Properties

Label 648.2.t.a.37.17
Level $648$
Weight $2$
Character 648.37
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 37.17
Character \(\chi\) \(=\) 648.37
Dual form 648.2.t.a.613.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.000955132 + 1.41421i) q^{2} +(-2.00000 + 0.00270152i) q^{4} +(0.355965 + 0.978005i) q^{5} +(-0.272085 - 1.54307i) q^{7} +(-0.00573079 - 2.82842i) q^{8} +(-1.38277 + 0.504344i) q^{10} +(1.44773 - 3.97760i) q^{11} +(4.33941 - 5.17151i) q^{13} +(2.18198 - 0.386261i) q^{14} +(3.99999 - 0.0108061i) q^{16} +(0.494959 - 0.857294i) q^{17} +(-2.70129 + 1.55959i) q^{19} +(-0.714571 - 1.95505i) q^{20} +(5.62656 + 2.04360i) q^{22} +(-1.17888 + 6.68573i) q^{23} +(3.00044 - 2.51767i) q^{25} +(7.31776 + 6.13191i) q^{26} +(0.548339 + 3.08541i) q^{28} +(-2.84964 - 3.39607i) q^{29} +(-0.409166 + 2.32049i) q^{31} +(0.0191026 + 5.65682i) q^{32} +(1.21287 + 0.699158i) q^{34} +(1.41228 - 0.815381i) q^{35} +(3.19157 + 1.84266i) q^{37} +(-2.20817 - 3.81871i) q^{38} +(2.76417 - 1.01242i) q^{40} +(2.44191 + 2.04900i) q^{41} +(3.71087 - 10.1955i) q^{43} +(-2.88471 + 7.95911i) q^{44} +(-9.45618 - 1.66079i) q^{46} +(0.155220 + 0.880296i) q^{47} +(4.27080 - 1.55445i) q^{49} +(3.56338 + 4.24086i) q^{50} +(-8.66484 + 10.3547i) q^{52} +5.00251i q^{53} +4.40546 q^{55} +(-4.36290 + 0.778415i) q^{56} +(4.80005 - 4.03325i) q^{58} +(-3.85475 - 10.5908i) q^{59} +(5.41575 - 0.954943i) q^{61} +(-3.28206 - 0.576431i) q^{62} +(-7.99993 + 0.0324182i) q^{64} +(6.60244 + 2.40309i) q^{65} +(0.467287 - 0.556891i) q^{67} +(-0.987601 + 1.71592i) q^{68} +(1.15447 + 1.99649i) q^{70} +(2.52073 - 4.36603i) q^{71} +(7.01816 + 12.1558i) q^{73} +(-2.60286 + 4.51532i) q^{74} +(5.39836 - 3.12648i) q^{76} +(-6.53164 - 1.15170i) q^{77} +(-6.78017 + 5.68924i) q^{79} +(1.43442 + 3.90816i) q^{80} +(-2.89539 + 3.45533i) q^{82} +(-4.03223 - 4.80543i) q^{83} +(1.01463 + 0.178906i) q^{85} +(14.4222 + 5.23823i) q^{86} +(-11.2586 - 4.07199i) q^{88} +(-4.02279 - 6.96768i) q^{89} +(-9.16071 - 5.28894i) q^{91} +(2.33969 - 13.3746i) q^{92} +(-1.24478 + 0.220355i) q^{94} +(-2.48685 - 2.08672i) q^{95} +(-10.1365 - 3.68937i) q^{97} +(2.20240 + 6.03834i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.000955132 1.41421i 0.000675380 1.00000i
\(3\) 0 0
\(4\) −2.00000 + 0.00270152i −0.999999 + 0.00135076i
\(5\) 0.355965 + 0.978005i 0.159192 + 0.437377i 0.993488 0.113941i \(-0.0363474\pi\)
−0.834295 + 0.551318i \(0.814125\pi\)
\(6\) 0 0
\(7\) −0.272085 1.54307i −0.102839 0.583227i −0.992062 0.125753i \(-0.959865\pi\)
0.889223 0.457474i \(-0.151246\pi\)
\(8\) −0.00573079 2.82842i −0.00202614 0.999998i
\(9\) 0 0
\(10\) −1.38277 + 0.504344i −0.437270 + 0.159488i
\(11\) 1.44773 3.97760i 0.436507 1.19929i −0.505243 0.862977i \(-0.668597\pi\)
0.941750 0.336315i \(-0.109181\pi\)
\(12\) 0 0
\(13\) 4.33941 5.17151i 1.20354 1.43432i 0.332497 0.943104i \(-0.392109\pi\)
0.871039 0.491214i \(-0.163447\pi\)
\(14\) 2.18198 0.386261i 0.583157 0.103233i
\(15\) 0 0
\(16\) 3.99999 0.0108061i 0.999996 0.00270152i
\(17\) 0.494959 0.857294i 0.120045 0.207924i −0.799740 0.600346i \(-0.795029\pi\)
0.919785 + 0.392422i \(0.128363\pi\)
\(18\) 0 0
\(19\) −2.70129 + 1.55959i −0.619719 + 0.357795i −0.776759 0.629797i \(-0.783138\pi\)
0.157041 + 0.987592i \(0.449805\pi\)
\(20\) −0.714571 1.95505i −0.159783 0.437162i
\(21\) 0 0
\(22\) 5.62656 + 2.04360i 1.19959 + 0.435697i
\(23\) −1.17888 + 6.68573i −0.245812 + 1.39407i 0.572786 + 0.819705i \(0.305863\pi\)
−0.818598 + 0.574367i \(0.805248\pi\)
\(24\) 0 0
\(25\) 3.00044 2.51767i 0.600088 0.503533i
\(26\) 7.31776 + 6.13191i 1.43513 + 1.20257i
\(27\) 0 0
\(28\) 0.548339 + 3.08541i 0.103626 + 0.583088i
\(29\) −2.84964 3.39607i −0.529166 0.630635i 0.433557 0.901126i \(-0.357258\pi\)
−0.962722 + 0.270491i \(0.912814\pi\)
\(30\) 0 0
\(31\) −0.409166 + 2.32049i −0.0734883 + 0.416773i 0.925764 + 0.378103i \(0.123423\pi\)
−0.999252 + 0.0386704i \(0.987688\pi\)
\(32\) 0.0191026 + 5.65682i 0.00337689 + 0.999994i
\(33\) 0 0
\(34\) 1.21287 + 0.699158i 0.208005 + 0.119905i
\(35\) 1.41228 0.815381i 0.238719 0.137825i
\(36\) 0 0
\(37\) 3.19157 + 1.84266i 0.524691 + 0.302931i 0.738852 0.673868i \(-0.235368\pi\)
−0.214161 + 0.976798i \(0.568702\pi\)
\(38\) −2.20817 3.81871i −0.358213 0.619477i
\(39\) 0 0
\(40\) 2.76417 1.01242i 0.437054 0.160078i
\(41\) 2.44191 + 2.04900i 0.381362 + 0.320000i 0.813237 0.581933i \(-0.197703\pi\)
−0.431875 + 0.901933i \(0.642148\pi\)
\(42\) 0 0
\(43\) 3.71087 10.1955i 0.565903 1.55481i −0.244938 0.969539i \(-0.578767\pi\)
0.810841 0.585267i \(-0.199010\pi\)
\(44\) −2.88471 + 7.95911i −0.434886 + 1.19988i
\(45\) 0 0
\(46\) −9.45618 1.66079i −1.39424 0.244871i
\(47\) 0.155220 + 0.880296i 0.0226411 + 0.128404i 0.994033 0.109077i \(-0.0347894\pi\)
−0.971392 + 0.237481i \(0.923678\pi\)
\(48\) 0 0
\(49\) 4.27080 1.55445i 0.610115 0.222064i
\(50\) 3.56338 + 4.24086i 0.503939 + 0.599748i
\(51\) 0 0
\(52\) −8.66484 + 10.3547i −1.20160 + 1.43594i
\(53\) 5.00251i 0.687148i 0.939126 + 0.343574i \(0.111638\pi\)
−0.939126 + 0.343574i \(0.888362\pi\)
\(54\) 0 0
\(55\) 4.40546 0.594032
\(56\) −4.36290 + 0.778415i −0.583017 + 0.104020i
\(57\) 0 0
\(58\) 4.80005 4.03325i 0.630278 0.529591i
\(59\) −3.85475 10.5908i −0.501846 1.37881i −0.889470 0.456993i \(-0.848927\pi\)
0.387625 0.921817i \(-0.373296\pi\)
\(60\) 0 0
\(61\) 5.41575 0.954943i 0.693416 0.122268i 0.184177 0.982893i \(-0.441038\pi\)
0.509239 + 0.860625i \(0.329927\pi\)
\(62\) −3.28206 0.576431i −0.416823 0.0732068i
\(63\) 0 0
\(64\) −7.99993 + 0.0324182i −0.999992 + 0.00405227i
\(65\) 6.60244 + 2.40309i 0.818932 + 0.298067i
\(66\) 0 0
\(67\) 0.467287 0.556891i 0.0570882 0.0680351i −0.736745 0.676171i \(-0.763638\pi\)
0.793833 + 0.608136i \(0.208082\pi\)
\(68\) −0.987601 + 1.71592i −0.119764 + 0.208086i
\(69\) 0 0
\(70\) 1.15447 + 1.99649i 0.137986 + 0.238626i
\(71\) 2.52073 4.36603i 0.299155 0.518152i −0.676788 0.736178i \(-0.736628\pi\)
0.975943 + 0.218026i \(0.0699618\pi\)
\(72\) 0 0
\(73\) 7.01816 + 12.1558i 0.821413 + 1.42273i 0.904630 + 0.426198i \(0.140147\pi\)
−0.0832165 + 0.996531i \(0.526519\pi\)
\(74\) −2.60286 + 4.51532i −0.302576 + 0.524896i
\(75\) 0 0
\(76\) 5.39836 3.12648i 0.619235 0.358631i
\(77\) −6.53164 1.15170i −0.744349 0.131249i
\(78\) 0 0
\(79\) −6.78017 + 5.68924i −0.762829 + 0.640090i −0.938862 0.344295i \(-0.888118\pi\)
0.176032 + 0.984384i \(0.443674\pi\)
\(80\) 1.43442 + 3.90816i 0.160373 + 0.436946i
\(81\) 0 0
\(82\) −2.89539 + 3.45533i −0.319743 + 0.381578i
\(83\) −4.03223 4.80543i −0.442595 0.527464i 0.497917 0.867225i \(-0.334098\pi\)
−0.940512 + 0.339760i \(0.889654\pi\)
\(84\) 0 0
\(85\) 1.01463 + 0.178906i 0.110052 + 0.0194051i
\(86\) 14.4222 + 5.23823i 1.55519 + 0.564853i
\(87\) 0 0
\(88\) −11.2586 4.07199i −1.20017 0.434076i
\(89\) −4.02279 6.96768i −0.426415 0.738573i 0.570136 0.821550i \(-0.306890\pi\)
−0.996551 + 0.0829775i \(0.973557\pi\)
\(90\) 0 0
\(91\) −9.16071 5.28894i −0.960303 0.554431i
\(92\) 2.33969 13.3746i 0.243929 1.39440i
\(93\) 0 0
\(94\) −1.24478 + 0.220355i −0.128389 + 0.0227279i
\(95\) −2.48685 2.08672i −0.255146 0.214093i
\(96\) 0 0
\(97\) −10.1365 3.68937i −1.02920 0.374599i −0.228425 0.973561i \(-0.573358\pi\)
−0.800777 + 0.598963i \(0.795580\pi\)
\(98\) 2.20240 + 6.03834i 0.222476 + 0.609965i
\(99\) 0 0
\(100\) −5.99407 + 5.04344i −0.599407 + 0.504344i
\(101\) 6.50659 1.14729i 0.647430 0.114159i 0.159716 0.987163i \(-0.448942\pi\)
0.487714 + 0.873004i \(0.337831\pi\)
\(102\) 0 0
\(103\) −14.9315 + 5.43464i −1.47125 + 0.535491i −0.948439 0.316959i \(-0.897338\pi\)
−0.522809 + 0.852450i \(0.675116\pi\)
\(104\) −14.6521 12.2440i −1.43675 1.20063i
\(105\) 0 0
\(106\) −7.07462 + 0.00477806i −0.687148 + 0.000464086i
\(107\) 3.85513i 0.372689i −0.982484 0.186345i \(-0.940336\pi\)
0.982484 0.186345i \(-0.0596641\pi\)
\(108\) 0 0
\(109\) 3.32803i 0.318767i 0.987217 + 0.159384i \(0.0509507\pi\)
−0.987217 + 0.159384i \(0.949049\pi\)
\(110\) 0.00420779 + 6.23026i 0.000401197 + 0.594032i
\(111\) 0 0
\(112\) −1.10501 6.16933i −0.104414 0.582947i
\(113\) −7.85208 + 2.85792i −0.738662 + 0.268851i −0.683827 0.729645i \(-0.739686\pi\)
−0.0548351 + 0.998495i \(0.517463\pi\)
\(114\) 0 0
\(115\) −6.95832 + 1.22694i −0.648867 + 0.114413i
\(116\) 5.70846 + 6.78444i 0.530017 + 0.629920i
\(117\) 0 0
\(118\) 14.9740 5.46156i 1.37847 0.502777i
\(119\) −1.45754 0.530501i −0.133612 0.0486309i
\(120\) 0 0
\(121\) −5.29891 4.44632i −0.481719 0.404211i
\(122\) 1.35567 + 7.65811i 0.122736 + 0.693333i
\(123\) 0 0
\(124\) 0.812062 4.64209i 0.0729253 0.416872i
\(125\) 8.03702 + 4.64017i 0.718853 + 0.415030i
\(126\) 0 0
\(127\) 1.83012 + 3.16986i 0.162397 + 0.281280i 0.935728 0.352723i \(-0.114744\pi\)
−0.773331 + 0.634003i \(0.781411\pi\)
\(128\) −0.0534872 11.3136i −0.00472764 0.999989i
\(129\) 0 0
\(130\) −3.39218 + 9.33955i −0.297514 + 0.819133i
\(131\) 9.66082 + 1.70346i 0.844070 + 0.148832i 0.578930 0.815378i \(-0.303471\pi\)
0.265140 + 0.964210i \(0.414582\pi\)
\(132\) 0 0
\(133\) 3.14155 + 3.74395i 0.272407 + 0.324641i
\(134\) 0.788009 + 0.660312i 0.0680736 + 0.0570423i
\(135\) 0 0
\(136\) −2.42762 1.39504i −0.208167 0.119624i
\(137\) 16.9231 14.2001i 1.44583 1.21320i 0.510284 0.860006i \(-0.329540\pi\)
0.935550 0.353193i \(-0.114904\pi\)
\(138\) 0 0
\(139\) 4.68849 + 0.826707i 0.397672 + 0.0701203i 0.368908 0.929466i \(-0.379732\pi\)
0.0287641 + 0.999586i \(0.490843\pi\)
\(140\) −2.82236 + 1.63458i −0.238533 + 0.138147i
\(141\) 0 0
\(142\) 6.17690 + 3.56068i 0.518354 + 0.298805i
\(143\) −14.2879 24.7474i −1.19482 2.06948i
\(144\) 0 0
\(145\) 2.30701 3.99585i 0.191586 0.331837i
\(146\) −17.1842 + 9.93678i −1.42217 + 0.822374i
\(147\) 0 0
\(148\) −6.38812 3.67668i −0.525100 0.302222i
\(149\) −14.7916 + 17.6280i −1.21178 + 1.44414i −0.350076 + 0.936721i \(0.613844\pi\)
−0.861700 + 0.507418i \(0.830600\pi\)
\(150\) 0 0
\(151\) 18.6779 + 6.79819i 1.51998 + 0.553229i 0.961144 0.276047i \(-0.0890245\pi\)
0.558840 + 0.829276i \(0.311247\pi\)
\(152\) 4.42666 + 7.63145i 0.359050 + 0.618992i
\(153\) 0 0
\(154\) 1.62252 9.23823i 0.130746 0.744438i
\(155\) −2.41510 + 0.425848i −0.193986 + 0.0342049i
\(156\) 0 0
\(157\) 1.67263 + 4.59552i 0.133491 + 0.366762i 0.988371 0.152063i \(-0.0485917\pi\)
−0.854880 + 0.518825i \(0.826369\pi\)
\(158\) −8.05228 9.58318i −0.640605 0.762397i
\(159\) 0 0
\(160\) −5.52560 + 2.03231i −0.436837 + 0.160668i
\(161\) 10.6373 0.838339
\(162\) 0 0
\(163\) 4.18081i 0.327466i 0.986505 + 0.163733i \(0.0523536\pi\)
−0.986505 + 0.163733i \(0.947646\pi\)
\(164\) −4.88934 4.09140i −0.381794 0.319485i
\(165\) 0 0
\(166\) 6.79205 5.70703i 0.527165 0.442951i
\(167\) −5.72775 + 2.08473i −0.443227 + 0.161321i −0.553986 0.832526i \(-0.686894\pi\)
0.110759 + 0.993847i \(0.464672\pi\)
\(168\) 0 0
\(169\) −5.65659 32.0801i −0.435122 2.46770i
\(170\) −0.252042 + 1.43507i −0.0193307 + 0.110065i
\(171\) 0 0
\(172\) −7.39420 + 20.4011i −0.563802 + 1.55557i
\(173\) −0.453627 + 1.24633i −0.0344886 + 0.0947567i −0.955742 0.294207i \(-0.904945\pi\)
0.921253 + 0.388964i \(0.127167\pi\)
\(174\) 0 0
\(175\) −4.70132 3.94488i −0.355386 0.298205i
\(176\) 5.74791 15.9260i 0.433265 1.20047i
\(177\) 0 0
\(178\) 9.84994 5.69574i 0.738284 0.426914i
\(179\) −9.68622 5.59234i −0.723982 0.417991i 0.0922343 0.995737i \(-0.470599\pi\)
−0.816217 + 0.577746i \(0.803932\pi\)
\(180\) 0 0
\(181\) −3.21058 + 1.85363i −0.238641 + 0.137779i −0.614552 0.788876i \(-0.710663\pi\)
0.375911 + 0.926656i \(0.377330\pi\)
\(182\) 7.47093 12.9602i 0.553783 0.960677i
\(183\) 0 0
\(184\) 18.9168 + 3.29604i 1.39457 + 0.242987i
\(185\) −0.666039 + 3.77730i −0.0489682 + 0.277712i
\(186\) 0 0
\(187\) −2.69341 3.20988i −0.196961 0.234730i
\(188\) −0.312818 1.76017i −0.0228146 0.128374i
\(189\) 0 0
\(190\) 2.94869 3.51893i 0.213920 0.255290i
\(191\) −13.8306 + 11.6053i −1.00075 + 0.839729i −0.987088 0.160178i \(-0.948793\pi\)
−0.0136618 + 0.999907i \(0.504349\pi\)
\(192\) 0 0
\(193\) 0.770660 4.37063i 0.0554733 0.314605i −0.944427 0.328721i \(-0.893382\pi\)
0.999900 + 0.0141163i \(0.00449352\pi\)
\(194\) 5.20788 14.3386i 0.373904 1.02945i
\(195\) 0 0
\(196\) −8.53740 + 3.12043i −0.609814 + 0.222888i
\(197\) 14.1519 8.17063i 1.00828 0.582133i 0.0975957 0.995226i \(-0.468885\pi\)
0.910689 + 0.413093i \(0.135551\pi\)
\(198\) 0 0
\(199\) −0.458824 + 0.794707i −0.0325252 + 0.0563353i −0.881830 0.471568i \(-0.843688\pi\)
0.849305 + 0.527903i \(0.177022\pi\)
\(200\) −7.13822 8.47208i −0.504748 0.599066i
\(201\) 0 0
\(202\) 1.62872 + 9.20061i 0.114597 + 0.647352i
\(203\) −4.46504 + 5.32123i −0.313385 + 0.373477i
\(204\) 0 0
\(205\) −1.13470 + 3.11757i −0.0792511 + 0.217741i
\(206\) −7.70000 21.1112i −0.536484 1.47089i
\(207\) 0 0
\(208\) 17.3017 20.7328i 1.19966 1.43756i
\(209\) 2.29270 + 13.0025i 0.158589 + 0.899403i
\(210\) 0 0
\(211\) 2.09734 + 5.76240i 0.144387 + 0.396700i 0.990714 0.135964i \(-0.0434131\pi\)
−0.846327 + 0.532664i \(0.821191\pi\)
\(212\) −0.0135144 10.0050i −0.000928172 0.687148i
\(213\) 0 0
\(214\) 5.45197 0.00368215i 0.372689 0.000251707i
\(215\) 11.2922 0.770124
\(216\) 0 0
\(217\) 3.69202 0.250631
\(218\) −4.70654 + 0.00317870i −0.318767 + 0.000215289i
\(219\) 0 0
\(220\) −8.81091 + 0.0119014i −0.594031 + 0.000802394i
\(221\) −2.28567 6.27983i −0.153751 0.422427i
\(222\) 0 0
\(223\) −3.72326 21.1156i −0.249328 1.41401i −0.810223 0.586121i \(-0.800654\pi\)
0.560896 0.827887i \(-0.310457\pi\)
\(224\) 8.72369 1.56862i 0.582876 0.104808i
\(225\) 0 0
\(226\) −4.04921 11.1018i −0.269350 0.738480i
\(227\) −6.36438 + 17.4860i −0.422419 + 1.16059i 0.527900 + 0.849307i \(0.322980\pi\)
−0.950319 + 0.311279i \(0.899243\pi\)
\(228\) 0 0
\(229\) −5.70813 + 6.80268i −0.377204 + 0.449534i −0.920930 0.389729i \(-0.872569\pi\)
0.543726 + 0.839263i \(0.317013\pi\)
\(230\) −1.74180 9.83938i −0.114851 0.648789i
\(231\) 0 0
\(232\) −9.58920 + 8.07946i −0.629562 + 0.530442i
\(233\) −9.39731 + 16.2766i −0.615638 + 1.06632i 0.374634 + 0.927173i \(0.377768\pi\)
−0.990272 + 0.139144i \(0.955565\pi\)
\(234\) 0 0
\(235\) −0.805681 + 0.465160i −0.0525568 + 0.0303437i
\(236\) 7.73811 + 21.1712i 0.503708 + 1.37813i
\(237\) 0 0
\(238\) 0.748849 2.06178i 0.0485407 0.133645i
\(239\) −3.56653 + 20.2268i −0.230700 + 1.30836i 0.620784 + 0.783982i \(0.286815\pi\)
−0.851483 + 0.524382i \(0.824297\pi\)
\(240\) 0 0
\(241\) −10.5529 + 8.85497i −0.679775 + 0.570399i −0.915941 0.401314i \(-0.868554\pi\)
0.236166 + 0.971713i \(0.424109\pi\)
\(242\) 6.28298 7.49804i 0.403885 0.481992i
\(243\) 0 0
\(244\) −10.8289 + 1.92451i −0.693250 + 0.123204i
\(245\) 3.04051 + 3.62354i 0.194251 + 0.231499i
\(246\) 0 0
\(247\) −3.65657 + 20.7374i −0.232662 + 1.31949i
\(248\) 6.56568 + 1.14399i 0.416921 + 0.0726437i
\(249\) 0 0
\(250\) −6.55452 + 11.3705i −0.414544 + 0.719133i
\(251\) −0.419101 + 0.241968i −0.0264534 + 0.0152729i −0.513168 0.858288i \(-0.671528\pi\)
0.486715 + 0.873561i \(0.338195\pi\)
\(252\) 0 0
\(253\) 24.8865 + 14.3682i 1.56460 + 0.903323i
\(254\) −4.48111 + 2.59121i −0.281170 + 0.162587i
\(255\) 0 0
\(256\) 15.9998 0.0864482i 0.999985 0.00540301i
\(257\) −13.5896 11.4030i −0.847695 0.711300i 0.111586 0.993755i \(-0.464407\pi\)
−0.959281 + 0.282454i \(0.908851\pi\)
\(258\) 0 0
\(259\) 1.97497 5.42619i 0.122719 0.337167i
\(260\) −13.2114 4.78834i −0.819334 0.296960i
\(261\) 0 0
\(262\) −2.39983 + 13.6641i −0.148262 + 0.844170i
\(263\) −1.39832 7.93029i −0.0862243 0.489002i −0.997086 0.0762899i \(-0.975693\pi\)
0.910861 0.412712i \(-0.135419\pi\)
\(264\) 0 0
\(265\) −4.89249 + 1.78072i −0.300543 + 0.109389i
\(266\) −5.29174 + 4.44639i −0.324457 + 0.272626i
\(267\) 0 0
\(268\) −0.933069 + 1.11504i −0.0569963 + 0.0681121i
\(269\) 6.56538i 0.400298i 0.979765 + 0.200149i \(0.0641426\pi\)
−0.979765 + 0.200149i \(0.935857\pi\)
\(270\) 0 0
\(271\) 10.8623 0.659839 0.329919 0.944009i \(-0.392978\pi\)
0.329919 + 0.944009i \(0.392978\pi\)
\(272\) 1.97056 3.43451i 0.119483 0.208248i
\(273\) 0 0
\(274\) 20.0982 + 23.9193i 1.21418 + 1.44501i
\(275\) −5.67046 15.5795i −0.341941 0.939476i
\(276\) 0 0
\(277\) −31.2235 + 5.50555i −1.87604 + 0.330796i −0.990907 0.134546i \(-0.957043\pi\)
−0.885131 + 0.465342i \(0.845931\pi\)
\(278\) −1.16466 + 6.63131i −0.0698517 + 0.397719i
\(279\) 0 0
\(280\) −2.31433 3.98985i −0.138308 0.238439i
\(281\) 18.4488 + 6.71481i 1.10056 + 0.400572i 0.827523 0.561431i \(-0.189749\pi\)
0.273039 + 0.962003i \(0.411971\pi\)
\(282\) 0 0
\(283\) −12.6768 + 15.1076i −0.753556 + 0.898053i −0.997422 0.0717558i \(-0.977140\pi\)
0.243866 + 0.969809i \(0.421584\pi\)
\(284\) −5.02965 + 8.73886i −0.298455 + 0.518556i
\(285\) 0 0
\(286\) 34.9844 20.2298i 2.06867 1.19621i
\(287\) 2.49735 4.32554i 0.147414 0.255329i
\(288\) 0 0
\(289\) 8.01003 + 13.8738i 0.471178 + 0.816105i
\(290\) 5.65319 + 3.25878i 0.331967 + 0.191362i
\(291\) 0 0
\(292\) −14.0691 24.2926i −0.823334 1.42162i
\(293\) 26.1866 + 4.61741i 1.52984 + 0.269752i 0.874292 0.485401i \(-0.161326\pi\)
0.655549 + 0.755153i \(0.272437\pi\)
\(294\) 0 0
\(295\) 8.98574 7.53993i 0.523170 0.438992i
\(296\) 5.19351 9.03767i 0.301867 0.525304i
\(297\) 0 0
\(298\) −24.9438 20.9017i −1.44496 1.21080i
\(299\) 29.4597 + 35.1087i 1.70370 + 2.03039i
\(300\) 0 0
\(301\) −16.7421 2.95209i −0.965001 0.170156i
\(302\) −9.59625 + 26.4210i −0.552202 + 1.52036i
\(303\) 0 0
\(304\) −10.7883 + 6.26753i −0.618750 + 0.359468i
\(305\) 2.86175 + 4.95671i 0.163864 + 0.283820i
\(306\) 0 0
\(307\) −20.0407 11.5705i −1.14379 0.660365i −0.196420 0.980520i \(-0.562932\pi\)
−0.947365 + 0.320155i \(0.896265\pi\)
\(308\) 13.0664 + 2.28576i 0.744526 + 0.130243i
\(309\) 0 0
\(310\) −0.604547 3.41507i −0.0343359 0.193963i
\(311\) 18.6806 + 15.6749i 1.05928 + 0.888842i 0.994039 0.109027i \(-0.0347735\pi\)
0.0652424 + 0.997869i \(0.479218\pi\)
\(312\) 0 0
\(313\) 24.2156 + 8.81377i 1.36875 + 0.498184i 0.918748 0.394845i \(-0.129202\pi\)
0.450000 + 0.893028i \(0.351424\pi\)
\(314\) −6.49745 + 2.36985i −0.366672 + 0.133738i
\(315\) 0 0
\(316\) 13.5450 11.3968i 0.761964 0.641120i
\(317\) −18.1371 + 3.19806i −1.01868 + 0.179621i −0.657960 0.753053i \(-0.728580\pi\)
−0.360721 + 0.932674i \(0.617469\pi\)
\(318\) 0 0
\(319\) −17.6337 + 6.41816i −0.987300 + 0.359348i
\(320\) −2.87940 7.81244i −0.160963 0.436729i
\(321\) 0 0
\(322\) 0.0101601 + 15.0435i 0.000566198 + 0.838339i
\(323\) 3.08773i 0.171806i
\(324\) 0 0
\(325\) 26.4420i 1.46674i
\(326\) −5.91256 + 0.00399322i −0.327466 + 0.000221164i
\(327\) 0 0
\(328\) 5.78145 6.91848i 0.319227 0.382009i
\(329\) 1.31613 0.479031i 0.0725605 0.0264099i
\(330\) 0 0
\(331\) 15.2370 2.68670i 0.837502 0.147674i 0.261583 0.965181i \(-0.415755\pi\)
0.575919 + 0.817507i \(0.304644\pi\)
\(332\) 8.07744 + 9.59995i 0.443307 + 0.526866i
\(333\) 0 0
\(334\) −2.95372 8.09827i −0.161621 0.443118i
\(335\) 0.710980 + 0.258776i 0.0388450 + 0.0141384i
\(336\) 0 0
\(337\) 9.32566 + 7.82516i 0.508001 + 0.426264i 0.860425 0.509577i \(-0.170198\pi\)
−0.352424 + 0.935840i \(0.614643\pi\)
\(338\) 45.3627 8.03026i 2.46740 0.436788i
\(339\) 0 0
\(340\) −2.02973 0.355070i −0.110078 0.0192564i
\(341\) 8.63764 + 4.98695i 0.467755 + 0.270058i
\(342\) 0 0
\(343\) −9.04472 15.6659i −0.488369 0.845880i
\(344\) −28.8586 10.4375i −1.55595 0.562752i
\(345\) 0 0
\(346\) −1.76301 0.640335i −0.0947800 0.0344246i
\(347\) 23.2143 + 4.09332i 1.24621 + 0.219741i 0.757576 0.652747i \(-0.226384\pi\)
0.488636 + 0.872488i \(0.337495\pi\)
\(348\) 0 0
\(349\) 14.7087 + 17.5291i 0.787338 + 0.938312i 0.999240 0.0389784i \(-0.0124104\pi\)
−0.211902 + 0.977291i \(0.567966\pi\)
\(350\) 5.57441 6.65244i 0.297965 0.355588i
\(351\) 0 0
\(352\) 22.5282 + 8.11356i 1.20076 + 0.432454i
\(353\) −0.541929 + 0.454733i −0.0288440 + 0.0242030i −0.657096 0.753807i \(-0.728215\pi\)
0.628252 + 0.778010i \(0.283771\pi\)
\(354\) 0 0
\(355\) 5.16729 + 0.911132i 0.274251 + 0.0483579i
\(356\) 8.06440 + 13.9245i 0.427412 + 0.737996i
\(357\) 0 0
\(358\) 7.89952 13.7037i 0.417502 0.724265i
\(359\) 5.07907 + 8.79721i 0.268063 + 0.464299i 0.968362 0.249551i \(-0.0802831\pi\)
−0.700298 + 0.713850i \(0.746950\pi\)
\(360\) 0 0
\(361\) −4.63535 + 8.02867i −0.243966 + 0.422561i
\(362\) −2.62450 4.53868i −0.137940 0.238548i
\(363\) 0 0
\(364\) 18.3357 + 10.5531i 0.961051 + 0.553134i
\(365\) −9.39023 + 11.1908i −0.491507 + 0.585755i
\(366\) 0 0
\(367\) −1.79478 0.653245i −0.0936866 0.0340991i 0.294752 0.955574i \(-0.404763\pi\)
−0.388438 + 0.921475i \(0.626985\pi\)
\(368\) −4.64324 + 26.7556i −0.242045 + 1.39473i
\(369\) 0 0
\(370\) −5.34254 0.938313i −0.277745 0.0487806i
\(371\) 7.71925 1.36111i 0.400763 0.0706654i
\(372\) 0 0
\(373\) −11.8307 32.5046i −0.612571 1.68303i −0.724470 0.689306i \(-0.757916\pi\)
0.111899 0.993720i \(-0.464307\pi\)
\(374\) 4.53688 3.81212i 0.234596 0.197120i
\(375\) 0 0
\(376\) 2.48896 0.444072i 0.128358 0.0229013i
\(377\) −29.9286 −1.54140
\(378\) 0 0
\(379\) 27.1937i 1.39685i 0.715685 + 0.698423i \(0.246114\pi\)
−0.715685 + 0.698423i \(0.753886\pi\)
\(380\) 4.97934 + 4.16671i 0.255435 + 0.213748i
\(381\) 0 0
\(382\) −16.4256 19.5484i −0.840405 1.00018i
\(383\) 5.67775 2.06653i 0.290120 0.105595i −0.192861 0.981226i \(-0.561777\pi\)
0.482980 + 0.875631i \(0.339554\pi\)
\(384\) 0 0
\(385\) −1.19866 6.79794i −0.0610894 0.346455i
\(386\) 6.18174 + 1.08570i 0.314642 + 0.0552608i
\(387\) 0 0
\(388\) 20.2829 + 7.35135i 1.02971 + 0.373208i
\(389\) 3.99747 10.9830i 0.202680 0.556858i −0.796156 0.605091i \(-0.793137\pi\)
0.998836 + 0.0482330i \(0.0153590\pi\)
\(390\) 0 0
\(391\) 5.14814 + 4.31980i 0.260353 + 0.218462i
\(392\) −4.42110 12.0707i −0.223299 0.609664i
\(393\) 0 0
\(394\) 11.5685 + 20.0061i 0.582814 + 1.00789i
\(395\) −7.97761 4.60588i −0.401397 0.231747i
\(396\) 0 0
\(397\) 2.31327 1.33556i 0.116099 0.0670301i −0.440826 0.897593i \(-0.645314\pi\)
0.556925 + 0.830563i \(0.311981\pi\)
\(398\) −1.12432 0.648116i −0.0563572 0.0324871i
\(399\) 0 0
\(400\) 11.9745 10.1031i 0.598725 0.505153i
\(401\) 2.15776 12.2372i 0.107753 0.611099i −0.882332 0.470628i \(-0.844027\pi\)
0.990085 0.140470i \(-0.0448615\pi\)
\(402\) 0 0
\(403\) 10.2249 + 12.1856i 0.509339 + 0.607007i
\(404\) −13.0101 + 2.31215i −0.647275 + 0.115034i
\(405\) 0 0
\(406\) −7.52962 6.30944i −0.373689 0.313132i
\(407\) 11.9499 10.0271i 0.592334 0.497027i
\(408\) 0 0
\(409\) −0.895032 + 5.07598i −0.0442565 + 0.250991i −0.998907 0.0467370i \(-0.985118\pi\)
0.954651 + 0.297728i \(0.0962288\pi\)
\(410\) −4.40999 1.60173i −0.217794 0.0791040i
\(411\) 0 0
\(412\) 29.8484 10.9096i 1.47052 0.537478i
\(413\) −15.2936 + 8.82978i −0.752550 + 0.434485i
\(414\) 0 0
\(415\) 3.26440 5.65411i 0.160243 0.277549i
\(416\) 29.3372 + 24.4485i 1.43837 + 1.19869i
\(417\) 0 0
\(418\) −18.3862 + 3.25478i −0.899296 + 0.159196i
\(419\) 1.84481 2.19856i 0.0901248 0.107407i −0.719097 0.694909i \(-0.755444\pi\)
0.809222 + 0.587503i \(0.199889\pi\)
\(420\) 0 0
\(421\) −4.61049 + 12.6672i −0.224701 + 0.617362i −0.999897 0.0143594i \(-0.995429\pi\)
0.775195 + 0.631721i \(0.217651\pi\)
\(422\) −8.14726 + 2.97159i −0.396603 + 0.144655i
\(423\) 0 0
\(424\) 14.1492 0.0286683i 0.687147 0.00139226i
\(425\) −0.673287 3.81840i −0.0326592 0.185220i
\(426\) 0 0
\(427\) −2.94709 8.09707i −0.142620 0.391845i
\(428\) 0.0104147 + 7.71025i 0.000503414 + 0.372689i
\(429\) 0 0
\(430\) 0.0107856 + 15.9696i 0.000520126 + 0.770124i
\(431\) −25.2153 −1.21458 −0.607290 0.794480i \(-0.707743\pi\)
−0.607290 + 0.794480i \(0.707743\pi\)
\(432\) 0 0
\(433\) −15.5658 −0.748046 −0.374023 0.927419i \(-0.622022\pi\)
−0.374023 + 0.927419i \(0.622022\pi\)
\(434\) 0.00352637 + 5.22131i 0.000169271 + 0.250631i
\(435\) 0 0
\(436\) −0.00899073 6.65605i −0.000430578 0.318767i
\(437\) −7.24252 19.8987i −0.346457 0.951882i
\(438\) 0 0
\(439\) 5.53290 + 31.3787i 0.264071 + 1.49762i 0.771667 + 0.636026i \(0.219423\pi\)
−0.507596 + 0.861595i \(0.669466\pi\)
\(440\) −0.0252467 12.4605i −0.00120359 0.594030i
\(441\) 0 0
\(442\) 8.87884 3.23843i 0.422323 0.154036i
\(443\) 2.16330 5.94362i 0.102782 0.282390i −0.877634 0.479332i \(-0.840879\pi\)
0.980415 + 0.196942i \(0.0631011\pi\)
\(444\) 0 0
\(445\) 5.38246 6.41456i 0.255153 0.304079i
\(446\) 29.8585 5.28565i 1.41384 0.250283i
\(447\) 0 0
\(448\) 2.22669 + 12.3357i 0.105201 + 0.582805i
\(449\) 4.18149 7.24256i 0.197337 0.341797i −0.750327 0.661067i \(-0.770104\pi\)
0.947664 + 0.319269i \(0.103437\pi\)
\(450\) 0 0
\(451\) 11.6853 6.74653i 0.550241 0.317682i
\(452\) 15.6964 5.73706i 0.738298 0.269848i
\(453\) 0 0
\(454\) −24.7350 8.98389i −1.16087 0.421635i
\(455\) 1.91172 10.8419i 0.0896228 0.508276i
\(456\) 0 0
\(457\) −21.5741 + 18.1028i −1.00919 + 0.846812i −0.988231 0.152968i \(-0.951117\pi\)
−0.0209605 + 0.999780i \(0.506672\pi\)
\(458\) −9.62589 8.06601i −0.449788 0.376900i
\(459\) 0 0
\(460\) 13.9133 2.47267i 0.648712 0.115289i
\(461\) −16.8013 20.0230i −0.782513 0.932563i 0.216531 0.976276i \(-0.430526\pi\)
−0.999044 + 0.0437126i \(0.986081\pi\)
\(462\) 0 0
\(463\) 3.84612 21.8124i 0.178744 1.01371i −0.754988 0.655738i \(-0.772358\pi\)
0.933733 0.357971i \(-0.116531\pi\)
\(464\) −11.4352 13.5535i −0.530867 0.629203i
\(465\) 0 0
\(466\) −23.0276 13.2743i −1.06673 0.614918i
\(467\) −19.1663 + 11.0657i −0.886910 + 0.512058i −0.872930 0.487845i \(-0.837783\pi\)
−0.0139792 + 0.999902i \(0.504450\pi\)
\(468\) 0 0
\(469\) −0.986466 0.569536i −0.0455508 0.0262987i
\(470\) −0.658605 1.13896i −0.0303792 0.0525363i
\(471\) 0 0
\(472\) −29.9333 + 10.9636i −1.37779 + 0.504638i
\(473\) −35.1815 29.5208i −1.61765 1.35737i
\(474\) 0 0
\(475\) −4.17853 + 11.4804i −0.191724 + 0.526757i
\(476\) 2.91651 + 1.05706i 0.133678 + 0.0484504i
\(477\) 0 0
\(478\) −28.6084 5.02452i −1.30852 0.229816i
\(479\) 2.06488 + 11.7105i 0.0943470 + 0.535068i 0.994946 + 0.100416i \(0.0320175\pi\)
−0.900599 + 0.434652i \(0.856871\pi\)
\(480\) 0 0
\(481\) 23.3788 8.50920i 1.06598 0.387986i
\(482\) −12.5329 14.9157i −0.570858 0.679389i
\(483\) 0 0
\(484\) 10.6098 + 8.87831i 0.482265 + 0.403560i
\(485\) 11.2268i 0.509783i
\(486\) 0 0
\(487\) 22.1183 1.00228 0.501138 0.865367i \(-0.332915\pi\)
0.501138 + 0.865367i \(0.332915\pi\)
\(488\) −2.73202 15.3125i −0.123673 0.693166i
\(489\) 0 0
\(490\) −5.12155 + 4.30339i −0.231368 + 0.194407i
\(491\) 2.55319 + 7.01484i 0.115224 + 0.316575i 0.983877 0.178845i \(-0.0572362\pi\)
−0.868653 + 0.495421i \(0.835014\pi\)
\(492\) 0 0
\(493\) −4.32189 + 0.762066i −0.194648 + 0.0343217i
\(494\) −29.3307 5.15137i −1.31965 0.231771i
\(495\) 0 0
\(496\) −1.61158 + 9.28636i −0.0723622 + 0.416970i
\(497\) −7.42295 2.70173i −0.332965 0.121189i
\(498\) 0 0
\(499\) 6.65452 7.93054i 0.297897 0.355020i −0.596246 0.802802i \(-0.703342\pi\)
0.894143 + 0.447782i \(0.147786\pi\)
\(500\) −16.0866 9.25863i −0.719412 0.414058i
\(501\) 0 0
\(502\) −0.342595 0.592467i −0.0152908 0.0264431i
\(503\) 16.9435 29.3471i 0.755475 1.30852i −0.189663 0.981849i \(-0.560739\pi\)
0.945138 0.326672i \(-0.105927\pi\)
\(504\) 0 0
\(505\) 3.43817 + 5.95508i 0.152997 + 0.264998i
\(506\) −20.2960 + 35.2085i −0.902266 + 1.56521i
\(507\) 0 0
\(508\) −3.66880 6.33477i −0.162777 0.281060i
\(509\) 16.7517 + 2.95378i 0.742508 + 0.130924i 0.532090 0.846688i \(-0.321407\pi\)
0.210417 + 0.977612i \(0.432518\pi\)
\(510\) 0 0
\(511\) 16.8478 14.1370i 0.745301 0.625382i
\(512\) 0.137538 + 22.6270i 0.00607838 + 0.999982i
\(513\) 0 0
\(514\) 16.1133 19.2295i 0.710728 0.848175i
\(515\) −10.6302 12.6686i −0.468423 0.558245i
\(516\) 0 0
\(517\) 3.72618 + 0.657026i 0.163877 + 0.0288960i
\(518\) 7.67568 + 2.78785i 0.337250 + 0.122491i
\(519\) 0 0
\(520\) 6.75912 18.6883i 0.296407 0.819534i
\(521\) 14.6553 + 25.3837i 0.642060 + 1.11208i 0.984972 + 0.172714i \(0.0552535\pi\)
−0.342912 + 0.939368i \(0.611413\pi\)
\(522\) 0 0
\(523\) 3.33680 + 1.92651i 0.145908 + 0.0842402i 0.571177 0.820827i \(-0.306487\pi\)
−0.425269 + 0.905067i \(0.639820\pi\)
\(524\) −19.3262 3.38083i −0.844270 0.147692i
\(525\) 0 0
\(526\) 11.2138 1.98510i 0.488944 0.0865545i
\(527\) 1.78683 + 1.49932i 0.0778353 + 0.0653116i
\(528\) 0 0
\(529\) −21.6963 7.89682i −0.943319 0.343340i
\(530\) −2.52299 6.91732i −0.109592 0.300469i
\(531\) 0 0
\(532\) −6.29320 7.47940i −0.272845 0.324273i
\(533\) 21.1929 3.73687i 0.917965 0.161862i
\(534\) 0 0
\(535\) 3.77033 1.37229i 0.163006 0.0593292i
\(536\) −1.57780 1.31849i −0.0681506 0.0569502i
\(537\) 0 0
\(538\) −9.28484 + 0.00627080i −0.400298 + 0.000270353i
\(539\) 19.2380i 0.828638i
\(540\) 0 0
\(541\) 4.51542i 0.194133i −0.995278 0.0970665i \(-0.969054\pi\)
0.995278 0.0970665i \(-0.0309460\pi\)
\(542\) 0.0103749 + 15.3616i 0.000445642 + 0.659839i
\(543\) 0 0
\(544\) 4.85901 + 2.78352i 0.208328 + 0.119342i
\(545\) −3.25483 + 1.18466i −0.139421 + 0.0507453i
\(546\) 0 0
\(547\) 12.3037 2.16948i 0.526069 0.0927602i 0.0956949 0.995411i \(-0.469493\pi\)
0.430374 + 0.902651i \(0.358382\pi\)
\(548\) −33.8077 + 28.4460i −1.44419 + 1.21515i
\(549\) 0 0
\(550\) 22.0273 8.03412i 0.939245 0.342576i
\(551\) 12.9942 + 4.72950i 0.553572 + 0.201484i
\(552\) 0 0
\(553\) 10.6237 + 8.91435i 0.451766 + 0.379077i
\(554\) −7.81584 44.1514i −0.332063 1.87581i
\(555\) 0 0
\(556\) −9.37920 1.64075i −0.397767 0.0695831i
\(557\) −3.03004 1.74940i −0.128387 0.0741243i 0.434431 0.900705i \(-0.356949\pi\)
−0.562818 + 0.826581i \(0.690283\pi\)
\(558\) 0 0
\(559\) −36.6233 63.4335i −1.54900 2.68295i
\(560\) 5.64029 3.27677i 0.238346 0.138469i
\(561\) 0 0
\(562\) −9.47855 + 26.0969i −0.399828 + 1.10083i
\(563\) 26.9436 + 4.75088i 1.13554 + 0.200226i 0.709653 0.704552i \(-0.248852\pi\)
0.425885 + 0.904777i \(0.359963\pi\)
\(564\) 0 0
\(565\) −5.59013 6.66206i −0.235179 0.280275i
\(566\) −21.3775 17.9132i −0.898562 0.752949i
\(567\) 0 0
\(568\) −12.3634 7.10466i −0.518757 0.298105i
\(569\) −3.15771 + 2.64963i −0.132378 + 0.111078i −0.706573 0.707640i \(-0.749760\pi\)
0.574195 + 0.818719i \(0.305315\pi\)
\(570\) 0 0
\(571\) −2.91629 0.514220i −0.122043 0.0215194i 0.112293 0.993675i \(-0.464180\pi\)
−0.234336 + 0.972156i \(0.575292\pi\)
\(572\) 28.6427 + 49.4561i 1.19761 + 2.06787i
\(573\) 0 0
\(574\) 6.11963 + 3.52766i 0.255428 + 0.147242i
\(575\) 13.2953 + 23.0281i 0.554453 + 0.960340i
\(576\) 0 0
\(577\) −4.23106 + 7.32841i −0.176141 + 0.305086i −0.940556 0.339640i \(-0.889695\pi\)
0.764414 + 0.644725i \(0.223028\pi\)
\(578\) −19.6128 + 11.3411i −0.815786 + 0.471729i
\(579\) 0 0
\(580\) −4.60321 + 7.99793i −0.191138 + 0.332096i
\(581\) −6.31802 + 7.52952i −0.262115 + 0.312377i
\(582\) 0 0
\(583\) 19.8980 + 7.24228i 0.824092 + 0.299945i
\(584\) 34.3415 19.9200i 1.42106 0.824294i
\(585\) 0 0
\(586\) −6.50499 + 37.0379i −0.268719 + 1.53002i
\(587\) −45.4714 + 8.01784i −1.87681 + 0.330932i −0.991079 0.133275i \(-0.957451\pi\)
−0.885727 + 0.464206i \(0.846340\pi\)
\(588\) 0 0
\(589\) −2.51375 6.90646i −0.103577 0.284576i
\(590\) 10.6717 + 12.7006i 0.439345 + 0.522874i
\(591\) 0 0
\(592\) 12.7862 + 7.33611i 0.525508 + 0.301512i
\(593\) −22.0816 −0.906784 −0.453392 0.891311i \(-0.649786\pi\)
−0.453392 + 0.891311i \(0.649786\pi\)
\(594\) 0 0
\(595\) 1.61432i 0.0661807i
\(596\) 29.5356 35.2959i 1.20982 1.44577i
\(597\) 0 0
\(598\) −49.6230 + 41.6958i −2.02924 + 1.70507i
\(599\) 23.2555 8.46431i 0.950194 0.345842i 0.180010 0.983665i \(-0.442387\pi\)
0.770184 + 0.637822i \(0.220165\pi\)
\(600\) 0 0
\(601\) 2.55983 + 14.5175i 0.104418 + 0.592182i 0.991451 + 0.130477i \(0.0416509\pi\)
−0.887034 + 0.461705i \(0.847238\pi\)
\(602\) 4.15890 23.6798i 0.169504 0.965116i
\(603\) 0 0
\(604\) −37.3741 13.5459i −1.52073 0.551175i
\(605\) 2.46229 6.76510i 0.100107 0.275040i
\(606\) 0 0
\(607\) −23.2768 19.5315i −0.944775 0.792761i 0.0336346 0.999434i \(-0.489292\pi\)
−0.978410 + 0.206674i \(0.933736\pi\)
\(608\) −8.87393 15.2509i −0.359885 0.618507i
\(609\) 0 0
\(610\) −7.00710 + 4.05187i −0.283709 + 0.164055i
\(611\) 5.22602 + 3.01724i 0.211422 + 0.122065i
\(612\) 0 0
\(613\) −8.97166 + 5.17979i −0.362362 + 0.209210i −0.670116 0.742256i \(-0.733756\pi\)
0.307754 + 0.951466i \(0.400422\pi\)
\(614\) 16.3440 28.3529i 0.659592 1.14423i
\(615\) 0 0
\(616\) −3.22007 + 18.4808i −0.129740 + 0.744614i
\(617\) −2.09885 + 11.9032i −0.0844965 + 0.479204i 0.912968 + 0.408032i \(0.133785\pi\)
−0.997464 + 0.0711715i \(0.977326\pi\)
\(618\) 0 0
\(619\) 1.25371 + 1.49411i 0.0503908 + 0.0600535i 0.790651 0.612267i \(-0.209742\pi\)
−0.740260 + 0.672320i \(0.765298\pi\)
\(620\) 4.82905 0.858220i 0.193939 0.0344669i
\(621\) 0 0
\(622\) −22.1498 + 26.4334i −0.888127 + 1.05988i
\(623\) −9.65710 + 8.10327i −0.386904 + 0.324651i
\(624\) 0 0
\(625\) 1.72350 9.77447i 0.0689401 0.390979i
\(626\) −12.4414 + 34.2545i −0.497259 + 1.36908i
\(627\) 0 0
\(628\) −3.35768 9.18651i −0.133986 0.366582i
\(629\) 3.15939 1.82408i 0.125973 0.0727307i
\(630\) 0 0
\(631\) −6.64702 + 11.5130i −0.264614 + 0.458325i −0.967462 0.253015i \(-0.918578\pi\)
0.702849 + 0.711340i \(0.251911\pi\)
\(632\) 16.1304 + 19.1446i 0.641634 + 0.761531i
\(633\) 0 0
\(634\) −4.54006 25.6467i −0.180309 1.01856i
\(635\) −2.44868 + 2.91823i −0.0971730 + 0.115806i
\(636\) 0 0
\(637\) 10.4939 28.8319i 0.415785 1.14236i
\(638\) −9.09349 24.9317i −0.360015 0.987057i
\(639\) 0 0
\(640\) 11.0457 4.07955i 0.436620 0.161258i
\(641\) −4.99251 28.3139i −0.197192 1.11833i −0.909262 0.416225i \(-0.863353\pi\)
0.712069 0.702109i \(-0.247758\pi\)
\(642\) 0 0
\(643\) 12.8078 + 35.1891i 0.505090 + 1.38772i 0.886247 + 0.463213i \(0.153303\pi\)
−0.381157 + 0.924510i \(0.624474\pi\)
\(644\) −21.2746 + 0.0287370i −0.838338 + 0.00113239i
\(645\) 0 0
\(646\) −4.36671 + 0.00294919i −0.171806 + 0.000116034i
\(647\) 23.8383 0.937182 0.468591 0.883415i \(-0.344762\pi\)
0.468591 + 0.883415i \(0.344762\pi\)
\(648\) 0 0
\(649\) −47.7068 −1.87266
\(650\) 37.3946 0.0252556i 1.46674 0.000990605i
\(651\) 0 0
\(652\) −0.0112945 8.36161i −0.000442328 0.327466i
\(653\) −16.8138 46.1955i −0.657974 1.80777i −0.585921 0.810368i \(-0.699267\pi\)
−0.0720526 0.997401i \(-0.522955\pi\)
\(654\) 0 0
\(655\) 1.77292 + 10.0547i 0.0692736 + 0.392870i
\(656\) 9.78973 + 8.16959i 0.382225 + 0.318969i
\(657\) 0 0
\(658\) 0.678710 + 1.86083i 0.0264589 + 0.0725426i
\(659\) −9.01137 + 24.7585i −0.351033 + 0.964456i 0.631006 + 0.775778i \(0.282642\pi\)
−0.982039 + 0.188678i \(0.939580\pi\)
\(660\) 0 0
\(661\) −0.937603 + 1.11739i −0.0364685 + 0.0434615i −0.783970 0.620798i \(-0.786809\pi\)
0.747502 + 0.664260i \(0.231253\pi\)
\(662\) 3.81412 + 21.5458i 0.148240 + 0.837402i
\(663\) 0 0
\(664\) −13.5687 + 11.4324i −0.526566 + 0.443663i
\(665\) −2.54332 + 4.40516i −0.0986258 + 0.170825i
\(666\) 0 0
\(667\) 26.0646 15.0484i 1.00923 0.582677i
\(668\) 11.4499 4.18493i 0.443008 0.161920i
\(669\) 0 0
\(670\) −0.365285 + 1.00572i −0.0141122 + 0.0388545i
\(671\) 4.04215 22.9242i 0.156046 0.884979i
\(672\) 0 0
\(673\) 14.2562 11.9623i 0.549534 0.461114i −0.325249 0.945628i \(-0.605448\pi\)
0.874783 + 0.484514i \(0.161004\pi\)
\(674\) −11.0575 + 13.1959i −0.425920 + 0.508289i
\(675\) 0 0
\(676\) 11.3998 + 64.1448i 0.438455 + 2.46711i
\(677\) −2.04257 2.43424i −0.0785022 0.0935553i 0.725364 0.688366i \(-0.241672\pi\)
−0.803866 + 0.594810i \(0.797227\pi\)
\(678\) 0 0
\(679\) −2.93499 + 16.6451i −0.112634 + 0.638782i
\(680\) 0.500207 2.87081i 0.0191821 0.110091i
\(681\) 0 0
\(682\) −7.04435 + 12.2202i −0.269742 + 0.467937i
\(683\) −7.95770 + 4.59438i −0.304493 + 0.175799i −0.644459 0.764639i \(-0.722918\pi\)
0.339967 + 0.940437i \(0.389584\pi\)
\(684\) 0 0
\(685\) 19.9118 + 11.4961i 0.760792 + 0.439243i
\(686\) 22.1463 12.8061i 0.845550 0.488940i
\(687\) 0 0
\(688\) 14.7333 40.8221i 0.561701 1.55633i
\(689\) 25.8705 + 21.7080i 0.985589 + 0.827008i
\(690\) 0 0
\(691\) 6.14708 16.8890i 0.233846 0.642487i −0.766154 0.642657i \(-0.777832\pi\)
1.00000 0.000170287i \(5.42042e-5\pi\)
\(692\) 0.903886 2.49388i 0.0343606 0.0948032i
\(693\) 0 0
\(694\) −5.76665 + 32.8339i −0.218899 + 1.24636i
\(695\) 0.860413 + 4.87964i 0.0326373 + 0.185095i
\(696\) 0 0
\(697\) 2.96524 1.07926i 0.112316 0.0408799i
\(698\) −24.7759 + 20.8180i −0.937780 + 0.787971i
\(699\) 0 0
\(700\) 9.41329 + 7.87705i 0.355789 + 0.297724i
\(701\) 19.1567i 0.723538i −0.932268 0.361769i \(-0.882173\pi\)
0.932268 0.361769i \(-0.117827\pi\)
\(702\) 0 0
\(703\) −11.4952 −0.433548
\(704\) −11.4528 + 31.8675i −0.431643 + 1.20105i
\(705\) 0 0
\(706\) −0.643607 0.765969i −0.0242225 0.0288276i
\(707\) −3.54070 9.72798i −0.133162 0.365858i
\(708\) 0 0
\(709\) 9.23990 1.62924i 0.347012 0.0611875i 0.00257396 0.999997i \(-0.499181\pi\)
0.344438 + 0.938809i \(0.388070\pi\)
\(710\) −1.28360 + 7.30852i −0.0481726 + 0.274284i
\(711\) 0 0
\(712\) −19.6845 + 11.4181i −0.737707 + 0.427911i
\(713\) −15.0318 5.47115i −0.562947 0.204896i
\(714\) 0 0
\(715\) 19.1171 22.7829i 0.714938 0.852031i
\(716\) 19.3875 + 11.1585i 0.724546 + 0.417013i
\(717\) 0 0
\(718\) −12.4363 + 7.19129i −0.464118 + 0.268377i
\(719\) −10.7417 + 18.6051i −0.400596 + 0.693853i −0.993798 0.111201i \(-0.964530\pi\)
0.593202 + 0.805054i \(0.297864\pi\)
\(720\) 0 0
\(721\) 12.4487 + 21.5618i 0.463614 + 0.803003i
\(722\) −11.3587 6.54771i −0.422726 0.243681i
\(723\) 0 0
\(724\) 6.41615 3.71593i 0.238454 0.138102i
\(725\) −17.1004 3.01526i −0.635092 0.111984i
\(726\) 0 0
\(727\) −22.5451 + 18.9176i −0.836151 + 0.701614i −0.956694 0.291094i \(-0.905981\pi\)
0.120543 + 0.992708i \(0.461536\pi\)
\(728\) −14.9068 + 25.9406i −0.552484 + 0.961424i
\(729\) 0 0
\(730\) −15.8352 13.2691i −0.586087 0.491111i
\(731\) −6.90385 8.22768i −0.255348 0.304312i
\(732\) 0 0
\(733\) −43.1488 7.60829i −1.59374 0.281019i −0.694835 0.719170i \(-0.744522\pi\)
−0.898901 + 0.438151i \(0.855634\pi\)
\(734\) 0.922114 2.53882i 0.0340358 0.0937096i
\(735\) 0 0
\(736\) −37.8425 6.54097i −1.39489 0.241103i
\(737\) −1.53859 2.66491i −0.0566746 0.0981632i
\(738\) 0 0
\(739\) −21.9574 12.6771i −0.807716 0.466335i 0.0384462 0.999261i \(-0.487759\pi\)
−0.846162 + 0.532926i \(0.821093\pi\)
\(740\) 1.32187 7.55638i 0.0485930 0.277778i
\(741\) 0 0
\(742\) 1.93227 + 10.9154i 0.0709360 + 0.400716i
\(743\) 3.44991 + 2.89482i 0.126565 + 0.106201i 0.703873 0.710326i \(-0.251452\pi\)
−0.577308 + 0.816526i \(0.695897\pi\)
\(744\) 0 0
\(745\) −22.5055 8.19135i −0.824539 0.300108i
\(746\) 45.9572 16.7622i 1.68261 0.613708i
\(747\) 0 0
\(748\) 5.39548 + 6.41247i 0.197278 + 0.234463i
\(749\) −5.94874 + 1.04892i −0.217362 + 0.0383268i
\(750\) 0 0
\(751\) 36.9941 13.4647i 1.34993 0.491335i 0.437006 0.899459i \(-0.356039\pi\)
0.912927 + 0.408124i \(0.133817\pi\)
\(752\) 0.630390 + 3.51949i 0.0229879 + 0.128343i
\(753\) 0 0
\(754\) −0.0285857 42.3254i −0.00104103 1.54140i
\(755\) 20.6870i 0.752876i
\(756\) 0 0
\(757\) 33.7213i 1.22562i −0.790229 0.612811i \(-0.790039\pi\)
0.790229 0.612811i \(-0.209961\pi\)
\(758\) −38.4577 + 0.0259735i −1.39685 + 0.000943402i
\(759\) 0 0
\(760\) −5.88786 + 7.04583i −0.213575 + 0.255579i
\(761\) 34.7776 12.6580i 1.26069 0.458852i 0.376687 0.926341i \(-0.377063\pi\)
0.883999 + 0.467489i \(0.154841\pi\)
\(762\) 0 0
\(763\) 5.13539 0.905508i 0.185914 0.0327816i
\(764\) 27.6299 23.2479i 0.999615 0.841080i
\(765\) 0 0
\(766\) 2.92794 + 8.02758i 0.105791 + 0.290048i
\(767\) −71.4980 26.0231i −2.58164 0.939641i
\(768\) 0 0
\(769\) −4.44297 3.72810i −0.160218 0.134439i 0.559154 0.829064i \(-0.311126\pi\)
−0.719372 + 0.694625i \(0.755570\pi\)
\(770\) 9.61260 1.70166i 0.346414 0.0613234i
\(771\) 0 0
\(772\) −1.52951 + 8.74333i −0.0550483 + 0.314679i
\(773\) −36.8149 21.2551i −1.32414 0.764492i −0.339753 0.940515i \(-0.610344\pi\)
−0.984386 + 0.176022i \(0.943677\pi\)
\(774\) 0 0
\(775\) 4.61456 + 7.99264i 0.165760 + 0.287104i
\(776\) −10.3770 + 28.6913i −0.372513 + 1.02996i
\(777\) 0 0
\(778\) 15.5361 + 5.64278i 0.556995 + 0.202304i
\(779\) −9.79190 1.72658i −0.350831 0.0618610i
\(780\) 0 0
\(781\) −13.7170 16.3473i −0.490833 0.584951i
\(782\) −6.10421 + 7.28470i −0.218286 + 0.260500i
\(783\) 0 0
\(784\) 17.0664 6.26391i 0.609513 0.223711i
\(785\) −3.89904 + 3.27169i −0.139163 + 0.116771i
\(786\) 0 0
\(787\) 16.8983 + 2.97963i 0.602359 + 0.106212i 0.466508 0.884517i \(-0.345512\pi\)
0.135851 + 0.990729i \(0.456623\pi\)
\(788\) −28.2818 + 16.3795i −1.00750 + 0.583495i
\(789\) 0 0
\(790\) 6.50607 11.2864i 0.231476 0.401554i
\(791\) 6.54642 + 11.3387i 0.232764 + 0.403159i
\(792\) 0 0
\(793\) 18.5627 32.1515i 0.659179 1.14173i
\(794\) 1.89098 + 3.27017i 0.0671084 + 0.116054i
\(795\) 0 0
\(796\) 0.915501 1.59065i 0.0324491 0.0563791i
\(797\) −4.53298 + 5.40220i −0.160567 + 0.191356i −0.840329 0.542076i \(-0.817638\pi\)
0.679763 + 0.733432i \(0.262083\pi\)
\(798\) 0 0
\(799\) 0.831499 + 0.302641i 0.0294163 + 0.0107067i
\(800\) 14.2993 + 16.9249i 0.505557 + 0.598384i
\(801\) 0 0
\(802\) 17.3081 + 3.03984i 0.611171 + 0.107340i
\(803\) 58.5114 10.3171i 2.06482 0.364084i
\(804\) 0 0
\(805\) 3.78652 + 10.4034i 0.133457 + 0.366670i
\(806\) −17.2232 + 14.4719i −0.606663 + 0.509749i
\(807\) 0 0
\(808\) −3.28230 18.3968i −0.115471 0.647197i
\(809\) 34.2649 1.20469 0.602345 0.798236i \(-0.294233\pi\)
0.602345 + 0.798236i \(0.294233\pi\)
\(810\) 0 0
\(811\) 5.06146i 0.177732i −0.996044 0.0888659i \(-0.971676\pi\)
0.996044 0.0888659i \(-0.0283243\pi\)
\(812\) 8.91571 10.6545i 0.312880 0.373900i
\(813\) 0 0
\(814\) 14.1919 + 16.8901i 0.497427 + 0.591998i
\(815\) −4.08885 + 1.48822i −0.143226 + 0.0521301i
\(816\) 0 0
\(817\) 5.87673 + 33.3286i 0.205601 + 1.16602i
\(818\) −7.17937 1.26092i −0.251021 0.0440869i
\(819\) 0 0
\(820\) 2.26098 6.23820i 0.0789569 0.217847i
\(821\) 5.19050 14.2608i 0.181150 0.497705i −0.815568 0.578661i \(-0.803575\pi\)
0.996718 + 0.0809566i \(0.0257975\pi\)
\(822\) 0 0
\(823\) 22.8496 + 19.1731i 0.796487 + 0.668332i 0.947342 0.320224i \(-0.103758\pi\)
−0.150855 + 0.988556i \(0.548203\pi\)
\(824\) 15.4570 + 42.2015i 0.538471 + 1.47016i
\(825\) 0 0
\(826\) −12.5018 21.6200i −0.434993 0.752256i
\(827\) −7.24554 4.18322i −0.251952 0.145465i 0.368706 0.929546i \(-0.379801\pi\)
−0.620658 + 0.784082i \(0.713134\pi\)
\(828\) 0 0
\(829\) −26.4946 + 15.2967i −0.920196 + 0.531276i −0.883698 0.468058i \(-0.844954\pi\)
−0.0364987 + 0.999334i \(0.511620\pi\)
\(830\) 7.99923 + 4.61116i 0.277657 + 0.160056i
\(831\) 0 0
\(832\) −34.5473 + 41.5124i −1.19771 + 1.43918i
\(833\) 0.781255 4.43072i 0.0270689 0.153515i
\(834\) 0 0
\(835\) −4.07776 4.85968i −0.141117 0.168176i
\(836\) −4.62051 25.9988i −0.159804 0.899188i
\(837\) 0 0
\(838\) 3.11099 + 2.60685i 0.107467 + 0.0900522i
\(839\) −5.60536 + 4.70346i −0.193519 + 0.162381i −0.734399 0.678718i \(-0.762536\pi\)
0.540880 + 0.841100i \(0.318091\pi\)
\(840\) 0 0
\(841\) 1.62295 9.20422i 0.0559639 0.317387i
\(842\) −17.9185 6.50811i −0.617514 0.224284i
\(843\) 0 0
\(844\) −4.21025 11.5191i −0.144923 0.396505i
\(845\) 29.3610 16.9516i 1.01005 0.583151i
\(846\) 0 0
\(847\) −5.41924 + 9.38639i −0.186207 + 0.322520i
\(848\) 0.0540575 + 20.0100i 0.00185634 + 0.687146i
\(849\) 0 0
\(850\) 5.39939 0.955818i 0.185197 0.0327843i
\(851\) −16.0820 + 19.1657i −0.551283 + 0.656993i
\(852\) 0 0
\(853\) −15.5473 + 42.7160i −0.532331 + 1.46257i 0.323959 + 0.946071i \(0.394986\pi\)
−0.856290 + 0.516496i \(0.827236\pi\)
\(854\) 11.4482 4.17555i 0.391748 0.142884i
\(855\) 0 0
\(856\) −10.9039 + 0.0220929i −0.372688 + 0.000755120i
\(857\) 3.84017 + 21.7787i 0.131178 + 0.743946i 0.977445 + 0.211188i \(0.0677333\pi\)
−0.846268 + 0.532758i \(0.821156\pi\)
\(858\) 0 0
\(859\) 10.5655 + 29.0285i 0.360491 + 0.990441i 0.978856 + 0.204550i \(0.0655730\pi\)
−0.618365 + 0.785891i \(0.712205\pi\)
\(860\) −22.5845 + 0.0305062i −0.770123 + 0.00104025i
\(861\) 0 0
\(862\) −0.0240840 35.6599i −0.000820303 1.21458i
\(863\) 27.4661 0.934956 0.467478 0.884005i \(-0.345163\pi\)
0.467478 + 0.884005i \(0.345163\pi\)
\(864\) 0 0
\(865\) −1.38039 −0.0469348
\(866\) −0.0148674 22.0134i −0.000505215 0.748046i
\(867\) 0 0
\(868\) −7.38404 + 0.00997407i −0.250631 + 0.000338542i
\(869\) 12.8137 + 35.2053i 0.434675 + 1.19426i
\(870\) 0 0
\(871\) −0.852216 4.83316i −0.0288762 0.163765i
\(872\) 9.41306 0.0190722i 0.318766 0.000645866i
\(873\) 0 0
\(874\) 28.1340 10.2615i 0.951648 0.347100i
\(875\) 4.97337 13.6642i 0.168131 0.461935i
\(876\) 0 0
\(877\) 7.68788 9.16206i 0.259601 0.309381i −0.620463 0.784236i \(-0.713055\pi\)
0.880064 + 0.474855i \(0.157500\pi\)
\(878\) −44.3708 + 7.85468i −1.49744 + 0.265083i
\(879\) 0 0
\(880\) 17.6218 0.0476057i 0.594030 0.00160479i
\(881\) −18.8243 + 32.6046i −0.634205 + 1.09848i 0.352478 + 0.935820i \(0.385339\pi\)
−0.986683 + 0.162655i \(0.947994\pi\)
\(882\) 0 0
\(883\) 19.8345 11.4515i 0.667485 0.385373i −0.127638 0.991821i \(-0.540739\pi\)
0.795123 + 0.606448i \(0.207406\pi\)
\(884\) 4.58831 + 12.5535i 0.154321 + 0.422219i
\(885\) 0 0
\(886\) 8.40762 + 3.05369i 0.282459 + 0.102591i
\(887\) −0.995710 + 5.64695i −0.0334327 + 0.189606i −0.996950 0.0780387i \(-0.975134\pi\)
0.963518 + 0.267645i \(0.0862454\pi\)
\(888\) 0 0
\(889\) 4.39338 3.68648i 0.147349 0.123641i
\(890\) 9.07670 + 7.60581i 0.304252 + 0.254947i
\(891\) 0 0
\(892\) 7.50355 + 42.2212i 0.251237 + 1.41367i
\(893\) −1.79219 2.13585i −0.0599735 0.0714737i
\(894\) 0 0
\(895\) 2.02139 11.4639i 0.0675675 0.383194i
\(896\) −17.4431 + 3.16080i −0.582734 + 0.105595i
\(897\) 0 0
\(898\) 10.2465 + 5.90660i 0.341931 + 0.197106i
\(899\) 9.04655 5.22303i 0.301719 0.174198i
\(900\) 0 0
\(901\) 4.28862 + 2.47604i 0.142875 + 0.0824888i
\(902\) 9.55219 + 16.5191i 0.318053 + 0.550026i
\(903\) 0 0
\(904\) 8.12841 + 22.1926i 0.270347 + 0.738116i
\(905\) −2.95572 2.48014i −0.0982513 0.0824426i
\(906\) 0 0
\(907\) 8.42248 23.1406i 0.279664 0.768370i −0.717737 0.696315i \(-0.754822\pi\)
0.997401 0.0720557i \(-0.0229559\pi\)
\(908\) 12.6815 34.9891i 0.420851 1.16116i
\(909\) 0 0
\(910\) 15.3346 + 2.69322i 0.508336 + 0.0892795i
\(911\) −6.32793 35.8875i −0.209654 1.18901i −0.889947 0.456065i \(-0.849259\pi\)
0.680293 0.732940i \(-0.261853\pi\)
\(912\) 0 0
\(913\) −24.9517 + 9.08166i −0.825780 + 0.300559i
\(914\) −25.6218 30.4930i −0.847494 1.00862i
\(915\) 0 0
\(916\) 11.3979 13.6208i 0.376596 0.450043i
\(917\) 15.3708i 0.507590i
\(918\) 0 0
\(919\) 27.8245 0.917845 0.458923 0.888476i \(-0.348236\pi\)
0.458923 + 0.888476i \(0.348236\pi\)
\(920\) 3.51018 + 19.6740i 0.115727 + 0.648634i
\(921\) 0 0
\(922\) 28.3007 23.7797i 0.932034 0.783143i
\(923\) −11.6405 31.9819i −0.383151 1.05270i
\(924\) 0 0
\(925\) 14.2153 2.50654i 0.467397 0.0824146i
\(926\) 30.8511 + 5.41840i 1.01383 + 0.178060i
\(927\) 0 0
\(928\) 19.1565 16.1848i 0.628845 0.531292i
\(929\) −14.0864 5.12703i −0.462160 0.168212i 0.100438 0.994943i \(-0.467976\pi\)
−0.562598 + 0.826731i \(0.690198\pi\)
\(930\) 0 0
\(931\) −9.11238 + 10.8597i −0.298646 + 0.355913i
\(932\) 18.7506 32.5786i 0.614197 1.06715i
\(933\) 0 0
\(934\) −15.6675 27.0946i −0.512656 0.886564i
\(935\) 2.18052 3.77677i 0.0713106 0.123514i
\(936\) 0 0
\(937\) −9.57278 16.5805i −0.312729 0.541663i 0.666223 0.745753i \(-0.267910\pi\)
−0.978952 + 0.204090i \(0.934577\pi\)
\(938\) 0.804504 1.39562i 0.0262680 0.0455685i
\(939\) 0 0
\(940\) 1.61010 0.932496i 0.0525158 0.0304147i
\(941\) 36.4053 + 6.41923i 1.18678 + 0.209261i 0.731975 0.681331i \(-0.238599\pi\)
0.454803 + 0.890592i \(0.349710\pi\)
\(942\) 0 0
\(943\) −16.5778 + 13.9104i −0.539847 + 0.452985i
\(944\) −15.5334 42.3216i −0.505569 1.37745i
\(945\) 0 0
\(946\) 41.7151 49.7823i 1.35627 1.61856i
\(947\) −16.0406 19.1164i −0.521248 0.621199i 0.439627 0.898180i \(-0.355110\pi\)
−0.960875 + 0.276981i \(0.910666\pi\)
\(948\) 0 0
\(949\) 93.3185 + 16.4546i 3.02925 + 0.534138i
\(950\) −16.2397 5.89836i −0.526887 0.191368i
\(951\) 0 0
\(952\) −1.49213 + 4.12557i −0.0483601 + 0.133711i
\(953\) 7.31014 + 12.6615i 0.236799 + 0.410147i 0.959794 0.280706i \(-0.0905685\pi\)
−0.722995 + 0.690853i \(0.757235\pi\)
\(954\) 0 0
\(955\) −16.2733 9.39537i −0.526590 0.304027i
\(956\) 7.07841 40.4632i 0.228932 1.30867i
\(957\) 0 0
\(958\) −16.5592 + 2.93137i −0.535004 + 0.0947083i
\(959\) −26.5164 22.2499i −0.856258 0.718486i
\(960\) 0 0
\(961\) 23.9132 + 8.70369i 0.771393 + 0.280764i
\(962\) 12.0562 + 33.0545i 0.388706 + 1.06572i
\(963\) 0 0
\(964\) 21.0819 17.7384i 0.679004 0.571316i
\(965\) 4.54883 0.802081i 0.146432 0.0258199i
\(966\) 0 0
\(967\) 48.8192 17.7687i 1.56992 0.571404i 0.596937 0.802288i \(-0.296384\pi\)
0.972981 + 0.230884i \(0.0741619\pi\)
\(968\) −12.5457 + 15.0130i −0.403234 + 0.482537i
\(969\) 0 0
\(970\) 15.8771 0.0107231i 0.509783 0.000344297i
\(971\) 20.4952i 0.657724i 0.944378 + 0.328862i \(0.106665\pi\)
−0.944378 + 0.328862i \(0.893335\pi\)
\(972\) 0 0
\(973\) 7.45961i 0.239144i
\(974\) 0.0211259 + 31.2800i 0.000676918 + 1.00228i
\(975\) 0 0
\(976\) 21.6526 3.87828i 0.693083 0.124141i
\(977\) 7.72505 2.81169i 0.247146 0.0899539i −0.215477 0.976509i \(-0.569131\pi\)
0.462623 + 0.886555i \(0.346908\pi\)
\(978\) 0 0
\(979\) −33.5386 + 5.91376i −1.07190 + 0.189004i
\(980\) −6.09081 7.23886i −0.194564 0.231237i
\(981\) 0 0
\(982\) −9.91804 + 3.61746i −0.316497 + 0.115438i
\(983\) 22.5289 + 8.19984i 0.718559 + 0.261534i 0.675314 0.737530i \(-0.264008\pi\)
0.0432453 + 0.999064i \(0.486230\pi\)
\(984\) 0 0
\(985\) 13.0285 + 10.9322i 0.415123 + 0.348330i
\(986\) −1.08185 6.11135i −0.0344532 0.194625i
\(987\) 0 0
\(988\) 7.25711 41.4847i 0.230880 1.31981i
\(989\) 63.7900 + 36.8292i 2.02840 + 1.17110i
\(990\) 0 0
\(991\) 8.43544 + 14.6106i 0.267960 + 0.464121i 0.968335 0.249654i \(-0.0803170\pi\)
−0.700375 + 0.713776i \(0.746984\pi\)
\(992\) −13.1344 2.27025i −0.417019 0.0720805i
\(993\) 0 0
\(994\) 3.81374 10.5002i 0.120964 0.333047i
\(995\) −0.940553 0.165845i −0.0298175 0.00525763i
\(996\) 0 0
\(997\) −21.3234 25.4122i −0.675317 0.804812i 0.314180 0.949363i \(-0.398270\pi\)
−0.989497 + 0.144552i \(0.953826\pi\)
\(998\) 11.2218 + 9.40333i 0.355221 + 0.297657i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.37.17 204
3.2 odd 2 216.2.t.a.157.18 204
8.5 even 2 inner 648.2.t.a.37.3 204
12.11 even 2 864.2.bf.a.49.15 204
24.5 odd 2 216.2.t.a.157.32 yes 204
24.11 even 2 864.2.bf.a.49.20 204
27.11 odd 18 216.2.t.a.205.32 yes 204
27.16 even 9 inner 648.2.t.a.613.3 204
108.11 even 18 864.2.bf.a.529.20 204
216.11 even 18 864.2.bf.a.529.15 204
216.173 odd 18 216.2.t.a.205.18 yes 204
216.205 even 18 inner 648.2.t.a.613.17 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.18 204 3.2 odd 2
216.2.t.a.157.32 yes 204 24.5 odd 2
216.2.t.a.205.18 yes 204 216.173 odd 18
216.2.t.a.205.32 yes 204 27.11 odd 18
648.2.t.a.37.3 204 8.5 even 2 inner
648.2.t.a.37.17 204 1.1 even 1 trivial
648.2.t.a.613.3 204 27.16 even 9 inner
648.2.t.a.613.17 204 216.205 even 18 inner
864.2.bf.a.49.15 204 12.11 even 2
864.2.bf.a.49.20 204 24.11 even 2
864.2.bf.a.529.15 204 216.11 even 18
864.2.bf.a.529.20 204 108.11 even 18