Properties

Label 648.2.t.a.37.23
Level $648$
Weight $2$
Character 648.37
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 37.23
Character \(\chi\) \(=\) 648.37
Dual form 648.2.t.a.613.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.654194 + 1.25381i) q^{2} +(-1.14406 + 1.64047i) q^{4} +(-1.15428 - 3.17134i) q^{5} +(0.593321 + 3.36489i) q^{7} +(-2.80526 - 0.361244i) q^{8} +(3.22113 - 3.52191i) q^{10} +(-0.197048 + 0.541384i) q^{11} +(-4.30199 + 5.12691i) q^{13} +(-3.83077 + 2.94520i) q^{14} +(-1.38226 - 3.75358i) q^{16} +(-1.15893 + 2.00733i) q^{17} +(0.353289 - 0.203971i) q^{19} +(6.52304 + 1.73466i) q^{20} +(-0.807698 + 0.107111i) q^{22} +(-1.15186 + 6.53250i) q^{23} +(-4.89486 + 4.10727i) q^{25} +(-9.24249 - 2.03986i) q^{26} +(-6.19878 - 2.87631i) q^{28} +(-2.24644 - 2.67721i) q^{29} +(-0.382945 + 2.17179i) q^{31} +(3.80200 - 4.18865i) q^{32} +(-3.27497 - 0.139892i) q^{34} +(9.98637 - 5.76564i) q^{35} +(1.05249 + 0.607656i) q^{37} +(0.486860 + 0.309519i) q^{38} +(2.09242 + 9.31343i) q^{40} +(-5.09057 - 4.27150i) q^{41} +(-0.442145 + 1.21478i) q^{43} +(-0.662688 - 0.942626i) q^{44} +(-8.94402 + 2.82932i) q^{46} +(0.547022 + 3.10232i) q^{47} +(-4.39261 + 1.59878i) q^{49} +(-8.35191 - 3.45024i) q^{50} +(-3.48879 - 12.9228i) q^{52} +9.35460i q^{53} +1.94436 q^{55} +(-0.448874 - 9.65374i) q^{56} +(1.88709 - 4.56802i) q^{58} +(-3.00302 - 8.25072i) q^{59} +(4.67459 - 0.824257i) q^{61} +(-2.97352 + 0.940634i) q^{62} +(7.73901 + 2.02677i) q^{64} +(21.2249 + 7.72523i) q^{65} +(9.67062 - 11.5250i) q^{67} +(-1.96707 - 4.19769i) q^{68} +(13.7620 + 8.74913i) q^{70} +(3.92323 - 6.79524i) q^{71} +(0.641809 + 1.11165i) q^{73} +(-0.0733489 + 1.71715i) q^{74} +(-0.0695752 + 0.812914i) q^{76} +(-1.93861 - 0.341829i) q^{77} +(3.84081 - 3.22282i) q^{79} +(-10.3084 + 8.71628i) q^{80} +(2.02541 - 9.17698i) q^{82} +(6.67152 + 7.95081i) q^{83} +(7.70366 + 1.35836i) q^{85} +(-1.81235 + 0.240341i) q^{86} +(0.748343 - 1.44754i) q^{88} +(2.86501 + 4.96234i) q^{89} +(-19.8040 - 11.4338i) q^{91} +(-9.39855 - 9.36314i) q^{92} +(-3.53185 + 2.71538i) q^{94} +(-1.05466 - 0.884962i) q^{95} +(10.5548 + 3.84165i) q^{97} +(-4.87818 - 4.46157i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.654194 + 1.25381i 0.462585 + 0.886575i
\(3\) 0 0
\(4\) −1.14406 + 1.64047i −0.572030 + 0.820233i
\(5\) −1.15428 3.17134i −0.516208 1.41827i −0.874667 0.484723i \(-0.838920\pi\)
0.358460 0.933545i \(-0.383302\pi\)
\(6\) 0 0
\(7\) 0.593321 + 3.36489i 0.224254 + 1.27181i 0.864106 + 0.503311i \(0.167885\pi\)
−0.639851 + 0.768499i \(0.721004\pi\)
\(8\) −2.80526 0.361244i −0.991810 0.127719i
\(9\) 0 0
\(10\) 3.22113 3.52191i 1.01861 1.11373i
\(11\) −0.197048 + 0.541384i −0.0594121 + 0.163233i −0.965848 0.259111i \(-0.916570\pi\)
0.906435 + 0.422344i \(0.138793\pi\)
\(12\) 0 0
\(13\) −4.30199 + 5.12691i −1.19316 + 1.42195i −0.311379 + 0.950286i \(0.600791\pi\)
−0.881779 + 0.471664i \(0.843654\pi\)
\(14\) −3.83077 + 2.94520i −1.02382 + 0.787139i
\(15\) 0 0
\(16\) −1.38226 3.75358i −0.345564 0.938395i
\(17\) −1.15893 + 2.00733i −0.281082 + 0.486849i −0.971652 0.236417i \(-0.924027\pi\)
0.690569 + 0.723266i \(0.257360\pi\)
\(18\) 0 0
\(19\) 0.353289 0.203971i 0.0810500 0.0467943i −0.458927 0.888474i \(-0.651766\pi\)
0.539977 + 0.841680i \(0.318433\pi\)
\(20\) 6.52304 + 1.73466i 1.45860 + 0.387881i
\(21\) 0 0
\(22\) −0.807698 + 0.107111i −0.172202 + 0.0228361i
\(23\) −1.15186 + 6.53250i −0.240178 + 1.36212i 0.591250 + 0.806488i \(0.298635\pi\)
−0.831429 + 0.555631i \(0.812477\pi\)
\(24\) 0 0
\(25\) −4.89486 + 4.10727i −0.978971 + 0.821454i
\(26\) −9.24249 2.03986i −1.81260 0.400050i
\(27\) 0 0
\(28\) −6.19878 2.87631i −1.17146 0.543572i
\(29\) −2.24644 2.67721i −0.417154 0.497145i 0.516016 0.856579i \(-0.327414\pi\)
−0.933171 + 0.359434i \(0.882970\pi\)
\(30\) 0 0
\(31\) −0.382945 + 2.17179i −0.0687790 + 0.390065i 0.930913 + 0.365241i \(0.119014\pi\)
−0.999692 + 0.0248236i \(0.992098\pi\)
\(32\) 3.80200 4.18865i 0.672104 0.740456i
\(33\) 0 0
\(34\) −3.27497 0.139892i −0.561653 0.0239913i
\(35\) 9.98637 5.76564i 1.68801 0.974570i
\(36\) 0 0
\(37\) 1.05249 + 0.607656i 0.173028 + 0.0998980i 0.584013 0.811744i \(-0.301482\pi\)
−0.410985 + 0.911642i \(0.634815\pi\)
\(38\) 0.486860 + 0.309519i 0.0789792 + 0.0502106i
\(39\) 0 0
\(40\) 2.09242 + 9.31343i 0.330840 + 1.47258i
\(41\) −5.09057 4.27150i −0.795014 0.667096i 0.151967 0.988386i \(-0.451439\pi\)
−0.946981 + 0.321290i \(0.895884\pi\)
\(42\) 0 0
\(43\) −0.442145 + 1.21478i −0.0674265 + 0.185253i −0.968830 0.247728i \(-0.920316\pi\)
0.901403 + 0.432981i \(0.142538\pi\)
\(44\) −0.662688 0.942626i −0.0999040 0.142106i
\(45\) 0 0
\(46\) −8.94402 + 2.82932i −1.31872 + 0.417160i
\(47\) 0.547022 + 3.10232i 0.0797914 + 0.452520i 0.998359 + 0.0572567i \(0.0182354\pi\)
−0.918568 + 0.395263i \(0.870654\pi\)
\(48\) 0 0
\(49\) −4.39261 + 1.59878i −0.627516 + 0.228397i
\(50\) −8.35191 3.45024i −1.18114 0.487938i
\(51\) 0 0
\(52\) −3.48879 12.9228i −0.483809 1.79206i
\(53\) 9.35460i 1.28495i 0.766305 + 0.642477i \(0.222093\pi\)
−0.766305 + 0.642477i \(0.777907\pi\)
\(54\) 0 0
\(55\) 1.94436 0.262178
\(56\) −0.448874 9.65374i −0.0599833 1.29004i
\(57\) 0 0
\(58\) 1.88709 4.56802i 0.247787 0.599810i
\(59\) −3.00302 8.25072i −0.390959 1.07415i −0.966564 0.256424i \(-0.917456\pi\)
0.575605 0.817728i \(-0.304767\pi\)
\(60\) 0 0
\(61\) 4.67459 0.824257i 0.598520 0.105535i 0.133824 0.991005i \(-0.457274\pi\)
0.464697 + 0.885470i \(0.346163\pi\)
\(62\) −2.97352 + 0.940634i −0.377638 + 0.119461i
\(63\) 0 0
\(64\) 7.73901 + 2.02677i 0.967376 + 0.253346i
\(65\) 21.2249 + 7.72523i 2.63262 + 0.958196i
\(66\) 0 0
\(67\) 9.67062 11.5250i 1.18145 1.40800i 0.288723 0.957413i \(-0.406769\pi\)
0.892731 0.450589i \(-0.148786\pi\)
\(68\) −1.96707 4.19769i −0.238542 0.509045i
\(69\) 0 0
\(70\) 13.7620 + 8.74913i 1.64488 + 1.04572i
\(71\) 3.92323 6.79524i 0.465602 0.806446i −0.533627 0.845720i \(-0.679171\pi\)
0.999228 + 0.0392740i \(0.0125045\pi\)
\(72\) 0 0
\(73\) 0.641809 + 1.11165i 0.0751180 + 0.130108i 0.901138 0.433533i \(-0.142733\pi\)
−0.826020 + 0.563641i \(0.809400\pi\)
\(74\) −0.0733489 + 1.71715i −0.00852664 + 0.199614i
\(75\) 0 0
\(76\) −0.0695752 + 0.812914i −0.00798082 + 0.0932476i
\(77\) −1.93861 0.341829i −0.220925 0.0389551i
\(78\) 0 0
\(79\) 3.84081 3.22282i 0.432125 0.362596i −0.400628 0.916241i \(-0.631208\pi\)
0.832753 + 0.553645i \(0.186764\pi\)
\(80\) −10.3084 + 8.71628i −1.15251 + 0.974510i
\(81\) 0 0
\(82\) 2.02541 9.17698i 0.223669 1.01343i
\(83\) 6.67152 + 7.95081i 0.732295 + 0.872715i 0.995763 0.0919529i \(-0.0293109\pi\)
−0.263468 + 0.964668i \(0.584866\pi\)
\(84\) 0 0
\(85\) 7.70366 + 1.35836i 0.835580 + 0.147335i
\(86\) −1.81235 + 0.240341i −0.195431 + 0.0259166i
\(87\) 0 0
\(88\) 0.748343 1.44754i 0.0797736 0.154309i
\(89\) 2.86501 + 4.96234i 0.303690 + 0.526007i 0.976969 0.213382i \(-0.0684478\pi\)
−0.673278 + 0.739389i \(0.735114\pi\)
\(90\) 0 0
\(91\) −19.8040 11.4338i −2.07602 1.19859i
\(92\) −9.39855 9.36314i −0.979866 0.976175i
\(93\) 0 0
\(94\) −3.53185 + 2.71538i −0.364282 + 0.280070i
\(95\) −1.05466 0.884962i −0.108205 0.0907952i
\(96\) 0 0
\(97\) 10.5548 + 3.84165i 1.07168 + 0.390061i 0.816806 0.576913i \(-0.195743\pi\)
0.254877 + 0.966974i \(0.417965\pi\)
\(98\) −4.87818 4.46157i −0.492771 0.450687i
\(99\) 0 0
\(100\) −1.13784 12.7288i −0.113784 1.27288i
\(101\) −12.2411 + 2.15844i −1.21804 + 0.214773i −0.745481 0.666527i \(-0.767780\pi\)
−0.472557 + 0.881300i \(0.656669\pi\)
\(102\) 0 0
\(103\) −14.8537 + 5.40632i −1.46358 + 0.532701i −0.946350 0.323144i \(-0.895260\pi\)
−0.517233 + 0.855844i \(0.673038\pi\)
\(104\) 13.9203 12.8283i 1.36500 1.25792i
\(105\) 0 0
\(106\) −11.7289 + 6.11973i −1.13921 + 0.594401i
\(107\) 2.44491i 0.236359i 0.992992 + 0.118179i \(0.0377058\pi\)
−0.992992 + 0.118179i \(0.962294\pi\)
\(108\) 0 0
\(109\) 16.2522i 1.55668i 0.627843 + 0.778340i \(0.283938\pi\)
−0.627843 + 0.778340i \(0.716062\pi\)
\(110\) 1.27199 + 2.43785i 0.121280 + 0.232440i
\(111\) 0 0
\(112\) 11.8103 6.87822i 1.11597 0.649931i
\(113\) 11.4376 4.16294i 1.07596 0.391617i 0.257556 0.966263i \(-0.417083\pi\)
0.818402 + 0.574646i \(0.194860\pi\)
\(114\) 0 0
\(115\) 22.0464 3.88737i 2.05583 0.362499i
\(116\) 6.96193 0.622331i 0.646399 0.0577820i
\(117\) 0 0
\(118\) 8.38025 9.16278i 0.771464 0.843502i
\(119\) −7.44207 2.70869i −0.682213 0.248305i
\(120\) 0 0
\(121\) 8.17222 + 6.85731i 0.742929 + 0.623392i
\(122\) 4.09155 + 5.32181i 0.370432 + 0.481814i
\(123\) 0 0
\(124\) −3.12463 3.11286i −0.280600 0.279543i
\(125\) 4.06195 + 2.34517i 0.363312 + 0.209758i
\(126\) 0 0
\(127\) −4.79341 8.30243i −0.425346 0.736722i 0.571106 0.820876i \(-0.306514\pi\)
−0.996453 + 0.0841546i \(0.973181\pi\)
\(128\) 2.52164 + 11.0291i 0.222883 + 0.974845i
\(129\) 0 0
\(130\) 4.19927 + 31.6657i 0.368300 + 2.77726i
\(131\) 0.406480 + 0.0716734i 0.0355143 + 0.00626213i 0.191377 0.981517i \(-0.438705\pi\)
−0.155863 + 0.987779i \(0.549816\pi\)
\(132\) 0 0
\(133\) 0.895956 + 1.06776i 0.0776892 + 0.0925864i
\(134\) 20.7766 + 4.58549i 1.79482 + 0.396126i
\(135\) 0 0
\(136\) 3.97625 5.21243i 0.340960 0.446962i
\(137\) −12.0727 + 10.1302i −1.03144 + 0.865480i −0.991021 0.133703i \(-0.957313\pi\)
−0.0404177 + 0.999183i \(0.512869\pi\)
\(138\) 0 0
\(139\) −2.17442 0.383409i −0.184432 0.0325204i 0.0806691 0.996741i \(-0.474294\pi\)
−0.265101 + 0.964221i \(0.585405\pi\)
\(140\) −1.96667 + 22.9785i −0.166214 + 1.94204i
\(141\) 0 0
\(142\) 11.0865 + 0.473565i 0.930356 + 0.0397407i
\(143\) −1.92793 3.33928i −0.161222 0.279244i
\(144\) 0 0
\(145\) −5.89733 + 10.2145i −0.489747 + 0.848267i
\(146\) −0.973920 + 1.53194i −0.0806022 + 0.126784i
\(147\) 0 0
\(148\) −2.20095 + 1.03138i −0.180917 + 0.0847790i
\(149\) −4.40044 + 5.24424i −0.360498 + 0.429625i −0.915558 0.402186i \(-0.868251\pi\)
0.555060 + 0.831810i \(0.312695\pi\)
\(150\) 0 0
\(151\) 11.0866 + 4.03519i 0.902213 + 0.328379i 0.751139 0.660144i \(-0.229505\pi\)
0.151074 + 0.988522i \(0.451727\pi\)
\(152\) −1.06475 + 0.444570i −0.0863628 + 0.0360594i
\(153\) 0 0
\(154\) −0.839641 2.65427i −0.0676602 0.213887i
\(155\) 7.32952 1.29239i 0.588721 0.103807i
\(156\) 0 0
\(157\) −4.12184 11.3247i −0.328959 0.903808i −0.988376 0.152030i \(-0.951419\pi\)
0.659417 0.751778i \(-0.270803\pi\)
\(158\) 6.55343 + 2.70728i 0.521363 + 0.215380i
\(159\) 0 0
\(160\) −17.6722 7.22258i −1.39711 0.570995i
\(161\) −22.6646 −1.78622
\(162\) 0 0
\(163\) 13.3972i 1.04935i 0.851303 + 0.524675i \(0.175813\pi\)
−0.851303 + 0.524675i \(0.824187\pi\)
\(164\) 12.8312 3.46407i 1.00195 0.270498i
\(165\) 0 0
\(166\) −5.60430 + 13.5662i −0.434978 + 1.05294i
\(167\) 6.36473 2.31657i 0.492517 0.179262i −0.0838081 0.996482i \(-0.526708\pi\)
0.576325 + 0.817220i \(0.304486\pi\)
\(168\) 0 0
\(169\) −5.52068 31.3093i −0.424668 2.40841i
\(170\) 3.33657 + 10.5475i 0.255903 + 0.808959i
\(171\) 0 0
\(172\) −1.48697 2.11511i −0.113380 0.161275i
\(173\) 0.576454 1.58380i 0.0438270 0.120414i −0.915848 0.401524i \(-0.868481\pi\)
0.959675 + 0.281111i \(0.0907028\pi\)
\(174\) 0 0
\(175\) −16.7247 14.0337i −1.26427 1.06085i
\(176\) 2.30450 0.00869789i 0.173708 0.000655628i
\(177\) 0 0
\(178\) −4.34754 + 6.83850i −0.325862 + 0.512568i
\(179\) 10.3190 + 5.95768i 0.771279 + 0.445298i 0.833331 0.552775i \(-0.186431\pi\)
−0.0620517 + 0.998073i \(0.519764\pi\)
\(180\) 0 0
\(181\) −14.3027 + 8.25769i −1.06311 + 0.613789i −0.926292 0.376806i \(-0.877022\pi\)
−0.136822 + 0.990596i \(0.543689\pi\)
\(182\) 1.38015 32.3103i 0.102304 2.39500i
\(183\) 0 0
\(184\) 5.59109 17.9093i 0.412180 1.32029i
\(185\) 0.712223 4.03922i 0.0523636 0.296969i
\(186\) 0 0
\(187\) −0.858372 1.02297i −0.0627703 0.0748068i
\(188\) −5.71507 2.65186i −0.416815 0.193407i
\(189\) 0 0
\(190\) 0.419620 1.90127i 0.0304424 0.137933i
\(191\) 10.1267 8.49734i 0.732745 0.614846i −0.198134 0.980175i \(-0.563488\pi\)
0.930878 + 0.365329i \(0.119044\pi\)
\(192\) 0 0
\(193\) −0.0307325 + 0.174293i −0.00221218 + 0.0125459i −0.985894 0.167372i \(-0.946472\pi\)
0.983682 + 0.179918i \(0.0575831\pi\)
\(194\) 2.08824 + 15.7469i 0.149927 + 1.13056i
\(195\) 0 0
\(196\) 2.40266 9.03503i 0.171619 0.645359i
\(197\) −0.841221 + 0.485679i −0.0599345 + 0.0346032i −0.529668 0.848205i \(-0.677683\pi\)
0.469733 + 0.882808i \(0.344350\pi\)
\(198\) 0 0
\(199\) 2.04926 3.54942i 0.145268 0.251612i −0.784205 0.620502i \(-0.786929\pi\)
0.929473 + 0.368890i \(0.120262\pi\)
\(200\) 15.2151 9.75374i 1.07587 0.689693i
\(201\) 0 0
\(202\) −10.7143 13.9360i −0.753858 0.980530i
\(203\) 7.67565 9.14748i 0.538725 0.642027i
\(204\) 0 0
\(205\) −7.67047 + 21.0745i −0.535729 + 1.47190i
\(206\) −16.4957 15.0869i −1.14931 1.05116i
\(207\) 0 0
\(208\) 25.1907 + 9.06115i 1.74666 + 0.628278i
\(209\) 0.0408121 + 0.231457i 0.00282303 + 0.0160102i
\(210\) 0 0
\(211\) −1.28341 3.52613i −0.0883534 0.242749i 0.887644 0.460530i \(-0.152340\pi\)
−0.975998 + 0.217781i \(0.930118\pi\)
\(212\) −15.3459 10.7022i −1.05396 0.735031i
\(213\) 0 0
\(214\) −3.06545 + 1.59945i −0.209550 + 0.109336i
\(215\) 4.36285 0.297544
\(216\) 0 0
\(217\) −7.53504 −0.511512
\(218\) −20.3771 + 10.6321i −1.38011 + 0.720097i
\(219\) 0 0
\(220\) −2.22447 + 3.18966i −0.149973 + 0.215047i
\(221\) −5.30569 14.5773i −0.356899 0.980572i
\(222\) 0 0
\(223\) 0.680991 + 3.86209i 0.0456025 + 0.258625i 0.999082 0.0428323i \(-0.0136381\pi\)
−0.953480 + 0.301457i \(0.902527\pi\)
\(224\) 16.3502 + 10.3081i 1.09244 + 0.688738i
\(225\) 0 0
\(226\) 12.7019 + 11.6171i 0.844920 + 0.772761i
\(227\) −4.04735 + 11.1200i −0.268632 + 0.738061i 0.729882 + 0.683573i \(0.239575\pi\)
−0.998514 + 0.0544879i \(0.982647\pi\)
\(228\) 0 0
\(229\) 6.81207 8.11831i 0.450154 0.536473i −0.492470 0.870330i \(-0.663906\pi\)
0.942624 + 0.333857i \(0.108350\pi\)
\(230\) 19.2966 + 25.0988i 1.27238 + 1.65496i
\(231\) 0 0
\(232\) 5.33474 + 8.32179i 0.350243 + 0.546352i
\(233\) 0.565006 0.978619i 0.0370148 0.0641115i −0.846925 0.531713i \(-0.821548\pi\)
0.883939 + 0.467602i \(0.154882\pi\)
\(234\) 0 0
\(235\) 9.20711 5.31572i 0.600605 0.346760i
\(236\) 16.9707 + 4.51296i 1.10470 + 0.293769i
\(237\) 0 0
\(238\) −1.47239 11.1029i −0.0954406 0.719695i
\(239\) −1.00787 + 5.71591i −0.0651936 + 0.369731i 0.934704 + 0.355427i \(0.115665\pi\)
−0.999898 + 0.0143045i \(0.995447\pi\)
\(240\) 0 0
\(241\) 22.5974 18.9615i 1.45563 1.22142i 0.527286 0.849688i \(-0.323210\pi\)
0.928342 0.371728i \(-0.121235\pi\)
\(242\) −3.25151 + 14.7324i −0.209015 + 0.947034i
\(243\) 0 0
\(244\) −3.99585 + 8.61151i −0.255808 + 0.551295i
\(245\) 10.1406 + 12.0851i 0.647857 + 0.772086i
\(246\) 0 0
\(247\) −0.474102 + 2.68876i −0.0301664 + 0.171082i
\(248\) 1.85881 5.95410i 0.118034 0.378086i
\(249\) 0 0
\(250\) −0.283080 + 6.62709i −0.0179036 + 0.419134i
\(251\) −5.20730 + 3.00644i −0.328682 + 0.189765i −0.655256 0.755407i \(-0.727439\pi\)
0.326574 + 0.945172i \(0.394106\pi\)
\(252\) 0 0
\(253\) −3.30962 1.91081i −0.208074 0.120132i
\(254\) 7.27381 11.4414i 0.456400 0.717898i
\(255\) 0 0
\(256\) −12.1787 + 10.3768i −0.761171 + 0.648552i
\(257\) −19.8936 16.6927i −1.24093 1.04126i −0.997451 0.0713589i \(-0.977266\pi\)
−0.243480 0.969906i \(-0.578289\pi\)
\(258\) 0 0
\(259\) −1.42023 + 3.90205i −0.0882489 + 0.242462i
\(260\) −36.9555 + 25.9806i −2.29188 + 1.61125i
\(261\) 0 0
\(262\) 0.176052 + 0.556535i 0.0108766 + 0.0343829i
\(263\) 2.41565 + 13.6998i 0.148956 + 0.844769i 0.964106 + 0.265519i \(0.0855433\pi\)
−0.815150 + 0.579250i \(0.803346\pi\)
\(264\) 0 0
\(265\) 29.6667 10.7978i 1.82241 0.663303i
\(266\) −0.752633 + 1.82188i −0.0461469 + 0.111706i
\(267\) 0 0
\(268\) 7.84260 + 29.0496i 0.479063 + 1.77449i
\(269\) 3.89404i 0.237424i 0.992929 + 0.118712i \(0.0378765\pi\)
−0.992929 + 0.118712i \(0.962123\pi\)
\(270\) 0 0
\(271\) 27.1005 1.64624 0.823119 0.567869i \(-0.192232\pi\)
0.823119 + 0.567869i \(0.192232\pi\)
\(272\) 9.13662 + 1.57550i 0.553989 + 0.0955287i
\(273\) 0 0
\(274\) −20.5992 8.50969i −1.24444 0.514089i
\(275\) −1.25909 3.45933i −0.0759261 0.208605i
\(276\) 0 0
\(277\) 7.05421 1.24385i 0.423847 0.0747356i 0.0423435 0.999103i \(-0.486518\pi\)
0.381503 + 0.924368i \(0.375407\pi\)
\(278\) −0.941775 2.97713i −0.0564839 0.178556i
\(279\) 0 0
\(280\) −30.0972 + 12.5666i −1.79865 + 0.750998i
\(281\) 0.728892 + 0.265295i 0.0434820 + 0.0158262i 0.363670 0.931528i \(-0.381524\pi\)
−0.320188 + 0.947354i \(0.603746\pi\)
\(282\) 0 0
\(283\) −0.982704 + 1.17114i −0.0584157 + 0.0696171i −0.794461 0.607315i \(-0.792247\pi\)
0.736045 + 0.676932i \(0.236691\pi\)
\(284\) 6.65895 + 14.2101i 0.395136 + 0.843213i
\(285\) 0 0
\(286\) 2.92556 4.60179i 0.172992 0.272109i
\(287\) 11.3528 19.6636i 0.670134 1.16071i
\(288\) 0 0
\(289\) 5.81375 + 10.0697i 0.341985 + 0.592336i
\(290\) −16.6650 0.711855i −0.978601 0.0418016i
\(291\) 0 0
\(292\) −2.55788 0.218923i −0.149689 0.0128115i
\(293\) −15.6621 2.76164i −0.914987 0.161337i −0.303720 0.952761i \(-0.598229\pi\)
−0.611267 + 0.791424i \(0.709340\pi\)
\(294\) 0 0
\(295\) −22.6996 + 19.0472i −1.32162 + 1.10897i
\(296\) −2.73300 2.08484i −0.158853 0.121179i
\(297\) 0 0
\(298\) −9.45399 2.08654i −0.547655 0.120870i
\(299\) −28.5363 34.0082i −1.65029 1.96674i
\(300\) 0 0
\(301\) −4.34995 0.767013i −0.250727 0.0442099i
\(302\) 2.19344 + 16.5402i 0.126218 + 0.951783i
\(303\) 0 0
\(304\) −1.25396 1.04416i −0.0719195 0.0598865i
\(305\) −8.00977 13.8733i −0.458638 0.794385i
\(306\) 0 0
\(307\) −0.370582 0.213955i −0.0211502 0.0122111i 0.489388 0.872066i \(-0.337220\pi\)
−0.510538 + 0.859855i \(0.670554\pi\)
\(308\) 2.77865 2.78915i 0.158328 0.158927i
\(309\) 0 0
\(310\) 6.41534 + 8.34432i 0.364367 + 0.473925i
\(311\) −8.46179 7.10028i −0.479824 0.402620i 0.370539 0.928817i \(-0.379173\pi\)
−0.850363 + 0.526197i \(0.823617\pi\)
\(312\) 0 0
\(313\) −26.1193 9.50664i −1.47635 0.537347i −0.526533 0.850155i \(-0.676508\pi\)
−0.949817 + 0.312807i \(0.898731\pi\)
\(314\) 11.5025 12.5765i 0.649121 0.709735i
\(315\) 0 0
\(316\) 0.892817 + 9.98782i 0.0502249 + 0.561859i
\(317\) −3.46040 + 0.610163i −0.194356 + 0.0342701i −0.269979 0.962866i \(-0.587017\pi\)
0.0756229 + 0.997136i \(0.475905\pi\)
\(318\) 0 0
\(319\) 1.89205 0.688651i 0.105935 0.0385571i
\(320\) −2.50535 26.8825i −0.140053 1.50278i
\(321\) 0 0
\(322\) −14.8270 28.4170i −0.826278 1.58362i
\(323\) 0.945557i 0.0526122i
\(324\) 0 0
\(325\) 42.7649i 2.37217i
\(326\) −16.7975 + 8.76438i −0.930327 + 0.485414i
\(327\) 0 0
\(328\) 12.7373 + 13.8216i 0.703302 + 0.763171i
\(329\) −10.1144 + 3.68134i −0.557625 + 0.202959i
\(330\) 0 0
\(331\) −17.1533 + 3.02459i −0.942832 + 0.166247i −0.623876 0.781523i \(-0.714443\pi\)
−0.318956 + 0.947770i \(0.603332\pi\)
\(332\) −20.6757 + 1.84821i −1.13472 + 0.101434i
\(333\) 0 0
\(334\) 7.06830 + 6.46465i 0.386760 + 0.353730i
\(335\) −47.7123 17.3659i −2.60680 0.948798i
\(336\) 0 0
\(337\) −2.18023 1.82943i −0.118765 0.0996554i 0.581471 0.813567i \(-0.302477\pi\)
−0.700236 + 0.713912i \(0.746922\pi\)
\(338\) 35.6442 27.4043i 1.93879 1.49060i
\(339\) 0 0
\(340\) −11.0418 + 11.0835i −0.598825 + 0.601090i
\(341\) −1.10031 0.635266i −0.0595853 0.0344016i
\(342\) 0 0
\(343\) 3.97285 + 6.88117i 0.214514 + 0.371548i
\(344\) 1.67917 3.24806i 0.0905346 0.175124i
\(345\) 0 0
\(346\) 2.36289 0.313348i 0.127029 0.0168457i
\(347\) 25.7859 + 4.54675i 1.38426 + 0.244082i 0.815659 0.578533i \(-0.196374\pi\)
0.568599 + 0.822615i \(0.307486\pi\)
\(348\) 0 0
\(349\) 3.27963 + 3.90851i 0.175555 + 0.209218i 0.846646 0.532157i \(-0.178618\pi\)
−0.671091 + 0.741375i \(0.734174\pi\)
\(350\) 6.65433 30.1504i 0.355689 1.61160i
\(351\) 0 0
\(352\) 1.51850 + 2.88371i 0.0809361 + 0.153702i
\(353\) 11.4022 9.56754i 0.606875 0.509229i −0.286772 0.957999i \(-0.592582\pi\)
0.893647 + 0.448770i \(0.148138\pi\)
\(354\) 0 0
\(355\) −26.0785 4.59835i −1.38410 0.244055i
\(356\) −11.4183 0.977262i −0.605168 0.0517948i
\(357\) 0 0
\(358\) −0.719139 + 16.8355i −0.0380077 + 0.889785i
\(359\) 7.74329 + 13.4118i 0.408675 + 0.707846i 0.994742 0.102417i \(-0.0326575\pi\)
−0.586066 + 0.810263i \(0.699324\pi\)
\(360\) 0 0
\(361\) −9.41679 + 16.3104i −0.495621 + 0.858440i
\(362\) −19.7103 12.5307i −1.03595 0.658600i
\(363\) 0 0
\(364\) 41.4137 19.4068i 2.17067 1.01719i
\(365\) 2.78459 3.31854i 0.145752 0.173700i
\(366\) 0 0
\(367\) 24.0744 + 8.76237i 1.25667 + 0.457392i 0.882652 0.470027i \(-0.155756\pi\)
0.374023 + 0.927419i \(0.377978\pi\)
\(368\) 26.1124 4.70601i 1.36120 0.245318i
\(369\) 0 0
\(370\) 5.53032 1.74944i 0.287508 0.0909492i
\(371\) −31.4772 + 5.55028i −1.63422 + 0.288156i
\(372\) 0 0
\(373\) −4.86012 13.3531i −0.251648 0.691396i −0.999617 0.0276634i \(-0.991193\pi\)
0.747970 0.663733i \(-0.231029\pi\)
\(374\) 0.721061 1.74545i 0.0372852 0.0902551i
\(375\) 0 0
\(376\) −0.413847 8.90043i −0.0213425 0.459004i
\(377\) 23.3900 1.20465
\(378\) 0 0
\(379\) 1.93137i 0.0992080i 0.998769 + 0.0496040i \(0.0157959\pi\)
−0.998769 + 0.0496040i \(0.984204\pi\)
\(380\) 2.65834 0.717680i 0.136370 0.0368162i
\(381\) 0 0
\(382\) 17.2789 + 7.13805i 0.884064 + 0.365214i
\(383\) −12.4377 + 4.52695i −0.635537 + 0.231317i −0.639639 0.768675i \(-0.720916\pi\)
0.00410258 + 0.999992i \(0.498694\pi\)
\(384\) 0 0
\(385\) 1.15363 + 6.54257i 0.0587945 + 0.333440i
\(386\) −0.238634 + 0.0754888i −0.0121462 + 0.00384228i
\(387\) 0 0
\(388\) −18.3775 + 12.9198i −0.932975 + 0.655903i
\(389\) −8.22522 + 22.5986i −0.417035 + 1.14579i 0.536339 + 0.844003i \(0.319807\pi\)
−0.953374 + 0.301792i \(0.902415\pi\)
\(390\) 0 0
\(391\) −11.7780 9.88288i −0.595637 0.499799i
\(392\) 12.9000 2.89819i 0.651548 0.146381i
\(393\) 0 0
\(394\) −1.15927 0.736999i −0.0584032 0.0371295i
\(395\) −14.6540 8.46051i −0.737325 0.425695i
\(396\) 0 0
\(397\) −28.6833 + 16.5603i −1.43957 + 0.831137i −0.997820 0.0659997i \(-0.978976\pi\)
−0.441752 + 0.897137i \(0.645643\pi\)
\(398\) 5.79090 + 0.247362i 0.290272 + 0.0123991i
\(399\) 0 0
\(400\) 22.1829 + 12.6959i 1.10915 + 0.634796i
\(401\) −1.94567 + 11.0344i −0.0971620 + 0.551033i 0.896901 + 0.442231i \(0.145813\pi\)
−0.994063 + 0.108802i \(0.965298\pi\)
\(402\) 0 0
\(403\) −9.48715 11.3063i −0.472588 0.563209i
\(404\) 10.4637 22.5505i 0.520590 1.12193i
\(405\) 0 0
\(406\) 16.4905 + 3.63954i 0.818412 + 0.180627i
\(407\) −0.536366 + 0.450065i −0.0265867 + 0.0223089i
\(408\) 0 0
\(409\) 1.95004 11.0592i 0.0964233 0.546844i −0.897879 0.440243i \(-0.854892\pi\)
0.994302 0.106601i \(-0.0339966\pi\)
\(410\) −31.4413 + 4.16950i −1.55277 + 0.205917i
\(411\) 0 0
\(412\) 8.12468 30.5522i 0.400274 1.50520i
\(413\) 25.9810 15.0001i 1.27844 0.738109i
\(414\) 0 0
\(415\) 17.5140 30.3351i 0.859728 1.48909i
\(416\) 5.11871 + 37.5120i 0.250966 + 1.83918i
\(417\) 0 0
\(418\) −0.263503 + 0.202589i −0.0128884 + 0.00990893i
\(419\) −8.95678 + 10.6743i −0.437567 + 0.521472i −0.939090 0.343672i \(-0.888329\pi\)
0.501522 + 0.865145i \(0.332774\pi\)
\(420\) 0 0
\(421\) −4.06687 + 11.1736i −0.198207 + 0.544570i −0.998483 0.0550623i \(-0.982464\pi\)
0.800276 + 0.599632i \(0.204686\pi\)
\(422\) 3.58149 3.91592i 0.174344 0.190624i
\(423\) 0 0
\(424\) 3.37930 26.2421i 0.164113 1.27443i
\(425\) −2.57184 14.5856i −0.124753 0.707507i
\(426\) 0 0
\(427\) 5.54707 + 15.2404i 0.268442 + 0.737537i
\(428\) −4.01080 2.79713i −0.193869 0.135204i
\(429\) 0 0
\(430\) 2.85415 + 5.47017i 0.137640 + 0.263795i
\(431\) 28.2506 1.36079 0.680393 0.732848i \(-0.261809\pi\)
0.680393 + 0.732848i \(0.261809\pi\)
\(432\) 0 0
\(433\) −27.8524 −1.33850 −0.669251 0.743036i \(-0.733385\pi\)
−0.669251 + 0.743036i \(0.733385\pi\)
\(434\) −4.92938 9.44748i −0.236618 0.453494i
\(435\) 0 0
\(436\) −26.6612 18.5935i −1.27684 0.890467i
\(437\) 0.925505 + 2.54280i 0.0442729 + 0.121639i
\(438\) 0 0
\(439\) −2.13242 12.0935i −0.101775 0.577193i −0.992460 0.122572i \(-0.960886\pi\)
0.890685 0.454621i \(-0.150225\pi\)
\(440\) −5.45445 0.702390i −0.260031 0.0334851i
\(441\) 0 0
\(442\) 14.8061 16.1887i 0.704254 0.770016i
\(443\) −7.22670 + 19.8552i −0.343351 + 0.943348i 0.641064 + 0.767487i \(0.278493\pi\)
−0.984415 + 0.175861i \(0.943729\pi\)
\(444\) 0 0
\(445\) 12.4303 14.8138i 0.589252 0.702243i
\(446\) −4.39681 + 3.38039i −0.208195 + 0.160066i
\(447\) 0 0
\(448\) −2.22815 + 27.2434i −0.105270 + 1.28713i
\(449\) −13.8708 + 24.0249i −0.654604 + 1.13381i 0.327389 + 0.944890i \(0.393831\pi\)
−0.981993 + 0.188917i \(0.939502\pi\)
\(450\) 0 0
\(451\) 3.31561 1.91427i 0.156126 0.0901393i
\(452\) −6.25612 + 23.5256i −0.294263 + 1.10655i
\(453\) 0 0
\(454\) −16.5901 + 2.20005i −0.778611 + 0.103254i
\(455\) −13.4014 + 76.0030i −0.628266 + 3.56307i
\(456\) 0 0
\(457\) −26.0906 + 21.8926i −1.22047 + 1.02409i −0.221668 + 0.975122i \(0.571150\pi\)
−0.998800 + 0.0489720i \(0.984405\pi\)
\(458\) 14.6352 + 3.23006i 0.683858 + 0.150931i
\(459\) 0 0
\(460\) −18.8452 + 40.6137i −0.878664 + 1.89362i
\(461\) −8.93591 10.6494i −0.416187 0.495992i 0.516698 0.856168i \(-0.327161\pi\)
−0.932884 + 0.360176i \(0.882717\pi\)
\(462\) 0 0
\(463\) 3.22751 18.3041i 0.149995 0.850665i −0.813224 0.581950i \(-0.802290\pi\)
0.963220 0.268715i \(-0.0865991\pi\)
\(464\) −6.94395 + 12.1328i −0.322365 + 0.563251i
\(465\) 0 0
\(466\) 1.59662 + 0.0682007i 0.0739621 + 0.00315934i
\(467\) −8.34116 + 4.81577i −0.385983 + 0.222847i −0.680418 0.732824i \(-0.738202\pi\)
0.294435 + 0.955671i \(0.404868\pi\)
\(468\) 0 0
\(469\) 44.5181 + 25.7026i 2.05566 + 1.18683i
\(470\) 12.6881 + 8.06641i 0.585260 + 0.372076i
\(471\) 0 0
\(472\) 5.44373 + 24.2303i 0.250568 + 1.11529i
\(473\) −0.570541 0.478741i −0.0262335 0.0220125i
\(474\) 0 0
\(475\) −0.891532 + 2.44946i −0.0409063 + 0.112389i
\(476\) 12.9577 9.10955i 0.593914 0.417536i
\(477\) 0 0
\(478\) −7.82598 + 2.47564i −0.357952 + 0.113233i
\(479\) −5.05443 28.6651i −0.230943 1.30974i −0.850992 0.525179i \(-0.823998\pi\)
0.620049 0.784563i \(-0.287113\pi\)
\(480\) 0 0
\(481\) −7.64321 + 2.78190i −0.348500 + 0.126844i
\(482\) 38.5571 + 15.9283i 1.75623 + 0.725513i
\(483\) 0 0
\(484\) −20.5987 + 5.56108i −0.936304 + 0.252777i
\(485\) 37.9074i 1.72129i
\(486\) 0 0
\(487\) −13.1429 −0.595563 −0.297782 0.954634i \(-0.596247\pi\)
−0.297782 + 0.954634i \(0.596247\pi\)
\(488\) −13.4112 + 0.623587i −0.607098 + 0.0282285i
\(489\) 0 0
\(490\) −8.51842 + 20.6203i −0.384823 + 0.931530i
\(491\) 4.01945 + 11.0433i 0.181395 + 0.498379i 0.996748 0.0805856i \(-0.0256791\pi\)
−0.815352 + 0.578965i \(0.803457\pi\)
\(492\) 0 0
\(493\) 7.97752 1.40665i 0.359289 0.0633524i
\(494\) −3.68134 + 1.16454i −0.165631 + 0.0523953i
\(495\) 0 0
\(496\) 8.68131 1.56456i 0.389802 0.0702507i
\(497\) 25.1930 + 9.16949i 1.13006 + 0.411308i
\(498\) 0 0
\(499\) −23.2598 + 27.7199i −1.04125 + 1.24091i −0.0713387 + 0.997452i \(0.522727\pi\)
−0.969911 + 0.243461i \(0.921717\pi\)
\(500\) −8.49427 + 3.98048i −0.379875 + 0.178012i
\(501\) 0 0
\(502\) −7.17608 4.56215i −0.320284 0.203619i
\(503\) −1.18773 + 2.05720i −0.0529581 + 0.0917261i −0.891289 0.453435i \(-0.850198\pi\)
0.838331 + 0.545161i \(0.183532\pi\)
\(504\) 0 0
\(505\) 20.9748 + 36.3294i 0.933366 + 1.61664i
\(506\) 0.230650 5.39966i 0.0102536 0.240044i
\(507\) 0 0
\(508\) 19.1038 + 1.63504i 0.847594 + 0.0725434i
\(509\) 40.5051 + 7.14215i 1.79536 + 0.316570i 0.969090 0.246706i \(-0.0793482\pi\)
0.826269 + 0.563276i \(0.190459\pi\)
\(510\) 0 0
\(511\) −3.35977 + 2.81918i −0.148627 + 0.124713i
\(512\) −20.9778 8.48130i −0.927096 0.374824i
\(513\) 0 0
\(514\) 7.91515 35.8631i 0.349123 1.58185i
\(515\) 34.2906 + 40.8660i 1.51103 + 1.80077i
\(516\) 0 0
\(517\) −1.78734 0.315155i −0.0786069 0.0138605i
\(518\) −5.82153 + 0.772007i −0.255783 + 0.0339201i
\(519\) 0 0
\(520\) −56.7507 29.3387i −2.48868 1.28659i
\(521\) 5.21530 + 9.03316i 0.228486 + 0.395750i 0.957360 0.288899i \(-0.0932890\pi\)
−0.728873 + 0.684649i \(0.759956\pi\)
\(522\) 0 0
\(523\) 14.6626 + 8.46543i 0.641149 + 0.370167i 0.785057 0.619424i \(-0.212634\pi\)
−0.143908 + 0.989591i \(0.545967\pi\)
\(524\) −0.582615 + 0.584818i −0.0254516 + 0.0255479i
\(525\) 0 0
\(526\) −15.5966 + 11.9911i −0.680046 + 0.522838i
\(527\) −3.91569 3.28565i −0.170570 0.143125i
\(528\) 0 0
\(529\) −19.7338 7.18252i −0.857992 0.312283i
\(530\) 32.9461 + 30.1324i 1.43109 + 1.30887i
\(531\) 0 0
\(532\) −2.77665 + 0.248206i −0.120383 + 0.0107611i
\(533\) 43.7992 7.72298i 1.89715 0.334519i
\(534\) 0 0
\(535\) 7.75366 2.82210i 0.335220 0.122010i
\(536\) −31.2920 + 28.8372i −1.35161 + 1.24558i
\(537\) 0 0
\(538\) −4.88238 + 2.54746i −0.210494 + 0.109829i
\(539\) 2.69313i 0.116001i
\(540\) 0 0
\(541\) 29.4745i 1.26721i −0.773658 0.633603i \(-0.781575\pi\)
0.773658 0.633603i \(-0.218425\pi\)
\(542\) 17.7290 + 33.9788i 0.761526 + 1.45951i
\(543\) 0 0
\(544\) 4.00175 + 12.4862i 0.171574 + 0.535343i
\(545\) 51.5414 18.7595i 2.20779 0.803570i
\(546\) 0 0
\(547\) 31.4846 5.55158i 1.34618 0.237369i 0.546333 0.837568i \(-0.316023\pi\)
0.799850 + 0.600199i \(0.204912\pi\)
\(548\) −2.80636 31.3944i −0.119882 1.34110i
\(549\) 0 0
\(550\) 3.51363 3.84173i 0.149822 0.163812i
\(551\) −1.33972 0.487617i −0.0570739 0.0207732i
\(552\) 0 0
\(553\) 13.1233 + 11.0117i 0.558059 + 0.468267i
\(554\) 6.17437 + 8.03090i 0.262324 + 0.341200i
\(555\) 0 0
\(556\) 3.11664 3.12842i 0.132175 0.132675i
\(557\) 7.19468 + 4.15385i 0.304849 + 0.176004i 0.644619 0.764504i \(-0.277016\pi\)
−0.339770 + 0.940508i \(0.610349\pi\)
\(558\) 0 0
\(559\) −4.32598 7.49282i −0.182970 0.316913i
\(560\) −35.4455 29.5151i −1.49785 1.24724i
\(561\) 0 0
\(562\) 0.144209 + 1.08744i 0.00608307 + 0.0458710i
\(563\) −6.57453 1.15927i −0.277083 0.0488573i 0.0333796 0.999443i \(-0.489373\pi\)
−0.310463 + 0.950585i \(0.600484\pi\)
\(564\) 0 0
\(565\) −26.4043 31.4674i −1.11084 1.32384i
\(566\) −2.11126 0.465966i −0.0887430 0.0195860i
\(567\) 0 0
\(568\) −13.4604 + 17.6452i −0.564787 + 0.740375i
\(569\) 24.2709 20.3657i 1.01749 0.853775i 0.0281798 0.999603i \(-0.491029\pi\)
0.989310 + 0.145827i \(0.0465844\pi\)
\(570\) 0 0
\(571\) 32.6020 + 5.74861i 1.36435 + 0.240572i 0.807416 0.589983i \(-0.200866\pi\)
0.556936 + 0.830555i \(0.311977\pi\)
\(572\) 7.68363 + 0.657622i 0.321269 + 0.0274966i
\(573\) 0 0
\(574\) 32.0813 + 1.37037i 1.33905 + 0.0571982i
\(575\) −21.1926 36.7066i −0.883791 1.53077i
\(576\) 0 0
\(577\) 15.0611 26.0866i 0.627001 1.08600i −0.361149 0.932508i \(-0.617615\pi\)
0.988150 0.153490i \(-0.0490512\pi\)
\(578\) −8.82214 + 13.8769i −0.366953 + 0.577202i
\(579\) 0 0
\(580\) −10.0096 21.3603i −0.415627 0.886940i
\(581\) −22.7953 + 27.1663i −0.945707 + 1.12705i
\(582\) 0 0
\(583\) −5.06443 1.84330i −0.209747 0.0763418i
\(584\) −1.39887 3.35031i −0.0578855 0.138637i
\(585\) 0 0
\(586\) −6.78347 21.4438i −0.280222 0.885837i
\(587\) 15.0318 2.65051i 0.620427 0.109398i 0.145406 0.989372i \(-0.453551\pi\)
0.475022 + 0.879974i \(0.342440\pi\)
\(588\) 0 0
\(589\) 0.307693 + 0.845379i 0.0126783 + 0.0348332i
\(590\) −38.7314 16.0003i −1.59455 0.658721i
\(591\) 0 0
\(592\) 0.826072 4.79055i 0.0339513 0.196890i
\(593\) −27.1813 −1.11620 −0.558101 0.829773i \(-0.688470\pi\)
−0.558101 + 0.829773i \(0.688470\pi\)
\(594\) 0 0
\(595\) 26.7279i 1.09574i
\(596\) −3.56863 13.2185i −0.146177 0.541450i
\(597\) 0 0
\(598\) 23.9714 58.0269i 0.980264 2.37290i
\(599\) 39.7660 14.4737i 1.62480 0.591378i 0.640509 0.767951i \(-0.278723\pi\)
0.984288 + 0.176573i \(0.0565012\pi\)
\(600\) 0 0
\(601\) −0.648834 3.67972i −0.0264665 0.150099i 0.968711 0.248193i \(-0.0798366\pi\)
−0.995177 + 0.0980937i \(0.968726\pi\)
\(602\) −1.88403 5.95577i −0.0767872 0.242739i
\(603\) 0 0
\(604\) −19.3033 + 13.5707i −0.785440 + 0.552183i
\(605\) 12.3139 33.8321i 0.500631 1.37547i
\(606\) 0 0
\(607\) 35.5497 + 29.8298i 1.44292 + 1.21075i 0.937550 + 0.347850i \(0.113088\pi\)
0.505370 + 0.862903i \(0.331356\pi\)
\(608\) 0.488837 2.25530i 0.0198250 0.0914647i
\(609\) 0 0
\(610\) 12.1545 19.1186i 0.492122 0.774088i
\(611\) −18.2586 10.5416i −0.738664 0.426468i
\(612\) 0 0
\(613\) 21.9670 12.6827i 0.887239 0.512248i 0.0142005 0.999899i \(-0.495480\pi\)
0.873038 + 0.487652i \(0.162146\pi\)
\(614\) 0.0258261 0.604606i 0.00104226 0.0243999i
\(615\) 0 0
\(616\) 5.31483 + 1.65923i 0.214141 + 0.0668524i
\(617\) −1.23909 + 7.02722i −0.0498838 + 0.282905i −0.999538 0.0303950i \(-0.990323\pi\)
0.949654 + 0.313300i \(0.101435\pi\)
\(618\) 0 0
\(619\) 17.2889 + 20.6041i 0.694900 + 0.828149i 0.991939 0.126716i \(-0.0404437\pi\)
−0.297039 + 0.954865i \(0.595999\pi\)
\(620\) −6.26528 + 13.5024i −0.251620 + 0.542269i
\(621\) 0 0
\(622\) 3.36672 15.2544i 0.134993 0.611646i
\(623\) −14.9979 + 12.5847i −0.600877 + 0.504196i
\(624\) 0 0
\(625\) −2.79914 + 15.8747i −0.111966 + 0.634989i
\(626\) −5.16761 38.9677i −0.206539 1.55746i
\(627\) 0 0
\(628\) 23.2934 + 6.19435i 0.929507 + 0.247182i
\(629\) −2.43953 + 1.40846i −0.0972705 + 0.0561592i
\(630\) 0 0
\(631\) −11.7466 + 20.3457i −0.467624 + 0.809949i −0.999316 0.0369893i \(-0.988223\pi\)
0.531691 + 0.846938i \(0.321557\pi\)
\(632\) −11.9387 + 7.65340i −0.474897 + 0.304436i
\(633\) 0 0
\(634\) −3.02880 3.93951i −0.120289 0.156458i
\(635\) −20.7970 + 24.7848i −0.825302 + 0.983557i
\(636\) 0 0
\(637\) 10.7002 29.3985i 0.423956 1.16481i
\(638\) 2.10121 + 1.92176i 0.0831876 + 0.0760831i
\(639\) 0 0
\(640\) 32.0665 20.7276i 1.26754 0.819331i
\(641\) 7.57282 + 42.9476i 0.299108 + 1.69633i 0.650019 + 0.759918i \(0.274761\pi\)
−0.350911 + 0.936409i \(0.614128\pi\)
\(642\) 0 0
\(643\) 0.120739 + 0.331727i 0.00476148 + 0.0130820i 0.942051 0.335471i \(-0.108895\pi\)
−0.937289 + 0.348553i \(0.886673\pi\)
\(644\) 25.9296 37.1804i 1.02177 1.46511i
\(645\) 0 0
\(646\) −1.18554 + 0.618578i −0.0466446 + 0.0243376i
\(647\) 26.0967 1.02597 0.512984 0.858398i \(-0.328540\pi\)
0.512984 + 0.858398i \(0.328540\pi\)
\(648\) 0 0
\(649\) 5.05855 0.198565
\(650\) 53.6189 27.9766i 2.10311 1.09733i
\(651\) 0 0
\(652\) −21.9777 15.3272i −0.860711 0.600259i
\(653\) 0.281991 + 0.774764i 0.0110352 + 0.0303189i 0.945088 0.326816i \(-0.105976\pi\)
−0.934053 + 0.357135i \(0.883754\pi\)
\(654\) 0 0
\(655\) −0.241889 1.37182i −0.00945137 0.0536014i
\(656\) −8.99693 + 25.0122i −0.351271 + 0.976562i
\(657\) 0 0
\(658\) −11.2325 10.2732i −0.437887 0.400490i
\(659\) 14.2971 39.2809i 0.556935 1.53017i −0.267123 0.963662i \(-0.586073\pi\)
0.824058 0.566505i \(-0.191705\pi\)
\(660\) 0 0
\(661\) −1.06741 + 1.27208i −0.0415173 + 0.0494784i −0.786404 0.617713i \(-0.788059\pi\)
0.744886 + 0.667192i \(0.232504\pi\)
\(662\) −15.0139 19.5283i −0.583530 0.758988i
\(663\) 0 0
\(664\) −15.8432 24.7142i −0.614835 0.959096i
\(665\) 2.35205 4.07387i 0.0912086 0.157978i
\(666\) 0 0
\(667\) 20.0764 11.5911i 0.777362 0.448810i
\(668\) −3.48137 + 13.0914i −0.134698 + 0.506522i
\(669\) 0 0
\(670\) −9.43970 71.1826i −0.364688 2.75002i
\(671\) −0.474878 + 2.69317i −0.0183325 + 0.103969i
\(672\) 0 0
\(673\) −4.23311 + 3.55200i −0.163175 + 0.136920i −0.720719 0.693227i \(-0.756188\pi\)
0.557544 + 0.830147i \(0.311744\pi\)
\(674\) 0.867456 3.93039i 0.0334132 0.151393i
\(675\) 0 0
\(676\) 57.6779 + 26.7632i 2.21838 + 1.02936i
\(677\) −2.08429 2.48396i −0.0801056 0.0954662i 0.724503 0.689272i \(-0.242069\pi\)
−0.804609 + 0.593805i \(0.797625\pi\)
\(678\) 0 0
\(679\) −6.66432 + 37.7952i −0.255753 + 1.45045i
\(680\) −21.1201 6.59347i −0.809919 0.252848i
\(681\) 0 0
\(682\) 0.0766817 1.79517i 0.00293629 0.0687405i
\(683\) −22.4547 + 12.9642i −0.859206 + 0.496063i −0.863746 0.503927i \(-0.831888\pi\)
0.00454025 + 0.999990i \(0.498555\pi\)
\(684\) 0 0
\(685\) 46.0615 + 26.5936i 1.75992 + 1.01609i
\(686\) −6.02864 + 9.48281i −0.230175 + 0.362055i
\(687\) 0 0
\(688\) 5.17094 0.0195167i 0.197140 0.000744069i
\(689\) −47.9602 40.2434i −1.82714 1.53315i
\(690\) 0 0
\(691\) −10.2247 + 28.0920i −0.388964 + 1.06867i 0.578504 + 0.815679i \(0.303637\pi\)
−0.967469 + 0.252991i \(0.918586\pi\)
\(692\) 1.93866 + 2.75761i 0.0736970 + 0.104829i
\(693\) 0 0
\(694\) 11.1682 + 35.3049i 0.423941 + 1.34016i
\(695\) 1.29396 + 7.33841i 0.0490827 + 0.278362i
\(696\) 0 0
\(697\) 14.4739 5.26808i 0.548240 0.199543i
\(698\) −2.75500 + 6.66895i −0.104278 + 0.252423i
\(699\) 0 0
\(700\) 42.1559 11.3810i 1.59334 0.430160i
\(701\) 24.6223i 0.929973i 0.885318 + 0.464987i \(0.153941\pi\)
−0.885318 + 0.464987i \(0.846059\pi\)
\(702\) 0 0
\(703\) 0.495778 0.0186986
\(704\) −2.62221 + 3.79040i −0.0988284 + 0.142856i
\(705\) 0 0
\(706\) 19.4551 + 8.03705i 0.732201 + 0.302479i
\(707\) −14.5258 39.9094i −0.546300 1.50095i
\(708\) 0 0
\(709\) −26.4148 + 4.65765i −0.992030 + 0.174922i −0.646029 0.763313i \(-0.723572\pi\)
−0.346001 + 0.938234i \(0.612460\pi\)
\(710\) −11.2950 35.7056i −0.423894 1.34001i
\(711\) 0 0
\(712\) −6.24449 14.9556i −0.234022 0.560487i
\(713\) −13.7461 5.00317i −0.514796 0.187370i
\(714\) 0 0
\(715\) −8.36463 + 9.96858i −0.312819 + 0.372804i
\(716\) −21.5789 + 10.1120i −0.806443 + 0.377905i
\(717\) 0 0
\(718\) −11.7501 + 18.4825i −0.438512 + 0.689761i
\(719\) −9.26666 + 16.0503i −0.345588 + 0.598576i −0.985460 0.169905i \(-0.945654\pi\)
0.639872 + 0.768481i \(0.278987\pi\)
\(720\) 0 0
\(721\) −27.0047 46.7736i −1.00571 1.74194i
\(722\) −26.6104 1.13668i −0.990338 0.0423029i
\(723\) 0 0
\(724\) 2.81672 32.9105i 0.104683 1.22311i
\(725\) 21.9920 + 3.87779i 0.816764 + 0.144017i
\(726\) 0 0
\(727\) 4.82234 4.04643i 0.178851 0.150074i −0.548967 0.835844i \(-0.684979\pi\)
0.727818 + 0.685770i \(0.240534\pi\)
\(728\) 51.4249 + 39.2290i 1.90593 + 1.45392i
\(729\) 0 0
\(730\) 5.98247 + 1.32036i 0.221421 + 0.0488687i
\(731\) −1.92605 2.29538i −0.0712377 0.0848978i
\(732\) 0 0
\(733\) −22.4113 3.95172i −0.827781 0.145960i −0.256323 0.966591i \(-0.582511\pi\)
−0.571458 + 0.820631i \(0.693622\pi\)
\(734\) 4.76304 + 35.9170i 0.175807 + 1.32572i
\(735\) 0 0
\(736\) 22.9830 + 29.6612i 0.847165 + 1.09333i
\(737\) 4.33388 + 7.50649i 0.159640 + 0.276505i
\(738\) 0 0
\(739\) −37.2940 21.5317i −1.37188 0.792056i −0.380717 0.924692i \(-0.624323\pi\)
−0.991165 + 0.132636i \(0.957656\pi\)
\(740\) 5.81137 + 5.78948i 0.213630 + 0.212825i
\(741\) 0 0
\(742\) −27.5512 35.8354i −1.01144 1.31556i
\(743\) 27.0616 + 22.7074i 0.992794 + 0.833053i 0.985970 0.166924i \(-0.0533834\pi\)
0.00682406 + 0.999977i \(0.497828\pi\)
\(744\) 0 0
\(745\) 21.7106 + 7.90201i 0.795415 + 0.289507i
\(746\) 13.5627 14.8292i 0.496566 0.542934i
\(747\) 0 0
\(748\) 2.66017 0.237794i 0.0972655 0.00869462i
\(749\) −8.22687 + 1.45062i −0.300603 + 0.0530045i
\(750\) 0 0
\(751\) −23.5008 + 8.55359i −0.857557 + 0.312125i −0.733117 0.680102i \(-0.761935\pi\)
−0.124439 + 0.992227i \(0.539713\pi\)
\(752\) 10.8887 6.34149i 0.397069 0.231250i
\(753\) 0 0
\(754\) 15.3016 + 29.3265i 0.557251 + 1.06801i
\(755\) 39.8171i 1.44909i
\(756\) 0 0
\(757\) 31.3025i 1.13771i −0.822439 0.568853i \(-0.807387\pi\)
0.822439 0.568853i \(-0.192613\pi\)
\(758\) −2.42157 + 1.26349i −0.0879553 + 0.0458922i
\(759\) 0 0
\(760\) 2.63890 + 2.86354i 0.0957230 + 0.103872i
\(761\) 2.59308 0.943805i 0.0939992 0.0342129i −0.294592 0.955623i \(-0.595184\pi\)
0.388592 + 0.921410i \(0.372962\pi\)
\(762\) 0 0
\(763\) −54.6869 + 9.64278i −1.97980 + 0.349092i
\(764\) 2.35401 + 26.3340i 0.0851652 + 0.952732i
\(765\) 0 0
\(766\) −13.8126 12.6330i −0.499069 0.456447i
\(767\) 55.2197 + 20.0983i 1.99387 + 0.725708i
\(768\) 0 0
\(769\) 3.61913 + 3.03681i 0.130509 + 0.109510i 0.705706 0.708505i \(-0.250630\pi\)
−0.575197 + 0.818015i \(0.695074\pi\)
\(770\) −7.44841 + 5.72654i −0.268422 + 0.206370i
\(771\) 0 0
\(772\) −0.250762 0.249817i −0.00902511 0.00899111i
\(773\) 17.3435 + 10.0133i 0.623803 + 0.360153i 0.778348 0.627833i \(-0.216058\pi\)
−0.154545 + 0.987986i \(0.549391\pi\)
\(774\) 0 0
\(775\) −7.04567 12.2035i −0.253088 0.438361i
\(776\) −28.2214 14.5897i −1.01309 0.523741i
\(777\) 0 0
\(778\) −33.7152 + 4.47105i −1.20875 + 0.160295i
\(779\) −2.66971 0.470742i −0.0956522 0.0168661i
\(780\) 0 0
\(781\) 2.90577 + 3.46296i 0.103977 + 0.123914i
\(782\) 4.68614 21.2326i 0.167576 0.759276i
\(783\) 0 0
\(784\) 12.0729 + 14.2781i 0.431174 + 0.509932i
\(785\) −31.1567 + 26.1436i −1.11203 + 0.933105i
\(786\) 0 0
\(787\) 41.5062 + 7.31867i 1.47954 + 0.260882i 0.854393 0.519627i \(-0.173929\pi\)
0.625144 + 0.780510i \(0.285040\pi\)
\(788\) 0.165666 1.93564i 0.00590162 0.0689543i
\(789\) 0 0
\(790\) 1.02125 23.9081i 0.0363345 0.850613i
\(791\) 20.7940 + 36.0163i 0.739350 + 1.28059i
\(792\) 0 0
\(793\) −15.8842 + 27.5122i −0.564063 + 0.976986i
\(794\) −39.5278 25.1296i −1.40279 0.891816i
\(795\) 0 0
\(796\) 3.47823 + 7.42249i 0.123283 + 0.263083i
\(797\) 32.1711 38.3400i 1.13956 1.35807i 0.215189 0.976572i \(-0.430963\pi\)
0.924369 0.381500i \(-0.124592\pi\)
\(798\) 0 0
\(799\) −6.86134 2.49732i −0.242737 0.0883489i
\(800\) −1.40628 + 36.1187i −0.0497196 + 1.27699i
\(801\) 0 0
\(802\) −15.1079 + 4.77917i −0.533478 + 0.168758i
\(803\) −0.728294 + 0.128418i −0.0257009 + 0.00453177i
\(804\) 0 0
\(805\) 26.1611 + 71.8771i 0.922059 + 2.53334i
\(806\) 7.96952 19.2916i 0.280714 0.679517i
\(807\) 0 0
\(808\) 35.1193 1.63296i 1.23549 0.0574472i
\(809\) −7.89082 −0.277426 −0.138713 0.990333i \(-0.544297\pi\)
−0.138713 + 0.990333i \(0.544297\pi\)
\(810\) 0 0
\(811\) 16.9433i 0.594960i 0.954728 + 0.297480i \(0.0961461\pi\)
−0.954728 + 0.297480i \(0.903854\pi\)
\(812\) 6.22474 + 23.0569i 0.218445 + 0.809139i
\(813\) 0 0
\(814\) −0.915182 0.378069i −0.0320771 0.0132513i
\(815\) 42.4871 15.4641i 1.48826 0.541682i
\(816\) 0 0
\(817\) 0.0915762 + 0.519355i 0.00320385 + 0.0181699i
\(818\) 15.1418 4.78992i 0.529422 0.167475i
\(819\) 0 0
\(820\) −25.7964 36.6936i −0.900851 1.28140i
\(821\) 16.2209 44.5665i 0.566112 1.55538i −0.244410 0.969672i \(-0.578594\pi\)
0.810522 0.585708i \(-0.199184\pi\)
\(822\) 0 0
\(823\) −3.65996 3.07107i −0.127578 0.107051i 0.576766 0.816909i \(-0.304314\pi\)
−0.704344 + 0.709858i \(0.748759\pi\)
\(824\) 43.6217 9.80032i 1.51963 0.341410i
\(825\) 0 0
\(826\) 35.8039 + 22.7621i 1.24578 + 0.791996i
\(827\) 25.0451 + 14.4598i 0.870903 + 0.502816i 0.867648 0.497179i \(-0.165631\pi\)
0.00325451 + 0.999995i \(0.498964\pi\)
\(828\) 0 0
\(829\) −17.1833 + 9.92077i −0.596800 + 0.344563i −0.767782 0.640711i \(-0.778639\pi\)
0.170982 + 0.985274i \(0.445306\pi\)
\(830\) 49.4919 + 2.11408i 1.71789 + 0.0733807i
\(831\) 0 0
\(832\) −43.6842 + 30.9580i −1.51448 + 1.07328i
\(833\) 1.88146 10.6703i 0.0651888 0.369704i
\(834\) 0 0
\(835\) −14.6933 17.5108i −0.508482 0.605986i
\(836\) −0.426389 0.197850i −0.0147470 0.00684278i
\(837\) 0 0
\(838\) −19.2429 4.24701i −0.664737 0.146711i
\(839\) −26.2638 + 22.0379i −0.906725 + 0.760833i −0.971493 0.237067i \(-0.923814\pi\)
0.0647677 + 0.997900i \(0.479369\pi\)
\(840\) 0 0
\(841\) 2.91487 16.5310i 0.100513 0.570036i
\(842\) −16.6701 + 2.21066i −0.574490 + 0.0761845i
\(843\) 0 0
\(844\) 7.25279 + 1.92872i 0.249651 + 0.0663892i
\(845\) −92.9203 + 53.6476i −3.19656 + 1.84553i
\(846\) 0 0
\(847\) −18.2253 + 31.5672i −0.626230 + 1.08466i
\(848\) 35.1133 12.9305i 1.20579 0.444034i
\(849\) 0 0
\(850\) 16.6051 12.7664i 0.569549 0.437885i
\(851\) −5.18183 + 6.17546i −0.177631 + 0.211692i
\(852\) 0 0
\(853\) 11.5939 31.8539i 0.396967 1.09066i −0.566787 0.823865i \(-0.691814\pi\)
0.963754 0.266793i \(-0.0859641\pi\)
\(854\) −15.4797 + 16.9252i −0.529705 + 0.579167i
\(855\) 0 0
\(856\) 0.883211 6.85863i 0.0301875 0.234423i
\(857\) −0.670084 3.80024i −0.0228896 0.129814i 0.971222 0.238177i \(-0.0765500\pi\)
−0.994111 + 0.108364i \(0.965439\pi\)
\(858\) 0 0
\(859\) −7.37600 20.2654i −0.251666 0.691446i −0.999617 0.0276917i \(-0.991184\pi\)
0.747951 0.663754i \(-0.231038\pi\)
\(860\) −4.99136 + 7.15711i −0.170204 + 0.244056i
\(861\) 0 0
\(862\) 18.4814 + 35.4208i 0.629480 + 1.20644i
\(863\) −30.2497 −1.02971 −0.514857 0.857276i \(-0.672155\pi\)
−0.514857 + 0.857276i \(0.672155\pi\)
\(864\) 0 0
\(865\) −5.68815 −0.193403
\(866\) −18.2209 34.9216i −0.619172 1.18668i
\(867\) 0 0
\(868\) 8.62053 12.3610i 0.292600 0.419559i
\(869\) 0.987962 + 2.71440i 0.0335143 + 0.0920799i
\(870\) 0 0
\(871\) 17.4847 + 99.1608i 0.592447 + 3.35994i
\(872\) 5.87102 45.5917i 0.198818 1.54393i
\(873\) 0 0
\(874\) −2.58272 + 2.82389i −0.0873619 + 0.0955196i
\(875\) −5.48119 + 15.0594i −0.185298 + 0.509102i
\(876\) 0 0
\(877\) −10.0265 + 11.9491i −0.338571 + 0.403493i −0.908286 0.418349i \(-0.862609\pi\)
0.569715 + 0.821842i \(0.307053\pi\)
\(878\) 13.7679 10.5852i 0.464645 0.357232i
\(879\) 0 0
\(880\) −2.68761 7.29832i −0.0905993 0.246026i
\(881\) −18.2832 + 31.6674i −0.615977 + 1.06690i 0.374235 + 0.927334i \(0.377905\pi\)
−0.990212 + 0.139569i \(0.955428\pi\)
\(882\) 0 0
\(883\) 26.1355 15.0893i 0.879529 0.507796i 0.00902592 0.999959i \(-0.497127\pi\)
0.870503 + 0.492163i \(0.163794\pi\)
\(884\) 29.9835 + 7.97344i 1.00845 + 0.268176i
\(885\) 0 0
\(886\) −29.6222 + 3.92828i −0.995178 + 0.131973i
\(887\) 7.16882 40.6564i 0.240705 1.36511i −0.589553 0.807730i \(-0.700696\pi\)
0.830258 0.557379i \(-0.188193\pi\)
\(888\) 0 0
\(889\) 25.0927 21.0553i 0.841584 0.706172i
\(890\) 26.7055 + 5.89404i 0.895171 + 0.197569i
\(891\) 0 0
\(892\) −7.11472 3.30132i −0.238219 0.110536i
\(893\) 0.826041 + 0.984438i 0.0276424 + 0.0329430i
\(894\) 0 0
\(895\) 6.98289 39.6019i 0.233412 1.32375i
\(896\) −35.6156 + 15.0288i −1.18983 + 0.502078i
\(897\) 0 0
\(898\) −39.1968 1.67432i −1.30801 0.0558726i
\(899\) 6.67459 3.85358i 0.222610 0.128524i
\(900\) 0 0
\(901\) −18.7778 10.8414i −0.625578 0.361178i
\(902\) 4.56917 + 2.90483i 0.152137 + 0.0967201i
\(903\) 0 0
\(904\) −33.5893 + 7.54639i −1.11716 + 0.250989i
\(905\) 42.6973 + 35.8273i 1.41931 + 1.19094i
\(906\) 0 0
\(907\) 13.9229 38.2529i 0.462303 1.27017i −0.461446 0.887168i \(-0.652669\pi\)
0.923749 0.382999i \(-0.125109\pi\)
\(908\) −13.6116 19.3615i −0.451716 0.642533i
\(909\) 0 0
\(910\) −104.060 + 32.9180i −3.44956 + 1.09122i
\(911\) −7.42318 42.0989i −0.245941 1.39480i −0.818298 0.574795i \(-0.805082\pi\)
0.572357 0.820005i \(-0.306029\pi\)
\(912\) 0 0
\(913\) −5.61905 + 2.04517i −0.185963 + 0.0676852i
\(914\) −44.5175 18.3905i −1.47251 0.608305i
\(915\) 0 0
\(916\) 5.52440 + 20.4628i 0.182531 + 0.676110i
\(917\) 1.41029i 0.0465717i
\(918\) 0 0
\(919\) −4.00742 −0.132193 −0.0660963 0.997813i \(-0.521054\pi\)
−0.0660963 + 0.997813i \(0.521054\pi\)
\(920\) −63.2501 + 2.94097i −2.08529 + 0.0969608i
\(921\) 0 0
\(922\) 7.50646 18.1707i 0.247212 0.598419i
\(923\) 17.9609 + 49.3471i 0.591189 + 1.62428i
\(924\) 0 0
\(925\) −7.64760 + 1.34848i −0.251452 + 0.0443377i
\(926\) 25.0613 7.92779i 0.823564 0.260523i
\(927\) 0 0
\(928\) −19.7549 0.769156i −0.648485 0.0252488i
\(929\) −46.5451 16.9410i −1.52710 0.555818i −0.564188 0.825646i \(-0.690811\pi\)
−0.962908 + 0.269829i \(0.913033\pi\)
\(930\) 0 0
\(931\) −1.22576 + 1.46080i −0.0401725 + 0.0478758i
\(932\) 0.958991 + 2.04647i 0.0314128 + 0.0670344i
\(933\) 0 0
\(934\) −11.4948 7.30774i −0.376121 0.239117i
\(935\) −2.25339 + 3.90298i −0.0736936 + 0.127641i
\(936\) 0 0
\(937\) 4.84280 + 8.38798i 0.158207 + 0.274023i 0.934222 0.356691i \(-0.116095\pi\)
−0.776015 + 0.630715i \(0.782762\pi\)
\(938\) −3.10250 + 72.6316i −0.101300 + 2.37150i
\(939\) 0 0
\(940\) −1.81321 + 21.1854i −0.0591403 + 0.690993i
\(941\) 5.10500 + 0.900150i 0.166418 + 0.0293440i 0.256236 0.966614i \(-0.417517\pi\)
−0.0898181 + 0.995958i \(0.528629\pi\)
\(942\) 0 0
\(943\) 33.7672 28.3340i 1.09961 0.922682i
\(944\) −26.8188 + 22.6767i −0.872877 + 0.738063i
\(945\) 0 0
\(946\) 0.227003 1.02854i 0.00738051 0.0334406i
\(947\) −19.6357 23.4009i −0.638075 0.760428i 0.345990 0.938238i \(-0.387543\pi\)
−0.984065 + 0.177811i \(0.943099\pi\)
\(948\) 0 0
\(949\) −8.46036 1.49179i −0.274635 0.0484256i
\(950\) −3.65439 + 0.484618i −0.118564 + 0.0157231i
\(951\) 0 0
\(952\) 19.8985 + 10.2870i 0.644913 + 0.333403i
\(953\) −8.71927 15.1022i −0.282445 0.489209i 0.689542 0.724246i \(-0.257812\pi\)
−0.971986 + 0.235037i \(0.924479\pi\)
\(954\) 0 0
\(955\) −38.6370 22.3071i −1.25027 0.721841i
\(956\) −8.22369 8.19271i −0.265973 0.264971i
\(957\) 0 0
\(958\) 32.6339 25.0898i 1.05435 0.810616i
\(959\) −41.2500 34.6128i −1.33203 1.11771i
\(960\) 0 0
\(961\) 24.5605 + 8.93927i 0.792273 + 0.288364i
\(962\) −8.48811 7.76319i −0.273667 0.250295i
\(963\) 0 0
\(964\) 5.25289 + 58.7633i 0.169184 + 1.89264i
\(965\) 0.588217 0.103718i 0.0189354 0.00333882i
\(966\) 0 0
\(967\) −46.2859 + 16.8467i −1.48845 + 0.541752i −0.953042 0.302839i \(-0.902065\pi\)
−0.535411 + 0.844592i \(0.679843\pi\)
\(968\) −20.4481 22.1887i −0.657226 0.713172i
\(969\) 0 0
\(970\) 47.5285 24.7988i 1.52605 0.796242i
\(971\) 13.2201i 0.424253i 0.977242 + 0.212126i \(0.0680388\pi\)
−0.977242 + 0.212126i \(0.931961\pi\)
\(972\) 0 0
\(973\) 7.54418i 0.241855i
\(974\) −8.59804 16.4787i −0.275499 0.528011i
\(975\) 0 0
\(976\) −9.55541 16.4071i −0.305861 0.525179i
\(977\) 22.1311 8.05506i 0.708037 0.257704i 0.0371983 0.999308i \(-0.488157\pi\)
0.670838 + 0.741604i \(0.265934\pi\)
\(978\) 0 0
\(979\) −3.25108 + 0.573253i −0.103905 + 0.0183212i
\(980\) −31.4265 + 2.80924i −1.00388 + 0.0897378i
\(981\) 0 0
\(982\) −11.2167 + 12.2641i −0.357940 + 0.391363i
\(983\) 44.1620 + 16.0737i 1.40855 + 0.512670i 0.930704 0.365773i \(-0.119195\pi\)
0.477846 + 0.878444i \(0.341418\pi\)
\(984\) 0 0
\(985\) 2.51126 + 2.10719i 0.0800153 + 0.0671408i
\(986\) 6.98251 + 9.08203i 0.222369 + 0.289231i
\(987\) 0 0
\(988\) −3.86843 3.85385i −0.123071 0.122607i
\(989\) −7.42628 4.28756i −0.236142 0.136337i
\(990\) 0 0
\(991\) −10.5119 18.2072i −0.333922 0.578370i 0.649355 0.760486i \(-0.275039\pi\)
−0.983277 + 0.182115i \(0.941706\pi\)
\(992\) 7.64092 + 9.86116i 0.242599 + 0.313092i
\(993\) 0 0
\(994\) 4.98434 + 37.5857i 0.158094 + 1.19215i
\(995\) −13.6219 2.40190i −0.431842 0.0761454i
\(996\) 0 0
\(997\) 1.15413 + 1.37543i 0.0365515 + 0.0435604i 0.784011 0.620748i \(-0.213171\pi\)
−0.747459 + 0.664308i \(0.768726\pi\)
\(998\) −49.9718 11.0290i −1.58183 0.349117i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.37.23 204
3.2 odd 2 216.2.t.a.157.12 204
8.5 even 2 inner 648.2.t.a.37.8 204
12.11 even 2 864.2.bf.a.49.22 204
24.5 odd 2 216.2.t.a.157.27 yes 204
24.11 even 2 864.2.bf.a.49.13 204
27.11 odd 18 216.2.t.a.205.27 yes 204
27.16 even 9 inner 648.2.t.a.613.8 204
108.11 even 18 864.2.bf.a.529.13 204
216.11 even 18 864.2.bf.a.529.22 204
216.173 odd 18 216.2.t.a.205.12 yes 204
216.205 even 18 inner 648.2.t.a.613.23 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.12 204 3.2 odd 2
216.2.t.a.157.27 yes 204 24.5 odd 2
216.2.t.a.205.12 yes 204 216.173 odd 18
216.2.t.a.205.27 yes 204 27.11 odd 18
648.2.t.a.37.8 204 8.5 even 2 inner
648.2.t.a.37.23 204 1.1 even 1 trivial
648.2.t.a.613.8 204 27.16 even 9 inner
648.2.t.a.613.23 204 216.205 even 18 inner
864.2.bf.a.49.13 204 24.11 even 2
864.2.bf.a.49.22 204 12.11 even 2
864.2.bf.a.529.13 204 108.11 even 18
864.2.bf.a.529.22 204 216.11 even 18