Properties

Label 648.2.t.a.253.31
Level $648$
Weight $2$
Character 648.253
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 253.31
Character \(\chi\) \(=\) 648.253
Dual form 648.2.t.a.397.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34345 - 0.441744i) q^{2} +(1.60972 - 1.18692i) q^{4} +(0.721676 - 0.860059i) q^{5} +(1.31793 + 0.479686i) q^{7} +(1.63827 - 2.30566i) q^{8} +(0.589610 - 1.47424i) q^{10} +(-1.05816 - 1.26106i) q^{11} +(-0.671077 - 0.118329i) q^{13} +(1.98247 + 0.0622489i) q^{14} +(1.18243 - 3.82124i) q^{16} +(-0.907443 + 1.57174i) q^{17} +(2.96777 - 1.71344i) q^{19} +(0.140874 - 2.24103i) q^{20} +(-1.97865 - 1.22674i) q^{22} +(3.62278 - 1.31858i) q^{23} +(0.649354 + 3.68267i) q^{25} +(-0.953831 + 0.137475i) q^{26} +(2.69085 - 0.792115i) q^{28} +(-3.92395 + 0.691898i) q^{29} +(-6.21468 + 2.26196i) q^{31} +(-0.0994769 - 5.65598i) q^{32} +(-0.524800 + 2.51241i) q^{34} +(1.36367 - 0.787317i) q^{35} +(3.83532 + 2.21432i) q^{37} +(3.23015 - 3.61292i) q^{38} +(-0.800705 - 3.07295i) q^{40} +(-0.952217 + 5.40029i) q^{41} +(-7.26017 - 8.65234i) q^{43} +(-3.20013 - 0.774013i) q^{44} +(4.28455 - 3.37179i) q^{46} +(11.5469 + 4.20273i) q^{47} +(-3.85548 - 3.23513i) q^{49} +(2.49917 + 4.66064i) q^{50} +(-1.22070 + 0.606040i) q^{52} +6.89741i q^{53} -1.84824 q^{55} +(3.26511 - 2.25283i) q^{56} +(-4.96599 + 2.66291i) q^{58} +(6.78921 - 8.09106i) q^{59} +(1.24084 - 3.40917i) q^{61} +(-7.34992 + 5.78413i) q^{62} +(-2.63214 - 7.55459i) q^{64} +(-0.586070 + 0.491771i) q^{65} +(-11.9425 - 2.10578i) q^{67} +(0.404798 + 3.60713i) q^{68} +(1.48424 - 1.66012i) q^{70} +(-6.80355 + 11.7841i) q^{71} +(4.73823 + 8.20685i) q^{73} +(6.13073 + 1.28061i) q^{74} +(2.74357 - 6.28068i) q^{76} +(-0.789660 - 2.16957i) q^{77} +(1.59290 + 9.03380i) q^{79} +(-2.43316 - 3.77465i) q^{80} +(1.10629 + 7.67567i) q^{82} +(-1.29853 + 0.228966i) q^{83} +(0.696908 + 1.91474i) q^{85} +(-13.5758 - 8.41686i) q^{86} +(-4.64114 + 0.373789i) q^{88} +(3.52339 + 6.10270i) q^{89} +(-0.827669 - 0.477855i) q^{91} +(4.26662 - 6.42251i) q^{92} +(17.3692 + 0.545389i) q^{94} +(0.668104 - 3.78901i) q^{95} +(-6.33275 + 5.31381i) q^{97} +(-6.60875 - 2.64311i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34345 0.441744i 0.949964 0.312360i
\(3\) 0 0
\(4\) 1.60972 1.18692i 0.804862 0.593462i
\(5\) 0.721676 0.860059i 0.322743 0.384630i −0.580140 0.814517i \(-0.697002\pi\)
0.902883 + 0.429887i \(0.141447\pi\)
\(6\) 0 0
\(7\) 1.31793 + 0.479686i 0.498129 + 0.181304i 0.578852 0.815432i \(-0.303501\pi\)
−0.0807232 + 0.996737i \(0.525723\pi\)
\(8\) 1.63827 2.30566i 0.579216 0.815174i
\(9\) 0 0
\(10\) 0.589610 1.47424i 0.186451 0.466197i
\(11\) −1.05816 1.26106i −0.319047 0.380225i 0.582556 0.812791i \(-0.302053\pi\)
−0.901602 + 0.432566i \(0.857608\pi\)
\(12\) 0 0
\(13\) −0.671077 0.118329i −0.186123 0.0328186i 0.0798095 0.996810i \(-0.474569\pi\)
−0.265933 + 0.963992i \(0.585680\pi\)
\(14\) 1.98247 + 0.0622489i 0.529837 + 0.0166367i
\(15\) 0 0
\(16\) 1.18243 3.82124i 0.295607 0.955310i
\(17\) −0.907443 + 1.57174i −0.220087 + 0.381202i −0.954834 0.297139i \(-0.903968\pi\)
0.734747 + 0.678341i \(0.237301\pi\)
\(18\) 0 0
\(19\) 2.96777 1.71344i 0.680853 0.393091i −0.119323 0.992855i \(-0.538073\pi\)
0.800176 + 0.599765i \(0.204739\pi\)
\(20\) 0.140874 2.24103i 0.0315004 0.501110i
\(21\) 0 0
\(22\) −1.97865 1.22674i −0.421850 0.261543i
\(23\) 3.62278 1.31858i 0.755401 0.274944i 0.0645244 0.997916i \(-0.479447\pi\)
0.690877 + 0.722973i \(0.257225\pi\)
\(24\) 0 0
\(25\) 0.649354 + 3.68267i 0.129871 + 0.736534i
\(26\) −0.953831 + 0.137475i −0.187062 + 0.0269611i
\(27\) 0 0
\(28\) 2.69085 0.792115i 0.508522 0.149696i
\(29\) −3.92395 + 0.691898i −0.728659 + 0.128482i −0.525657 0.850696i \(-0.676181\pi\)
−0.203001 + 0.979179i \(0.565070\pi\)
\(30\) 0 0
\(31\) −6.21468 + 2.26196i −1.11619 + 0.406260i −0.833260 0.552881i \(-0.813529\pi\)
−0.282930 + 0.959141i \(0.591306\pi\)
\(32\) −0.0994769 5.65598i −0.0175852 0.999845i
\(33\) 0 0
\(34\) −0.524800 + 2.51241i −0.0900025 + 0.430875i
\(35\) 1.36367 0.787317i 0.230503 0.133081i
\(36\) 0 0
\(37\) 3.83532 + 2.21432i 0.630522 + 0.364032i 0.780954 0.624588i \(-0.214733\pi\)
−0.150432 + 0.988620i \(0.548066\pi\)
\(38\) 3.23015 3.61292i 0.524000 0.586093i
\(39\) 0 0
\(40\) −0.800705 3.07295i −0.126603 0.485876i
\(41\) −0.952217 + 5.40029i −0.148711 + 0.843384i 0.815601 + 0.578615i \(0.196407\pi\)
−0.964312 + 0.264769i \(0.914704\pi\)
\(42\) 0 0
\(43\) −7.26017 8.65234i −1.10717 1.31947i −0.942909 0.333051i \(-0.891922\pi\)
−0.164257 0.986418i \(-0.552523\pi\)
\(44\) −3.20013 0.774013i −0.482438 0.116687i
\(45\) 0 0
\(46\) 4.28455 3.37179i 0.631722 0.497144i
\(47\) 11.5469 + 4.20273i 1.68429 + 0.613031i 0.993888 0.110395i \(-0.0352116\pi\)
0.690402 + 0.723426i \(0.257434\pi\)
\(48\) 0 0
\(49\) −3.85548 3.23513i −0.550783 0.462162i
\(50\) 2.49917 + 4.66064i 0.353437 + 0.659114i
\(51\) 0 0
\(52\) −1.22070 + 0.606040i −0.169280 + 0.0840426i
\(53\) 6.89741i 0.947432i 0.880678 + 0.473716i \(0.157088\pi\)
−0.880678 + 0.473716i \(0.842912\pi\)
\(54\) 0 0
\(55\) −1.84824 −0.249216
\(56\) 3.26511 2.25283i 0.436319 0.301048i
\(57\) 0 0
\(58\) −4.96599 + 2.66291i −0.652067 + 0.349657i
\(59\) 6.78921 8.09106i 0.883880 1.05337i −0.114323 0.993444i \(-0.536470\pi\)
0.998203 0.0599230i \(-0.0190855\pi\)
\(60\) 0 0
\(61\) 1.24084 3.40917i 0.158873 0.436499i −0.834560 0.550917i \(-0.814278\pi\)
0.993433 + 0.114418i \(0.0365003\pi\)
\(62\) −7.34992 + 5.78413i −0.933441 + 0.734586i
\(63\) 0 0
\(64\) −2.63214 7.55459i −0.329017 0.944324i
\(65\) −0.586070 + 0.491771i −0.0726930 + 0.0609967i
\(66\) 0 0
\(67\) −11.9425 2.10578i −1.45901 0.257263i −0.612852 0.790198i \(-0.709978\pi\)
−0.846156 + 0.532935i \(0.821089\pi\)
\(68\) 0.404798 + 3.60713i 0.0490890 + 0.437429i
\(69\) 0 0
\(70\) 1.48424 1.66012i 0.177400 0.198422i
\(71\) −6.80355 + 11.7841i −0.807432 + 1.39851i 0.107204 + 0.994237i \(0.465810\pi\)
−0.914637 + 0.404277i \(0.867523\pi\)
\(72\) 0 0
\(73\) 4.73823 + 8.20685i 0.554567 + 0.960539i 0.997937 + 0.0642000i \(0.0204496\pi\)
−0.443370 + 0.896339i \(0.646217\pi\)
\(74\) 6.13073 + 1.28061i 0.712682 + 0.148867i
\(75\) 0 0
\(76\) 2.74357 6.28068i 0.314709 0.720444i
\(77\) −0.789660 2.16957i −0.0899901 0.247246i
\(78\) 0 0
\(79\) 1.59290 + 9.03380i 0.179215 + 1.01638i 0.933165 + 0.359449i \(0.117035\pi\)
−0.753949 + 0.656933i \(0.771854\pi\)
\(80\) −2.43316 3.77465i −0.272036 0.422019i
\(81\) 0 0
\(82\) 1.10629 + 7.67567i 0.122169 + 0.847635i
\(83\) −1.29853 + 0.228966i −0.142532 + 0.0251322i −0.244459 0.969660i \(-0.578610\pi\)
0.101927 + 0.994792i \(0.467499\pi\)
\(84\) 0 0
\(85\) 0.696908 + 1.91474i 0.0755903 + 0.207683i
\(86\) −13.5758 8.41686i −1.46392 0.907613i
\(87\) 0 0
\(88\) −4.64114 + 0.373789i −0.494747 + 0.0398461i
\(89\) 3.52339 + 6.10270i 0.373479 + 0.646884i 0.990098 0.140377i \(-0.0448315\pi\)
−0.616619 + 0.787262i \(0.711498\pi\)
\(90\) 0 0
\(91\) −0.827669 0.477855i −0.0867633 0.0500928i
\(92\) 4.26662 6.42251i 0.444825 0.669593i
\(93\) 0 0
\(94\) 17.3692 + 0.545389i 1.79150 + 0.0562525i
\(95\) 0.668104 3.78901i 0.0685460 0.388744i
\(96\) 0 0
\(97\) −6.33275 + 5.31381i −0.642993 + 0.539535i −0.904936 0.425548i \(-0.860081\pi\)
0.261943 + 0.965083i \(0.415637\pi\)
\(98\) −6.60875 2.64311i −0.667585 0.266994i
\(99\) 0 0
\(100\) 5.41633 + 5.15735i 0.541633 + 0.515735i
\(101\) −6.04137 + 16.5985i −0.601139 + 1.65162i 0.147832 + 0.989012i \(0.452770\pi\)
−0.748971 + 0.662603i \(0.769452\pi\)
\(102\) 0 0
\(103\) −2.98038 2.50084i −0.293666 0.246415i 0.484036 0.875048i \(-0.339170\pi\)
−0.777702 + 0.628633i \(0.783615\pi\)
\(104\) −1.37223 + 1.35342i −0.134558 + 0.132714i
\(105\) 0 0
\(106\) 3.04689 + 9.26634i 0.295940 + 0.900026i
\(107\) 4.16409i 0.402558i −0.979534 0.201279i \(-0.935490\pi\)
0.979534 0.201279i \(-0.0645098\pi\)
\(108\) 0 0
\(109\) 20.6082i 1.97391i 0.161002 + 0.986954i \(0.448527\pi\)
−0.161002 + 0.986954i \(0.551473\pi\)
\(110\) −2.48302 + 0.816448i −0.236746 + 0.0778452i
\(111\) 0 0
\(112\) 3.39134 4.46892i 0.320452 0.422273i
\(113\) −2.03205 1.70510i −0.191160 0.160402i 0.542185 0.840259i \(-0.317597\pi\)
−0.733344 + 0.679857i \(0.762042\pi\)
\(114\) 0 0
\(115\) 1.48041 4.06739i 0.138049 0.379286i
\(116\) −5.49524 + 5.77119i −0.510221 + 0.535841i
\(117\) 0 0
\(118\) 5.54679 13.8690i 0.510624 1.27675i
\(119\) −1.94988 + 1.63615i −0.178745 + 0.149985i
\(120\) 0 0
\(121\) 1.43955 8.16407i 0.130868 0.742188i
\(122\) 0.161023 5.12818i 0.0145784 0.464284i
\(123\) 0 0
\(124\) −7.31916 + 11.0175i −0.657280 + 0.989399i
\(125\) 8.49749 + 4.90603i 0.760039 + 0.438809i
\(126\) 0 0
\(127\) −2.14785 3.72019i −0.190591 0.330113i 0.754855 0.655891i \(-0.227707\pi\)
−0.945446 + 0.325778i \(0.894374\pi\)
\(128\) −6.87334 8.98650i −0.607524 0.794302i
\(129\) 0 0
\(130\) −0.570120 + 0.919563i −0.0500028 + 0.0806510i
\(131\) −2.70846 7.44142i −0.236639 0.650160i −0.999991 0.00417788i \(-0.998670\pi\)
0.763352 0.645982i \(-0.223552\pi\)
\(132\) 0 0
\(133\) 4.73321 0.834593i 0.410422 0.0723684i
\(134\) −16.9744 + 2.44651i −1.46636 + 0.211346i
\(135\) 0 0
\(136\) 2.13726 + 4.66719i 0.183268 + 0.400208i
\(137\) −2.73472 15.5094i −0.233643 1.32506i −0.845452 0.534051i \(-0.820669\pi\)
0.611809 0.791006i \(-0.290442\pi\)
\(138\) 0 0
\(139\) 0.133147 + 0.365819i 0.0112934 + 0.0310283i 0.945211 0.326459i \(-0.105856\pi\)
−0.933918 + 0.357488i \(0.883633\pi\)
\(140\) 1.26065 2.88594i 0.106545 0.243906i
\(141\) 0 0
\(142\) −3.93469 + 18.8368i −0.330191 + 1.58075i
\(143\) 0.560885 + 0.971482i 0.0469036 + 0.0812394i
\(144\) 0 0
\(145\) −2.23674 + 3.87415i −0.185751 + 0.321731i
\(146\) 9.99090 + 8.93242i 0.826853 + 0.739252i
\(147\) 0 0
\(148\) 8.80203 0.987780i 0.723523 0.0811950i
\(149\) −11.6562 2.05530i −0.954913 0.168377i −0.325581 0.945514i \(-0.605560\pi\)
−0.629331 + 0.777137i \(0.716671\pi\)
\(150\) 0 0
\(151\) 7.05111 5.91658i 0.573811 0.481485i −0.309097 0.951031i \(-0.600027\pi\)
0.882908 + 0.469546i \(0.155582\pi\)
\(152\) 0.911394 9.64975i 0.0739238 0.782698i
\(153\) 0 0
\(154\) −2.01927 2.56589i −0.162717 0.206765i
\(155\) −2.53957 + 6.97740i −0.203983 + 0.560438i
\(156\) 0 0
\(157\) −8.84016 + 10.5353i −0.705521 + 0.840807i −0.993139 0.116938i \(-0.962692\pi\)
0.287618 + 0.957745i \(0.407137\pi\)
\(158\) 6.13061 + 11.4328i 0.487725 + 0.909546i
\(159\) 0 0
\(160\) −4.93627 3.99623i −0.390246 0.315929i
\(161\) 5.40706 0.426136
\(162\) 0 0
\(163\) 12.7196i 0.996272i 0.867099 + 0.498136i \(0.165982\pi\)
−0.867099 + 0.498136i \(0.834018\pi\)
\(164\) 4.87692 + 9.82319i 0.380824 + 0.767062i
\(165\) 0 0
\(166\) −1.64337 + 0.881221i −0.127550 + 0.0683960i
\(167\) −15.1696 12.7288i −1.17386 0.984986i −1.00000 0.000215714i \(-0.999931\pi\)
−0.173861 0.984770i \(-0.555624\pi\)
\(168\) 0 0
\(169\) −11.7797 4.28745i −0.906128 0.329804i
\(170\) 1.78209 + 2.26450i 0.136680 + 0.173680i
\(171\) 0 0
\(172\) −21.9565 5.31061i −1.67417 0.404930i
\(173\) 3.14984 + 3.75384i 0.239478 + 0.285399i 0.872375 0.488837i \(-0.162579\pi\)
−0.632897 + 0.774236i \(0.718134\pi\)
\(174\) 0 0
\(175\) −0.910724 + 5.16497i −0.0688443 + 0.390435i
\(176\) −6.07002 + 2.55236i −0.457545 + 0.192392i
\(177\) 0 0
\(178\) 7.42934 + 6.64224i 0.556852 + 0.497857i
\(179\) 3.21176 + 1.85431i 0.240058 + 0.138598i 0.615204 0.788368i \(-0.289074\pi\)
−0.375145 + 0.926966i \(0.622407\pi\)
\(180\) 0 0
\(181\) 14.1322 8.15921i 1.05044 0.606470i 0.127665 0.991817i \(-0.459252\pi\)
0.922771 + 0.385348i \(0.125919\pi\)
\(182\) −1.32302 0.276357i −0.0980690 0.0204850i
\(183\) 0 0
\(184\) 2.89489 10.5131i 0.213414 0.775035i
\(185\) 4.67230 1.70058i 0.343515 0.125029i
\(186\) 0 0
\(187\) 2.94228 0.518804i 0.215161 0.0379387i
\(188\) 23.5757 6.94005i 1.71943 0.506155i
\(189\) 0 0
\(190\) −0.776205 5.38548i −0.0563118 0.390704i
\(191\) −1.19811 6.79482i −0.0866922 0.491656i −0.996979 0.0776767i \(-0.975250\pi\)
0.910286 0.413979i \(-0.135861\pi\)
\(192\) 0 0
\(193\) 8.95564 3.25959i 0.644641 0.234630i 0.00104978 0.999999i \(-0.499666\pi\)
0.643591 + 0.765369i \(0.277444\pi\)
\(194\) −6.16040 + 9.93630i −0.442291 + 0.713385i
\(195\) 0 0
\(196\) −10.0461 0.631512i −0.717580 0.0451080i
\(197\) −1.74001 + 1.00460i −0.123971 + 0.0715746i −0.560703 0.828017i \(-0.689469\pi\)
0.436732 + 0.899592i \(0.356136\pi\)
\(198\) 0 0
\(199\) 10.6564 18.4573i 0.755409 1.30841i −0.189762 0.981830i \(-0.560772\pi\)
0.945171 0.326576i \(-0.105895\pi\)
\(200\) 9.55481 + 4.53602i 0.675627 + 0.320745i
\(201\) 0 0
\(202\) −0.783989 + 24.9681i −0.0551613 + 1.75675i
\(203\) −5.50336 0.970392i −0.386260 0.0681081i
\(204\) 0 0
\(205\) 3.95738 + 4.71622i 0.276395 + 0.329395i
\(206\) −5.10873 2.04319i −0.355942 0.142356i
\(207\) 0 0
\(208\) −1.24566 + 2.42443i −0.0863711 + 0.168104i
\(209\) −5.30113 1.92945i −0.366687 0.133463i
\(210\) 0 0
\(211\) 5.98817 7.13642i 0.412242 0.491291i −0.519470 0.854489i \(-0.673870\pi\)
0.931712 + 0.363197i \(0.118315\pi\)
\(212\) 8.18670 + 11.1029i 0.562265 + 0.762552i
\(213\) 0 0
\(214\) −1.83946 5.59426i −0.125743 0.382416i
\(215\) −12.6810 −0.864838
\(216\) 0 0
\(217\) −9.27552 −0.629664
\(218\) 9.10355 + 27.6861i 0.616570 + 1.87514i
\(219\) 0 0
\(220\) −2.97515 + 2.19372i −0.200585 + 0.147900i
\(221\) 0.794946 0.947380i 0.0534739 0.0637277i
\(222\) 0 0
\(223\) 23.1313 + 8.41909i 1.54898 + 0.563784i 0.968179 0.250259i \(-0.0805157\pi\)
0.580805 + 0.814043i \(0.302738\pi\)
\(224\) 2.58199 7.50188i 0.172516 0.501240i
\(225\) 0 0
\(226\) −3.48318 1.39307i −0.231698 0.0926654i
\(227\) −2.62591 3.12944i −0.174288 0.207708i 0.671828 0.740707i \(-0.265509\pi\)
−0.846116 + 0.532999i \(0.821065\pi\)
\(228\) 0 0
\(229\) 12.4279 + 2.19138i 0.821261 + 0.144810i 0.568463 0.822709i \(-0.307538\pi\)
0.252798 + 0.967519i \(0.418649\pi\)
\(230\) 0.192113 6.11831i 0.0126675 0.403429i
\(231\) 0 0
\(232\) −4.83321 + 10.1808i −0.317316 + 0.668402i
\(233\) 12.2882 21.2839i 0.805030 1.39435i −0.111241 0.993793i \(-0.535483\pi\)
0.916271 0.400559i \(-0.131184\pi\)
\(234\) 0 0
\(235\) 11.9477 6.89802i 0.779383 0.449977i
\(236\) 1.32528 21.0827i 0.0862686 1.37236i
\(237\) 0 0
\(238\) −1.89682 + 3.05943i −0.122952 + 0.198314i
\(239\) 10.1778 3.70441i 0.658346 0.239618i 0.00882395 0.999961i \(-0.497191\pi\)
0.649522 + 0.760343i \(0.274969\pi\)
\(240\) 0 0
\(241\) −2.29103 12.9931i −0.147579 0.836959i −0.965261 0.261289i \(-0.915852\pi\)
0.817682 0.575670i \(-0.195259\pi\)
\(242\) −1.67247 11.6039i −0.107510 0.745930i
\(243\) 0 0
\(244\) −2.04902 6.96060i −0.131175 0.445607i
\(245\) −5.56481 + 0.981227i −0.355523 + 0.0626883i
\(246\) 0 0
\(247\) −2.19435 + 0.798678i −0.139623 + 0.0508187i
\(248\) −4.96602 + 18.0347i −0.315343 + 1.14520i
\(249\) 0 0
\(250\) 13.5832 + 2.83730i 0.859076 + 0.179446i
\(251\) 17.6367 10.1826i 1.11322 0.642717i 0.173558 0.984824i \(-0.444474\pi\)
0.939661 + 0.342106i \(0.111140\pi\)
\(252\) 0 0
\(253\) −5.49629 3.17328i −0.345549 0.199503i
\(254\) −4.52890 4.04909i −0.284169 0.254063i
\(255\) 0 0
\(256\) −13.2037 9.03667i −0.825234 0.564792i
\(257\) −2.07937 + 11.7927i −0.129707 + 0.735606i 0.848693 + 0.528886i \(0.177390\pi\)
−0.978400 + 0.206720i \(0.933721\pi\)
\(258\) 0 0
\(259\) 3.99249 + 4.75806i 0.248081 + 0.295651i
\(260\) −0.359717 + 1.48724i −0.0223087 + 0.0922344i
\(261\) 0 0
\(262\) −6.92589 8.80075i −0.427883 0.543712i
\(263\) 9.28725 + 3.38028i 0.572677 + 0.208437i 0.612093 0.790786i \(-0.290328\pi\)
−0.0394166 + 0.999223i \(0.512550\pi\)
\(264\) 0 0
\(265\) 5.93218 + 4.97769i 0.364411 + 0.305777i
\(266\) 5.99017 3.21210i 0.367281 0.196947i
\(267\) 0 0
\(268\) −21.7235 + 10.7851i −1.32698 + 0.658805i
\(269\) 5.38944i 0.328600i −0.986410 0.164300i \(-0.947463\pi\)
0.986410 0.164300i \(-0.0525365\pi\)
\(270\) 0 0
\(271\) −6.24978 −0.379647 −0.189823 0.981818i \(-0.560792\pi\)
−0.189823 + 0.981818i \(0.560792\pi\)
\(272\) 4.93300 + 5.32602i 0.299107 + 0.322937i
\(273\) 0 0
\(274\) −10.5252 19.6281i −0.635848 1.18578i
\(275\) 3.95697 4.71573i 0.238614 0.284369i
\(276\) 0 0
\(277\) 4.85450 13.3376i 0.291679 0.801381i −0.704143 0.710059i \(-0.748668\pi\)
0.995821 0.0913223i \(-0.0291093\pi\)
\(278\) 0.340475 + 0.432643i 0.0204203 + 0.0259482i
\(279\) 0 0
\(280\) 0.418780 4.43401i 0.0250269 0.264983i
\(281\) −21.3543 + 17.9184i −1.27389 + 1.06892i −0.279837 + 0.960047i \(0.590280\pi\)
−0.994055 + 0.108875i \(0.965275\pi\)
\(282\) 0 0
\(283\) −22.0316 3.88476i −1.30964 0.230925i −0.525121 0.851027i \(-0.675980\pi\)
−0.784521 + 0.620102i \(0.787091\pi\)
\(284\) 3.03497 + 27.0444i 0.180093 + 1.60479i
\(285\) 0 0
\(286\) 1.18267 + 1.05737i 0.0699327 + 0.0625237i
\(287\) −3.84539 + 6.66042i −0.226986 + 0.393152i
\(288\) 0 0
\(289\) 6.85309 + 11.8699i 0.403123 + 0.698230i
\(290\) −1.29357 + 6.19280i −0.0759612 + 0.363654i
\(291\) 0 0
\(292\) 17.3681 + 7.58685i 1.01639 + 0.443987i
\(293\) 0.130208 + 0.357742i 0.00760680 + 0.0208995i 0.943438 0.331549i \(-0.107571\pi\)
−0.935831 + 0.352449i \(0.885349\pi\)
\(294\) 0 0
\(295\) −2.05919 11.6782i −0.119891 0.679934i
\(296\) 11.3888 5.21528i 0.661958 0.303132i
\(297\) 0 0
\(298\) −16.5675 + 2.38786i −0.959727 + 0.138325i
\(299\) −2.58719 + 0.456191i −0.149621 + 0.0263822i
\(300\) 0 0
\(301\) −5.41797 14.8857i −0.312286 0.858000i
\(302\) 6.85921 11.0634i 0.394703 0.636629i
\(303\) 0 0
\(304\) −3.03830 13.3666i −0.174259 0.766626i
\(305\) −2.03661 3.52751i −0.116616 0.201984i
\(306\) 0 0
\(307\) −9.47107 5.46813i −0.540543 0.312083i 0.204756 0.978813i \(-0.434360\pi\)
−0.745299 + 0.666731i \(0.767693\pi\)
\(308\) −3.84625 2.55515i −0.219161 0.145593i
\(309\) 0 0
\(310\) −0.329560 + 10.4956i −0.0187177 + 0.596112i
\(311\) 3.17033 17.9798i 0.179773 1.01954i −0.752717 0.658344i \(-0.771257\pi\)
0.932490 0.361197i \(-0.117632\pi\)
\(312\) 0 0
\(313\) 2.49125 2.09041i 0.140814 0.118157i −0.569660 0.821880i \(-0.692925\pi\)
0.710474 + 0.703724i \(0.248481\pi\)
\(314\) −7.22242 + 18.0587i −0.407585 + 1.01911i
\(315\) 0 0
\(316\) 13.2866 + 12.6513i 0.747427 + 0.711690i
\(317\) 5.82505 16.0042i 0.327167 0.898885i −0.661658 0.749806i \(-0.730147\pi\)
0.988825 0.149079i \(-0.0476309\pi\)
\(318\) 0 0
\(319\) 5.02469 + 4.21621i 0.281328 + 0.236063i
\(320\) −8.39695 3.18817i −0.469404 0.178224i
\(321\) 0 0
\(322\) 7.26412 2.38853i 0.404814 0.133108i
\(323\) 6.21940i 0.346057i
\(324\) 0 0
\(325\) 2.54819i 0.141348i
\(326\) 5.61879 + 17.0881i 0.311196 + 0.946423i
\(327\) 0 0
\(328\) 10.8912 + 11.0426i 0.601368 + 0.609727i
\(329\) 13.2020 + 11.0778i 0.727849 + 0.610737i
\(330\) 0 0
\(331\) 1.92215 5.28106i 0.105651 0.290273i −0.875591 0.483053i \(-0.839528\pi\)
0.981242 + 0.192780i \(0.0617502\pi\)
\(332\) −1.81851 + 1.90983i −0.0998036 + 0.104815i
\(333\) 0 0
\(334\) −26.0025 10.3995i −1.42280 0.569034i
\(335\) −10.4297 + 8.75156i −0.569836 + 0.478149i
\(336\) 0 0
\(337\) 3.30062 18.7188i 0.179796 1.01968i −0.752665 0.658404i \(-0.771232\pi\)
0.932461 0.361271i \(-0.117657\pi\)
\(338\) −17.7194 0.556382i −0.963806 0.0302632i
\(339\) 0 0
\(340\) 3.39448 + 2.25503i 0.184091 + 0.122296i
\(341\) 9.42860 + 5.44360i 0.510587 + 0.294788i
\(342\) 0 0
\(343\) −8.43817 14.6153i −0.455618 0.789154i
\(344\) −31.8435 + 2.56462i −1.71689 + 0.138275i
\(345\) 0 0
\(346\) 5.88990 + 3.65167i 0.316643 + 0.196315i
\(347\) −3.17358 8.71933i −0.170366 0.468078i 0.824898 0.565282i \(-0.191232\pi\)
−0.995265 + 0.0972035i \(0.969010\pi\)
\(348\) 0 0
\(349\) −7.31028 + 1.28900i −0.391310 + 0.0689985i −0.365842 0.930677i \(-0.619219\pi\)
−0.0254684 + 0.999676i \(0.508108\pi\)
\(350\) 1.05808 + 7.34120i 0.0565569 + 0.392404i
\(351\) 0 0
\(352\) −7.02729 + 6.11037i −0.374556 + 0.325684i
\(353\) −4.91102 27.8518i −0.261387 1.48240i −0.779129 0.626864i \(-0.784338\pi\)
0.517742 0.855537i \(-0.326773\pi\)
\(354\) 0 0
\(355\) 5.22506 + 14.3557i 0.277318 + 0.761924i
\(356\) 12.9151 + 5.64166i 0.684500 + 0.299007i
\(357\) 0 0
\(358\) 5.13398 + 1.07240i 0.271339 + 0.0566782i
\(359\) −8.47821 14.6847i −0.447463 0.775029i 0.550757 0.834666i \(-0.314339\pi\)
−0.998220 + 0.0596369i \(0.981006\pi\)
\(360\) 0 0
\(361\) −3.62823 + 6.28428i −0.190960 + 0.330752i
\(362\) 15.3816 17.2043i 0.808439 0.904239i
\(363\) 0 0
\(364\) −1.89950 + 0.213165i −0.0995607 + 0.0111729i
\(365\) 10.4778 + 1.84753i 0.548435 + 0.0967039i
\(366\) 0 0
\(367\) 6.19539 5.19855i 0.323397 0.271362i −0.466606 0.884465i \(-0.654523\pi\)
0.790003 + 0.613103i \(0.210079\pi\)
\(368\) −0.754954 15.4026i −0.0393547 0.802917i
\(369\) 0 0
\(370\) 5.52579 4.34861i 0.287272 0.226073i
\(371\) −3.30859 + 9.09028i −0.171773 + 0.471944i
\(372\) 0 0
\(373\) −14.1644 + 16.8805i −0.733405 + 0.874038i −0.995859 0.0909062i \(-0.971024\pi\)
0.262454 + 0.964944i \(0.415468\pi\)
\(374\) 3.72363 1.99672i 0.192545 0.103248i
\(375\) 0 0
\(376\) 28.6070 19.7380i 1.47529 1.01791i
\(377\) 2.71514 0.139837
\(378\) 0 0
\(379\) 9.42240i 0.483996i 0.970277 + 0.241998i \(0.0778027\pi\)
−0.970277 + 0.241998i \(0.922197\pi\)
\(380\) −3.42180 6.89225i −0.175534 0.353565i
\(381\) 0 0
\(382\) −4.61117 8.59925i −0.235928 0.439976i
\(383\) 13.2473 + 11.1158i 0.676904 + 0.567989i 0.915100 0.403228i \(-0.132112\pi\)
−0.238196 + 0.971217i \(0.576556\pi\)
\(384\) 0 0
\(385\) −2.43584 0.886573i −0.124142 0.0451840i
\(386\) 10.5916 8.33520i 0.539097 0.424250i
\(387\) 0 0
\(388\) −3.88690 + 16.0703i −0.197327 + 0.815844i
\(389\) −15.9667 19.0284i −0.809546 0.964780i 0.190310 0.981724i \(-0.439051\pi\)
−0.999856 + 0.0169443i \(0.994606\pi\)
\(390\) 0 0
\(391\) −1.21500 + 6.89059i −0.0614451 + 0.348472i
\(392\) −13.7754 + 3.58940i −0.695765 + 0.181292i
\(393\) 0 0
\(394\) −1.89385 + 2.11827i −0.0954108 + 0.106717i
\(395\) 8.91916 + 5.14948i 0.448772 + 0.259098i
\(396\) 0 0
\(397\) −5.94466 + 3.43215i −0.298354 + 0.172255i −0.641703 0.766953i \(-0.721772\pi\)
0.343349 + 0.939208i \(0.388439\pi\)
\(398\) 6.16287 29.5039i 0.308917 1.47890i
\(399\) 0 0
\(400\) 14.8402 + 1.87315i 0.742009 + 0.0936574i
\(401\) −11.8463 + 4.31169i −0.591574 + 0.215315i −0.620422 0.784268i \(-0.713039\pi\)
0.0288475 + 0.999584i \(0.490816\pi\)
\(402\) 0 0
\(403\) 4.43819 0.782572i 0.221082 0.0389827i
\(404\) 9.97624 + 33.8897i 0.496336 + 1.68608i
\(405\) 0 0
\(406\) −7.82217 + 1.12740i −0.388208 + 0.0559521i
\(407\) −1.26597 7.17969i −0.0627519 0.355884i
\(408\) 0 0
\(409\) 32.0334 11.6592i 1.58395 0.576510i 0.607891 0.794020i \(-0.292016\pi\)
0.976058 + 0.217510i \(0.0697935\pi\)
\(410\) 7.39991 + 4.58787i 0.365455 + 0.226579i
\(411\) 0 0
\(412\) −7.76590 0.488175i −0.382598 0.0240506i
\(413\) 12.8288 7.40673i 0.631266 0.364462i
\(414\) 0 0
\(415\) −0.740192 + 1.28205i −0.0363346 + 0.0629334i
\(416\) −0.602510 + 3.80737i −0.0295405 + 0.186672i
\(417\) 0 0
\(418\) −7.97414 0.250385i −0.390028 0.0122467i
\(419\) 10.9419 + 1.92935i 0.534545 + 0.0942547i 0.434403 0.900718i \(-0.356959\pi\)
0.100142 + 0.994973i \(0.468070\pi\)
\(420\) 0 0
\(421\) −12.6851 15.1175i −0.618232 0.736780i 0.362533 0.931971i \(-0.381912\pi\)
−0.980765 + 0.195190i \(0.937468\pi\)
\(422\) 4.89234 12.2327i 0.238156 0.595477i
\(423\) 0 0
\(424\) 15.9031 + 11.2998i 0.772322 + 0.548768i
\(425\) −6.37744 2.32120i −0.309352 0.112595i
\(426\) 0 0
\(427\) 3.27066 3.89782i 0.158278 0.188629i
\(428\) −4.94246 6.70304i −0.238903 0.324004i
\(429\) 0 0
\(430\) −17.0363 + 5.60176i −0.821565 + 0.270141i
\(431\) 0.293057 0.0141161 0.00705803 0.999975i \(-0.497753\pi\)
0.00705803 + 0.999975i \(0.497753\pi\)
\(432\) 0 0
\(433\) 18.2482 0.876954 0.438477 0.898742i \(-0.355518\pi\)
0.438477 + 0.898742i \(0.355518\pi\)
\(434\) −12.4612 + 4.09741i −0.598158 + 0.196682i
\(435\) 0 0
\(436\) 24.4604 + 33.1735i 1.17144 + 1.58872i
\(437\) 8.49225 10.1207i 0.406239 0.484137i
\(438\) 0 0
\(439\) 0.920498 + 0.335034i 0.0439330 + 0.0159903i 0.363893 0.931441i \(-0.381447\pi\)
−0.319960 + 0.947431i \(0.603670\pi\)
\(440\) −3.02791 + 4.26141i −0.144350 + 0.203155i
\(441\) 0 0
\(442\) 0.649472 1.62392i 0.0308923 0.0772421i
\(443\) 3.31318 + 3.94849i 0.157414 + 0.187599i 0.838987 0.544151i \(-0.183148\pi\)
−0.681573 + 0.731750i \(0.738704\pi\)
\(444\) 0 0
\(445\) 7.79143 + 1.37384i 0.369349 + 0.0651262i
\(446\) 34.7948 + 1.09255i 1.64758 + 0.0517336i
\(447\) 0 0
\(448\) 0.154869 11.2190i 0.00731685 0.530048i
\(449\) 6.21921 10.7720i 0.293503 0.508362i −0.681133 0.732160i \(-0.738512\pi\)
0.974635 + 0.223798i \(0.0718457\pi\)
\(450\) 0 0
\(451\) 7.81771 4.51356i 0.368122 0.212535i
\(452\) −5.29486 0.332842i −0.249049 0.0156556i
\(453\) 0 0
\(454\) −4.91019 3.04427i −0.230447 0.142875i
\(455\) −1.00829 + 0.366988i −0.0472695 + 0.0172047i
\(456\) 0 0
\(457\) −4.18789 23.7507i −0.195901 1.11101i −0.911129 0.412121i \(-0.864788\pi\)
0.715228 0.698891i \(-0.246323\pi\)
\(458\) 17.6644 2.54595i 0.825401 0.118964i
\(459\) 0 0
\(460\) −2.44463 8.30451i −0.113981 0.387200i
\(461\) 36.0117 6.34983i 1.67723 0.295741i 0.747577 0.664175i \(-0.231217\pi\)
0.929654 + 0.368434i \(0.120106\pi\)
\(462\) 0 0
\(463\) −21.2745 + 7.74329i −0.988711 + 0.359861i −0.785221 0.619216i \(-0.787451\pi\)
−0.203490 + 0.979077i \(0.565228\pi\)
\(464\) −1.99587 + 15.8125i −0.0926560 + 0.734075i
\(465\) 0 0
\(466\) 7.10665 34.0221i 0.329209 1.57604i
\(467\) −20.1982 + 11.6614i −0.934662 + 0.539628i −0.888283 0.459296i \(-0.848102\pi\)
−0.0463792 + 0.998924i \(0.514768\pi\)
\(468\) 0 0
\(469\) −14.7292 8.50392i −0.680132 0.392674i
\(470\) 13.0040 14.5450i 0.599831 0.670910i
\(471\) 0 0
\(472\) −7.53268 28.9090i −0.346720 1.33064i
\(473\) −3.22874 + 18.3111i −0.148458 + 0.841945i
\(474\) 0 0
\(475\) 8.23718 + 9.81669i 0.377948 + 0.450420i
\(476\) −1.19679 + 4.94811i −0.0548550 + 0.226796i
\(477\) 0 0
\(478\) 12.0370 9.47267i 0.550558 0.433270i
\(479\) 37.4812 + 13.6420i 1.71256 + 0.623320i 0.997154 0.0753898i \(-0.0240201\pi\)
0.715405 + 0.698710i \(0.246242\pi\)
\(480\) 0 0
\(481\) −2.31177 1.93981i −0.105408 0.0884477i
\(482\) −8.81752 16.4436i −0.401627 0.748983i
\(483\) 0 0
\(484\) −7.37286 14.8505i −0.335130 0.675025i
\(485\) 9.28139i 0.421446i
\(486\) 0 0
\(487\) −32.0323 −1.45152 −0.725762 0.687946i \(-0.758512\pi\)
−0.725762 + 0.687946i \(0.758512\pi\)
\(488\) −5.82756 8.44609i −0.263801 0.382336i
\(489\) 0 0
\(490\) −7.04260 + 3.77645i −0.318152 + 0.170603i
\(491\) −16.9415 + 20.1901i −0.764559 + 0.911166i −0.998127 0.0611743i \(-0.980515\pi\)
0.233568 + 0.972341i \(0.424960\pi\)
\(492\) 0 0
\(493\) 2.47328 6.79527i 0.111391 0.306044i
\(494\) −2.59519 + 2.04233i −0.116763 + 0.0918886i
\(495\) 0 0
\(496\) 1.29508 + 26.4224i 0.0581510 + 1.18640i
\(497\) −14.6192 + 12.2670i −0.655762 + 0.550250i
\(498\) 0 0
\(499\) 0.796549 + 0.140453i 0.0356584 + 0.00628755i 0.191449 0.981503i \(-0.438681\pi\)
−0.155790 + 0.987790i \(0.549792\pi\)
\(500\) 19.5017 2.18852i 0.872143 0.0978734i
\(501\) 0 0
\(502\) 19.1960 21.4707i 0.856759 0.958284i
\(503\) 0.838775 1.45280i 0.0373991 0.0647772i −0.846720 0.532039i \(-0.821426\pi\)
0.884119 + 0.467262i \(0.154759\pi\)
\(504\) 0 0
\(505\) 9.91581 + 17.1747i 0.441248 + 0.764264i
\(506\) −8.78578 1.83520i −0.390576 0.0815847i
\(507\) 0 0
\(508\) −7.87302 3.43914i −0.349309 0.152587i
\(509\) −2.89525 7.95462i −0.128330 0.352583i 0.858843 0.512239i \(-0.171184\pi\)
−0.987173 + 0.159656i \(0.948961\pi\)
\(510\) 0 0
\(511\) 2.30792 + 13.0889i 0.102096 + 0.579018i
\(512\) −21.7305 6.30765i −0.960360 0.278762i
\(513\) 0 0
\(514\) 2.41581 + 16.7614i 0.106557 + 0.739315i
\(515\) −4.30174 + 0.758513i −0.189557 + 0.0334241i
\(516\) 0 0
\(517\) −6.91855 19.0085i −0.304277 0.835995i
\(518\) 7.46555 + 4.62857i 0.328018 + 0.203367i
\(519\) 0 0
\(520\) 0.173716 + 2.15693i 0.00761793 + 0.0945877i
\(521\) −1.96303 3.40007i −0.0860020 0.148960i 0.819816 0.572627i \(-0.194076\pi\)
−0.905818 + 0.423668i \(0.860742\pi\)
\(522\) 0 0
\(523\) 14.9783 + 8.64774i 0.654956 + 0.378139i 0.790353 0.612652i \(-0.209897\pi\)
−0.135396 + 0.990792i \(0.543231\pi\)
\(524\) −13.1923 8.76391i −0.576307 0.382853i
\(525\) 0 0
\(526\) 13.9702 + 0.438660i 0.609129 + 0.0191265i
\(527\) 2.08426 11.8205i 0.0907920 0.514907i
\(528\) 0 0
\(529\) −6.23317 + 5.23025i −0.271008 + 0.227402i
\(530\) 10.1685 + 4.06678i 0.441690 + 0.176650i
\(531\) 0 0
\(532\) 6.62857 6.96143i 0.287385 0.301816i
\(533\) 1.27802 3.51134i 0.0553573 0.152093i
\(534\) 0 0
\(535\) −3.58137 3.00512i −0.154836 0.129923i
\(536\) −24.4203 + 24.0855i −1.05480 + 1.04033i
\(537\) 0 0
\(538\) −2.38075 7.24046i −0.102642 0.312158i
\(539\) 8.28529i 0.356873i
\(540\) 0 0
\(541\) 11.4118i 0.490630i −0.969443 0.245315i \(-0.921109\pi\)
0.969443 0.245315i \(-0.0788914\pi\)
\(542\) −8.39627 + 2.76080i −0.360651 + 0.118587i
\(543\) 0 0
\(544\) 8.97999 + 4.97613i 0.385014 + 0.213350i
\(545\) 17.7243 + 14.8724i 0.759225 + 0.637065i
\(546\) 0 0
\(547\) −4.84214 + 13.3037i −0.207035 + 0.568824i −0.999136 0.0415665i \(-0.986765\pi\)
0.792101 + 0.610390i \(0.208987\pi\)
\(548\) −22.8106 21.7199i −0.974421 0.927830i
\(549\) 0 0
\(550\) 3.23285 8.08332i 0.137849 0.344674i
\(551\) −10.4598 + 8.77685i −0.445604 + 0.373906i
\(552\) 0 0
\(553\) −2.23406 + 12.6700i −0.0950018 + 0.538782i
\(554\) 0.629969 20.0629i 0.0267648 0.852392i
\(555\) 0 0
\(556\) 0.648529 + 0.430832i 0.0275037 + 0.0182713i
\(557\) −29.6837 17.1379i −1.25774 0.726155i −0.285103 0.958497i \(-0.592028\pi\)
−0.972634 + 0.232342i \(0.925361\pi\)
\(558\) 0 0
\(559\) 3.84831 + 6.66547i 0.162766 + 0.281919i
\(560\) −1.39608 6.14187i −0.0589953 0.259541i
\(561\) 0 0
\(562\) −20.7732 + 33.5057i −0.876263 + 1.41335i
\(563\) 11.1729 + 30.6973i 0.470882 + 1.29374i 0.917044 + 0.398786i \(0.130568\pi\)
−0.446162 + 0.894952i \(0.647210\pi\)
\(564\) 0 0
\(565\) −2.93297 + 0.517161i −0.123391 + 0.0217571i
\(566\) −31.3144 + 4.51333i −1.31624 + 0.189709i
\(567\) 0 0
\(568\) 16.0240 + 34.9922i 0.672354 + 1.46824i
\(569\) −4.57663 25.9553i −0.191862 1.08810i −0.916817 0.399308i \(-0.869250\pi\)
0.724955 0.688797i \(-0.241861\pi\)
\(570\) 0 0
\(571\) 14.3103 + 39.3171i 0.598865 + 1.64537i 0.753539 + 0.657404i \(0.228345\pi\)
−0.154673 + 0.987966i \(0.549432\pi\)
\(572\) 2.05595 + 0.898091i 0.0859634 + 0.0375511i
\(573\) 0 0
\(574\) −2.22390 + 10.6466i −0.0928239 + 0.444382i
\(575\) 7.20837 + 12.4853i 0.300610 + 0.520672i
\(576\) 0 0
\(577\) −6.39933 + 11.0840i −0.266408 + 0.461431i −0.967931 0.251215i \(-0.919170\pi\)
0.701524 + 0.712646i \(0.252503\pi\)
\(578\) 14.4503 + 12.9193i 0.601052 + 0.537373i
\(579\) 0 0
\(580\) 0.997782 + 8.89116i 0.0414306 + 0.369185i
\(581\) −1.82120 0.321126i −0.0755560 0.0133226i
\(582\) 0 0
\(583\) 8.69808 7.29856i 0.360238 0.302275i
\(584\) 26.6847 + 2.52030i 1.10422 + 0.104291i
\(585\) 0 0
\(586\) 0.332958 + 0.423091i 0.0137544 + 0.0174777i
\(587\) −4.86117 + 13.3560i −0.200642 + 0.551260i −0.998681 0.0513464i \(-0.983649\pi\)
0.798039 + 0.602606i \(0.205871\pi\)
\(588\) 0 0
\(589\) −14.5680 + 17.3615i −0.600264 + 0.715367i
\(590\) −7.92522 14.7795i −0.326276 0.608463i
\(591\) 0 0
\(592\) 12.9964 12.0374i 0.534150 0.494734i
\(593\) 22.4225 0.920782 0.460391 0.887716i \(-0.347709\pi\)
0.460391 + 0.887716i \(0.347709\pi\)
\(594\) 0 0
\(595\) 2.85778i 0.117158i
\(596\) −21.2027 + 10.5265i −0.868498 + 0.431184i
\(597\) 0 0
\(598\) −3.27424 + 1.75575i −0.133894 + 0.0717978i
\(599\) −3.21966 2.70162i −0.131552 0.110385i 0.574638 0.818408i \(-0.305143\pi\)
−0.706190 + 0.708023i \(0.749587\pi\)
\(600\) 0 0
\(601\) −12.5218 4.55756i −0.510775 0.185907i 0.0737590 0.997276i \(-0.476500\pi\)
−0.584534 + 0.811369i \(0.698723\pi\)
\(602\) −13.8545 17.6049i −0.564666 0.717523i
\(603\) 0 0
\(604\) 4.32781 17.8932i 0.176096 0.728064i
\(605\) −5.98270 7.12991i −0.243231 0.289872i
\(606\) 0 0
\(607\) −5.79180 + 32.8469i −0.235082 + 1.33322i 0.607359 + 0.794428i \(0.292229\pi\)
−0.842441 + 0.538789i \(0.818882\pi\)
\(608\) −9.98642 16.6152i −0.405003 0.673835i
\(609\) 0 0
\(610\) −4.29434 3.83938i −0.173873 0.155452i
\(611\) −7.25156 4.18669i −0.293367 0.169375i
\(612\) 0 0
\(613\) 11.1640 6.44552i 0.450908 0.260332i −0.257305 0.966330i \(-0.582835\pi\)
0.708214 + 0.705998i \(0.249501\pi\)
\(614\) −15.1394 3.16237i −0.610978 0.127623i
\(615\) 0 0
\(616\) −6.29598 1.73366i −0.253672 0.0698512i
\(617\) −20.7471 + 7.55132i −0.835246 + 0.304005i −0.724010 0.689789i \(-0.757703\pi\)
−0.111236 + 0.993794i \(0.535481\pi\)
\(618\) 0 0
\(619\) 0.110454 0.0194760i 0.00443952 0.000782807i −0.171428 0.985197i \(-0.554838\pi\)
0.175867 + 0.984414i \(0.443727\pi\)
\(620\) 4.19364 + 14.2460i 0.168420 + 0.572131i
\(621\) 0 0
\(622\) −3.68329 25.5555i −0.147687 1.02468i
\(623\) 1.71619 + 9.73302i 0.0687579 + 0.389945i
\(624\) 0 0
\(625\) −7.21791 + 2.62710i −0.288716 + 0.105084i
\(626\) 2.42345 3.90885i 0.0968604 0.156229i
\(627\) 0 0
\(628\) −1.72564 + 27.4515i −0.0688604 + 1.09543i
\(629\) −6.96066 + 4.01874i −0.277540 + 0.160238i
\(630\) 0 0
\(631\) −7.25883 + 12.5727i −0.288970 + 0.500510i −0.973564 0.228414i \(-0.926646\pi\)
0.684595 + 0.728924i \(0.259979\pi\)
\(632\) 23.4385 + 11.1271i 0.932332 + 0.442613i
\(633\) 0 0
\(634\) 0.755917 24.0740i 0.0300213 0.956102i
\(635\) −4.74963 0.837488i −0.188483 0.0332347i
\(636\) 0 0
\(637\) 2.20451 + 2.62724i 0.0873460 + 0.104095i
\(638\) 8.61291 + 3.44465i 0.340988 + 0.136375i
\(639\) 0 0
\(640\) −12.6892 0.573851i −0.501586 0.0226835i
\(641\) 26.9693 + 9.81603i 1.06522 + 0.387710i 0.814389 0.580320i \(-0.197072\pi\)
0.250835 + 0.968030i \(0.419295\pi\)
\(642\) 0 0
\(643\) 16.9076 20.1497i 0.666772 0.794628i −0.321569 0.946886i \(-0.604210\pi\)
0.988341 + 0.152258i \(0.0486546\pi\)
\(644\) 8.70387 6.41776i 0.342981 0.252895i
\(645\) 0 0
\(646\) 2.74738 + 8.35547i 0.108094 + 0.328742i
\(647\) −31.9679 −1.25679 −0.628394 0.777895i \(-0.716287\pi\)
−0.628394 + 0.777895i \(0.716287\pi\)
\(648\) 0 0
\(649\) −17.3874 −0.682516
\(650\) −1.12565 3.42337i −0.0441516 0.134276i
\(651\) 0 0
\(652\) 15.0971 + 20.4750i 0.591249 + 0.801862i
\(653\) −24.4383 + 29.1244i −0.956344 + 1.13973i 0.0337653 + 0.999430i \(0.489250\pi\)
−0.990109 + 0.140297i \(0.955194\pi\)
\(654\) 0 0
\(655\) −8.35469 3.04086i −0.326445 0.118816i
\(656\) 19.5099 + 10.0241i 0.761733 + 0.391375i
\(657\) 0 0
\(658\) 22.6298 + 9.05056i 0.882200 + 0.352828i
\(659\) −13.8230 16.4736i −0.538469 0.641722i 0.426375 0.904546i \(-0.359790\pi\)
−0.964844 + 0.262825i \(0.915346\pi\)
\(660\) 0 0
\(661\) 40.0325 + 7.05881i 1.55708 + 0.274556i 0.884883 0.465813i \(-0.154238\pi\)
0.672201 + 0.740369i \(0.265349\pi\)
\(662\) 0.249437 7.94394i 0.00969465 0.308750i
\(663\) 0 0
\(664\) −1.59942 + 3.36907i −0.0620697 + 0.130745i
\(665\) 2.69804 4.67315i 0.104626 0.181217i
\(666\) 0 0
\(667\) −13.3033 + 7.68064i −0.515104 + 0.297396i
\(668\) −39.5271 2.48472i −1.52935 0.0961368i
\(669\) 0 0
\(670\) −10.1459 + 16.3646i −0.391969 + 0.632218i
\(671\) −5.61218 + 2.04267i −0.216656 + 0.0788563i
\(672\) 0 0
\(673\) 7.13129 + 40.4435i 0.274891 + 1.55898i 0.739308 + 0.673367i \(0.235153\pi\)
−0.464417 + 0.885616i \(0.653736\pi\)
\(674\) −3.83467 26.6058i −0.147706 1.02482i
\(675\) 0 0
\(676\) −24.0509 + 7.07995i −0.925034 + 0.272306i
\(677\) −17.2637 + 3.04406i −0.663499 + 0.116993i −0.495248 0.868752i \(-0.664923\pi\)
−0.168251 + 0.985744i \(0.553812\pi\)
\(678\) 0 0
\(679\) −10.8951 + 3.96547i −0.418114 + 0.152181i
\(680\) 5.55646 + 1.53003i 0.213081 + 0.0586739i
\(681\) 0 0
\(682\) 15.0715 + 3.14819i 0.577119 + 0.120551i
\(683\) −34.2463 + 19.7721i −1.31040 + 0.756558i −0.982162 0.188038i \(-0.939787\pi\)
−0.328235 + 0.944596i \(0.606454\pi\)
\(684\) 0 0
\(685\) −15.3126 8.84073i −0.585064 0.337787i
\(686\) −17.7925 15.9075i −0.679321 0.607351i
\(687\) 0 0
\(688\) −41.6473 + 17.5121i −1.58779 + 0.667643i
\(689\) 0.816164 4.62869i 0.0310934 0.176339i
\(690\) 0 0
\(691\) 13.9569 + 16.6332i 0.530946 + 0.632757i 0.963133 0.269027i \(-0.0867022\pi\)
−0.432186 + 0.901784i \(0.642258\pi\)
\(692\) 9.52589 + 2.30402i 0.362120 + 0.0875857i
\(693\) 0 0
\(694\) −8.11526 10.3121i −0.308051 0.391441i
\(695\) 0.410715 + 0.149488i 0.0155793 + 0.00567040i
\(696\) 0 0
\(697\) −7.62376 6.39709i −0.288770 0.242307i
\(698\) −9.25159 + 4.96098i −0.350178 + 0.187776i
\(699\) 0 0
\(700\) 4.66441 + 9.39515i 0.176298 + 0.355103i
\(701\) 24.5820i 0.928448i −0.885718 0.464224i \(-0.846333\pi\)
0.885718 0.464224i \(-0.153667\pi\)
\(702\) 0 0
\(703\) 15.1764 0.572390
\(704\) −6.74161 + 11.3133i −0.254084 + 0.426384i
\(705\) 0 0
\(706\) −18.9011 35.2481i −0.711351 1.32658i
\(707\) −15.9242 + 18.9777i −0.598889 + 0.713729i
\(708\) 0 0
\(709\) −14.8834 + 40.8919i −0.558959 + 1.53573i 0.262193 + 0.965016i \(0.415554\pi\)
−0.821151 + 0.570711i \(0.806668\pi\)
\(710\) 13.3612 + 16.9781i 0.501436 + 0.637177i
\(711\) 0 0
\(712\) 19.8430 + 1.87412i 0.743648 + 0.0702357i
\(713\) −19.5318 + 16.3891i −0.731473 + 0.613778i
\(714\) 0 0
\(715\) 1.24031 + 0.218700i 0.0463850 + 0.00817892i
\(716\) 7.37098 0.827184i 0.275466 0.0309133i
\(717\) 0 0
\(718\) −17.8769 15.9830i −0.667162 0.596480i
\(719\) −2.30085 + 3.98520i −0.0858074 + 0.148623i −0.905735 0.423844i \(-0.860680\pi\)
0.819928 + 0.572467i \(0.194014\pi\)
\(720\) 0 0
\(721\) −2.72831 4.72557i −0.101607 0.175989i
\(722\) −2.09831 + 10.0454i −0.0780910 + 0.373850i
\(723\) 0 0
\(724\) 13.0645 29.9079i 0.485540 1.11152i
\(725\) −5.09606 14.0013i −0.189263 0.519996i
\(726\) 0 0
\(727\) −0.922052 5.22921i −0.0341970 0.193941i 0.962923 0.269775i \(-0.0869492\pi\)
−0.997120 + 0.0758339i \(0.975838\pi\)
\(728\) −2.45772 + 1.12547i −0.0910891 + 0.0417126i
\(729\) 0 0
\(730\) 14.8926 2.14646i 0.551200 0.0794441i
\(731\) 20.1874 3.55958i 0.746658 0.131656i
\(732\) 0 0
\(733\) −17.7690 48.8201i −0.656315 1.80321i −0.592980 0.805217i \(-0.702049\pi\)
−0.0633350 0.997992i \(-0.520174\pi\)
\(734\) 6.02677 9.72077i 0.222452 0.358800i
\(735\) 0 0
\(736\) −7.81826 20.3592i −0.288185 0.750449i
\(737\) 9.98153 + 17.2885i 0.367674 + 0.636831i
\(738\) 0 0
\(739\) −8.21344 4.74203i −0.302136 0.174439i 0.341266 0.939967i \(-0.389144\pi\)
−0.643402 + 0.765528i \(0.722478\pi\)
\(740\) 5.50266 8.28313i 0.202282 0.304494i
\(741\) 0 0
\(742\) −0.429356 + 13.6739i −0.0157622 + 0.501985i
\(743\) −1.45201 + 8.23477i −0.0532691 + 0.302104i −0.999789 0.0205412i \(-0.993461\pi\)
0.946520 + 0.322646i \(0.104572\pi\)
\(744\) 0 0
\(745\) −10.1797 + 8.54176i −0.372954 + 0.312946i
\(746\) −11.5723 + 28.9352i −0.423694 + 1.05939i
\(747\) 0 0
\(748\) 4.12048 4.32739i 0.150660 0.158225i
\(749\) 1.99746 5.48797i 0.0729855 0.200526i
\(750\) 0 0
\(751\) 36.5089 + 30.6346i 1.33223 + 1.11787i 0.983551 + 0.180632i \(0.0578143\pi\)
0.348680 + 0.937242i \(0.386630\pi\)
\(752\) 29.7130 39.1541i 1.08352 1.42780i
\(753\) 0 0
\(754\) 3.64766 1.19940i 0.132840 0.0436795i
\(755\) 10.3342i 0.376101i
\(756\) 0 0
\(757\) 22.8271i 0.829666i −0.909898 0.414833i \(-0.863840\pi\)
0.909898 0.414833i \(-0.136160\pi\)
\(758\) 4.16229 + 12.6585i 0.151181 + 0.459779i
\(759\) 0 0
\(760\) −7.64163 7.74784i −0.277191 0.281044i
\(761\) 9.00453 + 7.55570i 0.326414 + 0.273894i 0.791237 0.611510i \(-0.209438\pi\)
−0.464823 + 0.885404i \(0.653882\pi\)
\(762\) 0 0
\(763\) −9.88546 + 27.1601i −0.357878 + 0.983261i
\(764\) −9.99355 9.51572i −0.361554 0.344267i
\(765\) 0 0
\(766\) 22.7074 + 9.08161i 0.820451 + 0.328132i
\(767\) −5.51349 + 4.62637i −0.199081 + 0.167048i
\(768\) 0 0
\(769\) −3.03895 + 17.2347i −0.109587 + 0.621501i 0.879701 + 0.475527i \(0.157743\pi\)
−0.989288 + 0.145974i \(0.953369\pi\)
\(770\) −3.66407 0.115051i −0.132044 0.00414614i
\(771\) 0 0
\(772\) 10.5472 15.8767i 0.379603 0.571415i
\(773\) 20.9933 + 12.1205i 0.755076 + 0.435943i 0.827525 0.561429i \(-0.189748\pi\)
−0.0724491 + 0.997372i \(0.523081\pi\)
\(774\) 0 0
\(775\) −12.3656 21.4178i −0.444185 0.769351i
\(776\) 1.87708 + 23.3066i 0.0673831 + 0.836659i
\(777\) 0 0
\(778\) −29.8562 18.5106i −1.07040 0.663636i
\(779\) 6.42713 + 17.6584i 0.230276 + 0.632677i
\(780\) 0 0
\(781\) 22.0597 3.88972i 0.789359 0.139185i
\(782\) 1.41159 + 9.79390i 0.0504783 + 0.350229i
\(783\) 0 0
\(784\) −16.9210 + 10.9074i −0.604323 + 0.389550i
\(785\) 2.68125 + 15.2061i 0.0956979 + 0.542730i
\(786\) 0 0
\(787\) 2.60184 + 7.14850i 0.0927457 + 0.254817i 0.977388 0.211454i \(-0.0678197\pi\)
−0.884642 + 0.466270i \(0.845597\pi\)
\(788\) −1.60856 + 3.68239i −0.0573027 + 0.131180i
\(789\) 0 0
\(790\) 14.2572 + 2.97809i 0.507249 + 0.105956i
\(791\) −1.86019 3.22194i −0.0661406 0.114559i
\(792\) 0 0
\(793\) −1.23610 + 2.14099i −0.0438952 + 0.0760287i
\(794\) −6.47023 + 7.23694i −0.229620 + 0.256830i
\(795\) 0 0
\(796\) −4.75366 42.3595i −0.168489 1.50139i
\(797\) 13.7809 + 2.42995i 0.488146 + 0.0860733i 0.412304 0.911047i \(-0.364724\pi\)
0.0758424 + 0.997120i \(0.475835\pi\)
\(798\) 0 0
\(799\) −17.0837 + 14.3350i −0.604380 + 0.507135i
\(800\) 20.7645 4.03908i 0.734137 0.142803i
\(801\) 0 0
\(802\) −14.0102 + 11.0256i −0.494718 + 0.389326i
\(803\) 5.33557 14.6594i 0.188288 0.517317i
\(804\) 0 0
\(805\) 3.90214 4.65039i 0.137532 0.163905i
\(806\) 5.61679 3.01189i 0.197843 0.106089i
\(807\) 0 0
\(808\) 28.3732 + 41.1222i 0.998164 + 1.44667i
\(809\) 20.7183 0.728415 0.364208 0.931318i \(-0.381340\pi\)
0.364208 + 0.931318i \(0.381340\pi\)
\(810\) 0 0
\(811\) 43.7615i 1.53668i −0.640045 0.768338i \(-0.721084\pi\)
0.640045 0.768338i \(-0.278916\pi\)
\(812\) −10.0107 + 4.97001i −0.351306 + 0.174413i
\(813\) 0 0
\(814\) −4.87236 9.08632i −0.170776 0.318476i
\(815\) 10.9396 + 9.17939i 0.383197 + 0.321540i
\(816\) 0 0
\(817\) −36.3718 13.2382i −1.27249 0.463148i
\(818\) 37.8849 29.8141i 1.32462 1.04243i
\(819\) 0 0
\(820\) 11.9681 + 2.89471i 0.417944 + 0.101088i
\(821\) 12.4887 + 14.8834i 0.435858 + 0.519435i 0.938603 0.345000i \(-0.112121\pi\)
−0.502745 + 0.864435i \(0.667677\pi\)
\(822\) 0 0
\(823\) 6.24682 35.4275i 0.217750 1.23492i −0.658319 0.752739i \(-0.728732\pi\)
0.876069 0.482185i \(-0.160157\pi\)
\(824\) −10.6488 + 2.77470i −0.370967 + 0.0966613i
\(825\) 0 0
\(826\) 13.9630 15.6177i 0.485837 0.543408i
\(827\) −35.6157 20.5627i −1.23848 0.715037i −0.269697 0.962945i \(-0.586923\pi\)
−0.968783 + 0.247909i \(0.920257\pi\)
\(828\) 0 0
\(829\) −43.3862 + 25.0490i −1.50687 + 0.869989i −0.506897 + 0.862006i \(0.669208\pi\)
−0.999968 + 0.00798294i \(0.997459\pi\)
\(830\) −0.428074 + 2.04935i −0.0148587 + 0.0711339i
\(831\) 0 0
\(832\) 0.872440 + 5.38117i 0.0302464 + 0.186559i
\(833\) 8.58341 3.12411i 0.297397 0.108244i
\(834\) 0 0
\(835\) −21.8951 + 3.86070i −0.757711 + 0.133605i
\(836\) −10.8235 + 3.18615i −0.374338 + 0.110195i
\(837\) 0 0
\(838\) 15.5521 2.24152i 0.537240 0.0774320i
\(839\) −2.93816 16.6631i −0.101436 0.575275i −0.992584 0.121561i \(-0.961210\pi\)
0.891148 0.453714i \(-0.149901\pi\)
\(840\) 0 0
\(841\) −12.3325 + 4.48865i −0.425257 + 0.154781i
\(842\) −23.7198 14.7060i −0.817439 0.506804i
\(843\) 0 0
\(844\) 1.16892 18.5952i 0.0402358 0.640072i
\(845\) −12.1886 + 7.03706i −0.419299 + 0.242082i
\(846\) 0 0
\(847\) 5.81341 10.0691i 0.199751 0.345979i
\(848\) 26.3567 + 8.15568i 0.905091 + 0.280067i
\(849\) 0 0
\(850\) −9.59316 0.301222i −0.329043 0.0103318i
\(851\) 16.8143 + 2.96481i 0.576385 + 0.101632i
\(852\) 0 0
\(853\) −16.8126 20.0365i −0.575653 0.686037i 0.397128 0.917763i \(-0.370007\pi\)
−0.972781 + 0.231726i \(0.925563\pi\)
\(854\) 2.67213 6.68133i 0.0914386 0.228630i
\(855\) 0 0
\(856\) −9.60099 6.82191i −0.328155 0.233168i
\(857\) 39.5672 + 14.4013i 1.35159 + 0.491938i 0.913444 0.406965i \(-0.133413\pi\)
0.438146 + 0.898904i \(0.355635\pi\)
\(858\) 0 0
\(859\) 27.7503 33.0715i 0.946827 1.12838i −0.0447668 0.998997i \(-0.514254\pi\)
0.991594 0.129387i \(-0.0413011\pi\)
\(860\) −20.4129 + 15.0514i −0.696075 + 0.513248i
\(861\) 0 0
\(862\) 0.393708 0.129456i 0.0134097 0.00440929i
\(863\) 31.5239 1.07308 0.536542 0.843873i \(-0.319730\pi\)
0.536542 + 0.843873i \(0.319730\pi\)
\(864\) 0 0
\(865\) 5.50169 0.187063
\(866\) 24.5156 8.06105i 0.833075 0.273926i
\(867\) 0 0
\(868\) −14.9310 + 11.0093i −0.506792 + 0.373681i
\(869\) 9.70666 11.5679i 0.329276 0.392416i
\(870\) 0 0
\(871\) 7.76516 + 2.82629i 0.263112 + 0.0957651i
\(872\) 47.5155 + 33.7618i 1.60908 + 1.14332i
\(873\) 0 0
\(874\) 6.93818 17.3480i 0.234687 0.586806i
\(875\) 8.84571 + 10.5419i 0.299040 + 0.356382i
\(876\) 0 0
\(877\) 22.1917 + 3.91299i 0.749360 + 0.132132i 0.535269 0.844681i \(-0.320210\pi\)
0.214091 + 0.976814i \(0.431321\pi\)
\(878\) 1.38464 + 0.0434774i 0.0467295 + 0.00146729i
\(879\) 0 0
\(880\) −2.18540 + 7.06256i −0.0736700 + 0.238079i
\(881\) −15.0315 + 26.0353i −0.506424 + 0.877153i 0.493548 + 0.869719i \(0.335700\pi\)
−0.999972 + 0.00743425i \(0.997634\pi\)
\(882\) 0 0
\(883\) −11.7757 + 6.79869i −0.396283 + 0.228794i −0.684879 0.728657i \(-0.740145\pi\)
0.288596 + 0.957451i \(0.406812\pi\)
\(884\) 0.155177 2.46856i 0.00521917 0.0830267i
\(885\) 0 0
\(886\) 6.19532 + 3.84103i 0.208136 + 0.129042i
\(887\) −34.6577 + 12.6144i −1.16369 + 0.423549i −0.850415 0.526112i \(-0.823649\pi\)
−0.313277 + 0.949662i \(0.601427\pi\)
\(888\) 0 0
\(889\) −1.04619 5.93322i −0.0350880 0.198994i
\(890\) 11.0743 1.59613i 0.371211 0.0535024i
\(891\) 0 0
\(892\) 47.2278 13.9026i 1.58130 0.465494i
\(893\) 41.4697 7.31222i 1.38773 0.244694i
\(894\) 0 0
\(895\) 3.91267 1.42409i 0.130786 0.0476022i
\(896\) −4.74786 15.1406i −0.158615 0.505811i
\(897\) 0 0
\(898\) 3.59675 17.2189i 0.120025 0.574604i
\(899\) 22.8210 13.1757i 0.761124 0.439435i
\(900\) 0 0
\(901\) −10.8409 6.25901i −0.361163 0.208518i
\(902\) 8.50888 9.51717i 0.283315 0.316887i
\(903\) 0 0
\(904\) −7.26043 + 1.89182i −0.241478 + 0.0629209i
\(905\) 3.18143 18.0428i 0.105754 0.599763i
\(906\) 0 0
\(907\) 2.75537 + 3.28372i 0.0914905 + 0.109034i 0.809847 0.586641i \(-0.199550\pi\)
−0.718357 + 0.695675i \(0.755105\pi\)
\(908\) −7.94140 1.92078i −0.263544 0.0637433i
\(909\) 0 0
\(910\) −1.19248 + 0.938438i −0.0395302 + 0.0311089i
\(911\) 26.1940 + 9.53385i 0.867847 + 0.315871i 0.737295 0.675571i \(-0.236103\pi\)
0.130552 + 0.991441i \(0.458325\pi\)
\(912\) 0 0
\(913\) 1.66279 + 1.39525i 0.0550303 + 0.0461759i
\(914\) −16.1180 30.0580i −0.533135 0.994229i
\(915\) 0 0
\(916\) 22.6065 11.2235i 0.746941 0.370834i
\(917\) 11.1065i 0.366767i
\(918\) 0 0
\(919\) 54.1746 1.78705 0.893527 0.449009i \(-0.148223\pi\)
0.893527 + 0.449009i \(0.148223\pi\)
\(920\) −6.95271 10.0768i −0.229224 0.332223i
\(921\) 0 0
\(922\) 45.5750 24.4386i 1.50093 0.804844i
\(923\) 5.96010 7.10297i 0.196179 0.233797i
\(924\) 0 0
\(925\) −5.66414 + 15.5621i −0.186236 + 0.511678i
\(926\) −25.1607 + 19.8006i −0.826833 + 0.650689i
\(927\) 0 0
\(928\) 4.30370 + 22.1249i 0.141276 + 0.726287i
\(929\) 26.4712 22.2120i 0.868491 0.728751i −0.0952887 0.995450i \(-0.530377\pi\)
0.963780 + 0.266699i \(0.0859330\pi\)
\(930\) 0 0
\(931\) −16.9854 2.99498i −0.556674 0.0981566i
\(932\) −5.48163 48.8464i −0.179557 1.60002i
\(933\) 0 0
\(934\) −21.9840 + 24.5890i −0.719337 + 0.804578i
\(935\) 1.67717 2.90494i 0.0548493 0.0950018i
\(936\) 0 0
\(937\) −13.1443 22.7665i −0.429404 0.743750i 0.567416 0.823431i \(-0.307943\pi\)
−0.996820 + 0.0796811i \(0.974610\pi\)
\(938\) −23.5445 4.91806i −0.768756 0.160580i
\(939\) 0 0
\(940\) 11.0451 25.2849i 0.360252 0.824704i
\(941\) 13.8588 + 38.0767i 0.451784 + 1.24127i 0.931467 + 0.363825i \(0.118529\pi\)
−0.479683 + 0.877442i \(0.659248\pi\)
\(942\) 0 0
\(943\) 3.67106 + 20.8196i 0.119546 + 0.677980i
\(944\) −22.8901 35.5103i −0.745011 1.15576i
\(945\) 0 0
\(946\) 3.75116 + 26.0263i 0.121961 + 0.846189i
\(947\) 38.4009 6.77112i 1.24786 0.220032i 0.489580 0.871958i \(-0.337150\pi\)
0.758282 + 0.651926i \(0.226039\pi\)
\(948\) 0 0
\(949\) −2.20861 6.06810i −0.0716944 0.196979i
\(950\) 15.4027 + 9.54952i 0.499730 + 0.309827i
\(951\) 0 0
\(952\) 0.577960 + 7.17622i 0.0187318 + 0.232583i
\(953\) −12.7586 22.0985i −0.413291 0.715842i 0.581956 0.813220i \(-0.302288\pi\)
−0.995247 + 0.0973785i \(0.968954\pi\)
\(954\) 0 0
\(955\) −6.70859 3.87321i −0.217085 0.125334i
\(956\) 11.9866 18.0433i 0.387674 0.583563i
\(957\) 0 0
\(958\) 56.3804 + 1.77033i 1.82157 + 0.0571967i
\(959\) 3.83547 21.7520i 0.123854 0.702410i
\(960\) 0 0
\(961\) 9.75845 8.18831i 0.314789 0.264139i
\(962\) −3.96266 1.58483i −0.127761 0.0510969i
\(963\) 0 0
\(964\) −19.1098 18.1960i −0.615484 0.586055i
\(965\) 3.65963 10.0547i 0.117808 0.323674i
\(966\) 0 0
\(967\) −35.3489 29.6612i −1.13674 0.953841i −0.137416 0.990513i \(-0.543880\pi\)
−0.999327 + 0.0366729i \(0.988324\pi\)
\(968\) −16.4652 16.6941i −0.529212 0.536568i
\(969\) 0 0
\(970\) 4.10000 + 12.4691i 0.131643 + 0.400358i
\(971\) 1.40859i 0.0452039i 0.999745 + 0.0226020i \(0.00719504\pi\)
−0.999745 + 0.0226020i \(0.992805\pi\)
\(972\) 0 0
\(973\) 0.545991i 0.0175037i
\(974\) −43.0339 + 14.1501i −1.37889 + 0.453398i
\(975\) 0 0
\(976\) −11.5601 8.77262i −0.370028 0.280805i
\(977\) −36.5361 30.6574i −1.16889 0.980817i −0.168904 0.985633i \(-0.554023\pi\)
−0.999988 + 0.00481536i \(0.998467\pi\)
\(978\) 0 0
\(979\) 3.96758 10.9008i 0.126805 0.348393i
\(980\) −7.79317 + 8.18451i −0.248944 + 0.261445i
\(981\) 0 0
\(982\) −13.8412 + 34.6082i −0.441692 + 1.10439i
\(983\) −13.2755 + 11.1394i −0.423421 + 0.355293i −0.829463 0.558562i \(-0.811353\pi\)
0.406041 + 0.913855i \(0.366909\pi\)
\(984\) 0 0
\(985\) −0.391712 + 2.22151i −0.0124810 + 0.0707832i
\(986\) 0.320957 10.2217i 0.0102214 0.325524i
\(987\) 0 0
\(988\) −2.58433 + 3.89018i −0.0822185 + 0.123763i
\(989\) −37.7108 21.7723i −1.19913 0.692320i
\(990\) 0 0
\(991\) 16.1511 + 27.9745i 0.513056 + 0.888638i 0.999885 + 0.0151416i \(0.00481989\pi\)
−0.486830 + 0.873497i \(0.661847\pi\)
\(992\) 13.4118 + 34.9251i 0.425826 + 1.10887i
\(993\) 0 0
\(994\) −14.2214 + 22.9381i −0.451074 + 0.727551i
\(995\) −8.18398 22.4853i −0.259450 0.712832i
\(996\) 0 0
\(997\) −24.1513 + 4.25852i −0.764879 + 0.134869i −0.542459 0.840082i \(-0.682507\pi\)
−0.222420 + 0.974951i \(0.571396\pi\)
\(998\) 1.13217 0.163179i 0.0358382 0.00516534i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.253.31 204
3.2 odd 2 216.2.t.a.13.4 204
8.5 even 2 inner 648.2.t.a.253.1 204
12.11 even 2 864.2.bf.a.337.1 204
24.5 odd 2 216.2.t.a.13.34 yes 204
24.11 even 2 864.2.bf.a.337.34 204
27.2 odd 18 216.2.t.a.133.34 yes 204
27.25 even 9 inner 648.2.t.a.397.1 204
108.83 even 18 864.2.bf.a.241.34 204
216.29 odd 18 216.2.t.a.133.4 yes 204
216.83 even 18 864.2.bf.a.241.1 204
216.133 even 18 inner 648.2.t.a.397.31 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.4 204 3.2 odd 2
216.2.t.a.13.34 yes 204 24.5 odd 2
216.2.t.a.133.4 yes 204 216.29 odd 18
216.2.t.a.133.34 yes 204 27.2 odd 18
648.2.t.a.253.1 204 8.5 even 2 inner
648.2.t.a.253.31 204 1.1 even 1 trivial
648.2.t.a.397.1 204 27.25 even 9 inner
648.2.t.a.397.31 204 216.133 even 18 inner
864.2.bf.a.241.1 204 216.83 even 18
864.2.bf.a.241.34 204 108.83 even 18
864.2.bf.a.337.1 204 12.11 even 2
864.2.bf.a.337.34 204 24.11 even 2