Properties

Label 648.2.t.a.37.8
Level $648$
Weight $2$
Character 648.37
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 37.8
Character \(\chi\) \(=\) 648.37
Dual form 648.2.t.a.613.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12116 - 0.861977i) q^{2} +(0.513991 + 1.93283i) q^{4} +(1.15428 + 3.17134i) q^{5} +(0.593321 + 3.36489i) q^{7} +(1.08978 - 2.61005i) q^{8} +(1.43950 - 4.55054i) q^{10} +(0.197048 - 0.541384i) q^{11} +(4.30199 - 5.12691i) q^{13} +(2.23525 - 4.28400i) q^{14} +(-3.47163 + 1.98691i) q^{16} +(-1.15893 + 2.00733i) q^{17} +(-0.353289 + 0.203971i) q^{19} +(-5.53637 + 3.86106i) q^{20} +(-0.687582 + 0.437127i) q^{22} +(-1.15186 + 6.53250i) q^{23} +(-4.89486 + 4.10727i) q^{25} +(-9.24249 + 2.03986i) q^{26} +(-6.19878 + 2.87631i) q^{28} +(2.24644 + 2.67721i) q^{29} +(-0.382945 + 2.17179i) q^{31} +(5.60491 + 0.764819i) q^{32} +(3.02962 - 1.25156i) q^{34} +(-9.98637 + 5.76564i) q^{35} +(-1.05249 - 0.607656i) q^{37} +(0.571912 + 0.0758426i) q^{38} +(9.53529 + 0.443366i) q^{40} +(-5.09057 - 4.27150i) q^{41} +(0.442145 - 1.21478i) q^{43} +(1.14768 + 0.102592i) q^{44} +(6.92227 - 6.33109i) q^{46} +(0.547022 + 3.10232i) q^{47} +(-4.39261 + 1.59878i) q^{49} +(9.02828 - 0.385648i) q^{50} +(12.1206 + 5.67980i) q^{52} -9.35460i q^{53} +1.94436 q^{55} +(9.42913 + 2.11841i) q^{56} +(-0.210928 - 4.93796i) q^{58} +(3.00302 + 8.25072i) q^{59} +(-4.67459 + 0.824257i) q^{61} +(2.30137 - 2.10483i) q^{62} +(-5.62474 - 5.68879i) q^{64} +(21.2249 + 7.72523i) q^{65} +(-9.67062 + 11.5250i) q^{67} +(-4.47550 - 1.20826i) q^{68} +(16.1662 + 2.14383i) q^{70} +(3.92323 - 6.79524i) q^{71} +(0.641809 + 1.11165i) q^{73} +(0.656224 + 1.58850i) q^{74} +(-0.575829 - 0.578006i) q^{76} +(1.93861 + 0.341829i) q^{77} +(3.84081 - 3.22282i) q^{79} +(-10.3084 - 8.71628i) q^{80} +(2.02541 + 9.17698i) q^{82} +(-6.67152 - 7.95081i) q^{83} +(-7.70366 - 1.35836i) q^{85} +(-1.54283 + 0.980846i) q^{86} +(-1.19830 - 1.10430i) q^{88} +(2.86501 + 4.96234i) q^{89} +(19.8040 + 11.4338i) q^{91} +(-13.2182 + 1.13131i) q^{92} +(2.06083 - 3.94971i) q^{94} +(-1.05466 - 0.884962i) q^{95} +(10.5548 + 3.84165i) q^{97} +(6.30293 + 1.99385i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12116 0.861977i −0.792779 0.609510i
\(3\) 0 0
\(4\) 0.513991 + 1.93283i 0.256996 + 0.966413i
\(5\) 1.15428 + 3.17134i 0.516208 + 1.41827i 0.874667 + 0.484723i \(0.161080\pi\)
−0.358460 + 0.933545i \(0.616698\pi\)
\(6\) 0 0
\(7\) 0.593321 + 3.36489i 0.224254 + 1.27181i 0.864106 + 0.503311i \(0.167885\pi\)
−0.639851 + 0.768499i \(0.721004\pi\)
\(8\) 1.08978 2.61005i 0.385297 0.922793i
\(9\) 0 0
\(10\) 1.43950 4.55054i 0.455210 1.43901i
\(11\) 0.197048 0.541384i 0.0594121 0.163233i −0.906435 0.422344i \(-0.861207\pi\)
0.965848 + 0.259111i \(0.0834295\pi\)
\(12\) 0 0
\(13\) 4.30199 5.12691i 1.19316 1.42195i 0.311379 0.950286i \(-0.399209\pi\)
0.881779 0.471664i \(-0.156346\pi\)
\(14\) 2.23525 4.28400i 0.597396 1.14495i
\(15\) 0 0
\(16\) −3.47163 + 1.98691i −0.867906 + 0.496728i
\(17\) −1.15893 + 2.00733i −0.281082 + 0.486849i −0.971652 0.236417i \(-0.924027\pi\)
0.690569 + 0.723266i \(0.257360\pi\)
\(18\) 0 0
\(19\) −0.353289 + 0.203971i −0.0810500 + 0.0467943i −0.539977 0.841680i \(-0.681567\pi\)
0.458927 + 0.888474i \(0.348234\pi\)
\(20\) −5.53637 + 3.86106i −1.23797 + 0.863358i
\(21\) 0 0
\(22\) −0.687582 + 0.437127i −0.146593 + 0.0931957i
\(23\) −1.15186 + 6.53250i −0.240178 + 1.36212i 0.591250 + 0.806488i \(0.298635\pi\)
−0.831429 + 0.555631i \(0.812477\pi\)
\(24\) 0 0
\(25\) −4.89486 + 4.10727i −0.978971 + 0.821454i
\(26\) −9.24249 + 2.03986i −1.81260 + 0.400050i
\(27\) 0 0
\(28\) −6.19878 + 2.87631i −1.17146 + 0.543572i
\(29\) 2.24644 + 2.67721i 0.417154 + 0.497145i 0.933171 0.359434i \(-0.117030\pi\)
−0.516016 + 0.856579i \(0.672586\pi\)
\(30\) 0 0
\(31\) −0.382945 + 2.17179i −0.0687790 + 0.390065i 0.930913 + 0.365241i \(0.119014\pi\)
−0.999692 + 0.0248236i \(0.992098\pi\)
\(32\) 5.60491 + 0.764819i 0.990818 + 0.135202i
\(33\) 0 0
\(34\) 3.02962 1.25156i 0.519575 0.214641i
\(35\) −9.98637 + 5.76564i −1.68801 + 0.974570i
\(36\) 0 0
\(37\) −1.05249 0.607656i −0.173028 0.0998980i 0.410985 0.911642i \(-0.365185\pi\)
−0.584013 + 0.811744i \(0.698518\pi\)
\(38\) 0.571912 + 0.0758426i 0.0927763 + 0.0123033i
\(39\) 0 0
\(40\) 9.53529 + 0.443366i 1.50766 + 0.0701023i
\(41\) −5.09057 4.27150i −0.795014 0.667096i 0.151967 0.988386i \(-0.451439\pi\)
−0.946981 + 0.321290i \(0.895884\pi\)
\(42\) 0 0
\(43\) 0.442145 1.21478i 0.0674265 0.185253i −0.901403 0.432981i \(-0.857462\pi\)
0.968830 + 0.247728i \(0.0796840\pi\)
\(44\) 1.14768 + 0.102592i 0.173020 + 0.0154663i
\(45\) 0 0
\(46\) 6.92227 6.33109i 1.02063 0.933468i
\(47\) 0.547022 + 3.10232i 0.0797914 + 0.452520i 0.998359 + 0.0572567i \(0.0182354\pi\)
−0.918568 + 0.395263i \(0.870654\pi\)
\(48\) 0 0
\(49\) −4.39261 + 1.59878i −0.627516 + 0.228397i
\(50\) 9.02828 0.385648i 1.27679 0.0545389i
\(51\) 0 0
\(52\) 12.1206 + 5.67980i 1.68083 + 0.787647i
\(53\) 9.35460i 1.28495i −0.766305 0.642477i \(-0.777907\pi\)
0.766305 0.642477i \(-0.222093\pi\)
\(54\) 0 0
\(55\) 1.94436 0.262178
\(56\) 9.42913 + 2.11841i 1.26002 + 0.283084i
\(57\) 0 0
\(58\) −0.210928 4.93796i −0.0276962 0.648385i
\(59\) 3.00302 + 8.25072i 0.390959 + 1.07415i 0.966564 + 0.256424i \(0.0825444\pi\)
−0.575605 + 0.817728i \(0.695233\pi\)
\(60\) 0 0
\(61\) −4.67459 + 0.824257i −0.598520 + 0.105535i −0.464697 0.885470i \(-0.653837\pi\)
−0.133824 + 0.991005i \(0.542726\pi\)
\(62\) 2.30137 2.10483i 0.292275 0.267314i
\(63\) 0 0
\(64\) −5.62474 5.68879i −0.703092 0.711099i
\(65\) 21.2249 + 7.72523i 2.63262 + 0.958196i
\(66\) 0 0
\(67\) −9.67062 + 11.5250i −1.18145 + 1.40800i −0.288723 + 0.957413i \(0.593231\pi\)
−0.892731 + 0.450589i \(0.851214\pi\)
\(68\) −4.47550 1.20826i −0.542734 0.146523i
\(69\) 0 0
\(70\) 16.1662 + 2.14383i 1.93222 + 0.256237i
\(71\) 3.92323 6.79524i 0.465602 0.806446i −0.533627 0.845720i \(-0.679171\pi\)
0.999228 + 0.0392740i \(0.0125045\pi\)
\(72\) 0 0
\(73\) 0.641809 + 1.11165i 0.0751180 + 0.130108i 0.901138 0.433533i \(-0.142733\pi\)
−0.826020 + 0.563641i \(0.809400\pi\)
\(74\) 0.656224 + 1.58850i 0.0762844 + 0.184660i
\(75\) 0 0
\(76\) −0.575829 0.578006i −0.0660521 0.0663019i
\(77\) 1.93861 + 0.341829i 0.220925 + 0.0389551i
\(78\) 0 0
\(79\) 3.84081 3.22282i 0.432125 0.362596i −0.400628 0.916241i \(-0.631208\pi\)
0.832753 + 0.553645i \(0.186764\pi\)
\(80\) −10.3084 8.71628i −1.15251 0.974510i
\(81\) 0 0
\(82\) 2.02541 + 9.17698i 0.223669 + 1.01343i
\(83\) −6.67152 7.95081i −0.732295 0.872715i 0.263468 0.964668i \(-0.415134\pi\)
−0.995763 + 0.0919529i \(0.970689\pi\)
\(84\) 0 0
\(85\) −7.70366 1.35836i −0.835580 0.147335i
\(86\) −1.54283 + 0.980846i −0.166368 + 0.105767i
\(87\) 0 0
\(88\) −1.19830 1.10430i −0.127739 0.117718i
\(89\) 2.86501 + 4.96234i 0.303690 + 0.526007i 0.976969 0.213382i \(-0.0684478\pi\)
−0.673278 + 0.739389i \(0.735114\pi\)
\(90\) 0 0
\(91\) 19.8040 + 11.4338i 2.07602 + 1.19859i
\(92\) −13.2182 + 1.13131i −1.37809 + 0.117947i
\(93\) 0 0
\(94\) 2.06083 3.94971i 0.212558 0.407381i
\(95\) −1.05466 0.884962i −0.108205 0.0907952i
\(96\) 0 0
\(97\) 10.5548 + 3.84165i 1.07168 + 0.390061i 0.816806 0.576913i \(-0.195743\pi\)
0.254877 + 0.966974i \(0.417965\pi\)
\(98\) 6.30293 + 1.99385i 0.636692 + 0.201409i
\(99\) 0 0
\(100\) −10.4546 7.34980i −1.04546 0.734980i
\(101\) 12.2411 2.15844i 1.21804 0.214773i 0.472557 0.881300i \(-0.343331\pi\)
0.745481 + 0.666527i \(0.232220\pi\)
\(102\) 0 0
\(103\) −14.8537 + 5.40632i −1.46358 + 0.532701i −0.946350 0.323144i \(-0.895260\pi\)
−0.517233 + 0.855844i \(0.673038\pi\)
\(104\) −8.69326 16.8156i −0.852444 1.64891i
\(105\) 0 0
\(106\) −8.06345 + 10.4880i −0.783192 + 1.01868i
\(107\) 2.44491i 0.236359i −0.992992 0.118179i \(-0.962294\pi\)
0.992992 0.118179i \(-0.0377058\pi\)
\(108\) 0 0
\(109\) 16.2522i 1.55668i −0.627843 0.778340i \(-0.716062\pi\)
0.627843 0.778340i \(-0.283938\pi\)
\(110\) −2.17994 1.67600i −0.207849 0.159800i
\(111\) 0 0
\(112\) −8.74553 10.5028i −0.826375 0.992418i
\(113\) 11.4376 4.16294i 1.07596 0.391617i 0.257556 0.966263i \(-0.417083\pi\)
0.818402 + 0.574646i \(0.194860\pi\)
\(114\) 0 0
\(115\) −22.0464 + 3.88737i −2.05583 + 0.362499i
\(116\) −4.01992 + 5.71804i −0.373240 + 0.530907i
\(117\) 0 0
\(118\) 3.74507 11.8389i 0.344762 1.08986i
\(119\) −7.44207 2.70869i −0.682213 0.248305i
\(120\) 0 0
\(121\) 8.17222 + 6.85731i 0.742929 + 0.623392i
\(122\) 5.95145 + 3.10527i 0.538819 + 0.281138i
\(123\) 0 0
\(124\) −4.39452 + 0.376115i −0.394639 + 0.0337762i
\(125\) −4.06195 2.34517i −0.363312 0.209758i
\(126\) 0 0
\(127\) −4.79341 8.30243i −0.425346 0.736722i 0.571106 0.820876i \(-0.306514\pi\)
−0.996453 + 0.0841546i \(0.973181\pi\)
\(128\) 1.40262 + 11.2264i 0.123975 + 0.992285i
\(129\) 0 0
\(130\) −17.1375 26.9566i −1.50306 2.36425i
\(131\) −0.406480 0.0716734i −0.0355143 0.00626213i 0.155863 0.987779i \(-0.450184\pi\)
−0.191377 + 0.981517i \(0.561295\pi\)
\(132\) 0 0
\(133\) −0.895956 1.06776i −0.0776892 0.0925864i
\(134\) 20.7766 4.58549i 1.79482 0.396126i
\(135\) 0 0
\(136\) 3.97625 + 5.21243i 0.340960 + 0.446962i
\(137\) −12.0727 + 10.1302i −1.03144 + 0.865480i −0.991021 0.133703i \(-0.957313\pi\)
−0.0404177 + 0.999183i \(0.512869\pi\)
\(138\) 0 0
\(139\) 2.17442 + 0.383409i 0.184432 + 0.0325204i 0.265101 0.964221i \(-0.414595\pi\)
−0.0806691 + 0.996741i \(0.525706\pi\)
\(140\) −16.2769 16.3384i −1.37565 1.38085i
\(141\) 0 0
\(142\) −10.2559 + 4.23680i −0.860656 + 0.355544i
\(143\) −1.92793 3.33928i −0.161222 0.279244i
\(144\) 0 0
\(145\) −5.89733 + 10.2145i −0.489747 + 0.848267i
\(146\) 0.238644 1.79955i 0.0197503 0.148932i
\(147\) 0 0
\(148\) 0.633521 2.34661i 0.0520751 0.192890i
\(149\) 4.40044 5.24424i 0.360498 0.429625i −0.555060 0.831810i \(-0.687305\pi\)
0.915558 + 0.402186i \(0.131749\pi\)
\(150\) 0 0
\(151\) 11.0866 + 4.03519i 0.902213 + 0.328379i 0.751139 0.660144i \(-0.229505\pi\)
0.151074 + 0.988522i \(0.451727\pi\)
\(152\) 0.147367 + 1.14439i 0.0119531 + 0.0928221i
\(153\) 0 0
\(154\) −1.87884 2.05428i −0.151401 0.165539i
\(155\) −7.32952 + 1.29239i −0.588721 + 0.103807i
\(156\) 0 0
\(157\) 4.12184 + 11.3247i 0.328959 + 0.903808i 0.988376 + 0.152030i \(0.0485810\pi\)
−0.659417 + 0.751778i \(0.729197\pi\)
\(158\) −7.08416 + 0.302604i −0.563585 + 0.0240739i
\(159\) 0 0
\(160\) 4.04411 + 18.6579i 0.319715 + 1.47504i
\(161\) −22.6646 −1.78622
\(162\) 0 0
\(163\) 13.3972i 1.04935i −0.851303 0.524675i \(-0.824187\pi\)
0.851303 0.524675i \(-0.175813\pi\)
\(164\) 5.63955 12.0347i 0.440375 0.939752i
\(165\) 0 0
\(166\) 0.626417 + 14.6648i 0.0486194 + 1.13821i
\(167\) 6.36473 2.31657i 0.492517 0.179262i −0.0838081 0.996482i \(-0.526708\pi\)
0.576325 + 0.817220i \(0.304486\pi\)
\(168\) 0 0
\(169\) −5.52068 31.3093i −0.424668 2.40841i
\(170\) 7.46615 + 8.16332i 0.572627 + 0.626098i
\(171\) 0 0
\(172\) 2.57522 + 0.230201i 0.196359 + 0.0175526i
\(173\) −0.576454 + 1.58380i −0.0438270 + 0.120414i −0.959675 0.281111i \(-0.909297\pi\)
0.915848 + 0.401524i \(0.131519\pi\)
\(174\) 0 0
\(175\) −16.7247 14.0337i −1.26427 1.06085i
\(176\) 0.391606 + 2.27100i 0.0295184 + 0.171183i
\(177\) 0 0
\(178\) 1.06530 8.03314i 0.0798473 0.602110i
\(179\) −10.3190 5.95768i −0.771279 0.445298i 0.0620517 0.998073i \(-0.480236\pi\)
−0.833331 + 0.552775i \(0.813569\pi\)
\(180\) 0 0
\(181\) 14.3027 8.25769i 1.06311 0.613789i 0.136822 0.990596i \(-0.456311\pi\)
0.926292 + 0.376806i \(0.122978\pi\)
\(182\) −12.3477 29.8897i −0.915271 2.21557i
\(183\) 0 0
\(184\) 15.7949 + 10.1254i 1.16441 + 0.746456i
\(185\) 0.712223 4.03922i 0.0523636 0.296969i
\(186\) 0 0
\(187\) 0.858372 + 1.02297i 0.0627703 + 0.0748068i
\(188\) −5.71507 + 2.65186i −0.416815 + 0.193407i
\(189\) 0 0
\(190\) 0.419620 + 1.90127i 0.0304424 + 0.137933i
\(191\) 10.1267 8.49734i 0.732745 0.614846i −0.198134 0.980175i \(-0.563488\pi\)
0.930878 + 0.365329i \(0.119044\pi\)
\(192\) 0 0
\(193\) −0.0307325 + 0.174293i −0.00221218 + 0.0125459i −0.985894 0.167372i \(-0.946472\pi\)
0.983682 + 0.179918i \(0.0575831\pi\)
\(194\) −8.52224 13.4051i −0.611861 0.962433i
\(195\) 0 0
\(196\) −5.34793 7.66839i −0.381995 0.547742i
\(197\) 0.841221 0.485679i 0.0599345 0.0346032i −0.469733 0.882808i \(-0.655650\pi\)
0.529668 + 0.848205i \(0.322317\pi\)
\(198\) 0 0
\(199\) 2.04926 3.54942i 0.145268 0.251612i −0.784205 0.620502i \(-0.786929\pi\)
0.929473 + 0.368890i \(0.120262\pi\)
\(200\) 5.38585 + 17.2519i 0.380837 + 1.21989i
\(201\) 0 0
\(202\) −15.5848 8.13161i −1.09654 0.572138i
\(203\) −7.67565 + 9.14748i −0.538725 + 0.642027i
\(204\) 0 0
\(205\) 7.67047 21.0745i 0.535729 1.47190i
\(206\) 21.3135 + 6.74225i 1.48498 + 0.469755i
\(207\) 0 0
\(208\) −4.74818 + 26.3464i −0.329227 + 1.82679i
\(209\) 0.0408121 + 0.231457i 0.00282303 + 0.0160102i
\(210\) 0 0
\(211\) 1.28341 + 3.52613i 0.0883534 + 0.242749i 0.975998 0.217781i \(-0.0698817\pi\)
−0.887644 + 0.460530i \(0.847660\pi\)
\(212\) 18.0808 4.80819i 1.24180 0.330228i
\(213\) 0 0
\(214\) −2.10746 + 2.74114i −0.144063 + 0.187380i
\(215\) 4.36285 0.297544
\(216\) 0 0
\(217\) −7.53504 −0.511512
\(218\) −14.0090 + 18.2213i −0.948812 + 1.23410i
\(219\) 0 0
\(220\) 0.999386 + 3.75811i 0.0673786 + 0.253372i
\(221\) 5.30569 + 14.5773i 0.356899 + 0.980572i
\(222\) 0 0
\(223\) 0.680991 + 3.86209i 0.0456025 + 0.258625i 0.999082 0.0428323i \(-0.0136381\pi\)
−0.953480 + 0.301457i \(0.902527\pi\)
\(224\) 0.751980 + 19.3137i 0.0502437 + 1.29045i
\(225\) 0 0
\(226\) −16.4117 5.19162i −1.09169 0.345342i
\(227\) 4.04735 11.1200i 0.268632 0.738061i −0.729882 0.683573i \(-0.760425\pi\)
0.998514 0.0544879i \(-0.0173526\pi\)
\(228\) 0 0
\(229\) −6.81207 + 8.11831i −0.450154 + 0.536473i −0.942624 0.333857i \(-0.891650\pi\)
0.492470 + 0.870330i \(0.336094\pi\)
\(230\) 28.0683 + 14.6451i 1.85077 + 0.965669i
\(231\) 0 0
\(232\) 9.43579 2.94575i 0.619490 0.193398i
\(233\) 0.565006 0.978619i 0.0370148 0.0641115i −0.846925 0.531713i \(-0.821548\pi\)
0.883939 + 0.467602i \(0.154882\pi\)
\(234\) 0 0
\(235\) −9.20711 + 5.31572i −0.600605 + 0.346760i
\(236\) −14.4037 + 10.0451i −0.937599 + 0.653881i
\(237\) 0 0
\(238\) 6.00890 + 9.45176i 0.389499 + 0.612667i
\(239\) −1.00787 + 5.71591i −0.0651936 + 0.369731i 0.934704 + 0.355427i \(0.115665\pi\)
−0.999898 + 0.0143045i \(0.995447\pi\)
\(240\) 0 0
\(241\) 22.5974 18.9615i 1.45563 1.22142i 0.527286 0.849688i \(-0.323210\pi\)
0.928342 0.371728i \(-0.121235\pi\)
\(242\) −3.25151 14.7324i −0.209015 0.947034i
\(243\) 0 0
\(244\) −3.99585 8.61151i −0.255808 0.551295i
\(245\) −10.1406 12.0851i −0.647857 0.772086i
\(246\) 0 0
\(247\) −0.474102 + 2.68876i −0.0301664 + 0.171082i
\(248\) 5.25115 + 3.36629i 0.333449 + 0.213760i
\(249\) 0 0
\(250\) 2.53261 + 6.13061i 0.160176 + 0.387734i
\(251\) 5.20730 3.00644i 0.328682 0.189765i −0.326574 0.945172i \(-0.605894\pi\)
0.655256 + 0.755407i \(0.272561\pi\)
\(252\) 0 0
\(253\) 3.30962 + 1.91081i 0.208074 + 0.120132i
\(254\) −1.78233 + 13.4401i −0.111833 + 0.843310i
\(255\) 0 0
\(256\) 8.10437 13.7956i 0.506523 0.862226i
\(257\) −19.8936 16.6927i −1.24093 1.04126i −0.997451 0.0713589i \(-0.977266\pi\)
−0.243480 0.969906i \(-0.578289\pi\)
\(258\) 0 0
\(259\) 1.42023 3.90205i 0.0882489 0.242462i
\(260\) −4.02210 + 44.9947i −0.249440 + 2.79045i
\(261\) 0 0
\(262\) 0.393948 + 0.430734i 0.0243382 + 0.0266108i
\(263\) 2.41565 + 13.6998i 0.148956 + 0.844769i 0.964106 + 0.265519i \(0.0855433\pi\)
−0.815150 + 0.579250i \(0.803346\pi\)
\(264\) 0 0
\(265\) 29.6667 10.7978i 1.82241 0.663303i
\(266\) 0.0841249 + 1.96942i 0.00515803 + 0.120753i
\(267\) 0 0
\(268\) −27.2464 12.7679i −1.66434 0.779921i
\(269\) 3.89404i 0.237424i −0.992929 0.118712i \(-0.962123\pi\)
0.992929 0.118712i \(-0.0378765\pi\)
\(270\) 0 0
\(271\) 27.1005 1.64624 0.823119 0.567869i \(-0.192232\pi\)
0.823119 + 0.567869i \(0.192232\pi\)
\(272\) 0.0349931 9.27139i 0.00212177 0.562161i
\(273\) 0 0
\(274\) 22.2674 0.951165i 1.34522 0.0574620i
\(275\) 1.25909 + 3.45933i 0.0759261 + 0.208605i
\(276\) 0 0
\(277\) −7.05421 + 1.24385i −0.423847 + 0.0747356i −0.381503 0.924368i \(-0.624593\pi\)
−0.0423435 + 0.999103i \(0.513482\pi\)
\(278\) −2.10738 2.30417i −0.126392 0.138195i
\(279\) 0 0
\(280\) 4.16561 + 32.3483i 0.248943 + 1.93318i
\(281\) 0.728892 + 0.265295i 0.0434820 + 0.0158262i 0.363670 0.931528i \(-0.381524\pi\)
−0.320188 + 0.947354i \(0.603746\pi\)
\(282\) 0 0
\(283\) 0.982704 1.17114i 0.0584157 0.0696171i −0.736045 0.676932i \(-0.763309\pi\)
0.794461 + 0.607315i \(0.207753\pi\)
\(284\) 15.1505 + 4.09023i 0.899017 + 0.242710i
\(285\) 0 0
\(286\) −0.716862 + 5.40569i −0.0423889 + 0.319645i
\(287\) 11.3528 19.6636i 0.670134 1.16071i
\(288\) 0 0
\(289\) 5.81375 + 10.0697i 0.341985 + 0.592336i
\(290\) 15.4165 6.36868i 0.905288 0.373982i
\(291\) 0 0
\(292\) −1.81873 + 1.81188i −0.106433 + 0.106032i
\(293\) 15.6621 + 2.76164i 0.914987 + 0.161337i 0.611267 0.791424i \(-0.290660\pi\)
0.303720 + 0.952761i \(0.401771\pi\)
\(294\) 0 0
\(295\) −22.6996 + 19.0472i −1.32162 + 1.10897i
\(296\) −2.73300 + 2.08484i −0.158853 + 0.121179i
\(297\) 0 0
\(298\) −9.45399 + 2.08654i −0.547655 + 0.120870i
\(299\) 28.5363 + 34.0082i 1.65029 + 1.96674i
\(300\) 0 0
\(301\) 4.34995 + 0.767013i 0.250727 + 0.0442099i
\(302\) −8.95158 14.0805i −0.515105 0.810240i
\(303\) 0 0
\(304\) 0.821214 1.41007i 0.0470998 0.0808729i
\(305\) −8.00977 13.8733i −0.458638 0.794385i
\(306\) 0 0
\(307\) 0.370582 + 0.213955i 0.0211502 + 0.0122111i 0.510538 0.859855i \(-0.329446\pi\)
−0.489388 + 0.872066i \(0.662780\pi\)
\(308\) 0.335733 + 3.92269i 0.0191302 + 0.223516i
\(309\) 0 0
\(310\) 9.33156 + 4.86890i 0.529997 + 0.276535i
\(311\) −8.46179 7.10028i −0.479824 0.402620i 0.370539 0.928817i \(-0.379173\pi\)
−0.850363 + 0.526197i \(0.823617\pi\)
\(312\) 0 0
\(313\) −26.1193 9.50664i −1.47635 0.537347i −0.526533 0.850155i \(-0.676508\pi\)
−0.949817 + 0.312807i \(0.898731\pi\)
\(314\) 5.14037 16.2497i 0.290088 0.917023i
\(315\) 0 0
\(316\) 8.20330 + 5.76711i 0.461472 + 0.324425i
\(317\) 3.46040 0.610163i 0.194356 0.0342701i −0.0756229 0.997136i \(-0.524095\pi\)
0.269979 + 0.962866i \(0.412983\pi\)
\(318\) 0 0
\(319\) 1.89205 0.688651i 0.105935 0.0385571i
\(320\) 11.5486 24.4044i 0.645587 1.36425i
\(321\) 0 0
\(322\) 25.4106 + 19.5363i 1.41607 + 1.08872i
\(323\) 0.945557i 0.0526122i
\(324\) 0 0
\(325\) 42.7649i 2.37217i
\(326\) −11.5481 + 15.0204i −0.639589 + 0.831902i
\(327\) 0 0
\(328\) −16.6965 + 8.63165i −0.921908 + 0.476603i
\(329\) −10.1144 + 3.68134i −0.557625 + 0.202959i
\(330\) 0 0
\(331\) 17.1533 3.02459i 0.942832 0.166247i 0.318956 0.947770i \(-0.396668\pi\)
0.623876 + 0.781523i \(0.285557\pi\)
\(332\) 11.9384 16.9815i 0.655206 0.931983i
\(333\) 0 0
\(334\) −9.13270 2.88901i −0.499719 0.158079i
\(335\) −47.7123 17.3659i −2.60680 0.948798i
\(336\) 0 0
\(337\) −2.18023 1.82943i −0.118765 0.0996554i 0.581471 0.813567i \(-0.302477\pi\)
−0.700236 + 0.713912i \(0.746922\pi\)
\(338\) −20.7984 + 39.8614i −1.13128 + 2.16818i
\(339\) 0 0
\(340\) −1.33414 15.5880i −0.0723538 0.845379i
\(341\) 1.10031 + 0.635266i 0.0595853 + 0.0344016i
\(342\) 0 0
\(343\) 3.97285 + 6.88117i 0.214514 + 0.371548i
\(344\) −2.68880 2.47787i −0.144971 0.133598i
\(345\) 0 0
\(346\) 2.01149 1.27879i 0.108138 0.0687484i
\(347\) −25.7859 4.54675i −1.38426 0.244082i −0.568599 0.822615i \(-0.692514\pi\)
−0.815659 + 0.578533i \(0.803626\pi\)
\(348\) 0 0
\(349\) −3.27963 3.90851i −0.175555 0.209218i 0.671091 0.741375i \(-0.265826\pi\)
−0.846646 + 0.532157i \(0.821382\pi\)
\(350\) 6.65433 + 30.1504i 0.355689 + 1.61160i
\(351\) 0 0
\(352\) 1.51850 2.88371i 0.0809361 0.153702i
\(353\) 11.4022 9.56754i 0.606875 0.509229i −0.286772 0.957999i \(-0.592582\pi\)
0.893647 + 0.448770i \(0.148138\pi\)
\(354\) 0 0
\(355\) 26.0785 + 4.59835i 1.38410 + 0.244055i
\(356\) −8.11875 + 8.08816i −0.430293 + 0.428672i
\(357\) 0 0
\(358\) 6.43386 + 15.5743i 0.340040 + 0.823125i
\(359\) 7.74329 + 13.4118i 0.408675 + 0.707846i 0.994742 0.102417i \(-0.0326575\pi\)
−0.586066 + 0.810263i \(0.699324\pi\)
\(360\) 0 0
\(361\) −9.41679 + 16.3104i −0.495621 + 0.858440i
\(362\) −23.1536 3.07045i −1.21693 0.161380i
\(363\) 0 0
\(364\) −11.9205 + 44.1545i −0.624805 + 2.31432i
\(365\) −2.78459 + 3.31854i −0.145752 + 0.173700i
\(366\) 0 0
\(367\) 24.0744 + 8.76237i 1.25667 + 0.457392i 0.882652 0.470027i \(-0.155756\pi\)
0.374023 + 0.927419i \(0.377978\pi\)
\(368\) −8.98068 24.9670i −0.468150 1.30150i
\(369\) 0 0
\(370\) −4.28022 + 3.91468i −0.222518 + 0.203515i
\(371\) 31.4772 5.55028i 1.63422 0.288156i
\(372\) 0 0
\(373\) 4.86012 + 13.3531i 0.251648 + 0.691396i 0.999617 + 0.0276634i \(0.00880666\pi\)
−0.747970 + 0.663733i \(0.768971\pi\)
\(374\) −0.0805960 1.88680i −0.00416752 0.0975644i
\(375\) 0 0
\(376\) 8.69335 + 1.95310i 0.448325 + 0.100724i
\(377\) 23.3900 1.20465
\(378\) 0 0
\(379\) 1.93137i 0.0992080i −0.998769 0.0496040i \(-0.984204\pi\)
0.998769 0.0496040i \(-0.0157959\pi\)
\(380\) 1.16839 2.49333i 0.0599373 0.127905i
\(381\) 0 0
\(382\) −18.6782 + 0.797850i −0.955659 + 0.0408216i
\(383\) −12.4377 + 4.52695i −0.635537 + 0.231317i −0.639639 0.768675i \(-0.720916\pi\)
0.00410258 + 0.999992i \(0.498694\pi\)
\(384\) 0 0
\(385\) 1.15363 + 6.54257i 0.0587945 + 0.333440i
\(386\) 0.184692 0.168919i 0.00940060 0.00859776i
\(387\) 0 0
\(388\) −2.00014 + 22.3753i −0.101542 + 1.13593i
\(389\) 8.22522 22.5986i 0.417035 1.14579i −0.536339 0.844003i \(-0.680193\pi\)
0.953374 0.301792i \(-0.0975848\pi\)
\(390\) 0 0
\(391\) −11.7780 9.88288i −0.595637 0.499799i
\(392\) −0.614104 + 13.2073i −0.0310169 + 0.667068i
\(393\) 0 0
\(394\) −1.36179 0.180590i −0.0686058 0.00909799i
\(395\) 14.6540 + 8.46051i 0.737325 + 0.425695i
\(396\) 0 0
\(397\) 28.6833 16.5603i 1.43957 0.831137i 0.441752 0.897137i \(-0.354357\pi\)
0.997820 + 0.0659997i \(0.0210236\pi\)
\(398\) −5.35707 + 2.21305i −0.268525 + 0.110930i
\(399\) 0 0
\(400\) 8.83232 23.9846i 0.441616 1.19923i
\(401\) −1.94567 + 11.0344i −0.0971620 + 0.551033i 0.896901 + 0.442231i \(0.145813\pi\)
−0.994063 + 0.108802i \(0.965298\pi\)
\(402\) 0 0
\(403\) 9.48715 + 11.3063i 0.472588 + 0.563209i
\(404\) 10.4637 + 22.5505i 0.520590 + 1.12193i
\(405\) 0 0
\(406\) 16.4905 3.63954i 0.818412 0.180627i
\(407\) −0.536366 + 0.450065i −0.0265867 + 0.0223089i
\(408\) 0 0
\(409\) 1.95004 11.0592i 0.0964233 0.546844i −0.897879 0.440243i \(-0.854892\pi\)
0.994302 0.106601i \(-0.0339966\pi\)
\(410\) −26.7655 + 17.0160i −1.32185 + 0.840362i
\(411\) 0 0
\(412\) −18.0842 25.9309i −0.890943 1.27752i
\(413\) −25.9810 + 15.0001i −1.27844 + 0.738109i
\(414\) 0 0
\(415\) 17.5140 30.3351i 0.859728 1.48909i
\(416\) 28.0334 25.4457i 1.37445 1.24758i
\(417\) 0 0
\(418\) 0.153754 0.294679i 0.00752035 0.0144132i
\(419\) 8.95678 10.6743i 0.437567 0.521472i −0.501522 0.865145i \(-0.667226\pi\)
0.939090 + 0.343672i \(0.111671\pi\)
\(420\) 0 0
\(421\) 4.06687 11.1736i 0.198207 0.544570i −0.800276 0.599632i \(-0.795314\pi\)
0.998483 + 0.0550623i \(0.0175358\pi\)
\(422\) 1.60054 5.05962i 0.0779132 0.246298i
\(423\) 0 0
\(424\) −24.4160 10.1945i −1.18575 0.495089i
\(425\) −2.57184 14.5856i −0.124753 0.707507i
\(426\) 0 0
\(427\) −5.54707 15.2404i −0.268442 0.737537i
\(428\) 4.72559 1.25666i 0.228420 0.0607432i
\(429\) 0 0
\(430\) −4.89145 3.76068i −0.235887 0.181356i
\(431\) 28.2506 1.36079 0.680393 0.732848i \(-0.261809\pi\)
0.680393 + 0.732848i \(0.261809\pi\)
\(432\) 0 0
\(433\) −27.8524 −1.33850 −0.669251 0.743036i \(-0.733385\pi\)
−0.669251 + 0.743036i \(0.733385\pi\)
\(434\) 8.44798 + 6.49503i 0.405516 + 0.311772i
\(435\) 0 0
\(436\) 31.4127 8.35350i 1.50440 0.400060i
\(437\) −0.925505 2.54280i −0.0442729 0.121639i
\(438\) 0 0
\(439\) −2.13242 12.0935i −0.101775 0.577193i −0.992460 0.122572i \(-0.960886\pi\)
0.890685 0.454621i \(-0.150225\pi\)
\(440\) 2.11894 5.07489i 0.101016 0.241936i
\(441\) 0 0
\(442\) 6.61674 20.9168i 0.314726 0.994910i
\(443\) 7.22670 19.8552i 0.343351 0.943348i −0.641064 0.767487i \(-0.721507\pi\)
0.984415 0.175861i \(-0.0562710\pi\)
\(444\) 0 0
\(445\) −12.4303 + 14.8138i −0.589252 + 0.702243i
\(446\) 2.56554 4.91701i 0.121482 0.232827i
\(447\) 0 0
\(448\) 15.8049 22.3019i 0.746710 1.05367i
\(449\) −13.8708 + 24.0249i −0.654604 + 1.13381i 0.327389 + 0.944890i \(0.393831\pi\)
−0.981993 + 0.188917i \(0.939502\pi\)
\(450\) 0 0
\(451\) −3.31561 + 1.91427i −0.156126 + 0.0901393i
\(452\) 13.9251 + 19.9671i 0.654980 + 0.939176i
\(453\) 0 0
\(454\) −14.1229 + 8.97856i −0.662821 + 0.421385i
\(455\) −13.4014 + 76.0030i −0.628266 + 3.56307i
\(456\) 0 0
\(457\) −26.0906 + 21.8926i −1.22047 + 1.02409i −0.221668 + 0.975122i \(0.571150\pi\)
−0.998800 + 0.0489720i \(0.984405\pi\)
\(458\) 14.6352 3.23006i 0.683858 0.150931i
\(459\) 0 0
\(460\) −18.8452 40.6137i −0.878664 1.89362i
\(461\) 8.93591 + 10.6494i 0.416187 + 0.495992i 0.932884 0.360176i \(-0.117283\pi\)
−0.516698 + 0.856168i \(0.672839\pi\)
\(462\) 0 0
\(463\) 3.22751 18.3041i 0.149995 0.850665i −0.813224 0.581950i \(-0.802290\pi\)
0.963220 0.268715i \(-0.0865991\pi\)
\(464\) −13.1182 4.83078i −0.608996 0.224263i
\(465\) 0 0
\(466\) −1.47701 + 0.610165i −0.0684211 + 0.0282653i
\(467\) 8.34116 4.81577i 0.385983 0.222847i −0.294435 0.955671i \(-0.595132\pi\)
0.680418 + 0.732824i \(0.261798\pi\)
\(468\) 0 0
\(469\) −44.5181 25.7026i −2.05566 1.18683i
\(470\) 14.9047 + 1.97654i 0.687500 + 0.0911712i
\(471\) 0 0
\(472\) 24.8074 + 1.15348i 1.14186 + 0.0530933i
\(473\) −0.570541 0.478741i −0.0262335 0.0220125i
\(474\) 0 0
\(475\) 0.891532 2.44946i 0.0409063 0.112389i
\(476\) 1.41027 15.7765i 0.0646395 0.723113i
\(477\) 0 0
\(478\) 6.05696 5.53968i 0.277039 0.253379i
\(479\) −5.05443 28.6651i −0.230943 1.30974i −0.850992 0.525179i \(-0.823998\pi\)
0.620049 0.784563i \(-0.287113\pi\)
\(480\) 0 0
\(481\) −7.64321 + 2.78190i −0.348500 + 0.126844i
\(482\) −41.6796 + 1.78037i −1.89846 + 0.0810937i
\(483\) 0 0
\(484\) −9.05352 + 19.3201i −0.411524 + 0.878185i
\(485\) 37.9074i 1.72129i
\(486\) 0 0
\(487\) −13.1429 −0.595563 −0.297782 0.954634i \(-0.596247\pi\)
−0.297782 + 0.954634i \(0.596247\pi\)
\(488\) −2.94295 + 13.0992i −0.133221 + 0.592973i
\(489\) 0 0
\(490\) 0.952140 + 22.2902i 0.0430133 + 1.00697i
\(491\) −4.01945 11.0433i −0.181395 0.498379i 0.815352 0.578965i \(-0.196543\pi\)
−0.996748 + 0.0805856i \(0.974321\pi\)
\(492\) 0 0
\(493\) −7.97752 + 1.40665i −0.359289 + 0.0633524i
\(494\) 2.84920 2.60587i 0.128191 0.117243i
\(495\) 0 0
\(496\) −2.98571 8.30052i −0.134062 0.372704i
\(497\) 25.1930 + 9.16949i 1.13006 + 0.411308i
\(498\) 0 0
\(499\) 23.2598 27.7199i 1.04125 1.24091i 0.0713387 0.997452i \(-0.477273\pi\)
0.969911 0.243461i \(-0.0782827\pi\)
\(500\) 2.44499 9.05643i 0.109343 0.405016i
\(501\) 0 0
\(502\) −8.42969 1.11788i −0.376236 0.0498936i
\(503\) −1.18773 + 2.05720i −0.0529581 + 0.0917261i −0.891289 0.453435i \(-0.850198\pi\)
0.838331 + 0.545161i \(0.183532\pi\)
\(504\) 0 0
\(505\) 20.9748 + 36.3294i 0.933366 + 1.61664i
\(506\) −2.06353 4.99514i −0.0917352 0.222061i
\(507\) 0 0
\(508\) 13.5834 13.5322i 0.602665 0.600394i
\(509\) −40.5051 7.14215i −1.79536 0.316570i −0.826269 0.563276i \(-0.809541\pi\)
−0.969090 + 0.246706i \(0.920652\pi\)
\(510\) 0 0
\(511\) −3.35977 + 2.81918i −0.148627 + 0.124713i
\(512\) −20.9778 + 8.48130i −0.927096 + 0.374824i
\(513\) 0 0
\(514\) 7.91515 + 35.8631i 0.349123 + 1.58185i
\(515\) −34.2906 40.8660i −1.51103 1.80077i
\(516\) 0 0
\(517\) 1.78734 + 0.315155i 0.0786069 + 0.0138605i
\(518\) −4.95578 + 3.15061i −0.217745 + 0.138430i
\(519\) 0 0
\(520\) 43.2938 46.9792i 1.89856 2.06017i
\(521\) 5.21530 + 9.03316i 0.228486 + 0.395750i 0.957360 0.288899i \(-0.0932890\pi\)
−0.728873 + 0.684649i \(0.759956\pi\)
\(522\) 0 0
\(523\) −14.6626 8.46543i −0.641149 0.370167i 0.143908 0.989591i \(-0.454033\pi\)
−0.785057 + 0.619424i \(0.787366\pi\)
\(524\) −0.0703951 0.822494i −0.00307523 0.0359308i
\(525\) 0 0
\(526\) 9.10062 17.4419i 0.396806 0.760504i
\(527\) −3.91569 3.28565i −0.170570 0.143125i
\(528\) 0 0
\(529\) −19.7338 7.18252i −0.857992 0.312283i
\(530\) −42.5685 13.4660i −1.84906 0.584924i
\(531\) 0 0
\(532\) 1.60328 2.28054i 0.0695109 0.0988741i
\(533\) −43.7992 + 7.72298i −1.89715 + 0.334519i
\(534\) 0 0
\(535\) 7.75366 2.82210i 0.335220 0.122010i
\(536\) 19.5419 + 37.8006i 0.844083 + 1.63274i
\(537\) 0 0
\(538\) −3.35658 + 4.36584i −0.144712 + 0.188225i
\(539\) 2.69313i 0.116001i
\(540\) 0 0
\(541\) 29.4745i 1.26721i 0.773658 + 0.633603i \(0.218425\pi\)
−0.773658 + 0.633603i \(0.781575\pi\)
\(542\) −30.3839 23.3600i −1.30510 1.00340i
\(543\) 0 0
\(544\) −8.03096 + 10.3645i −0.344325 + 0.444376i
\(545\) 51.5414 18.7595i 2.20779 0.803570i
\(546\) 0 0
\(547\) −31.4846 + 5.55158i −1.34618 + 0.237369i −0.799850 0.600199i \(-0.795088\pi\)
−0.546333 + 0.837568i \(0.683977\pi\)
\(548\) −25.7851 18.1276i −1.10149 0.774371i
\(549\) 0 0
\(550\) 1.57022 4.96376i 0.0669543 0.211655i
\(551\) −1.33972 0.487617i −0.0570739 0.0207732i
\(552\) 0 0
\(553\) 13.1233 + 11.0117i 0.558059 + 0.468267i
\(554\) 8.98106 + 4.68602i 0.381569 + 0.199090i
\(555\) 0 0
\(556\) 0.376572 + 4.39985i 0.0159702 + 0.186595i
\(557\) −7.19468 4.15385i −0.304849 0.176004i 0.339770 0.940508i \(-0.389651\pi\)
−0.644619 + 0.764504i \(0.722984\pi\)
\(558\) 0 0
\(559\) −4.32598 7.49282i −0.182970 0.316913i
\(560\) 23.2131 39.8582i 0.980934 1.68432i
\(561\) 0 0
\(562\) −0.588525 0.925725i −0.0248254 0.0390494i
\(563\) 6.57453 + 1.15927i 0.277083 + 0.0488573i 0.310463 0.950585i \(-0.399516\pi\)
−0.0333796 + 0.999443i \(0.510627\pi\)
\(564\) 0 0
\(565\) 26.4043 + 31.4674i 1.11084 + 1.32384i
\(566\) −2.11126 + 0.465966i −0.0887430 + 0.0195860i
\(567\) 0 0
\(568\) −13.4604 17.6452i −0.564787 0.740375i
\(569\) 24.2709 20.3657i 1.01749 0.853775i 0.0281798 0.999603i \(-0.491029\pi\)
0.989310 + 0.145827i \(0.0465844\pi\)
\(570\) 0 0
\(571\) −32.6020 5.74861i −1.36435 0.240572i −0.556936 0.830555i \(-0.688023\pi\)
−0.807416 + 0.589983i \(0.799134\pi\)
\(572\) 5.46329 5.44271i 0.228432 0.227571i
\(573\) 0 0
\(574\) −29.6778 + 12.2602i −1.23873 + 0.511729i
\(575\) −21.1926 36.7066i −0.883791 1.53077i
\(576\) 0 0
\(577\) 15.0611 26.0866i 0.627001 1.08600i −0.361149 0.932508i \(-0.617615\pi\)
0.988150 0.153490i \(-0.0490512\pi\)
\(578\) 2.16172 16.3011i 0.0899159 0.678035i
\(579\) 0 0
\(580\) −22.7740 6.14836i −0.945638 0.255297i
\(581\) 22.7953 27.1663i 0.945707 1.12705i
\(582\) 0 0
\(583\) −5.06443 1.84330i −0.209747 0.0763418i
\(584\) 3.60089 0.463700i 0.149006 0.0191880i
\(585\) 0 0
\(586\) −15.1792 16.5966i −0.627046 0.685598i
\(587\) −15.0318 + 2.65051i −0.620427 + 0.109398i −0.475022 0.879974i \(-0.657560\pi\)
−0.145406 + 0.989372i \(0.546449\pi\)
\(588\) 0 0
\(589\) −0.307693 0.845379i −0.0126783 0.0348332i
\(590\) 41.8681 1.78842i 1.72368 0.0736281i
\(591\) 0 0
\(592\) 4.86121 + 0.0183477i 0.199795 + 0.000754087i
\(593\) −27.1813 −1.11620 −0.558101 0.829773i \(-0.688470\pi\)
−0.558101 + 0.829773i \(0.688470\pi\)
\(594\) 0 0
\(595\) 26.7279i 1.09574i
\(596\) 12.3980 + 5.80978i 0.507841 + 0.237978i
\(597\) 0 0
\(598\) −2.67939 62.7262i −0.109568 2.56506i
\(599\) 39.7660 14.4737i 1.62480 0.591378i 0.640509 0.767951i \(-0.278723\pi\)
0.984288 + 0.176573i \(0.0565012\pi\)
\(600\) 0 0
\(601\) −0.648834 3.67972i −0.0264665 0.150099i 0.968711 0.248193i \(-0.0798366\pi\)
−0.995177 + 0.0980937i \(0.968726\pi\)
\(602\) −4.21583 4.60950i −0.171824 0.187869i
\(603\) 0 0
\(604\) −2.10090 + 23.5025i −0.0854844 + 0.956302i
\(605\) −12.3139 + 33.8321i −0.500631 + 1.37547i
\(606\) 0 0
\(607\) 35.5497 + 29.8298i 1.44292 + 1.21075i 0.937550 + 0.347850i \(0.113088\pi\)
0.505370 + 0.862903i \(0.331356\pi\)
\(608\) −2.13616 + 0.873040i −0.0866325 + 0.0354065i
\(609\) 0 0
\(610\) −2.97827 + 22.4584i −0.120587 + 0.909315i
\(611\) 18.2586 + 10.5416i 0.738664 + 0.426468i
\(612\) 0 0
\(613\) −21.9670 + 12.6827i −0.887239 + 0.512248i −0.873038 0.487652i \(-0.837854\pi\)
−0.0142005 + 0.999899i \(0.504520\pi\)
\(614\) −0.231056 0.559311i −0.00932466 0.0225719i
\(615\) 0 0
\(616\) 3.00486 4.68735i 0.121069 0.188859i
\(617\) −1.23909 + 7.02722i −0.0498838 + 0.282905i −0.999538 0.0303950i \(-0.990323\pi\)
0.949654 + 0.313300i \(0.101435\pi\)
\(618\) 0 0
\(619\) −17.2889 20.6041i −0.694900 0.828149i 0.297039 0.954865i \(-0.404001\pi\)
−0.991939 + 0.126716i \(0.959556\pi\)
\(620\) −6.26528 13.5024i −0.251620 0.542269i
\(621\) 0 0
\(622\) 3.36672 + 15.2544i 0.134993 + 0.611646i
\(623\) −14.9979 + 12.5847i −0.600877 + 0.504196i
\(624\) 0 0
\(625\) −2.79914 + 15.8747i −0.111966 + 0.634989i
\(626\) 21.0893 + 33.1727i 0.842900 + 1.32585i
\(627\) 0 0
\(628\) −19.7700 + 13.7876i −0.788910 + 0.550185i
\(629\) 2.43953 1.40846i 0.0972705 0.0561592i
\(630\) 0 0
\(631\) −11.7466 + 20.3457i −0.467624 + 0.809949i −0.999316 0.0369893i \(-0.988223\pi\)
0.531691 + 0.846938i \(0.321557\pi\)
\(632\) −4.22608 13.5369i −0.168104 0.538469i
\(633\) 0 0
\(634\) −4.40561 2.29870i −0.174969 0.0912930i
\(635\) 20.7970 24.7848i 0.825302 0.983557i
\(636\) 0 0
\(637\) −10.7002 + 29.3985i −0.423956 + 1.16481i
\(638\) −2.71489 0.858820i −0.107484 0.0340010i
\(639\) 0 0
\(640\) −33.9839 + 17.4066i −1.34333 + 0.688055i
\(641\) 7.57282 + 42.9476i 0.299108 + 1.69633i 0.650019 + 0.759918i \(0.274761\pi\)
−0.350911 + 0.936409i \(0.614128\pi\)
\(642\) 0 0
\(643\) −0.120739 0.331727i −0.00476148 0.0130820i 0.937289 0.348553i \(-0.113327\pi\)
−0.942051 + 0.335471i \(0.891105\pi\)
\(644\) −11.6494 43.8066i −0.459050 1.72622i
\(645\) 0 0
\(646\) −0.815048 + 1.06012i −0.0320676 + 0.0417098i
\(647\) 26.0967 1.02597 0.512984 0.858398i \(-0.328540\pi\)
0.512984 + 0.858398i \(0.328540\pi\)
\(648\) 0 0
\(649\) 5.05855 0.198565
\(650\) 36.8624 47.9463i 1.44586 1.88061i
\(651\) 0 0
\(652\) 25.8944 6.88605i 1.01410 0.269678i
\(653\) −0.281991 0.774764i −0.0110352 0.0303189i 0.934053 0.357135i \(-0.116246\pi\)
−0.945088 + 0.326816i \(0.894024\pi\)
\(654\) 0 0
\(655\) −0.241889 1.37182i −0.00945137 0.0536014i
\(656\) 26.1597 + 4.71453i 1.02136 + 0.184071i
\(657\) 0 0
\(658\) 14.5131 + 4.59101i 0.565779 + 0.178976i
\(659\) −14.2971 + 39.2809i −0.556935 + 1.53017i 0.267123 + 0.963662i \(0.413927\pi\)
−0.824058 + 0.566505i \(0.808295\pi\)
\(660\) 0 0
\(661\) 1.06741 1.27208i 0.0415173 0.0494784i −0.744886 0.667192i \(-0.767496\pi\)
0.786404 + 0.617713i \(0.211941\pi\)
\(662\) −21.8387 11.3947i −0.848786 0.442868i
\(663\) 0 0
\(664\) −28.0226 + 8.74835i −1.08749 + 0.339502i
\(665\) 2.35205 4.07387i 0.0912086 0.157978i
\(666\) 0 0
\(667\) −20.0764 + 11.5911i −0.777362 + 0.448810i
\(668\) 7.74894 + 11.1112i 0.299816 + 0.429905i
\(669\) 0 0
\(670\) 38.5241 + 60.5968i 1.48831 + 2.34106i
\(671\) −0.474878 + 2.69317i −0.0183325 + 0.103969i
\(672\) 0 0
\(673\) −4.23311 + 3.55200i −0.163175 + 0.136920i −0.720719 0.693227i \(-0.756188\pi\)
0.557544 + 0.830147i \(0.311744\pi\)
\(674\) 0.867456 + 3.93039i 0.0334132 + 0.151393i
\(675\) 0 0
\(676\) 57.6779 26.7632i 2.21838 1.02936i
\(677\) 2.08429 + 2.48396i 0.0801056 + 0.0954662i 0.804609 0.593805i \(-0.202375\pi\)
−0.724503 + 0.689272i \(0.757931\pi\)
\(678\) 0 0
\(679\) −6.66432 + 37.7952i −0.255753 + 1.45045i
\(680\) −11.9407 + 18.6266i −0.457906 + 0.714299i
\(681\) 0 0
\(682\) −0.686041 1.66068i −0.0262699 0.0635907i
\(683\) 22.4547 12.9642i 0.859206 0.496063i −0.00454025 0.999990i \(-0.501445\pi\)
0.863746 + 0.503927i \(0.168112\pi\)
\(684\) 0 0
\(685\) −46.0615 26.5936i −1.75992 1.01609i
\(686\) 1.47722 11.1394i 0.0564006 0.425304i
\(687\) 0 0
\(688\) 0.878705 + 5.09578i 0.0335003 + 0.194275i
\(689\) −47.9602 40.2434i −1.82714 1.53315i
\(690\) 0 0
\(691\) 10.2247 28.0920i 0.388964 1.06867i −0.578504 0.815679i \(-0.696363\pi\)
0.967469 0.252991i \(-0.0814145\pi\)
\(692\) −3.35749 0.300128i −0.127633 0.0114092i
\(693\) 0 0
\(694\) 24.9909 + 27.3245i 0.948640 + 1.03722i
\(695\) 1.29396 + 7.33841i 0.0490827 + 0.278362i
\(696\) 0 0
\(697\) 14.4739 5.26808i 0.548240 0.199543i
\(698\) 0.307938 + 7.20902i 0.0116556 + 0.272866i
\(699\) 0 0
\(700\) 18.5284 39.5392i 0.700306 1.49444i
\(701\) 24.6223i 0.929973i −0.885318 0.464987i \(-0.846059\pi\)
0.885318 0.464987i \(-0.153941\pi\)
\(702\) 0 0
\(703\) 0.495778 0.0186986
\(704\) −4.18816 + 1.92418i −0.157847 + 0.0725203i
\(705\) 0 0
\(706\) −21.0306 + 0.898336i −0.791498 + 0.0338093i
\(707\) 14.5258 + 39.9094i 0.546300 + 1.50095i
\(708\) 0 0
\(709\) 26.4148 4.65765i 0.992030 0.174922i 0.346001 0.938234i \(-0.387540\pi\)
0.646029 + 0.763313i \(0.276428\pi\)
\(710\) −25.2745 27.6346i −0.948535 1.03711i
\(711\) 0 0
\(712\) 16.0742 2.06994i 0.602407 0.0775742i
\(713\) −13.7461 5.00317i −0.514796 0.187370i
\(714\) 0 0
\(715\) 8.36463 9.96858i 0.312819 0.372804i
\(716\) 6.21128 23.0070i 0.232126 0.859813i
\(717\) 0 0
\(718\) 2.87919 21.7113i 0.107450 0.810257i
\(719\) −9.26666 + 16.0503i −0.345588 + 0.598576i −0.985460 0.169905i \(-0.945654\pi\)
0.639872 + 0.768481i \(0.278987\pi\)
\(720\) 0 0
\(721\) −27.0047 46.7736i −1.00571 1.74194i
\(722\) 24.6169 10.1694i 0.916145 0.378467i
\(723\) 0 0
\(724\) 23.3122 + 23.4003i 0.866390 + 0.869666i
\(725\) −21.9920 3.87779i −0.816764 0.144017i
\(726\) 0 0
\(727\) 4.82234 4.04643i 0.178851 0.150074i −0.548967 0.835844i \(-0.684979\pi\)
0.727818 + 0.685770i \(0.240534\pi\)
\(728\) 51.4249 39.2290i 1.90593 1.45392i
\(729\) 0 0
\(730\) 5.98247 1.32036i 0.221421 0.0488687i
\(731\) 1.92605 + 2.29538i 0.0712377 + 0.0848978i
\(732\) 0 0
\(733\) 22.4113 + 3.95172i 0.827781 + 0.145960i 0.571458 0.820631i \(-0.306378\pi\)
0.256323 + 0.966591i \(0.417489\pi\)
\(734\) −19.4383 30.5756i −0.717480 1.12857i
\(735\) 0 0
\(736\) −11.4522 + 35.7331i −0.422135 + 1.31714i
\(737\) 4.33388 + 7.50649i 0.159640 + 0.276505i
\(738\) 0 0
\(739\) 37.2940 + 21.5317i 1.37188 + 0.792056i 0.991165 0.132636i \(-0.0423440\pi\)
0.380717 + 0.924692i \(0.375677\pi\)
\(740\) 8.17317 0.699520i 0.300452 0.0257149i
\(741\) 0 0
\(742\) −40.0752 20.9099i −1.47121 0.767626i
\(743\) 27.0616 + 22.7074i 0.992794 + 0.833053i 0.985970 0.166924i \(-0.0533834\pi\)
0.00682406 + 0.999977i \(0.497828\pi\)
\(744\) 0 0
\(745\) 21.7106 + 7.90201i 0.795415 + 0.289507i
\(746\) 6.06108 19.1602i 0.221912 0.701506i
\(747\) 0 0
\(748\) −1.53602 + 2.18488i −0.0561625 + 0.0798871i
\(749\) 8.22687 1.45062i 0.300603 0.0530045i
\(750\) 0 0
\(751\) −23.5008 + 8.55359i −0.857557 + 0.312125i −0.733117 0.680102i \(-0.761935\pi\)
−0.124439 + 0.992227i \(0.539713\pi\)
\(752\) −8.06309 9.68320i −0.294031 0.353110i
\(753\) 0 0
\(754\) −26.2239 20.1616i −0.955017 0.734243i
\(755\) 39.8171i 1.44909i
\(756\) 0 0
\(757\) 31.3025i 1.13771i 0.822439 + 0.568853i \(0.192613\pi\)
−0.822439 + 0.568853i \(0.807387\pi\)
\(758\) −1.66480 + 2.16538i −0.0604682 + 0.0786500i
\(759\) 0 0
\(760\) −3.45915 + 1.78829i −0.125476 + 0.0648681i
\(761\) 2.59308 0.943805i 0.0939992 0.0342129i −0.294592 0.955623i \(-0.595184\pi\)
0.388592 + 0.921410i \(0.372962\pi\)
\(762\) 0 0
\(763\) 54.6869 9.64278i 1.97980 0.349092i
\(764\) 21.6289 + 15.2056i 0.782507 + 0.550121i
\(765\) 0 0
\(766\) 17.8468 + 5.64558i 0.644830 + 0.203983i
\(767\) 55.2197 + 20.0983i 1.99387 + 0.725708i
\(768\) 0 0
\(769\) 3.61913 + 3.03681i 0.130509 + 0.109510i 0.705706 0.708505i \(-0.250630\pi\)
−0.575197 + 0.818015i \(0.695074\pi\)
\(770\) 4.34614 8.32966i 0.156624 0.300180i
\(771\) 0 0
\(772\) −0.352674 + 0.0301844i −0.0126930 + 0.00108636i
\(773\) −17.3435 10.0133i −0.623803 0.360153i 0.154545 0.987986i \(-0.450609\pi\)
−0.778348 + 0.627833i \(0.783942\pi\)
\(774\) 0 0
\(775\) −7.04567 12.2035i −0.253088 0.438361i
\(776\) 21.5294 23.3621i 0.772861 0.838651i
\(777\) 0 0
\(778\) −28.7012 + 18.2467i −1.02899 + 0.654175i
\(779\) 2.66971 + 0.470742i 0.0956522 + 0.0168661i
\(780\) 0 0
\(781\) −2.90577 3.46296i −0.103977 0.123914i
\(782\) 4.68614 + 21.2326i 0.167576 + 0.759276i
\(783\) 0 0
\(784\) 12.0729 14.2781i 0.431174 0.509932i
\(785\) −31.1567 + 26.1436i −1.11203 + 0.933105i
\(786\) 0 0
\(787\) −41.5062 7.31867i −1.47954 0.260882i −0.625144 0.780510i \(-0.714960\pi\)
−0.854393 + 0.519627i \(0.826071\pi\)
\(788\) 1.37111 + 1.37630i 0.0488439 + 0.0490286i
\(789\) 0 0
\(790\) −9.13673 22.1170i −0.325070 0.786888i
\(791\) 20.7940 + 36.0163i 0.739350 + 1.28059i
\(792\) 0 0
\(793\) −15.8842 + 27.5122i −0.564063 + 0.976986i
\(794\) −46.4331 6.15761i −1.64785 0.218525i
\(795\) 0 0
\(796\) 7.91372 + 2.13649i 0.280494 + 0.0757258i
\(797\) −32.1711 + 38.3400i −1.13956 + 1.35807i −0.215189 + 0.976572i \(0.569037\pi\)
−0.924369 + 0.381500i \(0.875408\pi\)
\(798\) 0 0
\(799\) −6.86134 2.49732i −0.242737 0.0883489i
\(800\) −30.5766 + 19.2772i −1.08104 + 0.681553i
\(801\) 0 0
\(802\) 11.6928 10.6942i 0.412888 0.377626i
\(803\) 0.728294 0.128418i 0.0257009 0.00453177i
\(804\) 0 0
\(805\) −26.1611 71.8771i −0.922059 2.53334i
\(806\) −0.890787 20.8539i −0.0313766 0.734547i
\(807\) 0 0
\(808\) 7.70655 34.3022i 0.271116 1.20675i
\(809\) −7.89082 −0.277426 −0.138713 0.990333i \(-0.544297\pi\)
−0.138713 + 0.990333i \(0.544297\pi\)
\(810\) 0 0
\(811\) 16.9433i 0.594960i −0.954728 0.297480i \(-0.903854\pi\)
0.954728 0.297480i \(-0.0961461\pi\)
\(812\) −21.6257 10.1340i −0.758913 0.355632i
\(813\) 0 0
\(814\) 0.989297 0.0422584i 0.0346748 0.00148116i
\(815\) 42.4871 15.4641i 1.48826 0.541682i
\(816\) 0 0
\(817\) 0.0915762 + 0.519355i 0.00320385 + 0.0181699i
\(818\) −11.7191 + 10.7183i −0.409749 + 0.374755i
\(819\) 0 0
\(820\) 44.6758 + 3.99359i 1.56015 + 0.139462i
\(821\) −16.2209 + 44.5665i −0.566112 + 1.55538i 0.244410 + 0.969672i \(0.421406\pi\)
−0.810522 + 0.585708i \(0.800816\pi\)
\(822\) 0 0
\(823\) −3.65996 3.07107i −0.127578 0.107051i 0.576766 0.816909i \(-0.304314\pi\)
−0.704344 + 0.709858i \(0.748759\pi\)
\(824\) −2.07661 + 44.6608i −0.0723422 + 1.55583i
\(825\) 0 0
\(826\) 42.0586 + 5.57750i 1.46341 + 0.194066i
\(827\) −25.0451 14.4598i −0.870903 0.502816i −0.00325451 0.999995i \(-0.501036\pi\)
−0.867648 + 0.497179i \(0.834369\pi\)
\(828\) 0 0
\(829\) 17.1833 9.92077i 0.596800 0.344563i −0.170982 0.985274i \(-0.554694\pi\)
0.767782 + 0.640711i \(0.221361\pi\)
\(830\) −45.7841 + 18.9138i −1.58919 + 0.656508i
\(831\) 0 0
\(832\) −53.3635 + 4.36442i −1.85005 + 0.151309i
\(833\) 1.88146 10.6703i 0.0651888 0.369704i
\(834\) 0 0
\(835\) 14.6933 + 17.5108i 0.508482 + 0.605986i
\(836\) −0.426389 + 0.197850i −0.0147470 + 0.00684278i
\(837\) 0 0
\(838\) −19.2429 + 4.24701i −0.664737 + 0.146711i
\(839\) −26.2638 + 22.0379i −0.906725 + 0.760833i −0.971493 0.237067i \(-0.923814\pi\)
0.0647677 + 0.997900i \(0.479369\pi\)
\(840\) 0 0
\(841\) 2.91487 16.5310i 0.100513 0.570036i
\(842\) −14.1910 + 9.02187i −0.489055 + 0.310914i
\(843\) 0 0
\(844\) −6.15574 + 4.29300i −0.211889 + 0.147771i
\(845\) 92.9203 53.6476i 3.19656 1.84553i
\(846\) 0 0
\(847\) −18.2253 + 31.5672i −0.626230 + 1.08466i
\(848\) 18.5868 + 32.4757i 0.638272 + 1.11522i
\(849\) 0 0
\(850\) −9.68904 + 18.5697i −0.332331 + 0.636935i
\(851\) 5.18183 6.17546i 0.177631 0.211692i
\(852\) 0 0
\(853\) −11.5939 + 31.8539i −0.396967 + 1.09066i 0.566787 + 0.823865i \(0.308186\pi\)
−0.963754 + 0.266793i \(0.914036\pi\)
\(854\) −6.91777 + 21.8684i −0.236721 + 0.748321i
\(855\) 0 0
\(856\) −6.38135 2.66443i −0.218110 0.0910683i
\(857\) −0.670084 3.80024i −0.0228896 0.129814i 0.971222 0.238177i \(-0.0765500\pi\)
−0.994111 + 0.108364i \(0.965439\pi\)
\(858\) 0 0
\(859\) 7.37600 + 20.2654i 0.251666 + 0.691446i 0.999617 + 0.0276917i \(0.00881567\pi\)
−0.747951 + 0.663754i \(0.768962\pi\)
\(860\) 2.24247 + 8.43263i 0.0764676 + 0.287550i
\(861\) 0 0
\(862\) −31.6734 24.3514i −1.07880 0.829412i
\(863\) −30.2497 −1.02971 −0.514857 0.857276i \(-0.672155\pi\)
−0.514857 + 0.857276i \(0.672155\pi\)
\(864\) 0 0
\(865\) −5.68815 −0.193403
\(866\) 31.2270 + 24.0082i 1.06114 + 0.815830i
\(867\) 0 0
\(868\) −3.87295 14.5639i −0.131456 0.494332i
\(869\) −0.987962 2.71440i −0.0335143 0.0920799i
\(870\) 0 0
\(871\) 17.4847 + 99.1608i 0.592447 + 3.35994i
\(872\) −42.4191 17.7114i −1.43649 0.599784i
\(873\) 0 0
\(874\) −1.15420 + 3.64865i −0.0390414 + 0.123417i
\(875\) 5.48119 15.0594i 0.185298 0.509102i
\(876\) 0 0
\(877\) 10.0265 11.9491i 0.338571 0.403493i −0.569715 0.821842i \(-0.692947\pi\)
0.908286 + 0.418349i \(0.137391\pi\)
\(878\) −8.03357 + 15.3969i −0.271120 + 0.519619i
\(879\) 0 0
\(880\) −6.75010 + 3.86328i −0.227546 + 0.130231i
\(881\) −18.2832 + 31.6674i −0.615977 + 1.06690i 0.374235 + 0.927334i \(0.377905\pi\)
−0.990212 + 0.139569i \(0.955428\pi\)
\(882\) 0 0
\(883\) −26.1355 + 15.0893i −0.879529 + 0.507796i −0.870503 0.492163i \(-0.836206\pi\)
−0.00902592 + 0.999959i \(0.502873\pi\)
\(884\) −25.4482 + 17.7476i −0.855916 + 0.596915i
\(885\) 0 0
\(886\) −25.2170 + 16.0316i −0.847181 + 0.538591i
\(887\) 7.16882 40.6564i 0.240705 1.36511i −0.589553 0.807730i \(-0.700696\pi\)
0.830258 0.557379i \(-0.188193\pi\)
\(888\) 0 0
\(889\) 25.0927 21.0553i 0.841584 0.706172i
\(890\) 26.7055 5.89404i 0.895171 0.197569i
\(891\) 0 0
\(892\) −7.11472 + 3.30132i −0.238219 + 0.110536i
\(893\) −0.826041 0.984438i −0.0276424 0.0329430i
\(894\) 0 0
\(895\) 6.98289 39.6019i 0.233412 1.32375i
\(896\) −36.9435 + 11.3805i −1.23420 + 0.380197i
\(897\) 0 0
\(898\) 36.2603 14.9794i 1.21002 0.499870i
\(899\) −6.67459 + 3.85358i −0.222610 + 0.128524i
\(900\) 0 0
\(901\) 18.7778 + 10.8414i 0.625578 + 0.361178i
\(902\) 5.36737 + 0.711781i 0.178714 + 0.0236997i
\(903\) 0 0
\(904\) 1.59902 34.3894i 0.0531826 1.14378i
\(905\) 42.6973 + 35.8273i 1.41931 + 1.19094i
\(906\) 0 0
\(907\) −13.9229 + 38.2529i −0.462303 + 1.27017i 0.461446 + 0.887168i \(0.347331\pi\)
−0.923749 + 0.382999i \(0.874891\pi\)
\(908\) 23.5733 + 2.10723i 0.782308 + 0.0699310i
\(909\) 0 0
\(910\) 80.5379 73.6597i 2.66980 2.44179i
\(911\) −7.42318 42.0989i −0.245941 1.39480i −0.818298 0.574795i \(-0.805082\pi\)
0.572357 0.820005i \(-0.306029\pi\)
\(912\) 0 0
\(913\) −5.61905 + 2.04517i −0.185963 + 0.0676852i
\(914\) 48.1227 2.05559i 1.59176 0.0679928i
\(915\) 0 0
\(916\) −19.1926 8.99380i −0.634142 0.297163i
\(917\) 1.41029i 0.0465717i
\(918\) 0 0
\(919\) −4.00742 −0.132193 −0.0660963 0.997813i \(-0.521054\pi\)
−0.0660963 + 0.997813i \(0.521054\pi\)
\(920\) −13.8796 + 61.7785i −0.457595 + 2.03678i
\(921\) 0 0
\(922\) −0.839029 19.6422i −0.0276319 0.646882i
\(923\) −17.9609 49.3471i −0.591189 1.62428i
\(924\) 0 0
\(925\) 7.64760 1.34848i 0.251452 0.0443377i
\(926\) −19.3963 + 17.7398i −0.637402 + 0.582966i
\(927\) 0 0
\(928\) 10.5435 + 16.7236i 0.346109 + 0.548980i
\(929\) −46.5451 16.9410i −1.52710 0.555818i −0.564188 0.825646i \(-0.690811\pi\)
−0.962908 + 0.269829i \(0.913033\pi\)
\(930\) 0 0
\(931\) 1.22576 1.46080i 0.0401725 0.0478758i
\(932\) 2.18191 + 0.589056i 0.0714708 + 0.0192952i
\(933\) 0 0
\(934\) −13.5028 1.79065i −0.441826 0.0585917i
\(935\) −2.25339 + 3.90298i −0.0736936 + 0.127641i
\(936\) 0 0
\(937\) 4.84280 + 8.38798i 0.158207 + 0.274023i 0.934222 0.356691i \(-0.116095\pi\)
−0.776015 + 0.630715i \(0.782762\pi\)
\(938\) 27.7569 + 67.1902i 0.906293 + 2.19384i
\(939\) 0 0
\(940\) −15.0067 15.0635i −0.489466 0.491317i
\(941\) −5.10500 0.900150i −0.166418 0.0293440i 0.0898181 0.995958i \(-0.471371\pi\)
−0.256236 + 0.966614i \(0.582483\pi\)
\(942\) 0 0
\(943\) 33.7672 28.3340i 1.09961 0.922682i
\(944\) −26.8188 22.6767i −0.872877 0.738063i
\(945\) 0 0
\(946\) 0.227003 + 1.02854i 0.00738051 + 0.0334406i
\(947\) 19.6357 + 23.4009i 0.638075 + 0.760428i 0.984065 0.177811i \(-0.0569014\pi\)
−0.345990 + 0.938238i \(0.612457\pi\)
\(948\) 0 0
\(949\) 8.46036 + 1.49179i 0.274635 + 0.0484256i
\(950\) −3.11093 + 1.97776i −0.100932 + 0.0641669i
\(951\) 0 0
\(952\) −15.1801 + 16.4723i −0.491989 + 0.533870i
\(953\) −8.71927 15.1022i −0.282445 0.489209i 0.689542 0.724246i \(-0.257812\pi\)
−0.971986 + 0.235037i \(0.924479\pi\)
\(954\) 0 0
\(955\) 38.6370 + 22.3071i 1.25027 + 0.721841i
\(956\) −11.5659 + 0.989894i −0.374068 + 0.0320155i
\(957\) 0 0
\(958\) −19.0418 + 36.4949i −0.615214 + 1.17910i
\(959\) −41.2500 34.6128i −1.33203 1.11771i
\(960\) 0 0
\(961\) 24.5605 + 8.93927i 0.792273 + 0.288364i
\(962\) 10.9672 + 3.46932i 0.353596 + 0.111855i
\(963\) 0 0
\(964\) 48.2641 + 33.9308i 1.55448 + 1.09284i
\(965\) −0.588217 + 0.103718i −0.0189354 + 0.00333882i
\(966\) 0 0
\(967\) −46.2859 + 16.8467i −1.48845 + 0.541752i −0.953042 0.302839i \(-0.902065\pi\)
−0.535411 + 0.844592i \(0.679843\pi\)
\(968\) 26.8039 13.8569i 0.861510 0.445378i
\(969\) 0 0
\(970\) 32.6753 42.5002i 1.04914 1.36460i
\(971\) 13.2201i 0.424253i −0.977242 0.212126i \(-0.931961\pi\)
0.977242 0.212126i \(-0.0680388\pi\)
\(972\) 0 0
\(973\) 7.54418i 0.241855i
\(974\) 14.7353 + 11.3289i 0.472150 + 0.363002i
\(975\) 0 0
\(976\) 14.5907 12.1495i 0.467037 0.388896i
\(977\) 22.1311 8.05506i 0.708037 0.257704i 0.0371983 0.999308i \(-0.488157\pi\)
0.670838 + 0.741604i \(0.265934\pi\)
\(978\) 0 0
\(979\) 3.25108 0.573253i 0.103905 0.0183212i
\(980\) 18.1461 25.8116i 0.579657 0.824520i
\(981\) 0 0
\(982\) −5.01267 + 15.8460i −0.159961 + 0.505667i
\(983\) 44.1620 + 16.0737i 1.40855 + 0.512670i 0.930704 0.365773i \(-0.119195\pi\)
0.477846 + 0.878444i \(0.341418\pi\)
\(984\) 0 0
\(985\) 2.51126 + 2.10719i 0.0800153 + 0.0671408i
\(986\) 10.1566 + 5.29936i 0.323451 + 0.168766i
\(987\) 0 0
\(988\) −5.44060 + 0.465646i −0.173088 + 0.0148142i
\(989\) 7.42628 + 4.28756i 0.236142 + 0.136337i
\(990\) 0 0
\(991\) −10.5119 18.2072i −0.333922 0.578370i 0.649355 0.760486i \(-0.275039\pi\)
−0.983277 + 0.182115i \(0.941706\pi\)
\(992\) −3.80740 + 11.8798i −0.120885 + 0.377184i
\(993\) 0 0
\(994\) −20.3414 31.9962i −0.645190 1.01486i
\(995\) 13.6219 + 2.40190i 0.431842 + 0.0761454i
\(996\) 0 0
\(997\) −1.15413 1.37543i −0.0365515 0.0435604i 0.747459 0.664308i \(-0.231274\pi\)
−0.784011 + 0.620748i \(0.786829\pi\)
\(998\) −49.9718 + 11.0290i −1.58183 + 0.349117i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.37.8 204
3.2 odd 2 216.2.t.a.157.27 yes 204
8.5 even 2 inner 648.2.t.a.37.23 204
12.11 even 2 864.2.bf.a.49.13 204
24.5 odd 2 216.2.t.a.157.12 204
24.11 even 2 864.2.bf.a.49.22 204
27.11 odd 18 216.2.t.a.205.12 yes 204
27.16 even 9 inner 648.2.t.a.613.23 204
108.11 even 18 864.2.bf.a.529.22 204
216.11 even 18 864.2.bf.a.529.13 204
216.173 odd 18 216.2.t.a.205.27 yes 204
216.205 even 18 inner 648.2.t.a.613.8 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.12 204 24.5 odd 2
216.2.t.a.157.27 yes 204 3.2 odd 2
216.2.t.a.205.12 yes 204 27.11 odd 18
216.2.t.a.205.27 yes 204 216.173 odd 18
648.2.t.a.37.8 204 1.1 even 1 trivial
648.2.t.a.37.23 204 8.5 even 2 inner
648.2.t.a.613.8 204 216.205 even 18 inner
648.2.t.a.613.23 204 27.16 even 9 inner
864.2.bf.a.49.13 204 12.11 even 2
864.2.bf.a.49.22 204 24.11 even 2
864.2.bf.a.529.13 204 216.11 even 18
864.2.bf.a.529.22 204 108.11 even 18