Properties

Label 648.2.t.a.37.18
Level $648$
Weight $2$
Character 648.37
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 37.18
Character \(\chi\) \(=\) 648.37
Dual form 648.2.t.a.613.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.301188 + 1.38177i) q^{2} +(-1.81857 + 0.832346i) q^{4} +(1.34230 + 3.68793i) q^{5} +(-0.499959 - 2.83541i) q^{7} +(-1.69784 - 2.26215i) q^{8} +(-4.69159 + 2.96551i) q^{10} +(-0.996019 + 2.73654i) q^{11} +(-2.55767 + 3.04812i) q^{13} +(3.76729 - 1.54482i) q^{14} +(2.61440 - 3.02736i) q^{16} +(-2.48745 + 4.30839i) q^{17} +(1.78004 - 1.02771i) q^{19} +(-5.51070 - 5.58951i) q^{20} +(-4.08125 - 0.552054i) q^{22} +(-0.165146 + 0.936587i) q^{23} +(-7.96887 + 6.68667i) q^{25} +(-4.98214 - 2.61606i) q^{26} +(3.26925 + 4.74025i) q^{28} +(-5.18495 - 6.17919i) q^{29} +(0.331534 - 1.88022i) q^{31} +(4.97054 + 2.70069i) q^{32} +(-6.70240 - 2.13945i) q^{34} +(9.78570 - 5.64977i) q^{35} +(8.31066 + 4.79816i) q^{37} +(1.95618 + 2.15007i) q^{38} +(6.06366 - 9.29801i) q^{40} +(-0.581151 - 0.487644i) q^{41} +(-2.14125 + 5.88303i) q^{43} +(-0.466416 - 5.80562i) q^{44} +(-1.34389 + 0.0538962i) q^{46} +(-0.932102 - 5.28621i) q^{47} +(-1.21172 + 0.441031i) q^{49} +(-11.6396 - 8.99718i) q^{50} +(2.11423 - 7.67209i) q^{52} -3.54207i q^{53} -11.4291 q^{55} +(-5.56527 + 5.94505i) q^{56} +(6.97656 - 9.02551i) q^{58} +(2.13303 + 5.86045i) q^{59} +(-3.22446 + 0.568559i) q^{61} +(2.69789 - 0.108198i) q^{62} +(-2.23467 + 7.68155i) q^{64} +(-14.6744 - 5.34105i) q^{65} +(4.40861 - 5.25398i) q^{67} +(0.937536 - 9.90554i) q^{68} +(10.7540 + 11.8199i) q^{70} +(-3.83709 + 6.64603i) q^{71} +(3.46824 + 6.00718i) q^{73} +(-4.12688 + 12.9286i) q^{74} +(-2.38172 + 3.35057i) q^{76} +(8.25717 + 1.45596i) q^{77} +(0.205269 - 0.172241i) q^{79} +(14.6740 + 5.57812i) q^{80} +(0.498775 - 0.949889i) q^{82} +(7.91149 + 9.42855i) q^{83} +(-19.2280 - 3.39041i) q^{85} +(-8.77391 - 1.18681i) q^{86} +(7.88155 - 2.39307i) q^{88} +(4.11349 + 7.12477i) q^{89} +(9.92138 + 5.72811i) q^{91} +(-0.479235 - 1.84071i) q^{92} +(7.02358 - 2.88009i) q^{94} +(6.17946 + 5.18518i) q^{95} +(5.06123 + 1.84214i) q^{97} +(-0.974360 - 1.54149i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.301188 + 1.38177i 0.212972 + 0.977058i
\(3\) 0 0
\(4\) −1.81857 + 0.832346i −0.909286 + 0.416173i
\(5\) 1.34230 + 3.68793i 0.600294 + 1.64929i 0.750679 + 0.660667i \(0.229726\pi\)
−0.150386 + 0.988627i \(0.548052\pi\)
\(6\) 0 0
\(7\) −0.499959 2.83541i −0.188967 1.07168i −0.920752 0.390148i \(-0.872424\pi\)
0.731786 0.681535i \(-0.238687\pi\)
\(8\) −1.69784 2.26215i −0.600278 0.799792i
\(9\) 0 0
\(10\) −4.69159 + 2.96551i −1.48361 + 0.937776i
\(11\) −0.996019 + 2.73654i −0.300311 + 0.825098i 0.694135 + 0.719845i \(0.255787\pi\)
−0.994446 + 0.105252i \(0.966435\pi\)
\(12\) 0 0
\(13\) −2.55767 + 3.04812i −0.709371 + 0.845396i −0.993552 0.113375i \(-0.963834\pi\)
0.284181 + 0.958771i \(0.408278\pi\)
\(14\) 3.76729 1.54482i 1.00685 0.412870i
\(15\) 0 0
\(16\) 2.61440 3.02736i 0.653600 0.756840i
\(17\) −2.48745 + 4.30839i −0.603296 + 1.04494i 0.389022 + 0.921228i \(0.372813\pi\)
−0.992318 + 0.123711i \(0.960520\pi\)
\(18\) 0 0
\(19\) 1.78004 1.02771i 0.408369 0.235772i −0.281720 0.959497i \(-0.590905\pi\)
0.690089 + 0.723725i \(0.257571\pi\)
\(20\) −5.51070 5.58951i −1.23223 1.24985i
\(21\) 0 0
\(22\) −4.08125 0.552054i −0.870126 0.117698i
\(23\) −0.165146 + 0.936587i −0.0344352 + 0.195292i −0.997173 0.0751465i \(-0.976058\pi\)
0.962737 + 0.270438i \(0.0871687\pi\)
\(24\) 0 0
\(25\) −7.96887 + 6.68667i −1.59377 + 1.33733i
\(26\) −4.98214 2.61606i −0.977077 0.513051i
\(27\) 0 0
\(28\) 3.26925 + 4.74025i 0.617830 + 0.895823i
\(29\) −5.18495 6.17919i −0.962821 1.14745i −0.989019 0.147789i \(-0.952784\pi\)
0.0261974 0.999657i \(-0.491660\pi\)
\(30\) 0 0
\(31\) 0.331534 1.88022i 0.0595453 0.337698i −0.940452 0.339926i \(-0.889598\pi\)
0.999998 + 0.00222778i \(0.000709125\pi\)
\(32\) 4.97054 + 2.70069i 0.878675 + 0.477420i
\(33\) 0 0
\(34\) −6.70240 2.13945i −1.14945 0.366912i
\(35\) 9.78570 5.64977i 1.65408 0.954986i
\(36\) 0 0
\(37\) 8.31066 + 4.79816i 1.36626 + 0.788813i 0.990449 0.137881i \(-0.0440293\pi\)
0.375816 + 0.926694i \(0.377363\pi\)
\(38\) 1.95618 + 2.15007i 0.317334 + 0.348788i
\(39\) 0 0
\(40\) 6.06366 9.29801i 0.958748 1.47014i
\(41\) −0.581151 0.487644i −0.0907605 0.0761571i 0.596278 0.802778i \(-0.296645\pi\)
−0.687039 + 0.726621i \(0.741090\pi\)
\(42\) 0 0
\(43\) −2.14125 + 5.88303i −0.326537 + 0.897154i 0.662444 + 0.749112i \(0.269519\pi\)
−0.988981 + 0.148042i \(0.952703\pi\)
\(44\) −0.466416 5.80562i −0.0703148 0.875231i
\(45\) 0 0
\(46\) −1.34389 + 0.0538962i −0.198145 + 0.00794656i
\(47\) −0.932102 5.28621i −0.135961 0.771073i −0.974186 0.225748i \(-0.927517\pi\)
0.838225 0.545325i \(-0.183594\pi\)
\(48\) 0 0
\(49\) −1.21172 + 0.441031i −0.173103 + 0.0630044i
\(50\) −11.6396 8.99718i −1.64608 1.27239i
\(51\) 0 0
\(52\) 2.11423 7.67209i 0.293190 1.06393i
\(53\) 3.54207i 0.486541i −0.969959 0.243270i \(-0.921780\pi\)
0.969959 0.243270i \(-0.0782202\pi\)
\(54\) 0 0
\(55\) −11.4291 −1.54110
\(56\) −5.56527 + 5.94505i −0.743691 + 0.794441i
\(57\) 0 0
\(58\) 6.97656 9.02551i 0.916067 1.18511i
\(59\) 2.13303 + 5.86045i 0.277697 + 0.762966i 0.997623 + 0.0689146i \(0.0219536\pi\)
−0.719926 + 0.694051i \(0.755824\pi\)
\(60\) 0 0
\(61\) −3.22446 + 0.568559i −0.412849 + 0.0727965i −0.376215 0.926532i \(-0.622775\pi\)
−0.0366341 + 0.999329i \(0.511664\pi\)
\(62\) 2.69789 0.108198i 0.342632 0.0137412i
\(63\) 0 0
\(64\) −2.23467 + 7.68155i −0.279333 + 0.960194i
\(65\) −14.6744 5.34105i −1.82014 0.662476i
\(66\) 0 0
\(67\) 4.40861 5.25398i 0.538598 0.641876i −0.426275 0.904594i \(-0.640174\pi\)
0.964873 + 0.262718i \(0.0846188\pi\)
\(68\) 0.937536 9.90554i 0.113693 1.20122i
\(69\) 0 0
\(70\) 10.7540 + 11.8199i 1.28535 + 1.41275i
\(71\) −3.83709 + 6.64603i −0.455378 + 0.788738i −0.998710 0.0507798i \(-0.983829\pi\)
0.543332 + 0.839518i \(0.317163\pi\)
\(72\) 0 0
\(73\) 3.46824 + 6.00718i 0.405927 + 0.703087i 0.994429 0.105409i \(-0.0336153\pi\)
−0.588502 + 0.808496i \(0.700282\pi\)
\(74\) −4.12688 + 12.9286i −0.479740 + 1.50292i
\(75\) 0 0
\(76\) −2.38172 + 3.35057i −0.273202 + 0.384336i
\(77\) 8.25717 + 1.45596i 0.940992 + 0.165922i
\(78\) 0 0
\(79\) 0.205269 0.172241i 0.0230945 0.0193786i −0.631167 0.775647i \(-0.717424\pi\)
0.654262 + 0.756268i \(0.272979\pi\)
\(80\) 14.6740 + 5.57812i 1.64060 + 0.623653i
\(81\) 0 0
\(82\) 0.498775 0.949889i 0.0550805 0.104898i
\(83\) 7.91149 + 9.42855i 0.868399 + 1.03492i 0.999054 + 0.0434896i \(0.0138475\pi\)
−0.130655 + 0.991428i \(0.541708\pi\)
\(84\) 0 0
\(85\) −19.2280 3.39041i −2.08557 0.367742i
\(86\) −8.77391 1.18681i −0.946115 0.127977i
\(87\) 0 0
\(88\) 7.88155 2.39307i 0.840176 0.255102i
\(89\) 4.11349 + 7.12477i 0.436029 + 0.755224i 0.997379 0.0723541i \(-0.0230512\pi\)
−0.561350 + 0.827578i \(0.689718\pi\)
\(90\) 0 0
\(91\) 9.92138 + 5.72811i 1.04004 + 0.600469i
\(92\) −0.479235 1.84071i −0.0499637 0.191907i
\(93\) 0 0
\(94\) 7.02358 2.88009i 0.724427 0.297059i
\(95\) 6.17946 + 5.18518i 0.633999 + 0.531988i
\(96\) 0 0
\(97\) 5.06123 + 1.84214i 0.513891 + 0.187041i 0.585931 0.810361i \(-0.300729\pi\)
−0.0720406 + 0.997402i \(0.522951\pi\)
\(98\) −0.974360 1.54149i −0.0984252 0.155714i
\(99\) 0 0
\(100\) 8.92633 18.7930i 0.892633 1.87930i
\(101\) 3.98336 0.702375i 0.396360 0.0698889i 0.0280840 0.999606i \(-0.491059\pi\)
0.368276 + 0.929717i \(0.379948\pi\)
\(102\) 0 0
\(103\) 1.07241 0.390325i 0.105668 0.0384599i −0.288645 0.957436i \(-0.593205\pi\)
0.394313 + 0.918976i \(0.370983\pi\)
\(104\) 11.2378 + 0.610627i 1.10196 + 0.0598769i
\(105\) 0 0
\(106\) 4.89432 1.06683i 0.475379 0.103620i
\(107\) 4.87553i 0.471335i 0.971834 + 0.235667i \(0.0757276\pi\)
−0.971834 + 0.235667i \(0.924272\pi\)
\(108\) 0 0
\(109\) 2.52010i 0.241382i −0.992690 0.120691i \(-0.961489\pi\)
0.992690 0.120691i \(-0.0385111\pi\)
\(110\) −3.44232 15.7924i −0.328212 1.50575i
\(111\) 0 0
\(112\) −9.89089 5.89934i −0.934601 0.557435i
\(113\) 6.79620 2.47361i 0.639332 0.232698i −0.00195583 0.999998i \(-0.500623\pi\)
0.641288 + 0.767300i \(0.278400\pi\)
\(114\) 0 0
\(115\) −3.67575 + 0.648133i −0.342765 + 0.0604387i
\(116\) 14.5724 + 6.92162i 1.35302 + 0.642656i
\(117\) 0 0
\(118\) −7.45535 + 4.71245i −0.686320 + 0.433817i
\(119\) 13.4597 + 4.89892i 1.23385 + 0.449083i
\(120\) 0 0
\(121\) 1.92989 + 1.61937i 0.175445 + 0.147216i
\(122\) −1.75679 4.28421i −0.159052 0.387874i
\(123\) 0 0
\(124\) 0.962077 + 3.69527i 0.0863971 + 0.331845i
\(125\) −18.3625 10.6016i −1.64239 0.948236i
\(126\) 0 0
\(127\) −2.38507 4.13106i −0.211641 0.366573i 0.740587 0.671960i \(-0.234547\pi\)
−0.952228 + 0.305387i \(0.901214\pi\)
\(128\) −11.2872 0.774196i −0.997656 0.0684299i
\(129\) 0 0
\(130\) 2.96033 21.8853i 0.259638 1.91947i
\(131\) 3.45051 + 0.608417i 0.301472 + 0.0531577i 0.322338 0.946625i \(-0.395531\pi\)
−0.0208660 + 0.999782i \(0.506642\pi\)
\(132\) 0 0
\(133\) −3.80391 4.53333i −0.329841 0.393089i
\(134\) 8.58761 + 4.50925i 0.741857 + 0.389540i
\(135\) 0 0
\(136\) 13.9695 1.68798i 1.19788 0.144743i
\(137\) 12.6574 10.6208i 1.08140 0.907400i 0.0853611 0.996350i \(-0.472796\pi\)
0.996036 + 0.0889501i \(0.0283512\pi\)
\(138\) 0 0
\(139\) 19.5648 + 3.44981i 1.65947 + 0.292609i 0.923268 0.384157i \(-0.125508\pi\)
0.736199 + 0.676765i \(0.236619\pi\)
\(140\) −13.0934 + 18.4196i −1.10660 + 1.55674i
\(141\) 0 0
\(142\) −10.3390 3.30026i −0.867626 0.276952i
\(143\) −5.79380 10.0352i −0.484502 0.839182i
\(144\) 0 0
\(145\) 15.8287 27.4161i 1.31450 2.27678i
\(146\) −7.25593 + 6.60160i −0.600505 + 0.546353i
\(147\) 0 0
\(148\) −19.1073 1.80846i −1.57061 0.148654i
\(149\) −7.39950 + 8.81838i −0.606190 + 0.722429i −0.978630 0.205627i \(-0.934077\pi\)
0.372440 + 0.928056i \(0.378521\pi\)
\(150\) 0 0
\(151\) −3.42462 1.24646i −0.278692 0.101436i 0.198893 0.980021i \(-0.436265\pi\)
−0.477585 + 0.878586i \(0.658488\pi\)
\(152\) −5.34706 2.28184i −0.433704 0.185082i
\(153\) 0 0
\(154\) 0.475161 + 11.8480i 0.0382896 + 0.954741i
\(155\) 7.37916 1.30114i 0.592708 0.104510i
\(156\) 0 0
\(157\) 5.00630 + 13.7547i 0.399546 + 1.09774i 0.962506 + 0.271259i \(0.0874402\pi\)
−0.562960 + 0.826484i \(0.690338\pi\)
\(158\) 0.299821 + 0.231757i 0.0238525 + 0.0184376i
\(159\) 0 0
\(160\) −3.28803 + 21.9562i −0.259942 + 1.73579i
\(161\) 2.73817 0.215798
\(162\) 0 0
\(163\) 5.93891i 0.465171i 0.972576 + 0.232586i \(0.0747186\pi\)
−0.972576 + 0.232586i \(0.925281\pi\)
\(164\) 1.46275 + 0.403096i 0.114222 + 0.0314765i
\(165\) 0 0
\(166\) −10.6452 + 13.7716i −0.826230 + 1.06889i
\(167\) 18.7096 6.80974i 1.44779 0.526953i 0.505818 0.862640i \(-0.331191\pi\)
0.941974 + 0.335687i \(0.108968\pi\)
\(168\) 0 0
\(169\) −0.491897 2.78968i −0.0378382 0.214591i
\(170\) −1.10648 27.5898i −0.0848631 2.11604i
\(171\) 0 0
\(172\) −1.00270 12.4810i −0.0764555 0.951665i
\(173\) −3.76876 + 10.3546i −0.286534 + 0.787245i 0.710011 + 0.704190i \(0.248690\pi\)
−0.996545 + 0.0830547i \(0.973532\pi\)
\(174\) 0 0
\(175\) 22.9435 + 19.2519i 1.73437 + 1.45531i
\(176\) 5.68050 + 10.1697i 0.428183 + 0.766571i
\(177\) 0 0
\(178\) −8.60585 + 7.82979i −0.645036 + 0.586868i
\(179\) −3.66363 2.11520i −0.273832 0.158097i 0.356796 0.934182i \(-0.383869\pi\)
−0.630628 + 0.776085i \(0.717203\pi\)
\(180\) 0 0
\(181\) −16.4676 + 9.50759i −1.22403 + 0.706694i −0.965775 0.259383i \(-0.916481\pi\)
−0.258255 + 0.966077i \(0.583147\pi\)
\(182\) −4.92672 + 15.4343i −0.365193 + 1.14407i
\(183\) 0 0
\(184\) 2.39909 1.21659i 0.176864 0.0896884i
\(185\) −6.53992 + 37.0897i −0.480825 + 2.72689i
\(186\) 0 0
\(187\) −9.31254 11.0983i −0.681000 0.811585i
\(188\) 6.09505 + 8.83752i 0.444527 + 0.644542i
\(189\) 0 0
\(190\) −5.30354 + 10.1003i −0.384759 + 0.732753i
\(191\) −6.22796 + 5.22588i −0.450639 + 0.378131i −0.839673 0.543092i \(-0.817253\pi\)
0.389034 + 0.921224i \(0.372809\pi\)
\(192\) 0 0
\(193\) −2.29037 + 12.9893i −0.164864 + 0.934993i 0.784340 + 0.620332i \(0.213002\pi\)
−0.949204 + 0.314661i \(0.898109\pi\)
\(194\) −1.02102 + 7.54829i −0.0733053 + 0.541936i
\(195\) 0 0
\(196\) 1.83651 1.81062i 0.131180 0.129330i
\(197\) 5.35211 3.09004i 0.381322 0.220156i −0.297071 0.954855i \(-0.596010\pi\)
0.678393 + 0.734699i \(0.262677\pi\)
\(198\) 0 0
\(199\) 4.43708 7.68525i 0.314537 0.544793i −0.664802 0.747019i \(-0.731484\pi\)
0.979339 + 0.202226i \(0.0648176\pi\)
\(200\) 28.6561 + 6.67388i 2.02630 + 0.471914i
\(201\) 0 0
\(202\) 2.17026 + 5.29254i 0.152699 + 0.372382i
\(203\) −14.9282 + 17.7908i −1.04776 + 1.24867i
\(204\) 0 0
\(205\) 1.01832 2.79781i 0.0711225 0.195407i
\(206\) 0.862336 + 1.36426i 0.0600818 + 0.0950526i
\(207\) 0 0
\(208\) 2.54096 + 15.7120i 0.176184 + 1.08943i
\(209\) 1.03941 + 5.89477i 0.0718972 + 0.407750i
\(210\) 0 0
\(211\) −6.04444 16.6070i −0.416116 1.14327i −0.953884 0.300177i \(-0.902954\pi\)
0.537767 0.843093i \(-0.319268\pi\)
\(212\) 2.94823 + 6.44151i 0.202485 + 0.442405i
\(213\) 0 0
\(214\) −6.73685 + 1.46845i −0.460522 + 0.100381i
\(215\) −24.5704 −1.67569
\(216\) 0 0
\(217\) −5.49695 −0.373157
\(218\) 3.48220 0.759026i 0.235844 0.0514077i
\(219\) 0 0
\(220\) 20.7847 9.51299i 1.40130 0.641365i
\(221\) −6.77040 18.6015i −0.455426 1.25127i
\(222\) 0 0
\(223\) −4.05080 22.9732i −0.271262 1.53840i −0.750592 0.660767i \(-0.770231\pi\)
0.479330 0.877635i \(-0.340880\pi\)
\(224\) 5.17250 15.4437i 0.345602 1.03188i
\(225\) 0 0
\(226\) 5.46490 + 8.64575i 0.363520 + 0.575107i
\(227\) 8.48739 23.3189i 0.563328 1.54773i −0.251398 0.967884i \(-0.580890\pi\)
0.814726 0.579846i \(-0.196887\pi\)
\(228\) 0 0
\(229\) 3.58229 4.26921i 0.236724 0.282117i −0.634583 0.772855i \(-0.718828\pi\)
0.871307 + 0.490738i \(0.163273\pi\)
\(230\) −2.00266 4.88382i −0.132052 0.322030i
\(231\) 0 0
\(232\) −5.17503 + 22.2204i −0.339757 + 1.45884i
\(233\) 3.32571 5.76031i 0.217875 0.377370i −0.736283 0.676673i \(-0.763421\pi\)
0.954158 + 0.299303i \(0.0967542\pi\)
\(234\) 0 0
\(235\) 18.2440 10.5332i 1.19011 0.687110i
\(236\) −8.75699 8.88223i −0.570031 0.578184i
\(237\) 0 0
\(238\) −2.71528 + 20.0737i −0.176005 + 1.30118i
\(239\) 4.54329 25.7663i 0.293881 1.66668i −0.377836 0.925872i \(-0.623332\pi\)
0.671717 0.740808i \(-0.265557\pi\)
\(240\) 0 0
\(241\) −19.2391 + 16.1435i −1.23930 + 1.03989i −0.241718 + 0.970347i \(0.577711\pi\)
−0.997579 + 0.0695464i \(0.977845\pi\)
\(242\) −1.65634 + 3.15440i −0.106473 + 0.202773i
\(243\) 0 0
\(244\) 5.39067 3.71783i 0.345102 0.238010i
\(245\) −3.25299 3.87676i −0.207826 0.247677i
\(246\) 0 0
\(247\) −1.42019 + 8.05431i −0.0903647 + 0.512484i
\(248\) −4.81624 + 2.44234i −0.305832 + 0.155089i
\(249\) 0 0
\(250\) 9.11839 28.5658i 0.576697 1.80666i
\(251\) −25.2441 + 14.5747i −1.59339 + 0.919945i −0.600672 + 0.799495i \(0.705100\pi\)
−0.992719 + 0.120450i \(0.961566\pi\)
\(252\) 0 0
\(253\) −2.39852 1.38479i −0.150794 0.0870608i
\(254\) 4.98982 4.53985i 0.313089 0.284855i
\(255\) 0 0
\(256\) −2.32981 15.8295i −0.145613 0.989342i
\(257\) 5.42626 + 4.55318i 0.338481 + 0.284019i 0.796145 0.605106i \(-0.206869\pi\)
−0.457664 + 0.889125i \(0.651314\pi\)
\(258\) 0 0
\(259\) 9.44975 25.9630i 0.587179 1.61326i
\(260\) 31.1321 2.50111i 1.93073 0.155112i
\(261\) 0 0
\(262\) 0.198560 + 4.95105i 0.0122671 + 0.305877i
\(263\) −1.99223 11.2985i −0.122846 0.696695i −0.982564 0.185926i \(-0.940472\pi\)
0.859718 0.510770i \(-0.170639\pi\)
\(264\) 0 0
\(265\) 13.0629 4.75451i 0.802449 0.292067i
\(266\) 5.11832 6.62151i 0.313824 0.405991i
\(267\) 0 0
\(268\) −3.64425 + 13.2242i −0.222608 + 0.807798i
\(269\) 15.1820i 0.925661i −0.886447 0.462831i \(-0.846834\pi\)
0.886447 0.462831i \(-0.153166\pi\)
\(270\) 0 0
\(271\) 13.2808 0.806753 0.403376 0.915034i \(-0.367837\pi\)
0.403376 + 0.915034i \(0.367837\pi\)
\(272\) 6.53986 + 18.7943i 0.396537 + 1.13957i
\(273\) 0 0
\(274\) 18.4878 + 14.2908i 1.11689 + 0.863337i
\(275\) −10.3612 28.4672i −0.624804 1.71664i
\(276\) 0 0
\(277\) 2.53413 0.446836i 0.152261 0.0268478i −0.0969979 0.995285i \(-0.530924\pi\)
0.249259 + 0.968437i \(0.419813\pi\)
\(278\) 1.12586 + 28.0731i 0.0675248 + 1.68371i
\(279\) 0 0
\(280\) −29.3952 12.5443i −1.75670 0.749666i
\(281\) −25.4277 9.25491i −1.51689 0.552102i −0.556518 0.830835i \(-0.687863\pi\)
−0.960368 + 0.278734i \(0.910085\pi\)
\(282\) 0 0
\(283\) −17.1845 + 20.4797i −1.02151 + 1.21739i −0.0456626 + 0.998957i \(0.514540\pi\)
−0.975851 + 0.218436i \(0.929905\pi\)
\(284\) 1.44622 15.2801i 0.0858174 0.906705i
\(285\) 0 0
\(286\) 12.1212 11.0282i 0.716744 0.652109i
\(287\) −1.09212 + 1.89160i −0.0644656 + 0.111658i
\(288\) 0 0
\(289\) −3.87484 6.71142i −0.227932 0.394789i
\(290\) 42.6501 + 13.6142i 2.50450 + 0.799452i
\(291\) 0 0
\(292\) −11.3073 8.03770i −0.661709 0.470371i
\(293\) 17.3330 + 3.05628i 1.01261 + 0.178550i 0.655245 0.755416i \(-0.272565\pi\)
0.357361 + 0.933966i \(0.383677\pi\)
\(294\) 0 0
\(295\) −18.7498 + 15.7329i −1.09166 + 0.916007i
\(296\) −3.25602 26.9465i −0.189252 1.56623i
\(297\) 0 0
\(298\) −14.4136 7.56840i −0.834957 0.438426i
\(299\) −2.43244 2.89887i −0.140672 0.167646i
\(300\) 0 0
\(301\) 17.7513 + 3.13004i 1.02317 + 0.180412i
\(302\) 0.690864 5.10746i 0.0397547 0.293901i
\(303\) 0 0
\(304\) 1.54250 8.07566i 0.0884686 0.463171i
\(305\) −6.42499 11.1284i −0.367894 0.637211i
\(306\) 0 0
\(307\) −10.1962 5.88676i −0.581926 0.335975i 0.179972 0.983672i \(-0.442399\pi\)
−0.761898 + 0.647696i \(0.775732\pi\)
\(308\) −16.2281 + 4.22505i −0.924683 + 0.240745i
\(309\) 0 0
\(310\) 4.02040 + 9.80440i 0.228343 + 0.556852i
\(311\) −26.0496 21.8582i −1.47714 1.23947i −0.909175 0.416414i \(-0.863287\pi\)
−0.567965 0.823053i \(-0.692269\pi\)
\(312\) 0 0
\(313\) 6.64081 + 2.41706i 0.375361 + 0.136620i 0.522809 0.852450i \(-0.324884\pi\)
−0.147449 + 0.989070i \(0.547106\pi\)
\(314\) −17.4980 + 11.0603i −0.987467 + 0.624169i
\(315\) 0 0
\(316\) −0.229932 + 0.484086i −0.0129347 + 0.0272320i
\(317\) −5.34112 + 0.941783i −0.299987 + 0.0528958i −0.321616 0.946870i \(-0.604226\pi\)
0.0216287 + 0.999766i \(0.493115\pi\)
\(318\) 0 0
\(319\) 22.0739 8.03424i 1.23590 0.449831i
\(320\) −31.3286 + 2.06964i −1.75132 + 0.115696i
\(321\) 0 0
\(322\) 0.824706 + 3.78352i 0.0459590 + 0.210847i
\(323\) 10.2255i 0.568961i
\(324\) 0 0
\(325\) 41.3924i 2.29604i
\(326\) −8.20620 + 1.78873i −0.454499 + 0.0990686i
\(327\) 0 0
\(328\) −0.116421 + 2.14259i −0.00642830 + 0.118305i
\(329\) −14.5225 + 5.28577i −0.800654 + 0.291414i
\(330\) 0 0
\(331\) 5.34260 0.942044i 0.293656 0.0517794i −0.0248795 0.999690i \(-0.507920\pi\)
0.318535 + 0.947911i \(0.396809\pi\)
\(332\) −22.2354 10.5614i −1.22033 0.579632i
\(333\) 0 0
\(334\) 15.0446 + 23.8013i 0.823204 + 1.30235i
\(335\) 25.2940 + 9.20627i 1.38196 + 0.502992i
\(336\) 0 0
\(337\) −22.3325 18.7392i −1.21653 1.02079i −0.998999 0.0447328i \(-0.985756\pi\)
−0.217528 0.976054i \(-0.569799\pi\)
\(338\) 3.70654 1.51991i 0.201609 0.0826721i
\(339\) 0 0
\(340\) 37.7894 9.83862i 2.04942 0.533574i
\(341\) 4.81509 + 2.77999i 0.260752 + 0.150545i
\(342\) 0 0
\(343\) −8.22070 14.2387i −0.443876 0.768816i
\(344\) 16.9438 5.14463i 0.913550 0.277380i
\(345\) 0 0
\(346\) −15.4428 2.08888i −0.830208 0.112299i
\(347\) 17.1238 + 3.01939i 0.919255 + 0.162089i 0.613203 0.789925i \(-0.289881\pi\)
0.306052 + 0.952015i \(0.400992\pi\)
\(348\) 0 0
\(349\) 3.38478 + 4.03383i 0.181183 + 0.215926i 0.848990 0.528409i \(-0.177211\pi\)
−0.667807 + 0.744335i \(0.732767\pi\)
\(350\) −19.6914 + 37.5011i −1.05255 + 2.00452i
\(351\) 0 0
\(352\) −12.3413 + 10.9121i −0.657794 + 0.581619i
\(353\) 7.22029 6.05854i 0.384297 0.322463i −0.430090 0.902786i \(-0.641518\pi\)
0.814387 + 0.580323i \(0.197074\pi\)
\(354\) 0 0
\(355\) −29.6606 5.22997i −1.57422 0.277578i
\(356\) −13.4109 9.53306i −0.710779 0.505251i
\(357\) 0 0
\(358\) 1.81927 5.69936i 0.0961515 0.301221i
\(359\) 8.12377 + 14.0708i 0.428756 + 0.742628i 0.996763 0.0803962i \(-0.0256186\pi\)
−0.568007 + 0.823024i \(0.692285\pi\)
\(360\) 0 0
\(361\) −7.38764 + 12.7958i −0.388823 + 0.673461i
\(362\) −18.0972 19.8909i −0.951165 1.04544i
\(363\) 0 0
\(364\) −22.8105 2.15896i −1.19560 0.113160i
\(365\) −17.4986 + 20.8541i −0.915921 + 1.09155i
\(366\) 0 0
\(367\) 12.0315 + 4.37912i 0.628042 + 0.228588i 0.636379 0.771377i \(-0.280432\pi\)
−0.00833711 + 0.999965i \(0.502654\pi\)
\(368\) 2.40363 + 2.94857i 0.125298 + 0.153705i
\(369\) 0 0
\(370\) −53.2192 + 2.13434i −2.76673 + 0.110959i
\(371\) −10.0432 + 1.77089i −0.521417 + 0.0919400i
\(372\) 0 0
\(373\) −2.16442 5.94669i −0.112069 0.307908i 0.870961 0.491353i \(-0.163497\pi\)
−0.983030 + 0.183445i \(0.941275\pi\)
\(374\) 12.5304 16.2104i 0.647931 0.838222i
\(375\) 0 0
\(376\) −10.3757 + 11.0837i −0.535083 + 0.571598i
\(377\) 32.0963 1.65304
\(378\) 0 0
\(379\) 28.5066i 1.46428i 0.681152 + 0.732142i \(0.261479\pi\)
−0.681152 + 0.732142i \(0.738521\pi\)
\(380\) −15.5536 4.28618i −0.797885 0.219876i
\(381\) 0 0
\(382\) −9.09675 7.03163i −0.465430 0.359769i
\(383\) 29.5410 10.7521i 1.50948 0.549405i 0.550983 0.834517i \(-0.314253\pi\)
0.958494 + 0.285112i \(0.0920308\pi\)
\(384\) 0 0
\(385\) 5.71409 + 32.4062i 0.291217 + 1.65157i
\(386\) −18.6381 + 0.747475i −0.948654 + 0.0380455i
\(387\) 0 0
\(388\) −10.7375 + 0.862636i −0.545115 + 0.0437937i
\(389\) −1.34416 + 3.69306i −0.0681518 + 0.187246i −0.969093 0.246696i \(-0.920655\pi\)
0.900941 + 0.433941i \(0.142877\pi\)
\(390\) 0 0
\(391\) −3.62440 3.04123i −0.183294 0.153802i
\(392\) 3.05499 + 1.99230i 0.154300 + 0.100626i
\(393\) 0 0
\(394\) 5.88171 + 6.46469i 0.296316 + 0.325686i
\(395\) 0.910744 + 0.525818i 0.0458245 + 0.0264568i
\(396\) 0 0
\(397\) 17.9961 10.3901i 0.903200 0.521463i 0.0249629 0.999688i \(-0.492053\pi\)
0.878237 + 0.478226i \(0.158720\pi\)
\(398\) 11.9556 + 3.81631i 0.599282 + 0.191295i
\(399\) 0 0
\(400\) −0.590854 + 41.6063i −0.0295427 + 2.08031i
\(401\) 4.02373 22.8197i 0.200935 1.13956i −0.702774 0.711413i \(-0.748055\pi\)
0.903709 0.428147i \(-0.140834\pi\)
\(402\) 0 0
\(403\) 4.88319 + 5.81955i 0.243249 + 0.289893i
\(404\) −6.65941 + 4.59285i −0.331318 + 0.228503i
\(405\) 0 0
\(406\) −29.0790 15.2690i −1.44316 0.757788i
\(407\) −21.4079 + 17.9634i −1.06115 + 0.890412i
\(408\) 0 0
\(409\) 5.07096 28.7589i 0.250743 1.42203i −0.556025 0.831165i \(-0.687674\pi\)
0.806768 0.590868i \(-0.201215\pi\)
\(410\) 4.17263 + 0.564414i 0.206072 + 0.0278744i
\(411\) 0 0
\(412\) −1.62537 + 1.60245i −0.0800761 + 0.0789470i
\(413\) 15.5503 8.97799i 0.765182 0.441778i
\(414\) 0 0
\(415\) −24.1523 + 41.8330i −1.18559 + 2.05350i
\(416\) −20.9451 + 8.24329i −1.02692 + 0.404161i
\(417\) 0 0
\(418\) −7.83215 + 3.21165i −0.383083 + 0.157087i
\(419\) −8.33906 + 9.93810i −0.407390 + 0.485508i −0.930258 0.366905i \(-0.880417\pi\)
0.522869 + 0.852413i \(0.324862\pi\)
\(420\) 0 0
\(421\) −1.49536 + 4.10848i −0.0728795 + 0.200235i −0.970784 0.239956i \(-0.922867\pi\)
0.897904 + 0.440191i \(0.145089\pi\)
\(422\) 21.1265 13.3538i 1.02842 0.650055i
\(423\) 0 0
\(424\) −8.01270 + 6.01388i −0.389131 + 0.292060i
\(425\) −8.98665 50.9658i −0.435916 2.47220i
\(426\) 0 0
\(427\) 3.22419 + 8.85839i 0.156030 + 0.428688i
\(428\) −4.05812 8.86649i −0.196157 0.428578i
\(429\) 0 0
\(430\) −7.40033 33.9507i −0.356876 1.63725i
\(431\) −1.15854 −0.0558051 −0.0279025 0.999611i \(-0.508883\pi\)
−0.0279025 + 0.999611i \(0.508883\pi\)
\(432\) 0 0
\(433\) 37.7498 1.81414 0.907069 0.420982i \(-0.138314\pi\)
0.907069 + 0.420982i \(0.138314\pi\)
\(434\) −1.65562 7.59552i −0.0794722 0.364596i
\(435\) 0 0
\(436\) 2.09760 + 4.58299i 0.100457 + 0.219485i
\(437\) 0.668571 + 1.83688i 0.0319821 + 0.0878701i
\(438\) 0 0
\(439\) −4.69964 26.6530i −0.224301 1.27208i −0.864016 0.503464i \(-0.832059\pi\)
0.639715 0.768612i \(-0.279052\pi\)
\(440\) 19.4049 + 25.8544i 0.925090 + 1.23256i
\(441\) 0 0
\(442\) 23.6638 14.9577i 1.12557 0.711465i
\(443\) 10.3614 28.4677i 0.492285 1.35254i −0.406299 0.913740i \(-0.633181\pi\)
0.898584 0.438802i \(-0.144597\pi\)
\(444\) 0 0
\(445\) −20.7542 + 24.7338i −0.983841 + 1.17250i
\(446\) 30.5236 12.5165i 1.44534 0.592675i
\(447\) 0 0
\(448\) 22.8976 + 2.49573i 1.08181 + 0.117912i
\(449\) 1.70434 2.95201i 0.0804330 0.139314i −0.823003 0.568037i \(-0.807703\pi\)
0.903436 + 0.428723i \(0.141036\pi\)
\(450\) 0 0
\(451\) 1.91329 1.10464i 0.0900934 0.0520155i
\(452\) −10.3005 + 10.1552i −0.484493 + 0.477662i
\(453\) 0 0
\(454\) 34.7776 + 4.70422i 1.63220 + 0.220780i
\(455\) −7.80745 + 44.2782i −0.366019 + 2.07580i
\(456\) 0 0
\(457\) 7.27754 6.10658i 0.340429 0.285654i −0.456504 0.889721i \(-0.650899\pi\)
0.796933 + 0.604068i \(0.206454\pi\)
\(458\) 6.97800 + 3.66406i 0.326060 + 0.171210i
\(459\) 0 0
\(460\) 6.14514 4.23817i 0.286518 0.197606i
\(461\) 19.8885 + 23.7021i 0.926298 + 1.10392i 0.994341 + 0.106236i \(0.0338799\pi\)
−0.0680433 + 0.997682i \(0.521676\pi\)
\(462\) 0 0
\(463\) −4.27095 + 24.2217i −0.198488 + 1.12568i 0.708876 + 0.705333i \(0.249203\pi\)
−0.907364 + 0.420347i \(0.861908\pi\)
\(464\) −32.2622 0.458157i −1.49773 0.0212694i
\(465\) 0 0
\(466\) 8.96108 + 2.86043i 0.415114 + 0.132507i
\(467\) 0.849394 0.490398i 0.0393052 0.0226929i −0.480219 0.877149i \(-0.659443\pi\)
0.519524 + 0.854456i \(0.326109\pi\)
\(468\) 0 0
\(469\) −17.1013 9.87344i −0.789665 0.455913i
\(470\) 20.0493 + 22.0366i 0.924807 + 1.01647i
\(471\) 0 0
\(472\) 9.63568 14.7754i 0.443518 0.680091i
\(473\) −13.9664 11.7192i −0.642177 0.538851i
\(474\) 0 0
\(475\) −7.31297 + 20.0922i −0.335542 + 0.921894i
\(476\) −28.5550 + 2.29407i −1.30881 + 0.105148i
\(477\) 0 0
\(478\) 36.9714 1.48273i 1.69103 0.0678183i
\(479\) 1.26087 + 7.15074i 0.0576105 + 0.326726i 0.999969 0.00787960i \(-0.00250818\pi\)
−0.942358 + 0.334605i \(0.891397\pi\)
\(480\) 0 0
\(481\) −35.8813 + 13.0597i −1.63605 + 0.595473i
\(482\) −28.1011 21.7217i −1.27997 0.989396i
\(483\) 0 0
\(484\) −4.85753 1.33861i −0.220797 0.0608458i
\(485\) 21.1382i 0.959836i
\(486\) 0 0
\(487\) 0.153837 0.00697103 0.00348552 0.999994i \(-0.498891\pi\)
0.00348552 + 0.999994i \(0.498891\pi\)
\(488\) 6.76079 + 6.32889i 0.306046 + 0.286495i
\(489\) 0 0
\(490\) 4.37702 5.66251i 0.197734 0.255806i
\(491\) −7.10851 19.5305i −0.320802 0.881398i −0.990345 0.138624i \(-0.955732\pi\)
0.669543 0.742774i \(-0.266490\pi\)
\(492\) 0 0
\(493\) 39.5197 6.96839i 1.77988 0.313840i
\(494\) −11.5569 + 0.463488i −0.519971 + 0.0208533i
\(495\) 0 0
\(496\) −4.82535 5.91933i −0.216665 0.265786i
\(497\) 20.7626 + 7.55696i 0.931329 + 0.338976i
\(498\) 0 0
\(499\) 12.0312 14.3382i 0.538588 0.641865i −0.426282 0.904590i \(-0.640177\pi\)
0.964871 + 0.262726i \(0.0846214\pi\)
\(500\) 42.2177 + 3.99581i 1.88803 + 0.178698i
\(501\) 0 0
\(502\) −27.7421 30.4918i −1.23819 1.36091i
\(503\) −15.2553 + 26.4230i −0.680200 + 1.17814i 0.294719 + 0.955584i \(0.404774\pi\)
−0.974919 + 0.222558i \(0.928559\pi\)
\(504\) 0 0
\(505\) 7.93717 + 13.7476i 0.353200 + 0.611760i
\(506\) 1.19105 3.73128i 0.0529485 0.165876i
\(507\) 0 0
\(508\) 7.77589 + 5.52743i 0.344999 + 0.245240i
\(509\) −25.1247 4.43017i −1.11363 0.196364i −0.413590 0.910463i \(-0.635725\pi\)
−0.700044 + 0.714099i \(0.746836\pi\)
\(510\) 0 0
\(511\) 15.2988 12.8372i 0.676779 0.567885i
\(512\) 21.1710 7.98691i 0.935633 0.352975i
\(513\) 0 0
\(514\) −4.65711 + 8.86921i −0.205416 + 0.391204i
\(515\) 2.87899 + 3.43104i 0.126863 + 0.151190i
\(516\) 0 0
\(517\) 15.3943 + 2.71443i 0.677041 + 0.119381i
\(518\) 38.7210 + 5.23763i 1.70130 + 0.230128i
\(519\) 0 0
\(520\) 12.8326 + 42.2640i 0.562745 + 1.85340i
\(521\) 8.58140 + 14.8634i 0.375958 + 0.651178i 0.990470 0.137729i \(-0.0439803\pi\)
−0.614512 + 0.788908i \(0.710647\pi\)
\(522\) 0 0
\(523\) −35.9656 20.7647i −1.57266 0.907978i −0.995841 0.0911099i \(-0.970959\pi\)
−0.576824 0.816869i \(-0.695708\pi\)
\(524\) −6.78140 + 1.76556i −0.296247 + 0.0771290i
\(525\) 0 0
\(526\) 15.0119 6.15578i 0.654549 0.268405i
\(527\) 7.27607 + 6.10535i 0.316950 + 0.265953i
\(528\) 0 0
\(529\) 20.7630 + 7.55712i 0.902739 + 0.328570i
\(530\) 10.5040 + 16.6179i 0.456266 + 0.721837i
\(531\) 0 0
\(532\) 10.6910 + 5.07801i 0.463513 + 0.220160i
\(533\) 2.97279 0.524183i 0.128766 0.0227049i
\(534\) 0 0
\(535\) −17.9806 + 6.54441i −0.777370 + 0.282939i
\(536\) −19.3704 1.05253i −0.836675 0.0454622i
\(537\) 0 0
\(538\) 20.9780 4.57263i 0.904425 0.197140i
\(539\) 3.75520i 0.161748i
\(540\) 0 0
\(541\) 11.2309i 0.482852i −0.970419 0.241426i \(-0.922385\pi\)
0.970419 0.241426i \(-0.0776152\pi\)
\(542\) 4.00003 + 18.3510i 0.171816 + 0.788244i
\(543\) 0 0
\(544\) −23.9996 + 14.6972i −1.02898 + 0.630137i
\(545\) 9.29398 3.38273i 0.398110 0.144900i
\(546\) 0 0
\(547\) −19.8704 + 3.50369i −0.849599 + 0.149807i −0.581462 0.813574i \(-0.697519\pi\)
−0.268137 + 0.963381i \(0.586408\pi\)
\(548\) −14.1782 + 29.8501i −0.605664 + 1.27513i
\(549\) 0 0
\(550\) 36.2144 22.8908i 1.54419 0.976066i
\(551\) −15.5798 5.67059i −0.663722 0.241575i
\(552\) 0 0
\(553\) −0.590998 0.495906i −0.0251318 0.0210881i
\(554\) 1.38068 + 3.36700i 0.0586593 + 0.143050i
\(555\) 0 0
\(556\) −38.4515 + 10.0110i −1.63070 + 0.424560i
\(557\) 26.7781 + 15.4604i 1.13463 + 0.655076i 0.945094 0.326798i \(-0.105970\pi\)
0.189532 + 0.981875i \(0.439303\pi\)
\(558\) 0 0
\(559\) −12.4556 21.5737i −0.526814 0.912469i
\(560\) 8.47984 44.3956i 0.358339 1.87606i
\(561\) 0 0
\(562\) 5.12963 37.9226i 0.216380 1.59967i
\(563\) −20.3052 3.58035i −0.855761 0.150894i −0.271479 0.962444i \(-0.587513\pi\)
−0.584282 + 0.811551i \(0.698624\pi\)
\(564\) 0 0
\(565\) 18.2450 + 21.7436i 0.767575 + 0.914760i
\(566\) −33.4740 17.5768i −1.40702 0.738808i
\(567\) 0 0
\(568\) 21.5491 2.60383i 0.904180 0.109254i
\(569\) 3.82688 3.21114i 0.160431 0.134618i −0.559038 0.829142i \(-0.688829\pi\)
0.719469 + 0.694524i \(0.244385\pi\)
\(570\) 0 0
\(571\) −7.54047 1.32959i −0.315559 0.0556415i 0.0136257 0.999907i \(-0.495663\pi\)
−0.329184 + 0.944266i \(0.606774\pi\)
\(572\) 18.8892 + 13.4272i 0.789796 + 0.561420i
\(573\) 0 0
\(574\) −2.94269 0.939324i −0.122825 0.0392066i
\(575\) −4.94663 8.56781i −0.206289 0.357303i
\(576\) 0 0
\(577\) 6.53703 11.3225i 0.272140 0.471361i −0.697269 0.716809i \(-0.745602\pi\)
0.969410 + 0.245449i \(0.0789352\pi\)
\(578\) 8.10657 7.37553i 0.337189 0.306782i
\(579\) 0 0
\(580\) −5.96592 + 63.0330i −0.247722 + 2.61730i
\(581\) 22.7783 27.1462i 0.945005 1.12621i
\(582\) 0 0
\(583\) 9.69302 + 3.52797i 0.401444 + 0.146114i
\(584\) 7.70061 18.0449i 0.318654 0.746705i
\(585\) 0 0
\(586\) 0.997434 + 24.8708i 0.0412036 + 1.02740i
\(587\) 20.2706 3.57425i 0.836657 0.147525i 0.261126 0.965305i \(-0.415906\pi\)
0.575532 + 0.817780i \(0.304795\pi\)
\(588\) 0 0
\(589\) −1.34217 3.68759i −0.0553033 0.151945i
\(590\) −27.3865 21.1693i −1.12748 0.871526i
\(591\) 0 0
\(592\) 36.2532 12.6150i 1.49000 0.518475i
\(593\) −35.4674 −1.45647 −0.728237 0.685326i \(-0.759660\pi\)
−0.728237 + 0.685326i \(0.759660\pi\)
\(594\) 0 0
\(595\) 56.2142i 2.30456i
\(596\) 6.11657 22.1958i 0.250545 0.909175i
\(597\) 0 0
\(598\) 3.27294 4.23418i 0.133841 0.173148i
\(599\) −4.95171 + 1.80227i −0.202321 + 0.0736389i −0.441193 0.897412i \(-0.645445\pi\)
0.238872 + 0.971051i \(0.423222\pi\)
\(600\) 0 0
\(601\) −6.16086 34.9400i −0.251307 1.42523i −0.805378 0.592762i \(-0.798038\pi\)
0.554071 0.832469i \(-0.313074\pi\)
\(602\) 1.02151 + 25.4710i 0.0416334 + 1.03812i
\(603\) 0 0
\(604\) 7.26540 0.583692i 0.295625 0.0237501i
\(605\) −3.38165 + 9.29100i −0.137484 + 0.377733i
\(606\) 0 0
\(607\) −6.68660 5.61072i −0.271401 0.227732i 0.496922 0.867795i \(-0.334464\pi\)
−0.768322 + 0.640063i \(0.778908\pi\)
\(608\) 11.6233 0.300914i 0.471386 0.0122037i
\(609\) 0 0
\(610\) 13.4418 12.2296i 0.544241 0.495162i
\(611\) 18.4970 + 10.6793i 0.748309 + 0.432036i
\(612\) 0 0
\(613\) −28.4795 + 16.4426i −1.15028 + 0.664112i −0.948954 0.315414i \(-0.897857\pi\)
−0.201321 + 0.979525i \(0.564523\pi\)
\(614\) 5.06318 15.8618i 0.204333 0.640129i
\(615\) 0 0
\(616\) −10.7258 21.1510i −0.432153 0.852197i
\(617\) −5.77150 + 32.7318i −0.232352 + 1.31773i 0.615767 + 0.787928i \(0.288846\pi\)
−0.848119 + 0.529805i \(0.822265\pi\)
\(618\) 0 0
\(619\) −22.6481 26.9910i −0.910305 1.08486i −0.996072 0.0885446i \(-0.971778\pi\)
0.0857667 0.996315i \(-0.472666\pi\)
\(620\) −12.3365 + 8.50823i −0.495446 + 0.341699i
\(621\) 0 0
\(622\) 22.3572 42.5780i 0.896442 1.70722i
\(623\) 18.1451 15.2255i 0.726966 0.609997i
\(624\) 0 0
\(625\) 5.41806 30.7273i 0.216722 1.22909i
\(626\) −1.33968 + 9.90405i −0.0535444 + 0.395846i
\(627\) 0 0
\(628\) −20.5530 20.8469i −0.820152 0.831882i
\(629\) −41.3448 + 23.8704i −1.64852 + 0.951775i
\(630\) 0 0
\(631\) −20.3613 + 35.2667i −0.810569 + 1.40395i 0.101898 + 0.994795i \(0.467509\pi\)
−0.912466 + 0.409152i \(0.865825\pi\)
\(632\) −0.738148 0.171911i −0.0293620 0.00683826i
\(633\) 0 0
\(634\) −2.91001 7.09654i −0.115571 0.281840i
\(635\) 12.0336 14.3411i 0.477539 0.569109i
\(636\) 0 0
\(637\) 1.75488 4.82149i 0.0695308 0.191034i
\(638\) 17.7499 + 28.0812i 0.702724 + 1.11175i
\(639\) 0 0
\(640\) −12.2956 42.6656i −0.486026 1.68651i
\(641\) 8.76821 + 49.7270i 0.346323 + 1.96410i 0.246823 + 0.969061i \(0.420613\pi\)
0.0995006 + 0.995038i \(0.468275\pi\)
\(642\) 0 0
\(643\) 15.1261 + 41.5587i 0.596517 + 1.63892i 0.758162 + 0.652067i \(0.226098\pi\)
−0.161645 + 0.986849i \(0.551680\pi\)
\(644\) −4.97956 + 2.27911i −0.196222 + 0.0898093i
\(645\) 0 0
\(646\) −14.1293 + 3.07980i −0.555908 + 0.121173i
\(647\) −2.96214 −0.116454 −0.0582268 0.998303i \(-0.518545\pi\)
−0.0582268 + 0.998303i \(0.518545\pi\)
\(648\) 0 0
\(649\) −18.1619 −0.712917
\(650\) 57.1947 12.4669i 2.24336 0.488992i
\(651\) 0 0
\(652\) −4.94322 10.8003i −0.193592 0.422973i
\(653\) 0.829258 + 2.27837i 0.0324514 + 0.0891594i 0.954860 0.297055i \(-0.0960046\pi\)
−0.922409 + 0.386215i \(0.873782\pi\)
\(654\) 0 0
\(655\) 2.38780 + 13.5419i 0.0932992 + 0.529126i
\(656\) −2.99563 + 0.484457i −0.116960 + 0.0189149i
\(657\) 0 0
\(658\) −11.6777 18.4748i −0.455246 0.720222i
\(659\) −14.7728 + 40.5879i −0.575466 + 1.58108i 0.220272 + 0.975438i \(0.429305\pi\)
−0.795738 + 0.605641i \(0.792917\pi\)
\(660\) 0 0
\(661\) 11.3612 13.5398i 0.441901 0.526637i −0.498415 0.866938i \(-0.666085\pi\)
0.940317 + 0.340301i \(0.110529\pi\)
\(662\) 2.91082 + 7.09850i 0.113132 + 0.275891i
\(663\) 0 0
\(664\) 7.89635 33.9052i 0.306438 1.31578i
\(665\) 11.6126 20.1137i 0.450318 0.779974i
\(666\) 0 0
\(667\) 6.64362 3.83570i 0.257242 0.148519i
\(668\) −28.3567 + 27.9568i −1.09715 + 1.08168i
\(669\) 0 0
\(670\) −5.10267 + 37.7233i −0.197133 + 1.45738i
\(671\) 1.65574 9.39015i 0.0639190 0.362503i
\(672\) 0 0
\(673\) 1.22568 1.02847i 0.0472465 0.0396445i −0.618859 0.785502i \(-0.712405\pi\)
0.666105 + 0.745858i \(0.267960\pi\)
\(674\) 19.1669 36.5023i 0.738282 1.40602i
\(675\) 0 0
\(676\) 3.21653 + 4.66381i 0.123713 + 0.179377i
\(677\) −4.41092 5.25673i −0.169526 0.202033i 0.674592 0.738191i \(-0.264320\pi\)
−0.844118 + 0.536158i \(0.819875\pi\)
\(678\) 0 0
\(679\) 2.69280 15.2717i 0.103340 0.586072i
\(680\) 24.9764 + 49.2530i 0.957803 + 1.88877i
\(681\) 0 0
\(682\) −2.39106 + 7.49065i −0.0915584 + 0.286832i
\(683\) 4.11971 2.37852i 0.157636 0.0910113i −0.419107 0.907937i \(-0.637657\pi\)
0.576743 + 0.816926i \(0.304323\pi\)
\(684\) 0 0
\(685\) 56.1590 + 32.4234i 2.14573 + 1.23884i
\(686\) 17.1986 15.6476i 0.656645 0.597429i
\(687\) 0 0
\(688\) 12.2120 + 21.8629i 0.465577 + 0.833517i
\(689\) 10.7966 + 9.05946i 0.411320 + 0.345138i
\(690\) 0 0
\(691\) −4.35017 + 11.9520i −0.165488 + 0.454675i −0.994523 0.104523i \(-0.966669\pi\)
0.829034 + 0.559198i \(0.188891\pi\)
\(692\) −1.76484 21.9675i −0.0670890 0.835078i
\(693\) 0 0
\(694\) 0.985395 + 24.5706i 0.0374051 + 0.932686i
\(695\) 13.5392 + 76.7844i 0.513570 + 2.91260i
\(696\) 0 0
\(697\) 3.54655 1.29084i 0.134335 0.0488939i
\(698\) −4.55436 + 5.89193i −0.172385 + 0.223013i
\(699\) 0 0
\(700\) −57.7487 15.9140i −2.18270 0.601493i
\(701\) 12.2688i 0.463386i −0.972789 0.231693i \(-0.925573\pi\)
0.972789 0.231693i \(-0.0744265\pi\)
\(702\) 0 0
\(703\) 19.7244 0.743921
\(704\) −18.7951 13.7662i −0.708367 0.518834i
\(705\) 0 0
\(706\) 10.5462 + 8.15200i 0.396910 + 0.306805i
\(707\) −3.98304 10.9433i −0.149797 0.411565i
\(708\) 0 0
\(709\) 25.9792 4.58083i 0.975668 0.172037i 0.336988 0.941509i \(-0.390592\pi\)
0.638680 + 0.769473i \(0.279481\pi\)
\(710\) −1.70683 42.5593i −0.0640561 1.59722i
\(711\) 0 0
\(712\) 9.13326 21.4021i 0.342284 0.802077i
\(713\) 1.70624 + 0.621021i 0.0638993 + 0.0232574i
\(714\) 0 0
\(715\) 29.2320 34.8373i 1.09321 1.30284i
\(716\) 8.42314 + 0.797231i 0.314788 + 0.0297939i
\(717\) 0 0
\(718\) −16.9958 + 15.4631i −0.634277 + 0.577079i
\(719\) 15.9411 27.6108i 0.594502 1.02971i −0.399115 0.916901i \(-0.630683\pi\)
0.993617 0.112807i \(-0.0359841\pi\)
\(720\) 0 0
\(721\) −1.64289 2.84557i −0.0611845 0.105975i
\(722\) −19.9059 6.35407i −0.740819 0.236474i
\(723\) 0 0
\(724\) 22.0340 30.9970i 0.818886 1.15199i
\(725\) 82.6364 + 14.5710i 3.06904 + 0.541154i
\(726\) 0 0
\(727\) 30.8679 25.9013i 1.14483 0.960625i 0.145243 0.989396i \(-0.453604\pi\)
0.999586 + 0.0287706i \(0.00915924\pi\)
\(728\) −3.88708 32.1691i −0.144065 1.19227i
\(729\) 0 0
\(730\) −34.0859 17.8981i −1.26158 0.662438i
\(731\) −20.0202 23.8591i −0.740473 0.882461i
\(732\) 0 0
\(733\) 0.103428 + 0.0182371i 0.00382018 + 0.000673601i 0.175558 0.984469i \(-0.443827\pi\)
−0.171738 + 0.985143i \(0.554938\pi\)
\(734\) −2.42718 + 17.9438i −0.0895887 + 0.662316i
\(735\) 0 0
\(736\) −3.35030 + 4.20934i −0.123494 + 0.155158i
\(737\) 9.98667 + 17.2974i 0.367864 + 0.637158i
\(738\) 0 0
\(739\) −26.3545 15.2158i −0.969466 0.559722i −0.0703928 0.997519i \(-0.522425\pi\)
−0.899074 + 0.437798i \(0.855759\pi\)
\(740\) −18.9782 72.8938i −0.697651 2.67963i
\(741\) 0 0
\(742\) −5.47186 13.3440i −0.200878 0.489875i
\(743\) −12.9183 10.8397i −0.473926 0.397671i 0.374298 0.927308i \(-0.377884\pi\)
−0.848224 + 0.529637i \(0.822328\pi\)
\(744\) 0 0
\(745\) −42.4539 15.4520i −1.55539 0.566116i
\(746\) 7.56506 4.78180i 0.276976 0.175074i
\(747\) 0 0
\(748\) 26.1731 + 12.4317i 0.956983 + 0.454548i
\(749\) 13.8241 2.43756i 0.505122 0.0890666i
\(750\) 0 0
\(751\) 14.6848 5.34482i 0.535855 0.195035i −0.0598958 0.998205i \(-0.519077\pi\)
0.595751 + 0.803169i \(0.296855\pi\)
\(752\) −18.4401 10.9985i −0.672443 0.401073i
\(753\) 0 0
\(754\) 9.66704 + 44.3497i 0.352053 + 1.61512i
\(755\) 14.3029i 0.520536i
\(756\) 0 0
\(757\) 27.3201i 0.992967i 0.868046 + 0.496484i \(0.165376\pi\)
−0.868046 + 0.496484i \(0.834624\pi\)
\(758\) −39.3895 + 8.58585i −1.43069 + 0.311852i
\(759\) 0 0
\(760\) 1.23793 22.7825i 0.0449043 0.826408i
\(761\) 14.1817 5.16172i 0.514086 0.187112i −0.0719327 0.997409i \(-0.522917\pi\)
0.586019 + 0.810297i \(0.300694\pi\)
\(762\) 0 0
\(763\) −7.14552 + 1.25995i −0.258685 + 0.0456132i
\(764\) 6.97625 14.6874i 0.252392 0.531373i
\(765\) 0 0
\(766\) 23.7543 + 37.5805i 0.858277 + 1.35784i
\(767\) −23.3189 8.48740i −0.841998 0.306462i
\(768\) 0 0
\(769\) −11.4199 9.58242i −0.411811 0.345551i 0.413226 0.910628i \(-0.364402\pi\)
−0.825038 + 0.565077i \(0.808846\pi\)
\(770\) −43.0569 + 17.6559i −1.55166 + 0.636276i
\(771\) 0 0
\(772\) −6.64642 25.5284i −0.239210 0.918788i
\(773\) 27.9615 + 16.1436i 1.00571 + 0.580644i 0.909931 0.414759i \(-0.136134\pi\)
0.0957742 + 0.995403i \(0.469467\pi\)
\(774\) 0 0
\(775\) 9.93049 + 17.2001i 0.356714 + 0.617846i
\(776\) −4.42598 14.5769i −0.158883 0.523282i
\(777\) 0 0
\(778\) −5.50780 0.745017i −0.197464 0.0267102i
\(779\) −1.53563 0.270772i −0.0550195 0.00970143i
\(780\) 0 0
\(781\) −14.3653 17.1199i −0.514031 0.612598i
\(782\) 3.11065 5.92406i 0.111237 0.211844i
\(783\) 0 0
\(784\) −1.83277 + 4.82135i −0.0654561 + 0.172191i
\(785\) −44.0064 + 36.9258i −1.57066 + 1.31794i
\(786\) 0 0
\(787\) 39.6718 + 6.99522i 1.41415 + 0.249353i 0.827944 0.560811i \(-0.189510\pi\)
0.586204 + 0.810163i \(0.300622\pi\)
\(788\) −7.16120 + 10.0743i −0.255107 + 0.358881i
\(789\) 0 0
\(790\) −0.452254 + 1.41681i −0.0160905 + 0.0504078i
\(791\) −10.4115 18.0333i −0.370191 0.641189i
\(792\) 0 0
\(793\) 6.51408 11.2827i 0.231322 0.400661i
\(794\) 19.7769 + 21.7371i 0.701856 + 0.771422i
\(795\) 0 0
\(796\) −1.67236 + 17.6694i −0.0592754 + 0.626274i
\(797\) −2.35451 + 2.80599i −0.0834009 + 0.0993934i −0.806131 0.591737i \(-0.798442\pi\)
0.722730 + 0.691130i \(0.242887\pi\)
\(798\) 0 0
\(799\) 25.0936 + 9.13334i 0.887749 + 0.323114i
\(800\) −57.6682 + 11.7149i −2.03888 + 0.414184i
\(801\) 0 0
\(802\) 32.7434 1.31316i 1.15621 0.0463695i
\(803\) −19.8933 + 3.50773i −0.702020 + 0.123785i
\(804\) 0 0
\(805\) 3.67544 + 10.0982i 0.129542 + 0.355915i
\(806\) −6.57052 + 8.50022i −0.231437 + 0.299407i
\(807\) 0 0
\(808\) −8.35200 7.81846i −0.293822 0.275052i
\(809\) 41.2691 1.45094 0.725472 0.688252i \(-0.241622\pi\)
0.725472 + 0.688252i \(0.241622\pi\)
\(810\) 0 0
\(811\) 25.6578i 0.900966i −0.892785 0.450483i \(-0.851252\pi\)
0.892785 0.450483i \(-0.148748\pi\)
\(812\) 12.3400 44.7793i 0.433049 1.57144i
\(813\) 0 0
\(814\) −31.2691 24.1705i −1.09598 0.847174i
\(815\) −21.9023 + 7.97178i −0.767204 + 0.279239i
\(816\) 0 0
\(817\) 2.23452 + 12.6726i 0.0781761 + 0.443359i
\(818\) 41.2654 1.65494i 1.44281 0.0578635i
\(819\) 0 0
\(820\) 0.476858 + 5.93561i 0.0166526 + 0.207280i
\(821\) 8.61194 23.6611i 0.300559 0.825778i −0.693844 0.720125i \(-0.744084\pi\)
0.994403 0.105653i \(-0.0336933\pi\)
\(822\) 0 0
\(823\) 10.3916 + 8.71956i 0.362227 + 0.303945i 0.805678 0.592354i \(-0.201801\pi\)
−0.443450 + 0.896299i \(0.646246\pi\)
\(824\) −2.70376 1.76324i −0.0941898 0.0614255i
\(825\) 0 0
\(826\) 17.0891 + 18.7829i 0.594605 + 0.653541i
\(827\) −9.62668 5.55796i −0.334752 0.193269i 0.323197 0.946332i \(-0.395242\pi\)
−0.657949 + 0.753062i \(0.728576\pi\)
\(828\) 0 0
\(829\) −26.4493 + 15.2705i −0.918621 + 0.530366i −0.883195 0.469006i \(-0.844612\pi\)
−0.0354262 + 0.999372i \(0.511279\pi\)
\(830\) −65.0779 20.7733i −2.25889 0.721050i
\(831\) 0 0
\(832\) −17.6987 26.4584i −0.613593 0.917281i
\(833\) 1.11397 6.31762i 0.0385967 0.218893i
\(834\) 0 0
\(835\) 50.2277 + 59.8590i 1.73820 + 2.07151i
\(836\) −6.79672 9.85491i −0.235069 0.340839i
\(837\) 0 0
\(838\) −16.2438 8.52941i −0.561132 0.294644i
\(839\) 3.67221 3.08135i 0.126779 0.106380i −0.577194 0.816607i \(-0.695852\pi\)
0.703972 + 0.710227i \(0.251408\pi\)
\(840\) 0 0
\(841\) −6.26281 + 35.5181i −0.215959 + 1.22476i
\(842\) −6.12735 0.828821i −0.211162 0.0285631i
\(843\) 0 0
\(844\) 24.8150 + 25.1699i 0.854167 + 0.866383i
\(845\) 9.62790 5.55867i 0.331210 0.191224i
\(846\) 0 0
\(847\) 3.62672 6.28165i 0.124615 0.215840i
\(848\) −10.7231 9.26039i −0.368233 0.318003i
\(849\) 0 0
\(850\) 67.7163 27.7678i 2.32265 0.952427i
\(851\) −5.86637 + 6.99127i −0.201097 + 0.239657i
\(852\) 0 0
\(853\) 7.52367 20.6711i 0.257605 0.707765i −0.741708 0.670723i \(-0.765984\pi\)
0.999314 0.0370424i \(-0.0117937\pi\)
\(854\) −11.2692 + 7.12313i −0.385623 + 0.243749i
\(855\) 0 0
\(856\) 11.0292 8.27787i 0.376970 0.282932i
\(857\) 1.54554 + 8.76520i 0.0527947 + 0.299414i 0.999760 0.0219232i \(-0.00697894\pi\)
−0.946965 + 0.321337i \(0.895868\pi\)
\(858\) 0 0
\(859\) −7.12897 19.5867i −0.243237 0.668289i −0.999895 0.0144780i \(-0.995391\pi\)
0.756658 0.653811i \(-0.226831\pi\)
\(860\) 44.6831 20.4511i 1.52368 0.697377i
\(861\) 0 0
\(862\) −0.348940 1.60084i −0.0118849 0.0545248i
\(863\) 21.4666 0.730731 0.365365 0.930864i \(-0.380944\pi\)
0.365365 + 0.930864i \(0.380944\pi\)
\(864\) 0 0
\(865\) −43.2459 −1.47040
\(866\) 11.3698 + 52.1615i 0.386361 + 1.77252i
\(867\) 0 0
\(868\) 9.99660 4.57536i 0.339307 0.155298i
\(869\) 0.266892 + 0.733280i 0.00905370 + 0.0248748i
\(870\) 0 0
\(871\) 4.73896 + 26.8760i 0.160573 + 0.910657i
\(872\) −5.70086 + 4.27874i −0.193055 + 0.144896i
\(873\) 0 0
\(874\) −2.33678 + 1.47706i −0.0790429 + 0.0499623i
\(875\) −20.8794 + 57.3655i −0.705851 + 1.93931i
\(876\) 0 0
\(877\) 0.176559 0.210415i 0.00596198 0.00710521i −0.763055 0.646333i \(-0.776302\pi\)
0.769017 + 0.639228i \(0.220746\pi\)
\(878\) 35.4128 14.5214i 1.19512 0.490073i
\(879\) 0 0
\(880\) −29.8803 + 34.6001i −1.00727 + 1.16637i
\(881\) 11.9250 20.6547i 0.401763 0.695873i −0.592176 0.805809i \(-0.701731\pi\)
0.993939 + 0.109935i \(0.0350643\pi\)
\(882\) 0 0
\(883\) 4.93626 2.84995i 0.166118 0.0959085i −0.414636 0.909987i \(-0.636091\pi\)
0.580754 + 0.814079i \(0.302758\pi\)
\(884\) 27.7953 + 28.1929i 0.934859 + 0.948229i
\(885\) 0 0
\(886\) 42.4566 + 5.74292i 1.42636 + 0.192937i
\(887\) 2.98032 16.9022i 0.100069 0.567521i −0.893006 0.450044i \(-0.851408\pi\)
0.993076 0.117477i \(-0.0374806\pi\)
\(888\) 0 0
\(889\) −10.5208 + 8.82801i −0.352857 + 0.296082i
\(890\) −40.4274 21.2279i −1.35513 0.711561i
\(891\) 0 0
\(892\) 26.4883 + 38.4068i 0.886895 + 1.28595i
\(893\) −7.09185 8.45174i −0.237320 0.282827i
\(894\) 0 0
\(895\) 2.88302 16.3504i 0.0963689 0.546535i
\(896\) 3.44797 + 32.3908i 0.115188 + 1.08210i
\(897\) 0 0
\(898\) 4.59232 + 1.46590i 0.153248 + 0.0489177i
\(899\) −13.3372 + 7.70026i −0.444822 + 0.256818i
\(900\) 0 0
\(901\) 15.2606 + 8.81073i 0.508405 + 0.293528i
\(902\) 2.10262 + 2.31102i 0.0700096 + 0.0769487i
\(903\) 0 0
\(904\) −17.1346 11.1742i −0.569887 0.371649i
\(905\) −57.1678 47.9695i −1.90032 1.59456i
\(906\) 0 0
\(907\) −14.9621 + 41.1081i −0.496809 + 1.36497i 0.397533 + 0.917588i \(0.369866\pi\)
−0.894342 + 0.447383i \(0.852356\pi\)
\(908\) 3.97447 + 49.4715i 0.131897 + 1.64177i
\(909\) 0 0
\(910\) −63.5338 + 2.54800i −2.10613 + 0.0844655i
\(911\) −0.448255 2.54218i −0.0148514 0.0842262i 0.976481 0.215602i \(-0.0691715\pi\)
−0.991333 + 0.131376i \(0.958060\pi\)
\(912\) 0 0
\(913\) −33.6816 + 12.2591i −1.11470 + 0.405717i
\(914\) 10.6298 + 8.21664i 0.351602 + 0.271782i
\(915\) 0 0
\(916\) −2.96119 + 10.7456i −0.0978405 + 0.355043i
\(917\) 10.0878i 0.333127i
\(918\) 0 0
\(919\) −59.9068 −1.97614 −0.988071 0.153998i \(-0.950785\pi\)
−0.988071 + 0.153998i \(0.950785\pi\)
\(920\) 7.70701 + 7.21467i 0.254093 + 0.237861i
\(921\) 0 0
\(922\) −26.7607 + 34.6201i −0.881317 + 1.14015i
\(923\) −10.4439 28.6943i −0.343764 0.944483i
\(924\) 0 0
\(925\) −98.3103 + 17.3348i −3.23242 + 0.569963i
\(926\) −34.7552 + 1.39385i −1.14213 + 0.0458047i
\(927\) 0 0
\(928\) −9.08392 44.7168i −0.298194 1.46790i
\(929\) 30.1626 + 10.9783i 0.989604 + 0.360186i 0.785567 0.618777i \(-0.212371\pi\)
0.204037 + 0.978963i \(0.434594\pi\)
\(930\) 0 0
\(931\) −1.70366 + 2.03035i −0.0558354 + 0.0665420i
\(932\) −1.25348 + 13.2437i −0.0410592 + 0.433811i
\(933\) 0 0
\(934\) 0.933444 + 1.02596i 0.0305432 + 0.0335706i
\(935\) 28.4294 49.2412i 0.929741 1.61036i
\(936\) 0 0
\(937\) 8.40875 + 14.5644i 0.274702 + 0.475797i 0.970060 0.242866i \(-0.0780875\pi\)
−0.695358 + 0.718663i \(0.744754\pi\)
\(938\) 8.49210 26.6038i 0.277277 0.868645i
\(939\) 0 0
\(940\) −24.4108 + 34.3407i −0.796193 + 1.12007i
\(941\) 20.4427 + 3.60459i 0.666412 + 0.117506i 0.496613 0.867972i \(-0.334577\pi\)
0.169799 + 0.985479i \(0.445688\pi\)
\(942\) 0 0
\(943\) 0.552695 0.463766i 0.0179982 0.0151023i
\(944\) 23.3183 + 8.86412i 0.758946 + 0.288503i
\(945\) 0 0
\(946\) 11.9867 22.8281i 0.389722 0.742205i
\(947\) 11.7887 + 14.0493i 0.383082 + 0.456540i 0.922785 0.385316i \(-0.125908\pi\)
−0.539702 + 0.841856i \(0.681463\pi\)
\(948\) 0 0
\(949\) −27.1812 4.79278i −0.882340 0.155580i
\(950\) −29.9654 4.05329i −0.972205 0.131506i
\(951\) 0 0
\(952\) −11.7703 38.7654i −0.381477 1.25639i
\(953\) −1.73534 3.00570i −0.0562133 0.0973643i 0.836549 0.547892i \(-0.184569\pi\)
−0.892763 + 0.450527i \(0.851236\pi\)
\(954\) 0 0
\(955\) −27.6325 15.9536i −0.894166 0.516247i
\(956\) 13.1841 + 50.6393i 0.426406 + 1.63779i
\(957\) 0 0
\(958\) −9.50091 + 3.89595i −0.306960 + 0.125872i
\(959\) −36.4426 30.5790i −1.17679 0.987447i
\(960\) 0 0
\(961\) 25.7051 + 9.35591i 0.829198 + 0.301803i
\(962\) −28.8526 45.6463i −0.930245 1.47169i
\(963\) 0 0
\(964\) 21.5506 45.3716i 0.694099 1.46132i
\(965\) −50.9782 + 8.98883i −1.64105 + 0.289361i
\(966\) 0 0
\(967\) −29.0536 + 10.5747i −0.934301 + 0.340058i −0.763913 0.645319i \(-0.776724\pi\)
−0.170388 + 0.985377i \(0.554502\pi\)
\(968\) 0.386614 7.11516i 0.0124262 0.228690i
\(969\) 0 0
\(970\) −29.2081 + 6.36658i −0.937816 + 0.204419i
\(971\) 0.278968i 0.00895249i 0.999990 + 0.00447625i \(0.00142484\pi\)
−0.999990 + 0.00447625i \(0.998575\pi\)
\(972\) 0 0
\(973\) 57.1990i 1.83372i
\(974\) 0.0463340 + 0.212568i 0.00148464 + 0.00681110i
\(975\) 0 0
\(976\) −6.70879 + 11.2480i −0.214743 + 0.360041i
\(977\) −20.1241 + 7.32457i −0.643827 + 0.234334i −0.643238 0.765666i \(-0.722409\pi\)
−0.000588326 1.00000i \(0.500187\pi\)
\(978\) 0 0
\(979\) −23.5943 + 4.16032i −0.754078 + 0.132964i
\(980\) 9.14259 + 4.34255i 0.292049 + 0.138718i
\(981\) 0 0
\(982\) 24.8456 15.7047i 0.792855 0.501156i
\(983\) 5.52983 + 2.01269i 0.176374 + 0.0641950i 0.428698 0.903448i \(-0.358973\pi\)
−0.252324 + 0.967643i \(0.581195\pi\)
\(984\) 0 0
\(985\) 18.5800 + 15.5905i 0.592008 + 0.496753i
\(986\) 21.5316 + 52.5083i 0.685705 + 1.67220i
\(987\) 0 0
\(988\) −4.12125 15.8294i −0.131114 0.503601i
\(989\) −5.15636 2.97702i −0.163963 0.0946639i
\(990\) 0 0
\(991\) 17.5543 + 30.4049i 0.557631 + 0.965845i 0.997694 + 0.0678778i \(0.0216228\pi\)
−0.440063 + 0.897967i \(0.645044\pi\)
\(992\) 6.72581 8.45035i 0.213545 0.268299i
\(993\) 0 0
\(994\) −4.18853 + 30.9652i −0.132852 + 0.982155i
\(995\) 34.2986 + 6.04777i 1.08734 + 0.191727i
\(996\) 0 0
\(997\) 16.1819 + 19.2848i 0.512485 + 0.610756i 0.958787 0.284127i \(-0.0917036\pi\)
−0.446302 + 0.894883i \(0.647259\pi\)
\(998\) 23.4357 + 12.3058i 0.741844 + 0.389533i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.37.18 204
3.2 odd 2 216.2.t.a.157.17 204
8.5 even 2 inner 648.2.t.a.37.4 204
12.11 even 2 864.2.bf.a.49.7 204
24.5 odd 2 216.2.t.a.157.31 yes 204
24.11 even 2 864.2.bf.a.49.28 204
27.11 odd 18 216.2.t.a.205.31 yes 204
27.16 even 9 inner 648.2.t.a.613.4 204
108.11 even 18 864.2.bf.a.529.28 204
216.11 even 18 864.2.bf.a.529.7 204
216.173 odd 18 216.2.t.a.205.17 yes 204
216.205 even 18 inner 648.2.t.a.613.18 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.17 204 3.2 odd 2
216.2.t.a.157.31 yes 204 24.5 odd 2
216.2.t.a.205.17 yes 204 216.173 odd 18
216.2.t.a.205.31 yes 204 27.11 odd 18
648.2.t.a.37.4 204 8.5 even 2 inner
648.2.t.a.37.18 204 1.1 even 1 trivial
648.2.t.a.613.4 204 27.16 even 9 inner
648.2.t.a.613.18 204 216.205 even 18 inner
864.2.bf.a.49.7 204 12.11 even 2
864.2.bf.a.49.28 204 24.11 even 2
864.2.bf.a.529.7 204 216.11 even 18
864.2.bf.a.529.28 204 108.11 even 18