\(728\) −3.88708 + 32.1691i −0.144065 + 1.19227i
\(729\) 0 0
\(730\) −34.0859 + 17.8981i −1.26158 + 0.662438i
\(731\) 20.0202 + 23.8591i 0.740473 + 0.882461i
\(732\) 0 0
\(733\) −0.103428 0.0182371i −0.00382018 0.000673601i 0.171738 0.985143i \(-0.445062\pi\)
−0.175558 + 0.984469i \(0.556173\pi\)
\(734\) −13.3934 12.1856i −0.494358 0.449777i
\(735\) 0 0
\(736\) 4.58793 + 2.80961i 0.169113 + 0.103564i
\(737\) 9.98667 + 17.2974i 0.367864 + 0.637158i
\(738\) 0 0
\(739\) 26.3545 + 15.2158i 0.969466 + 0.559722i 0.899074 0.437798i \(-0.144241\pi\)
0.0703928 + 0.997519i \(0.477575\pi\)
\(740\) −61.3933 + 43.6410i −2.25686 + 1.60427i
\(741\) 0 0
\(742\) −14.0915 3.07156i −0.517314 0.112761i
\(743\) −12.9183 10.8397i −0.473926 0.397671i 0.374298 0.927308i \(-0.377884\pi\)
−0.848224 + 0.529637i \(0.822328\pi\)
\(744\) 0 0
\(745\) −42.4539 15.4520i −1.55539 0.566116i
\(746\) 0.358633 8.94243i 0.0131305 0.327406i
\(747\) 0 0
\(748\) −2.32037 + 28.8824i −0.0848412 + 1.05605i
\(749\) −13.8241 + 2.43756i −0.505122 + 0.0890666i
\(750\) 0 0
\(751\) 14.6848 5.34482i 0.535855 0.195035i −0.0598958 0.998205i \(-0.519077\pi\)
0.595751 + 0.803169i \(0.296855\pi\)
\(752\) 21.0898 4.02828i 0.769065 0.146896i
\(753\) 0 0
\(754\) −41.9972 17.2214i −1.52945 0.627167i
\(755\) 14.3029i 0.520536i
\(756\) 0 0
\(757\) 27.3201i 0.992967i −0.868046 0.496484i \(-0.834624\pi\)
0.868046 0.496484i \(-0.165376\pi\)
\(758\) −15.2953 + 37.3002i −0.555551 + 1.35480i
\(759\) 0 0
\(760\) 6.62880 21.8319i 0.240452 0.791928i
\(761\) 14.1817 5.16172i 0.514086 0.187112i −0.0719327 0.997409i \(-0.522917\pi\)
0.586019 + 0.810297i \(0.300694\pi\)
\(762\) 0 0
\(763\) 7.14552 1.25995i 0.258685 0.0456132i
\(764\) −16.2078 1.30211i −0.586379 0.0471088i
\(765\) 0 0
\(766\) −44.4228 1.78156i −1.60506 0.0643705i
\(767\) −23.3189 8.48740i −0.841998 0.306462i
\(768\) 0 0
\(769\) −11.4199 9.58242i −0.411811 0.345551i 0.413226 0.910628i \(-0.364402\pi\)
−0.825038 + 0.565077i \(0.808846\pi\)
\(770\) 9.91095 45.4687i 0.357166 1.63858i
\(771\) 0 0
\(772\) −21.5008 + 15.2837i −0.773831 + 0.550071i
\(773\) −27.9615 16.1436i −1.00571 0.580644i −0.0957742 0.995403i \(-0.530533\pi\)
−0.909931 + 0.414759i \(0.863866\pi\)
\(774\) 0 0
\(775\) 9.93049 + 17.2001i 0.356714 + 0.617846i
\(776\) −0.826549 15.2116i −0.0296714 0.546065i
\(777\) 0 0
\(778\) −3.74033 + 4.11106i −0.134097 + 0.147389i
\(779\) 1.53563 + 0.270772i 0.0550195 + 0.00970143i
\(780\) 0 0
\(781\) 14.3653 + 17.1199i 0.514031 + 0.612598i
\(782\) 3.11065 + 5.92406i 0.111237 + 0.211844i
\(783\) 0 0
\(784\) −1.83277 4.82135i −0.0654561 0.172191i
\(785\) −44.0064 + 36.9258i −1.57066 + 1.31794i
\(786\) 0 0
\(787\) −39.6718 6.99522i −1.41415 0.249353i −0.586204 0.810163i \(-0.699378\pi\)
−0.827944 + 0.560811i \(0.810490\pi\)
\(788\) −11.9614 3.11420i −0.426108 0.110939i
\(789\) 0 0
\(790\) 0.909556 + 1.17668i 0.0323606 + 0.0418645i
\(791\) −10.4115 18.0333i −0.370191 0.641189i
\(792\) 0 0
\(793\) 6.51408 11.2827i 0.231322 0.400661i
\(794\) 29.1223 3.93926i 1.03351 0.139799i
\(795\) 0 0
\(796\) 17.1105 4.71521i 0.606467 0.167126i
\(797\) 2.35451 2.80599i 0.0834009 0.0993934i −0.722730 0.691130i \(-0.757113\pi\)
0.806131 + 0.591737i \(0.201558\pi\)
\(798\) 0 0
\(799\) 25.0936 + 9.13334i 0.887749 + 0.323114i
\(800\) 18.6887 + 55.7996i 0.660745 + 1.97281i
\(801\) 0 0
\(802\) −17.5090 + 27.7001i −0.618263 + 0.978123i
\(803\) 19.8933 3.50773i 0.702020 0.123785i
\(804\) 0 0
\(805\) −3.67544 10.0982i −0.129542 0.355915i
\(806\) 3.26702 + 10.2348i 0.115076 + 0.360507i
\(807\) 0 0
\(808\) 6.24937 + 9.58278i 0.219852 + 0.337121i
\(809\) 41.2691 1.45094 0.725472 0.688252i \(-0.241622\pi\)
0.725472 + 0.688252i \(0.241622\pi\)
\(810\) 0 0
\(811\) 25.6578i 0.900966i 0.892785 + 0.450483i \(0.148748\pi\)
−0.892785 + 0.450483i \(0.851252\pi\)
\(812\) 46.2418 4.37668i 1.62277 0.153591i
\(813\) 0 0
\(814\) 37.6501 12.0181i 1.31964 0.421236i
\(815\) −21.9023 + 7.97178i −0.767204 + 0.279239i
\(816\) 0 0
\(817\) 2.23452 + 12.6726i 0.0781761 + 0.443359i
\(818\) −22.0659 + 34.9094i −0.771517 + 1.22058i
\(819\) 0 0
\(820\) −5.37882 + 2.55483i −0.187836 + 0.0892186i
\(821\) −8.61194 + 23.6611i −0.300559 + 0.825778i 0.693844 + 0.720125i \(0.255916\pi\)
−0.994403 + 0.105653i \(0.966307\pi\)
\(822\) 0 0
\(823\) 10.3916 + 8.71956i 0.362227 + 0.303945i 0.805678 0.592354i \(-0.201801\pi\)
−0.443450 + 0.896299i \(0.646246\pi\)
\(824\) −2.20596 2.35650i −0.0768482 0.0820924i
\(825\) 0 0
\(826\) 25.1644 3.40388i 0.875582 0.118436i
\(827\) 9.62668 + 5.55796i 0.334752 + 0.193269i 0.657949 0.753062i \(-0.271424\pi\)
−0.323197 + 0.946332i \(0.604758\pi\)
\(828\) 0 0
\(829\) 26.4493 15.2705i 0.918621 0.530366i 0.0354262 0.999372i \(-0.488721\pi\)
0.883195 + 0.469006i \(0.155388\pi\)
\(830\) 54.0483 41.7784i 1.87605 1.45015i
\(831\) 0 0
\(832\) 3.44914 + 31.6449i 0.119577 + 1.09709i
\(833\) 1.11397 6.31762i 0.0385967 0.218893i
\(834\) 0 0
\(835\) −50.2277 59.8590i −1.73820 2.07151i
\(836\) −6.79672 + 9.85491i −0.235069 + 0.340839i
\(837\) 0 0
\(838\) −16.2438 + 8.52941i −0.561132 + 0.294644i
\(839\) 3.67221 3.08135i 0.126779 0.106380i −0.577194 0.816607i \(-0.695852\pi\)
0.703972 + 0.710227i \(0.251408\pi\)
\(840\) 0 0
\(841\) −6.26281 + 35.5181i −0.215959 + 1.22476i
\(842\) −4.16107 + 4.57350i −0.143400 + 0.157613i
\(843\) 0 0
\(844\) −14.7098 + 32.1392i −0.506334 + 1.10628i
\(845\) −9.62790 + 5.55867i −0.331210 + 0.191224i
\(846\) 0 0
\(847\) 3.62672 6.28165i 0.124615 0.215840i
\(848\) −14.1669 + 0.201185i −0.486492 + 0.00690870i
\(849\) 0 0
\(850\) −15.5871 + 71.5093i −0.534634 + 2.45275i
\(851\) 5.86637 6.99127i 0.201097 0.239657i
\(852\) 0 0
\(853\) −7.52367 + 20.6711i −0.257605 + 0.707765i 0.741708 + 0.670723i \(0.234016\pi\)
−0.999314 + 0.0370424i \(0.988206\pi\)
\(854\) −0.534232 + 13.3209i −0.0182811 + 0.455833i
\(855\) 0 0
\(856\) −12.6834 + 5.41262i −0.433511 + 0.184999i
\(857\) 1.54554 + 8.76520i 0.0527947 + 0.299414i 0.999760 0.0219232i \(-0.00697894\pi\)
−0.946965 + 0.321337i \(0.895868\pi\)
\(858\) 0 0
\(859\) 7.12897 + 19.5867i 0.243237 + 0.668289i 0.999895 + 0.0144780i \(0.00460866\pi\)
−0.756658 + 0.653811i \(0.773169\pi\)
\(860\) −34.9937 34.5003i −1.19327 1.17645i
\(861\) 0 0
\(862\) 1.51593 + 0.621621i 0.0516326 + 0.0211725i
\(863\) 21.4666 0.730731 0.365365 0.930864i \(-0.380944\pi\)
0.365365 + 0.930864i \(0.380944\pi\)
\(864\) 0 0
\(865\) −43.2459 −1.47040
\(866\) −49.3947 20.2548i −1.67850 0.688286i
\(867\) 0 0
\(868\) −7.82886 7.71847i −0.265729 0.261982i
\(869\) −0.266892 0.733280i −0.00905370 0.0248748i
\(870\) 0 0
\(871\) 4.73896 + 26.8760i 0.160573 + 0.910657i
\(872\) 6.55593 2.79772i 0.222012 0.0947428i
\(873\) 0 0
\(874\) −0.110779 + 2.76224i −0.00374715 + 0.0934343i
\(875\) 20.8794 57.3655i 0.705851 1.93931i
\(876\) 0 0
\(877\) −0.176559 + 0.210415i −0.00596198 + 0.00710521i −0.769017 0.639228i \(-0.779254\pi\)
0.763055 + 0.646333i \(0.223698\pi\)
\(878\) −8.15140 + 37.3964i −0.275096 + 1.26207i
\(879\) 0 0
\(880\) −0.649158 45.7119i −0.0218831 1.54095i
\(881\) 11.9250 20.6547i 0.401763 0.695873i −0.592176 0.805809i \(-0.701731\pi\)
0.993939 + 0.109935i \(0.0350643\pi\)
\(882\) 0 0
\(883\) −4.93626 + 2.84995i −0.166118 + 0.0959085i −0.580754 0.814079i \(-0.697242\pi\)
0.414636 + 0.909987i \(0.363909\pi\)
\(884\) −16.4765 + 35.9992i −0.554166 + 1.21078i
\(885\) 0 0
\(886\) 28.8321 31.6899i 0.968634 1.06464i
\(887\) 2.98032 16.9022i 0.100069 0.567521i −0.893006 0.450044i \(-0.851408\pi\)
0.993076 0.117477i \(-0.0374806\pi\)
\(888\) 0 0
\(889\) −10.5208 + 8.82801i −0.352857 + 0.296082i
\(890\) −40.4274 + 21.2279i −1.35513 + 0.711561i
\(891\) 0 0
\(892\) 26.4883 38.4068i 0.886895 1.28595i
\(893\) 7.09185 + 8.45174i 0.237320 + 0.282827i
\(894\) 0 0
\(895\) 2.88302 16.3504i 0.0963689 0.546535i
\(896\) −18.1791 27.0291i −0.607322 0.902980i
\(897\) 0 0
\(898\) −3.81401 + 2.94816i −0.127275 + 0.0983814i
\(899\) 13.3372 7.70026i 0.444822 0.256818i
\(900\) 0 0
\(901\) −15.2606 8.81073i −0.508405 0.293528i
\(902\) 3.09620 0.418810i 0.103092 0.0139448i
\(903\) 0 0
\(904\) −13.9798 14.9339i −0.464963 0.496693i
\(905\) −57.1678 47.9695i −1.90032 1.59456i
\(906\) 0 0
\(907\) 14.9621 41.1081i 0.496809 1.36497i −0.397533 0.917588i \(-0.630134\pi\)
0.894342 0.447383i \(-0.147644\pi\)
\(908\) −44.8308 + 21.2938i −1.48776 + 0.706658i
\(909\) 0 0
\(910\) 33.9735 53.7479i 1.12621 1.78173i
\(911\) −0.448255 2.54218i −0.0148514 0.0842262i 0.976481 0.215602i \(-0.0691715\pi\)
−0.991333 + 0.131376i \(0.958060\pi\)
\(912\) 0 0
\(913\) −33.6816 + 12.2591i −1.11470 + 0.405717i
\(914\) −12.7990 + 4.08552i −0.423353 + 0.135137i
\(915\) 0 0
\(916\) −11.0965 + 1.05026i −0.366639 + 0.0347015i
\(917\) 10.0878i 0.333127i
\(918\) 0 0
\(919\) −59.9068 −1.97614 −0.988071 0.153998i \(-0.950785\pi\)
−0.988071 + 0.153998i \(0.950785\pi\)
\(920\) −5.76675 8.84274i −0.190124 0.291537i
\(921\) 0 0
\(922\) 13.3061 + 41.6849i 0.438212 + 1.37282i
\(923\) 10.4439 + 28.6943i 0.343764 + 0.944483i
\(924\) 0 0
\(925\) 98.3103 17.3348i 3.23242 0.569963i
\(926\) 18.5847 29.4020i 0.610732 0.966209i
\(927\) 0 0
\(928\) 43.2679 14.4915i 1.42034 0.475707i
\(929\) 30.1626 + 10.9783i 0.989604 + 0.360186i 0.785567 0.618777i \(-0.212371\pi\)
0.204037 + 0.978963i \(0.434594\pi\)
\(930\) 0 0
\(931\) 1.70366 2.03035i 0.0558354 0.0665420i
\(932\) 12.8248 3.53418i 0.420090 0.115766i
\(933\) 0 0
\(934\) 1.37454 0.185928i 0.0449762 0.00608374i
\(935\) 28.4294 49.2412i 0.929741 1.61036i
\(936\) 0 0
\(937\) 8.40875 + 14.5644i 0.274702 + 0.475797i 0.970060 0.242866i \(-0.0780875\pi\)
−0.695358 + 0.718663i \(0.744754\pi\)
\(938\) −17.0790 22.0949i −0.557649 0.721425i
\(939\) 0 0
\(940\) −40.7736 10.6155i −1.32989 0.346241i
\(941\) −20.4427 3.60459i −0.666412 0.117506i −0.169799 0.985479i \(-0.554312\pi\)
−0.496613 + 0.867972i \(0.665423\pi\)
\(942\) 0 0
\(943\) 0.552695 0.463766i 0.0179982 0.0151023i
\(944\) 23.3183 8.86412i 0.758946 0.288503i
\(945\) 0 0
\(946\) 11.9867 + 22.8281i 0.389722 + 0.742205i
\(947\) −11.7887 14.0493i −0.383082 0.456540i 0.539702 0.841856i \(-0.318537\pi\)
−0.922785 + 0.385316i \(0.874092\pi\)
\(948\) 0 0
\(949\) 27.1812 + 4.79278i 0.882340 + 0.155580i
\(950\) −20.3494 + 22.3664i −0.660222 + 0.725661i
\(951\) 0 0
\(952\) −2.19810 40.4533i −0.0712407 1.31110i
\(953\) −1.73534 3.00570i −0.0562133 0.0973643i 0.836549 0.547892i \(-0.184569\pi\)
−0.892763 + 0.450527i \(0.851236\pi\)
\(954\) 0 0
\(955\) 27.6325 + 15.9536i 0.894166 + 0.516247i
\(956\) 42.6500 30.3174i 1.37940 0.980534i
\(957\) 0 0
\(958\) 2.18694 10.0331i 0.0706570 0.324154i
\(959\) −36.4426 30.5790i −1.17679 0.987447i
\(960\) 0 0
\(961\) 25.7051 + 9.35591i 0.829198 + 0.301803i
\(962\) 53.9571 + 2.16393i 1.73965 + 0.0697680i
\(963\) 0 0
\(964\) −50.0683 4.02241i −1.61259 0.129553i
\(965\) 50.9782 8.98883i 1.64105 0.289361i
\(966\) 0 0
\(967\) −29.0536 + 10.5747i −0.934301 + 0.340058i −0.763913 0.645319i \(-0.776724\pi\)
−0.170388 + 0.985377i \(0.554502\pi\)
\(968\) 2.07023 6.81829i 0.0665396 0.219148i
\(969\) 0 0
\(970\) −11.3418 + 27.6588i −0.364163 + 0.888071i
\(971\) 0.278968i 0.00895249i −0.999990 0.00447625i \(-0.998575\pi\)
0.999990 0.00447625i \(-0.00142484\pi\)
\(972\) 0 0
\(973\) 57.1990i 1.83372i
\(974\) −0.201292 0.0825420i −0.00644982 0.00264482i
\(975\) 0 0
\(976\) 2.45715 + 12.8642i 0.0786515 + 0.411774i
\(977\) −20.1241 + 7.32457i −0.643827 + 0.234334i −0.643238 0.765666i \(-0.722409\pi\)
−0.000588326 1.00000i \(0.500187\pi\)
\(978\) 0 0
\(979\) 23.5943 4.16032i 0.754078 0.132964i
\(980\) −0.810535 + 10.0890i −0.0258916 + 0.322281i
\(981\) 0 0
\(982\) 1.17784 29.3692i 0.0375865 0.937210i
\(983\) 5.52983 + 2.01269i 0.176374 + 0.0641950i 0.428698 0.903448i \(-0.358973\pi\)
−0.252324 + 0.967643i \(0.581195\pi\)
\(984\) 0 0
\(985\) 18.5800 + 15.5905i 0.592008 + 0.496753i
\(986\) 55.4495 + 12.0865i 1.76587 + 0.384912i
\(987\) 0 0
\(988\) −13.3320 + 9.47696i −0.424148 + 0.301502i
\(989\) 5.15636 + 2.97702i 0.163963 + 0.0946639i
\(990\) 0 0
\(991\) 17.5543 + 30.4049i 0.557631 + 0.965845i 0.997694 + 0.0678778i \(0.0216228\pi\)
−0.440063 + 0.897967i \(0.645044\pi\)
\(992\) −9.21038 5.64037i −0.292430 0.179082i
\(993\) 0 0
\(994\) −23.1126 21.0284i −0.733088 0.666979i
\(995\) −34.2986 6.04777i −1.08734 0.191727i
\(996\) 0 0
\(997\) −16.1819 19.2848i −0.512485 0.610756i 0.446302 0.894883i \(-0.352741\pi\)
−0.958787 + 0.284127i \(0.908296\pi\)
\(998\) 23.4357 12.3058i 0.741844 0.389533i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.37.4 204
3.2 odd 2 216.2.t.a.157.31 yes 204
8.5 even 2 inner 648.2.t.a.37.18 204
12.11 even 2 864.2.bf.a.49.28 204
24.5 odd 2 216.2.t.a.157.17 204
24.11 even 2 864.2.bf.a.49.7 204
27.11 odd 18 216.2.t.a.205.17 yes 204
27.16 even 9 inner 648.2.t.a.613.18 204
108.11 even 18 864.2.bf.a.529.7 204
216.11 even 18 864.2.bf.a.529.28 204
216.173 odd 18 216.2.t.a.205.31 yes 204
216.205 even 18 inner 648.2.t.a.613.4 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.17 204 24.5 odd 2
216.2.t.a.157.31 yes 204 3.2 odd 2
216.2.t.a.205.17 yes 204 27.11 odd 18
216.2.t.a.205.31 yes 204 216.173 odd 18
648.2.t.a.37.4 204 1.1 even 1 trivial
648.2.t.a.37.18 204 8.5 even 2 inner
648.2.t.a.613.4 204 216.205 even 18 inner
648.2.t.a.613.18 204 27.16 even 9 inner
864.2.bf.a.49.7 204 24.11 even 2
864.2.bf.a.49.28 204 12.11 even 2
864.2.bf.a.529.7 204 108.11 even 18
864.2.bf.a.529.28 204 216.11 even 18