Properties

Label 648.2.t.a.253.30
Level $648$
Weight $2$
Character 648.253
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 253.30
Character \(\chi\) \(=\) 648.253
Dual form 648.2.t.a.397.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.32716 + 0.488522i) q^{2} +(1.52269 + 1.29669i) q^{4} +(0.114718 - 0.136716i) q^{5} +(2.42085 + 0.881117i) q^{7} +(1.38739 + 2.46478i) q^{8} +(0.219037 - 0.125401i) q^{10} +(-0.599296 - 0.714213i) q^{11} +(0.368417 + 0.0649618i) q^{13} +(2.78240 + 2.35202i) q^{14} +(0.637188 + 3.94892i) q^{16} +(2.26254 - 3.91883i) q^{17} +(-1.97566 + 1.14065i) q^{19} +(0.351958 - 0.0594221i) q^{20} +(-0.446451 - 1.24064i) q^{22} +(-4.40423 + 1.60301i) q^{23} +(0.862710 + 4.89267i) q^{25} +(0.457212 + 0.266194i) q^{26} +(2.54367 + 4.48076i) q^{28} +(-1.58682 + 0.279799i) q^{29} +(8.17965 - 2.97715i) q^{31} +(-1.08349 + 5.55212i) q^{32} +(4.91718 - 4.09561i) q^{34} +(0.398177 - 0.229888i) q^{35} +(-3.82721 - 2.20964i) q^{37} +(-3.17924 + 0.548665i) q^{38} +(0.496133 + 0.0930767i) q^{40} +(-0.238139 + 1.35055i) q^{41} +(-3.28437 - 3.91416i) q^{43} +(0.0135696 - 1.86463i) q^{44} +(-6.62821 - 0.0241177i) q^{46} +(7.70413 + 2.80407i) q^{47} +(-0.278168 - 0.233411i) q^{49} +(-1.24522 + 6.91480i) q^{50} +(0.476750 + 0.576640i) q^{52} -9.07829i q^{53} -0.166394 q^{55} +(1.18691 + 7.18932i) q^{56} +(-2.24265 - 0.403859i) q^{58} +(-9.44865 + 11.2605i) q^{59} +(5.07860 - 13.9533i) q^{61} +(12.3101 + 0.0447920i) q^{62} +(-4.15029 + 6.83923i) q^{64} +(0.0511453 - 0.0429160i) q^{65} +(1.72274 + 0.303765i) q^{67} +(8.52666 - 3.03337i) q^{68} +(0.640749 - 0.110579i) q^{70} +(-2.77372 + 4.80422i) q^{71} +(-4.77001 - 8.26190i) q^{73} +(-3.99985 - 4.80222i) q^{74} +(-4.48738 - 0.824961i) q^{76} +(-0.821500 - 2.25705i) q^{77} +(-0.704340 - 3.99451i) q^{79} +(0.612976 + 0.365899i) q^{80} +(-0.975822 + 1.67606i) q^{82} +(-15.0319 + 2.65052i) q^{83} +(-0.276212 - 0.758885i) q^{85} +(-2.44672 - 6.79919i) q^{86} +(0.928921 - 2.46803i) q^{88} +(-8.16359 - 14.1397i) q^{89} +(0.834643 + 0.481881i) q^{91} +(-8.78489 - 3.27003i) q^{92} +(8.85474 + 7.48508i) q^{94} +(-0.0706993 + 0.400955i) q^{95} +(-8.94677 + 7.50723i) q^{97} +(-0.255147 - 0.445664i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.32716 + 0.488522i 0.938442 + 0.345437i
\(3\) 0 0
\(4\) 1.52269 + 1.29669i 0.761346 + 0.648345i
\(5\) 0.114718 0.136716i 0.0513035 0.0611411i −0.739782 0.672846i \(-0.765072\pi\)
0.791086 + 0.611705i \(0.209516\pi\)
\(6\) 0 0
\(7\) 2.42085 + 0.881117i 0.914995 + 0.333031i 0.756245 0.654288i \(-0.227032\pi\)
0.158749 + 0.987319i \(0.449254\pi\)
\(8\) 1.38739 + 2.46478i 0.490517 + 0.871432i
\(9\) 0 0
\(10\) 0.219037 0.125401i 0.0692657 0.0396552i
\(11\) −0.599296 0.714213i −0.180695 0.215343i 0.668093 0.744078i \(-0.267111\pi\)
−0.848787 + 0.528735i \(0.822667\pi\)
\(12\) 0 0
\(13\) 0.368417 + 0.0649618i 0.102180 + 0.0180172i 0.224505 0.974473i \(-0.427924\pi\)
−0.122324 + 0.992490i \(0.539035\pi\)
\(14\) 2.78240 + 2.35202i 0.743628 + 0.628603i
\(15\) 0 0
\(16\) 0.637188 + 3.94892i 0.159297 + 0.987231i
\(17\) 2.26254 3.91883i 0.548746 0.950456i −0.449615 0.893223i \(-0.648439\pi\)
0.998361 0.0572337i \(-0.0182280\pi\)
\(18\) 0 0
\(19\) −1.97566 + 1.14065i −0.453246 + 0.261682i −0.709200 0.705007i \(-0.750944\pi\)
0.255954 + 0.966689i \(0.417610\pi\)
\(20\) 0.351958 0.0594221i 0.0787002 0.0132872i
\(21\) 0 0
\(22\) −0.446451 1.24064i −0.0951837 0.264506i
\(23\) −4.40423 + 1.60301i −0.918345 + 0.334250i −0.757580 0.652742i \(-0.773618\pi\)
−0.160765 + 0.986993i \(0.551396\pi\)
\(24\) 0 0
\(25\) 0.862710 + 4.89267i 0.172542 + 0.978534i
\(26\) 0.457212 + 0.266194i 0.0896666 + 0.0522050i
\(27\) 0 0
\(28\) 2.54367 + 4.48076i 0.480709 + 0.846785i
\(29\) −1.58682 + 0.279799i −0.294665 + 0.0519574i −0.319026 0.947746i \(-0.603356\pi\)
0.0243613 + 0.999703i \(0.492245\pi\)
\(30\) 0 0
\(31\) 8.17965 2.97715i 1.46911 0.534712i 0.521250 0.853404i \(-0.325466\pi\)
0.947858 + 0.318692i \(0.103244\pi\)
\(32\) −1.08349 + 5.55212i −0.191535 + 0.981486i
\(33\) 0 0
\(34\) 4.91718 4.09561i 0.843289 0.702391i
\(35\) 0.398177 0.229888i 0.0673043 0.0388581i
\(36\) 0 0
\(37\) −3.82721 2.20964i −0.629190 0.363263i 0.151248 0.988496i \(-0.451671\pi\)
−0.780438 + 0.625233i \(0.785004\pi\)
\(38\) −3.17924 + 0.548665i −0.515740 + 0.0890052i
\(39\) 0 0
\(40\) 0.496133 + 0.0930767i 0.0784455 + 0.0147167i
\(41\) −0.238139 + 1.35055i −0.0371910 + 0.210921i −0.997740 0.0671892i \(-0.978597\pi\)
0.960549 + 0.278110i \(0.0897080\pi\)
\(42\) 0 0
\(43\) −3.28437 3.91416i −0.500862 0.596904i 0.455083 0.890449i \(-0.349609\pi\)
−0.955945 + 0.293545i \(0.905165\pi\)
\(44\) 0.0135696 1.86463i 0.00204570 0.281103i
\(45\) 0 0
\(46\) −6.62821 0.0241177i −0.977276 0.00355596i
\(47\) 7.70413 + 2.80407i 1.12376 + 0.409016i 0.836024 0.548693i \(-0.184874\pi\)
0.287738 + 0.957709i \(0.407097\pi\)
\(48\) 0 0
\(49\) −0.278168 0.233411i −0.0397383 0.0333444i
\(50\) −1.24522 + 6.91480i −0.176101 + 0.977900i
\(51\) 0 0
\(52\) 0.476750 + 0.576640i 0.0661134 + 0.0799655i
\(53\) 9.07829i 1.24700i −0.781824 0.623500i \(-0.785710\pi\)
0.781824 0.623500i \(-0.214290\pi\)
\(54\) 0 0
\(55\) −0.166394 −0.0224366
\(56\) 1.18691 + 7.18932i 0.158607 + 0.960713i
\(57\) 0 0
\(58\) −2.24265 0.403859i −0.294474 0.0530292i
\(59\) −9.44865 + 11.2605i −1.23011 + 1.46599i −0.392469 + 0.919765i \(0.628379\pi\)
−0.837641 + 0.546222i \(0.816066\pi\)
\(60\) 0 0
\(61\) 5.07860 13.9533i 0.650247 1.78654i 0.0334206 0.999441i \(-0.489360\pi\)
0.616827 0.787099i \(-0.288418\pi\)
\(62\) 12.3101 + 0.0447920i 1.56338 + 0.00568859i
\(63\) 0 0
\(64\) −4.15029 + 6.83923i −0.518786 + 0.854904i
\(65\) 0.0511453 0.0429160i 0.00634380 0.00532308i
\(66\) 0 0
\(67\) 1.72274 + 0.303765i 0.210466 + 0.0371108i 0.277887 0.960614i \(-0.410366\pi\)
−0.0674209 + 0.997725i \(0.521477\pi\)
\(68\) 8.52666 3.03337i 1.03401 0.367850i
\(69\) 0 0
\(70\) 0.640749 0.110579i 0.0765842 0.0132167i
\(71\) −2.77372 + 4.80422i −0.329180 + 0.570156i −0.982349 0.187055i \(-0.940106\pi\)
0.653169 + 0.757212i \(0.273439\pi\)
\(72\) 0 0
\(73\) −4.77001 8.26190i −0.558287 0.966982i −0.997640 0.0686670i \(-0.978125\pi\)
0.439352 0.898315i \(-0.355208\pi\)
\(74\) −3.99985 4.80222i −0.464974 0.558247i
\(75\) 0 0
\(76\) −4.48738 0.824961i −0.514738 0.0946295i
\(77\) −0.821500 2.25705i −0.0936186 0.257215i
\(78\) 0 0
\(79\) −0.704340 3.99451i −0.0792444 0.449417i −0.998451 0.0556413i \(-0.982280\pi\)
0.919206 0.393776i \(-0.128831\pi\)
\(80\) 0.612976 + 0.365899i 0.0685328 + 0.0409088i
\(81\) 0 0
\(82\) −0.975822 + 1.67606i −0.107761 + 0.185090i
\(83\) −15.0319 + 2.65052i −1.64996 + 0.290933i −0.919813 0.392357i \(-0.871660\pi\)
−0.730148 + 0.683289i \(0.760549\pi\)
\(84\) 0 0
\(85\) −0.276212 0.758885i −0.0299594 0.0823126i
\(86\) −2.44672 6.79919i −0.263837 0.733176i
\(87\) 0 0
\(88\) 0.928921 2.46803i 0.0990233 0.263092i
\(89\) −8.16359 14.1397i −0.865339 1.49881i −0.866711 0.498811i \(-0.833770\pi\)
0.00137211 0.999999i \(-0.499563\pi\)
\(90\) 0 0
\(91\) 0.834643 + 0.481881i 0.0874943 + 0.0505149i
\(92\) −8.78489 3.27003i −0.915888 0.340924i
\(93\) 0 0
\(94\) 8.85474 + 7.48508i 0.913296 + 0.772027i
\(95\) −0.0706993 + 0.400955i −0.00725359 + 0.0411372i
\(96\) 0 0
\(97\) −8.94677 + 7.50723i −0.908407 + 0.762244i −0.971815 0.235744i \(-0.924247\pi\)
0.0634084 + 0.997988i \(0.479803\pi\)
\(98\) −0.255147 0.445664i −0.0257737 0.0450189i
\(99\) 0 0
\(100\) −5.03064 + 8.56870i −0.503064 + 0.856870i
\(101\) 0.733566 2.01546i 0.0729926 0.200545i −0.897831 0.440340i \(-0.854858\pi\)
0.970824 + 0.239795i \(0.0770801\pi\)
\(102\) 0 0
\(103\) 8.97851 + 7.53386i 0.884679 + 0.742334i 0.967136 0.254261i \(-0.0818322\pi\)
−0.0824568 + 0.996595i \(0.526277\pi\)
\(104\) 0.351022 + 0.998194i 0.0344205 + 0.0978810i
\(105\) 0 0
\(106\) 4.43494 12.0483i 0.430760 1.17024i
\(107\) 7.40373i 0.715745i −0.933770 0.357873i \(-0.883502\pi\)
0.933770 0.357873i \(-0.116498\pi\)
\(108\) 0 0
\(109\) 13.2321i 1.26741i −0.773575 0.633704i \(-0.781534\pi\)
0.773575 0.633704i \(-0.218466\pi\)
\(110\) −0.220831 0.0812872i −0.0210554 0.00775043i
\(111\) 0 0
\(112\) −1.93693 + 10.1212i −0.183023 + 0.956362i
\(113\) 7.02588 + 5.89541i 0.660939 + 0.554594i 0.910368 0.413799i \(-0.135799\pi\)
−0.249429 + 0.968393i \(0.580243\pi\)
\(114\) 0 0
\(115\) −0.286088 + 0.786020i −0.0266778 + 0.0732968i
\(116\) −2.77905 1.63157i −0.258029 0.151487i
\(117\) 0 0
\(118\) −18.0408 + 10.3285i −1.66079 + 0.950818i
\(119\) 8.93021 7.49334i 0.818631 0.686913i
\(120\) 0 0
\(121\) 1.75919 9.97684i 0.159926 0.906985i
\(122\) 13.5566 16.0373i 1.22736 1.45194i
\(123\) 0 0
\(124\) 16.3155 + 6.07319i 1.46518 + 0.545389i
\(125\) 1.54067 + 0.889506i 0.137802 + 0.0795598i
\(126\) 0 0
\(127\) −9.58464 16.6011i −0.850500 1.47311i −0.880758 0.473567i \(-0.842966\pi\)
0.0302583 0.999542i \(-0.490367\pi\)
\(128\) −8.84920 + 7.04923i −0.782166 + 0.623070i
\(129\) 0 0
\(130\) 0.0888433 0.0319707i 0.00779208 0.00280402i
\(131\) −0.312406 0.858328i −0.0272950 0.0749924i 0.925297 0.379244i \(-0.123816\pi\)
−0.952592 + 0.304252i \(0.901594\pi\)
\(132\) 0 0
\(133\) −5.78780 + 1.02055i −0.501866 + 0.0884926i
\(134\) 2.13795 + 1.24474i 0.184691 + 0.107529i
\(135\) 0 0
\(136\) 12.7981 + 0.139708i 1.09743 + 0.0119799i
\(137\) −0.995947 5.64830i −0.0850895 0.482566i −0.997337 0.0729275i \(-0.976766\pi\)
0.912248 0.409639i \(-0.134345\pi\)
\(138\) 0 0
\(139\) 7.23743 + 19.8847i 0.613871 + 1.68660i 0.721509 + 0.692406i \(0.243449\pi\)
−0.107638 + 0.994190i \(0.534329\pi\)
\(140\) 0.904395 + 0.166264i 0.0764354 + 0.0140519i
\(141\) 0 0
\(142\) −6.02813 + 5.02094i −0.505869 + 0.421348i
\(143\) −0.174394 0.302060i −0.0145836 0.0252595i
\(144\) 0 0
\(145\) −0.143784 + 0.249041i −0.0119406 + 0.0206817i
\(146\) −2.29443 13.2951i −0.189889 1.10031i
\(147\) 0 0
\(148\) −2.96245 8.32732i −0.243512 0.684501i
\(149\) 7.83652 + 1.38179i 0.641992 + 0.113201i 0.485161 0.874425i \(-0.338761\pi\)
0.156831 + 0.987625i \(0.449872\pi\)
\(150\) 0 0
\(151\) −2.04551 + 1.71638i −0.166461 + 0.139677i −0.722213 0.691671i \(-0.756875\pi\)
0.555752 + 0.831348i \(0.312430\pi\)
\(152\) −5.55245 3.28704i −0.450363 0.266614i
\(153\) 0 0
\(154\) 0.0123597 3.39678i 0.000995972 0.273721i
\(155\) 0.531330 1.45982i 0.0426775 0.117255i
\(156\) 0 0
\(157\) −7.93100 + 9.45180i −0.632963 + 0.754336i −0.983241 0.182310i \(-0.941643\pi\)
0.350278 + 0.936646i \(0.386087\pi\)
\(158\) 1.01663 5.64543i 0.0808791 0.449126i
\(159\) 0 0
\(160\) 0.634766 + 0.785058i 0.0501827 + 0.0620643i
\(161\) −12.0744 −0.951597
\(162\) 0 0
\(163\) 13.6508i 1.06922i 0.845100 + 0.534608i \(0.179541\pi\)
−0.845100 + 0.534608i \(0.820459\pi\)
\(164\) −2.11386 + 1.74768i −0.165065 + 0.136471i
\(165\) 0 0
\(166\) −21.2445 3.82573i −1.64889 0.296934i
\(167\) 3.21110 + 2.69443i 0.248482 + 0.208502i 0.758519 0.651651i \(-0.225924\pi\)
−0.510036 + 0.860153i \(0.670368\pi\)
\(168\) 0 0
\(169\) −12.0845 4.39840i −0.929576 0.338338i
\(170\) 0.00415568 1.14210i 0.000318726 0.0875947i
\(171\) 0 0
\(172\) 0.0743667 10.2189i 0.00567041 0.779182i
\(173\) 12.8781 + 15.3475i 0.979103 + 1.16685i 0.985978 + 0.166873i \(0.0533671\pi\)
−0.00687524 + 0.999976i \(0.502188\pi\)
\(174\) 0 0
\(175\) −2.22253 + 12.6046i −0.168007 + 0.952816i
\(176\) 2.43851 2.82166i 0.183809 0.212691i
\(177\) 0 0
\(178\) −3.92679 22.7538i −0.294325 1.70547i
\(179\) 6.96829 + 4.02315i 0.520835 + 0.300704i 0.737276 0.675592i \(-0.236112\pi\)
−0.216441 + 0.976296i \(0.569445\pi\)
\(180\) 0 0
\(181\) 6.99841 4.04053i 0.520188 0.300331i −0.216824 0.976211i \(-0.569570\pi\)
0.737011 + 0.675880i \(0.236236\pi\)
\(182\) 0.872293 + 1.04727i 0.0646586 + 0.0776291i
\(183\) 0 0
\(184\) −10.0615 8.63146i −0.741740 0.636319i
\(185\) −0.741143 + 0.269754i −0.0544899 + 0.0198327i
\(186\) 0 0
\(187\) −4.15481 + 0.732605i −0.303830 + 0.0535734i
\(188\) 8.09501 + 14.2596i 0.590389 + 1.03999i
\(189\) 0 0
\(190\) −0.289705 + 0.497593i −0.0210174 + 0.0360992i
\(191\) −2.88972 16.3884i −0.209093 1.18582i −0.890868 0.454262i \(-0.849903\pi\)
0.681776 0.731561i \(-0.261208\pi\)
\(192\) 0 0
\(193\) −0.775835 + 0.282381i −0.0558458 + 0.0203262i −0.369792 0.929115i \(-0.620571\pi\)
0.313946 + 0.949441i \(0.398349\pi\)
\(194\) −15.5412 + 5.59258i −1.11579 + 0.401524i
\(195\) 0 0
\(196\) −0.120903 0.716111i −0.00863594 0.0511508i
\(197\) 13.0620 7.54137i 0.930632 0.537301i 0.0436205 0.999048i \(-0.486111\pi\)
0.887011 + 0.461748i \(0.152777\pi\)
\(198\) 0 0
\(199\) −7.77810 + 13.4721i −0.551375 + 0.955009i 0.446801 + 0.894633i \(0.352563\pi\)
−0.998176 + 0.0603759i \(0.980770\pi\)
\(200\) −10.8624 + 8.91444i −0.768091 + 0.630346i
\(201\) 0 0
\(202\) 1.95815 2.31647i 0.137775 0.162986i
\(203\) −4.08799 0.720823i −0.286921 0.0505918i
\(204\) 0 0
\(205\) 0.157323 + 0.187490i 0.0109879 + 0.0130949i
\(206\) 8.23544 + 14.3848i 0.573790 + 1.00224i
\(207\) 0 0
\(208\) −0.0217786 + 1.49624i −0.00151008 + 0.103746i
\(209\) 1.99867 + 0.727455i 0.138251 + 0.0503191i
\(210\) 0 0
\(211\) 3.55232 4.23349i 0.244552 0.291445i −0.629781 0.776773i \(-0.716855\pi\)
0.874332 + 0.485328i \(0.161300\pi\)
\(212\) 11.7717 13.8235i 0.808486 0.949399i
\(213\) 0 0
\(214\) 3.61688 9.82591i 0.247245 0.671685i
\(215\) −0.911903 −0.0621913
\(216\) 0 0
\(217\) 22.4249 1.52230
\(218\) 6.46419 17.5611i 0.437810 1.18939i
\(219\) 0 0
\(220\) −0.253367 0.215762i −0.0170820 0.0145466i
\(221\) 1.08813 1.29679i 0.0731957 0.0872312i
\(222\) 0 0
\(223\) 4.91216 + 1.78788i 0.328942 + 0.119725i 0.501212 0.865325i \(-0.332888\pi\)
−0.172269 + 0.985050i \(0.555110\pi\)
\(224\) −7.51503 + 12.4862i −0.502119 + 0.834267i
\(225\) 0 0
\(226\) 6.44441 + 11.2564i 0.428676 + 0.748767i
\(227\) 5.65872 + 6.74381i 0.375583 + 0.447602i 0.920415 0.390943i \(-0.127851\pi\)
−0.544832 + 0.838545i \(0.683407\pi\)
\(228\) 0 0
\(229\) 8.50987 + 1.50052i 0.562348 + 0.0991572i 0.447594 0.894237i \(-0.352281\pi\)
0.114754 + 0.993394i \(0.463392\pi\)
\(230\) −0.763672 + 0.903413i −0.0503550 + 0.0595693i
\(231\) 0 0
\(232\) −2.89118 3.52297i −0.189816 0.231295i
\(233\) 0.420645 0.728579i 0.0275574 0.0477308i −0.851918 0.523676i \(-0.824560\pi\)
0.879475 + 0.475945i \(0.157894\pi\)
\(234\) 0 0
\(235\) 1.26716 0.731597i 0.0826606 0.0477241i
\(236\) −28.9887 + 4.89425i −1.88701 + 0.318589i
\(237\) 0 0
\(238\) 15.5125 5.58224i 1.00552 0.361843i
\(239\) −12.9749 + 4.72248i −0.839276 + 0.305472i −0.725660 0.688053i \(-0.758466\pi\)
−0.113616 + 0.993525i \(0.536243\pi\)
\(240\) 0 0
\(241\) 2.61837 + 14.8495i 0.168664 + 0.956542i 0.945206 + 0.326476i \(0.105861\pi\)
−0.776541 + 0.630066i \(0.783028\pi\)
\(242\) 7.20862 12.3814i 0.463387 0.795908i
\(243\) 0 0
\(244\) 25.8263 14.6613i 1.65336 0.938591i
\(245\) −0.0638218 + 0.0112535i −0.00407743 + 0.000718960i
\(246\) 0 0
\(247\) −0.801963 + 0.291891i −0.0510277 + 0.0185726i
\(248\) 18.6864 + 16.0306i 1.18659 + 1.01794i
\(249\) 0 0
\(250\) 1.61017 + 1.93316i 0.101836 + 0.122264i
\(251\) 9.73582 5.62098i 0.614520 0.354793i −0.160213 0.987083i \(-0.551218\pi\)
0.774732 + 0.632289i \(0.217885\pi\)
\(252\) 0 0
\(253\) 3.78432 + 2.18488i 0.237918 + 0.137362i
\(254\) −4.61034 26.7146i −0.289278 1.67622i
\(255\) 0 0
\(256\) −15.1880 + 5.03241i −0.949249 + 0.314526i
\(257\) −1.23538 + 7.00619i −0.0770609 + 0.437034i 0.921728 + 0.387837i \(0.126778\pi\)
−0.998789 + 0.0491976i \(0.984334\pi\)
\(258\) 0 0
\(259\) −7.31815 8.72143i −0.454728 0.541923i
\(260\) 0.133527 0.000971731i 0.00828102 6.02642e-5i
\(261\) 0 0
\(262\) 0.00470023 1.29175i 0.000290381 0.0798048i
\(263\) 18.0450 + 6.56783i 1.11270 + 0.404990i 0.831983 0.554801i \(-0.187205\pi\)
0.280717 + 0.959790i \(0.409428\pi\)
\(264\) 0 0
\(265\) −1.24114 1.04144i −0.0762429 0.0639754i
\(266\) −8.17989 1.47304i −0.501541 0.0903181i
\(267\) 0 0
\(268\) 2.22931 + 2.69640i 0.136177 + 0.164709i
\(269\) 16.5198i 1.00723i 0.863928 + 0.503616i \(0.167997\pi\)
−0.863928 + 0.503616i \(0.832003\pi\)
\(270\) 0 0
\(271\) −1.17854 −0.0715913 −0.0357956 0.999359i \(-0.511397\pi\)
−0.0357956 + 0.999359i \(0.511397\pi\)
\(272\) 16.9168 + 6.43756i 1.02573 + 0.390334i
\(273\) 0 0
\(274\) 1.43754 7.98272i 0.0868448 0.482254i
\(275\) 2.97739 3.54832i 0.179543 0.213972i
\(276\) 0 0
\(277\) −7.87030 + 21.6235i −0.472880 + 1.29923i 0.442547 + 0.896745i \(0.354075\pi\)
−0.915428 + 0.402483i \(0.868147\pi\)
\(278\) −0.108889 + 29.9257i −0.00653073 + 1.79483i
\(279\) 0 0
\(280\) 1.11905 + 0.662476i 0.0668761 + 0.0395905i
\(281\) −16.4336 + 13.7895i −0.980348 + 0.822610i −0.984142 0.177383i \(-0.943237\pi\)
0.00379366 + 0.999993i \(0.498792\pi\)
\(282\) 0 0
\(283\) −0.339199 0.0598100i −0.0201633 0.00355534i 0.163557 0.986534i \(-0.447703\pi\)
−0.183721 + 0.982978i \(0.558814\pi\)
\(284\) −10.4531 + 3.71870i −0.620278 + 0.220664i
\(285\) 0 0
\(286\) −0.0838858 0.486076i −0.00496027 0.0287423i
\(287\) −1.76649 + 3.05966i −0.104273 + 0.180606i
\(288\) 0 0
\(289\) −1.73816 3.01059i −0.102245 0.177093i
\(290\) −0.312486 + 0.260275i −0.0183498 + 0.0152839i
\(291\) 0 0
\(292\) 3.44986 18.7656i 0.201888 1.09817i
\(293\) −9.01139 24.7586i −0.526451 1.44641i −0.863221 0.504826i \(-0.831557\pi\)
0.336770 0.941587i \(-0.390665\pi\)
\(294\) 0 0
\(295\) 0.455551 + 2.58356i 0.0265232 + 0.150420i
\(296\) 0.136442 12.4989i 0.00793051 0.726482i
\(297\) 0 0
\(298\) 9.72525 + 5.66216i 0.563369 + 0.328000i
\(299\) −1.72673 + 0.304468i −0.0998591 + 0.0176079i
\(300\) 0 0
\(301\) −4.50213 12.3695i −0.259499 0.712967i
\(302\) −3.55320 + 1.27864i −0.204464 + 0.0735773i
\(303\) 0 0
\(304\) −5.76318 7.07491i −0.330541 0.405774i
\(305\) −1.32503 2.29502i −0.0758711 0.131413i
\(306\) 0 0
\(307\) 14.2917 + 8.25134i 0.815673 + 0.470929i 0.848922 0.528518i \(-0.177252\pi\)
−0.0332493 + 0.999447i \(0.510586\pi\)
\(308\) 1.67581 4.50203i 0.0954879 0.256527i
\(309\) 0 0
\(310\) 1.41831 1.67784i 0.0805547 0.0952950i
\(311\) −3.58763 + 20.3464i −0.203436 + 1.15374i 0.696447 + 0.717609i \(0.254763\pi\)
−0.899882 + 0.436133i \(0.856348\pi\)
\(312\) 0 0
\(313\) −9.65918 + 8.10501i −0.545969 + 0.458122i −0.873573 0.486693i \(-0.838203\pi\)
0.327604 + 0.944815i \(0.393759\pi\)
\(314\) −15.1431 + 8.66956i −0.854574 + 0.489251i
\(315\) 0 0
\(316\) 4.10715 6.99572i 0.231045 0.393540i
\(317\) 4.18467 11.4973i 0.235034 0.645752i −0.764964 0.644073i \(-0.777243\pi\)
0.999999 0.00167879i \(-0.000534375\pi\)
\(318\) 0 0
\(319\) 1.15081 + 0.965645i 0.0644331 + 0.0540658i
\(320\) 0.458917 + 1.35199i 0.0256542 + 0.0755787i
\(321\) 0 0
\(322\) −16.0246 5.89861i −0.893018 0.328717i
\(323\) 10.3230i 0.574388i
\(324\) 0 0
\(325\) 1.85859i 0.103096i
\(326\) −6.66873 + 18.1168i −0.369347 + 1.00340i
\(327\) 0 0
\(328\) −3.65921 + 1.28678i −0.202046 + 0.0710508i
\(329\) 16.1798 + 13.5765i 0.892022 + 0.748495i
\(330\) 0 0
\(331\) −6.93586 + 19.0561i −0.381230 + 1.04742i 0.589610 + 0.807688i \(0.299282\pi\)
−0.970839 + 0.239731i \(0.922941\pi\)
\(332\) −26.3258 15.4557i −1.44482 0.848244i
\(333\) 0 0
\(334\) 2.94535 + 5.14463i 0.161162 + 0.281502i
\(335\) 0.239159 0.200678i 0.0130666 0.0109642i
\(336\) 0 0
\(337\) 2.99094 16.9625i 0.162927 0.924006i −0.788249 0.615357i \(-0.789012\pi\)
0.951176 0.308649i \(-0.0998769\pi\)
\(338\) −13.8893 11.7409i −0.755479 0.638621i
\(339\) 0 0
\(340\) 0.563454 1.51371i 0.0305576 0.0820924i
\(341\) −7.02835 4.05782i −0.380606 0.219743i
\(342\) 0 0
\(343\) −9.48449 16.4276i −0.512114 0.887008i
\(344\) 5.09084 13.5257i 0.274480 0.729258i
\(345\) 0 0
\(346\) 9.59366 + 26.6598i 0.515758 + 1.43324i
\(347\) 2.18170 + 5.99416i 0.117120 + 0.321783i 0.984376 0.176078i \(-0.0563411\pi\)
−0.867257 + 0.497861i \(0.834119\pi\)
\(348\) 0 0
\(349\) 13.1972 2.32702i 0.706430 0.124563i 0.191120 0.981567i \(-0.438788\pi\)
0.515310 + 0.857004i \(0.327677\pi\)
\(350\) −9.10725 + 15.6425i −0.486803 + 0.836126i
\(351\) 0 0
\(352\) 4.61473 2.55352i 0.245966 0.136103i
\(353\) 1.95983 + 11.1147i 0.104311 + 0.591577i 0.991493 + 0.130158i \(0.0415484\pi\)
−0.887182 + 0.461419i \(0.847340\pi\)
\(354\) 0 0
\(355\) 0.338617 + 0.930342i 0.0179719 + 0.0493774i
\(356\) 5.90424 32.1161i 0.312924 1.70215i
\(357\) 0 0
\(358\) 7.28263 + 8.74351i 0.384899 + 0.462109i
\(359\) 13.5862 + 23.5320i 0.717053 + 1.24197i 0.962162 + 0.272477i \(0.0878428\pi\)
−0.245109 + 0.969495i \(0.578824\pi\)
\(360\) 0 0
\(361\) −6.89786 + 11.9474i −0.363045 + 0.628813i
\(362\) 11.2619 1.94355i 0.591911 0.102151i
\(363\) 0 0
\(364\) 0.646054 + 1.81603i 0.0338624 + 0.0951858i
\(365\) −1.67674 0.295654i −0.0877644 0.0154752i
\(366\) 0 0
\(367\) 17.5436 14.7209i 0.915771 0.768423i −0.0574375 0.998349i \(-0.518293\pi\)
0.973208 + 0.229926i \(0.0738485\pi\)
\(368\) −9.13647 16.3705i −0.476272 0.853373i
\(369\) 0 0
\(370\) −1.11539 0.00405852i −0.0579865 0.000210992i
\(371\) 7.99904 21.9772i 0.415289 1.14100i
\(372\) 0 0
\(373\) −18.2082 + 21.6997i −0.942786 + 1.12357i 0.0493967 + 0.998779i \(0.484270\pi\)
−0.992183 + 0.124790i \(0.960174\pi\)
\(374\) −5.87198 1.05743i −0.303633 0.0546786i
\(375\) 0 0
\(376\) 3.77722 + 22.8793i 0.194795 + 1.17991i
\(377\) −0.602788 −0.0310451
\(378\) 0 0
\(379\) 9.20463i 0.472810i −0.971655 0.236405i \(-0.924031\pi\)
0.971655 0.236405i \(-0.0759692\pi\)
\(380\) −0.627568 + 0.518857i −0.0321936 + 0.0266168i
\(381\) 0 0
\(382\) 4.17098 23.1617i 0.213406 1.18505i
\(383\) −18.0654 15.1587i −0.923100 0.774573i 0.0514658 0.998675i \(-0.483611\pi\)
−0.974566 + 0.224102i \(0.928055\pi\)
\(384\) 0 0
\(385\) −0.402815 0.146613i −0.0205294 0.00747207i
\(386\) −1.16760 0.00424850i −0.0594295 0.000216243i
\(387\) 0 0
\(388\) −23.3577 0.169983i −1.18581 0.00862959i
\(389\) 19.3453 + 23.0548i 0.980844 + 1.16892i 0.985627 + 0.168936i \(0.0540332\pi\)
−0.00478250 + 0.999989i \(0.501522\pi\)
\(390\) 0 0
\(391\) −3.68282 + 20.8863i −0.186248 + 1.05627i
\(392\) 0.189378 1.00946i 0.00956505 0.0509852i
\(393\) 0 0
\(394\) 21.0195 3.62750i 1.05895 0.182751i
\(395\) −0.626912 0.361948i −0.0315434 0.0182116i
\(396\) 0 0
\(397\) 15.4854 8.94051i 0.777191 0.448711i −0.0582431 0.998302i \(-0.518550\pi\)
0.835434 + 0.549591i \(0.185217\pi\)
\(398\) −16.9042 + 14.0798i −0.847329 + 0.705756i
\(399\) 0 0
\(400\) −18.7711 + 6.52432i −0.938554 + 0.326216i
\(401\) 9.33220 3.39664i 0.466028 0.169620i −0.0983243 0.995154i \(-0.531348\pi\)
0.564352 + 0.825534i \(0.309126\pi\)
\(402\) 0 0
\(403\) 3.20692 0.565467i 0.159748 0.0281679i
\(404\) 3.73042 2.11771i 0.185595 0.105360i
\(405\) 0 0
\(406\) −5.07327 2.95372i −0.251782 0.146590i
\(407\) 0.715477 + 4.05767i 0.0354649 + 0.201131i
\(408\) 0 0
\(409\) −5.20287 + 1.89369i −0.257265 + 0.0936369i −0.467433 0.884028i \(-0.654821\pi\)
0.210168 + 0.977665i \(0.432599\pi\)
\(410\) 0.117199 + 0.325684i 0.00578805 + 0.0160844i
\(411\) 0 0
\(412\) 3.90242 + 23.1141i 0.192259 + 1.13875i
\(413\) −32.7955 + 18.9345i −1.61376 + 0.931706i
\(414\) 0 0
\(415\) −1.36206 + 2.35915i −0.0668608 + 0.115806i
\(416\) −0.759851 + 1.97511i −0.0372547 + 0.0968377i
\(417\) 0 0
\(418\) 2.29717 + 1.94184i 0.112358 + 0.0949784i
\(419\) −4.02902 0.710424i −0.196830 0.0347065i 0.0743638 0.997231i \(-0.476307\pi\)
−0.271194 + 0.962525i \(0.587419\pi\)
\(420\) 0 0
\(421\) 15.7920 + 18.8201i 0.769653 + 0.917237i 0.998417 0.0562453i \(-0.0179129\pi\)
−0.228764 + 0.973482i \(0.573468\pi\)
\(422\) 6.78263 3.88312i 0.330173 0.189027i
\(423\) 0 0
\(424\) 22.3760 12.5951i 1.08667 0.611674i
\(425\) 21.1255 + 7.68904i 1.02474 + 0.372973i
\(426\) 0 0
\(427\) 24.5890 29.3041i 1.18995 1.41812i
\(428\) 9.60034 11.2736i 0.464050 0.544930i
\(429\) 0 0
\(430\) −1.21024 0.445485i −0.0583629 0.0214832i
\(431\) −14.0058 −0.674635 −0.337318 0.941391i \(-0.609520\pi\)
−0.337318 + 0.941391i \(0.609520\pi\)
\(432\) 0 0
\(433\) 12.4899 0.600227 0.300113 0.953904i \(-0.402976\pi\)
0.300113 + 0.953904i \(0.402976\pi\)
\(434\) 29.7614 + 10.9551i 1.42859 + 0.525860i
\(435\) 0 0
\(436\) 17.1580 20.1485i 0.821718 0.964937i
\(437\) 6.87277 8.19065i 0.328769 0.391812i
\(438\) 0 0
\(439\) −10.1446 3.69232i −0.484174 0.176225i 0.0883886 0.996086i \(-0.471828\pi\)
−0.572562 + 0.819861i \(0.694050\pi\)
\(440\) −0.230854 0.410125i −0.0110055 0.0195519i
\(441\) 0 0
\(442\) 2.07763 1.18946i 0.0988228 0.0565769i
\(443\) 18.6993 + 22.2849i 0.888430 + 1.05879i 0.997898 + 0.0647991i \(0.0206406\pi\)
−0.109469 + 0.993990i \(0.534915\pi\)
\(444\) 0 0
\(445\) −2.86963 0.505994i −0.136034 0.0239864i
\(446\) 5.64579 + 4.77249i 0.267336 + 0.225984i
\(447\) 0 0
\(448\) −16.0734 + 12.8999i −0.759396 + 0.609461i
\(449\) 15.0485 26.0648i 0.710184 1.23007i −0.254604 0.967045i \(-0.581945\pi\)
0.964788 0.263029i \(-0.0847216\pi\)
\(450\) 0 0
\(451\) 1.10730 0.639299i 0.0521406 0.0301034i
\(452\) 3.05373 + 18.0873i 0.143635 + 0.850755i
\(453\) 0 0
\(454\) 4.21552 + 11.7145i 0.197844 + 0.549789i
\(455\) 0.161629 0.0588282i 0.00757729 0.00275791i
\(456\) 0 0
\(457\) 2.71160 + 15.3782i 0.126843 + 0.719363i 0.980196 + 0.198029i \(0.0634542\pi\)
−0.853353 + 0.521334i \(0.825435\pi\)
\(458\) 10.5609 + 6.14868i 0.493479 + 0.287309i
\(459\) 0 0
\(460\) −1.45485 + 0.825900i −0.0678327 + 0.0385078i
\(461\) −12.7088 + 2.24090i −0.591908 + 0.104369i −0.461575 0.887101i \(-0.652716\pi\)
−0.130332 + 0.991470i \(0.541604\pi\)
\(462\) 0 0
\(463\) 32.6243 11.8743i 1.51618 0.551845i 0.555990 0.831189i \(-0.312339\pi\)
0.960191 + 0.279345i \(0.0901172\pi\)
\(464\) −2.11601 6.08795i −0.0982332 0.282626i
\(465\) 0 0
\(466\) 0.914189 0.761445i 0.0423490 0.0352732i
\(467\) 12.4213 7.17141i 0.574787 0.331853i −0.184272 0.982875i \(-0.558993\pi\)
0.759059 + 0.651022i \(0.225659\pi\)
\(468\) 0 0
\(469\) 3.90284 + 2.25330i 0.180216 + 0.104048i
\(470\) 2.03913 0.351907i 0.0940578 0.0162323i
\(471\) 0 0
\(472\) −40.8635 7.66618i −1.88090 0.352865i
\(473\) −0.827235 + 4.69148i −0.0380363 + 0.215715i
\(474\) 0 0
\(475\) −7.28522 8.68219i −0.334269 0.398366i
\(476\) 23.3145 + 0.169669i 1.06862 + 0.00777675i
\(477\) 0 0
\(478\) −19.5268 0.0710509i −0.893133 0.00324979i
\(479\) −0.567163 0.206430i −0.0259143 0.00943204i 0.329030 0.944319i \(-0.393278\pi\)
−0.354945 + 0.934887i \(0.615500\pi\)
\(480\) 0 0
\(481\) −1.26647 1.06269i −0.0577459 0.0484546i
\(482\) −3.77932 + 20.9868i −0.172144 + 0.955922i
\(483\) 0 0
\(484\) 15.6156 12.9105i 0.709798 0.586843i
\(485\) 2.08438i 0.0946467i
\(486\) 0 0
\(487\) −22.8735 −1.03650 −0.518249 0.855230i \(-0.673416\pi\)
−0.518249 + 0.855230i \(0.673416\pi\)
\(488\) 41.4379 6.84110i 1.87581 0.309682i
\(489\) 0 0
\(490\) −0.0901992 0.0162432i −0.00407478 0.000733792i
\(491\) 5.76980 6.87618i 0.260387 0.310318i −0.619973 0.784623i \(-0.712856\pi\)
0.880360 + 0.474306i \(0.157301\pi\)
\(492\) 0 0
\(493\) −2.49376 + 6.85154i −0.112313 + 0.308578i
\(494\) −1.20693 0.00439157i −0.0543022 0.000197586i
\(495\) 0 0
\(496\) 16.9685 + 30.4038i 0.761908 + 1.36517i
\(497\) −10.9478 + 9.18633i −0.491078 + 0.412063i
\(498\) 0 0
\(499\) −43.2976 7.63454i −1.93827 0.341769i −0.938276 0.345886i \(-0.887578\pi\)
−0.999992 + 0.00411738i \(0.998689\pi\)
\(500\) 1.19255 + 3.35221i 0.0533325 + 0.149916i
\(501\) 0 0
\(502\) 15.6669 2.70376i 0.699250 0.120675i
\(503\) −8.29388 + 14.3654i −0.369806 + 0.640523i −0.989535 0.144293i \(-0.953909\pi\)
0.619729 + 0.784816i \(0.287242\pi\)
\(504\) 0 0
\(505\) −0.191391 0.331499i −0.00851679 0.0147515i
\(506\) 3.95503 + 4.74841i 0.175823 + 0.211092i
\(507\) 0 0
\(508\) 6.93201 37.7067i 0.307558 1.67296i
\(509\) 9.18363 + 25.2318i 0.407057 + 1.11838i 0.958730 + 0.284320i \(0.0917677\pi\)
−0.551672 + 0.834061i \(0.686010\pi\)
\(510\) 0 0
\(511\) −4.26777 24.2037i −0.188795 1.07071i
\(512\) −22.6153 0.740862i −0.999464 0.0327418i
\(513\) 0 0
\(514\) −5.06222 + 8.69481i −0.223285 + 0.383512i
\(515\) 2.05999 0.363232i 0.0907742 0.0160059i
\(516\) 0 0
\(517\) −2.61435 7.18286i −0.114979 0.315902i
\(518\) −5.45173 15.1498i −0.239535 0.665643i
\(519\) 0 0
\(520\) 0.176737 + 0.0665207i 0.00775044 + 0.00291713i
\(521\) −1.11230 1.92655i −0.0487306 0.0844039i 0.840631 0.541608i \(-0.182184\pi\)
−0.889362 + 0.457204i \(0.848851\pi\)
\(522\) 0 0
\(523\) −3.08920 1.78355i −0.135081 0.0779892i 0.430937 0.902382i \(-0.358183\pi\)
−0.566018 + 0.824393i \(0.691517\pi\)
\(524\) 0.637287 1.71206i 0.0278400 0.0747918i
\(525\) 0 0
\(526\) 20.7400 + 17.5319i 0.904306 + 0.764428i
\(527\) 6.83983 38.7906i 0.297948 1.68974i
\(528\) 0 0
\(529\) −0.791437 + 0.664094i −0.0344103 + 0.0288737i
\(530\) −1.13843 1.98849i −0.0494501 0.0863743i
\(531\) 0 0
\(532\) −10.1364 5.95101i −0.439468 0.258009i
\(533\) −0.175469 + 0.482096i −0.00760039 + 0.0208819i
\(534\) 0 0
\(535\) −1.01220 0.849341i −0.0437614 0.0367202i
\(536\) 1.64140 + 4.66762i 0.0708976 + 0.201610i
\(537\) 0 0
\(538\) −8.07030 + 21.9244i −0.347935 + 0.945229i
\(539\) 0.338554i 0.0145825i
\(540\) 0 0
\(541\) 16.0298i 0.689174i 0.938754 + 0.344587i \(0.111981\pi\)
−0.938754 + 0.344587i \(0.888019\pi\)
\(542\) −1.56411 0.575743i −0.0671842 0.0247303i
\(543\) 0 0
\(544\) 19.3064 + 16.8079i 0.827755 + 0.720633i
\(545\) −1.80904 1.51796i −0.0774907 0.0650224i
\(546\) 0 0
\(547\) 11.0856 30.4574i 0.473985 1.30226i −0.440539 0.897733i \(-0.645213\pi\)
0.914525 0.404530i \(-0.132565\pi\)
\(548\) 5.80757 9.89205i 0.248087 0.422568i
\(549\) 0 0
\(550\) 5.68490 3.25465i 0.242405 0.138779i
\(551\) 2.81586 2.36279i 0.119960 0.100658i
\(552\) 0 0
\(553\) 1.81453 10.2907i 0.0771616 0.437605i
\(554\) −21.0087 + 24.8529i −0.892572 + 1.05590i
\(555\) 0 0
\(556\) −14.7639 + 39.6630i −0.626128 + 1.68208i
\(557\) −29.5913 17.0845i −1.25382 0.723895i −0.281956 0.959427i \(-0.590983\pi\)
−0.971867 + 0.235532i \(0.924317\pi\)
\(558\) 0 0
\(559\) −0.955747 1.65540i −0.0404238 0.0700160i
\(560\) 1.16152 + 1.42589i 0.0490833 + 0.0602549i
\(561\) 0 0
\(562\) −28.5465 + 10.2726i −1.20416 + 0.433323i
\(563\) 2.63340 + 7.23520i 0.110984 + 0.304927i 0.982734 0.185025i \(-0.0592365\pi\)
−0.871749 + 0.489952i \(0.837014\pi\)
\(564\) 0 0
\(565\) 1.61199 0.284237i 0.0678169 0.0119580i
\(566\) −0.420952 0.245084i −0.0176939 0.0103016i
\(567\) 0 0
\(568\) −15.6896 0.171273i −0.658321 0.00718644i
\(569\) −2.70678 15.3509i −0.113474 0.643544i −0.987494 0.157654i \(-0.949607\pi\)
0.874020 0.485890i \(-0.161504\pi\)
\(570\) 0 0
\(571\) −7.83178 21.5176i −0.327750 0.900485i −0.988680 0.150038i \(-0.952060\pi\)
0.660930 0.750447i \(-0.270162\pi\)
\(572\) 0.126129 0.686079i 0.00527372 0.0286864i
\(573\) 0 0
\(574\) −3.83912 + 3.19767i −0.160242 + 0.133468i
\(575\) −11.6426 20.1655i −0.485528 0.840960i
\(576\) 0 0
\(577\) 13.3039 23.0431i 0.553850 0.959297i −0.444141 0.895957i \(-0.646491\pi\)
0.997992 0.0633405i \(-0.0201754\pi\)
\(578\) −0.836079 4.84466i −0.0347763 0.201511i
\(579\) 0 0
\(580\) −0.541868 + 0.192770i −0.0224998 + 0.00800433i
\(581\) −38.7253 6.82831i −1.60660 0.283286i
\(582\) 0 0
\(583\) −6.48384 + 5.44058i −0.268533 + 0.225326i
\(584\) 13.7459 23.2195i 0.568809 0.960830i
\(585\) 0 0
\(586\) 0.135579 37.2608i 0.00560071 1.53923i
\(587\) 14.1595 38.9028i 0.584424 1.60569i −0.196113 0.980581i \(-0.562832\pi\)
0.780537 0.625110i \(-0.214946\pi\)
\(588\) 0 0
\(589\) −12.7643 + 15.2119i −0.525944 + 0.626795i
\(590\) −0.657536 + 3.65133i −0.0270703 + 0.150323i
\(591\) 0 0
\(592\) 6.28705 16.5213i 0.258396 0.679022i
\(593\) 12.1474 0.498833 0.249417 0.968396i \(-0.419761\pi\)
0.249417 + 0.968396i \(0.419761\pi\)
\(594\) 0 0
\(595\) 2.08052i 0.0852930i
\(596\) 10.1409 + 12.2656i 0.415386 + 0.502418i
\(597\) 0 0
\(598\) −2.44038 0.439466i −0.0997944 0.0179711i
\(599\) −25.1300 21.0866i −1.02679 0.861575i −0.0363204 0.999340i \(-0.511564\pi\)
−0.990465 + 0.137765i \(0.956008\pi\)
\(600\) 0 0
\(601\) 26.6419 + 9.69685i 1.08674 + 0.395543i 0.822414 0.568889i \(-0.192627\pi\)
0.264331 + 0.964432i \(0.414849\pi\)
\(602\) 0.0677358 18.6157i 0.00276071 0.758718i
\(603\) 0 0
\(604\) −5.34030 0.0388634i −0.217294 0.00158133i
\(605\) −1.16218 1.38503i −0.0472493 0.0563095i
\(606\) 0 0
\(607\) −0.218532 + 1.23936i −0.00886995 + 0.0503040i −0.988921 0.148440i \(-0.952575\pi\)
0.980052 + 0.198744i \(0.0636861\pi\)
\(608\) −4.19240 12.2050i −0.170024 0.494976i
\(609\) 0 0
\(610\) −0.637357 3.69316i −0.0258058 0.149532i
\(611\) 2.65617 + 1.53354i 0.107457 + 0.0620405i
\(612\) 0 0
\(613\) −27.4944 + 15.8739i −1.11049 + 0.641141i −0.938956 0.344038i \(-0.888205\pi\)
−0.171532 + 0.985179i \(0.554872\pi\)
\(614\) 14.9364 + 17.9327i 0.602785 + 0.723703i
\(615\) 0 0
\(616\) 4.42340 5.15623i 0.178224 0.207750i
\(617\) 29.6509 10.7920i 1.19370 0.434471i 0.332679 0.943040i \(-0.392047\pi\)
0.861021 + 0.508569i \(0.169825\pi\)
\(618\) 0 0
\(619\) −29.3688 + 5.17850i −1.18043 + 0.208142i −0.729222 0.684277i \(-0.760118\pi\)
−0.451208 + 0.892419i \(0.649007\pi\)
\(620\) 2.70199 1.53388i 0.108514 0.0616023i
\(621\) 0 0
\(622\) −14.7010 + 25.2503i −0.589458 + 1.01244i
\(623\) −7.30404 41.4233i −0.292630 1.65959i
\(624\) 0 0
\(625\) −23.0443 + 8.38744i −0.921772 + 0.335498i
\(626\) −16.7787 + 6.03791i −0.670612 + 0.241323i
\(627\) 0 0
\(628\) −24.3325 + 4.10813i −0.970974 + 0.163932i
\(629\) −17.3184 + 9.99880i −0.690531 + 0.398678i
\(630\) 0 0
\(631\) −15.5109 + 26.8656i −0.617478 + 1.06950i 0.372466 + 0.928046i \(0.378512\pi\)
−0.989944 + 0.141458i \(0.954821\pi\)
\(632\) 8.86839 7.27799i 0.352766 0.289503i
\(633\) 0 0
\(634\) 11.1704 13.2144i 0.443633 0.524811i
\(635\) −3.36916 0.594074i −0.133701 0.0235751i
\(636\) 0 0
\(637\) −0.0873191 0.104063i −0.00345971 0.00412312i
\(638\) 1.05557 + 1.84376i 0.0417904 + 0.0729951i
\(639\) 0 0
\(640\) −0.0514231 + 2.01850i −0.00203267 + 0.0797881i
\(641\) −34.7901 12.6626i −1.37413 0.500142i −0.453735 0.891137i \(-0.649909\pi\)
−0.920393 + 0.390995i \(0.872131\pi\)
\(642\) 0 0
\(643\) 21.1010 25.1472i 0.832143 0.991710i −0.167839 0.985814i \(-0.553679\pi\)
0.999983 0.00589543i \(-0.00187658\pi\)
\(644\) −18.3856 15.6568i −0.724495 0.616963i
\(645\) 0 0
\(646\) −5.04302 + 13.7003i −0.198415 + 0.539030i
\(647\) 32.3509 1.27185 0.635923 0.771752i \(-0.280620\pi\)
0.635923 + 0.771752i \(0.280620\pi\)
\(648\) 0 0
\(649\) 13.7049 0.537965
\(650\) −0.907960 + 2.46664i −0.0356131 + 0.0967494i
\(651\) 0 0
\(652\) −17.7009 + 20.7860i −0.693221 + 0.814044i
\(653\) 7.14706 8.51753i 0.279686 0.333317i −0.607853 0.794050i \(-0.707969\pi\)
0.887539 + 0.460733i \(0.152413\pi\)
\(654\) 0 0
\(655\) −0.153185 0.0557549i −0.00598545 0.00217852i
\(656\) −5.48497 0.0798366i −0.214152 0.00311710i
\(657\) 0 0
\(658\) 14.8408 + 25.9223i 0.578553 + 1.01056i
\(659\) −21.7371 25.9052i −0.846757 1.00913i −0.999782 0.0209028i \(-0.993346\pi\)
0.153025 0.988222i \(-0.451099\pi\)
\(660\) 0 0
\(661\) 26.9698 + 4.75551i 1.04901 + 0.184968i 0.671473 0.741029i \(-0.265662\pi\)
0.377532 + 0.925997i \(0.376773\pi\)
\(662\) −18.5143 + 21.9022i −0.719579 + 0.851252i
\(663\) 0 0
\(664\) −27.3880 33.3729i −1.06286 1.29512i
\(665\) −0.524441 + 0.908358i −0.0203369 + 0.0352246i
\(666\) 0 0
\(667\) 6.54020 3.77598i 0.253237 0.146207i
\(668\) 1.39567 + 8.26660i 0.0540003 + 0.319844i
\(669\) 0 0
\(670\) 0.415437 0.149497i 0.0160497 0.00577557i
\(671\) −13.0092 + 4.73497i −0.502216 + 0.182792i
\(672\) 0 0
\(673\) −3.55472 20.1598i −0.137024 0.777103i −0.973429 0.228990i \(-0.926458\pi\)
0.836404 0.548113i \(-0.184654\pi\)
\(674\) 12.2560 21.0508i 0.472083 0.810845i
\(675\) 0 0
\(676\) −12.6976 22.3673i −0.488370 0.860279i
\(677\) −32.7893 + 5.78165i −1.26020 + 0.222207i −0.763552 0.645747i \(-0.776546\pi\)
−0.496645 + 0.867954i \(0.665435\pi\)
\(678\) 0 0
\(679\) −28.2735 + 10.2907i −1.08504 + 0.394922i
\(680\) 1.48727 1.73367i 0.0570343 0.0664833i
\(681\) 0 0
\(682\) −7.34539 8.81887i −0.281270 0.337692i
\(683\) −11.8895 + 6.86440i −0.454939 + 0.262659i −0.709914 0.704289i \(-0.751266\pi\)
0.254975 + 0.966948i \(0.417933\pi\)
\(684\) 0 0
\(685\) −0.886463 0.511800i −0.0338700 0.0195549i
\(686\) −4.56216 26.4354i −0.174184 1.00931i
\(687\) 0 0
\(688\) 13.3640 15.4638i 0.509496 0.589551i
\(689\) 0.589743 3.34460i 0.0224674 0.127419i
\(690\) 0 0
\(691\) 16.4903 + 19.6524i 0.627321 + 0.747612i 0.982311 0.187258i \(-0.0599600\pi\)
−0.354990 + 0.934870i \(0.615516\pi\)
\(692\) −0.291593 + 40.0684i −0.0110847 + 1.52317i
\(693\) 0 0
\(694\) −0.0328242 + 9.02100i −0.00124599 + 0.342432i
\(695\) 3.54881 + 1.29166i 0.134614 + 0.0489955i
\(696\) 0 0
\(697\) 4.75379 + 3.98890i 0.180063 + 0.151090i
\(698\) 18.6516 + 3.35880i 0.705972 + 0.127132i
\(699\) 0 0
\(700\) −19.7284 + 16.3110i −0.745665 + 0.616496i
\(701\) 0.366433i 0.0138400i 0.999976 + 0.00692000i \(0.00220272\pi\)
−0.999976 + 0.00692000i \(0.997797\pi\)
\(702\) 0 0
\(703\) 10.0817 0.380237
\(704\) 7.37192 1.13453i 0.277840 0.0427593i
\(705\) 0 0
\(706\) −2.82879 + 15.7084i −0.106463 + 0.591193i
\(707\) 3.55171 4.23276i 0.133576 0.159189i
\(708\) 0 0
\(709\) −2.32486 + 6.38749i −0.0873118 + 0.239887i −0.975662 0.219279i \(-0.929630\pi\)
0.888350 + 0.459166i \(0.151852\pi\)
\(710\) −0.00509458 + 1.40013i −0.000191196 + 0.0525460i
\(711\) 0 0
\(712\) 23.5253 39.7388i 0.881647 1.48928i
\(713\) −31.2526 + 26.2241i −1.17042 + 0.982100i
\(714\) 0 0
\(715\) −0.0613024 0.0108093i −0.00229258 0.000404244i
\(716\) 5.39380 + 15.1617i 0.201576 + 0.566621i
\(717\) 0 0
\(718\) 6.53514 + 37.8679i 0.243889 + 1.41322i
\(719\) 6.07495 10.5221i 0.226558 0.392409i −0.730228 0.683203i \(-0.760586\pi\)
0.956786 + 0.290794i \(0.0939195\pi\)
\(720\) 0 0
\(721\) 15.0974 + 26.1495i 0.562257 + 0.973857i
\(722\) −14.9911 + 12.4864i −0.557912 + 0.464695i
\(723\) 0 0
\(724\) 15.8958 + 2.92228i 0.590761 + 0.108606i
\(725\) −2.73793 7.52240i −0.101684 0.279375i
\(726\) 0 0
\(727\) 0.337498 + 1.91405i 0.0125171 + 0.0709881i 0.990426 0.138041i \(-0.0440807\pi\)
−0.977909 + 0.209029i \(0.932970\pi\)
\(728\) −0.0297554 + 2.72577i −0.00110281 + 0.101024i
\(729\) 0 0
\(730\) −2.08086 1.21150i −0.0770160 0.0448397i
\(731\) −22.7700 + 4.01496i −0.842177 + 0.148499i
\(732\) 0 0
\(733\) −14.2681 39.2014i −0.527006 1.44794i −0.862579 0.505923i \(-0.831152\pi\)
0.335572 0.942014i \(-0.391070\pi\)
\(734\) 30.4746 10.9664i 1.12484 0.404779i
\(735\) 0 0
\(736\) −4.12817 26.1896i −0.152166 0.965363i
\(737\) −0.815477 1.41245i −0.0300385 0.0520282i
\(738\) 0 0
\(739\) −22.3170 12.8847i −0.820943 0.473971i 0.0297988 0.999556i \(-0.490513\pi\)
−0.850741 + 0.525584i \(0.823847\pi\)
\(740\) −1.47832 0.550280i −0.0543441 0.0202287i
\(741\) 0 0
\(742\) 21.3523 25.2595i 0.783868 0.927304i
\(743\) 0.466716 2.64688i 0.0171222 0.0971046i −0.975049 0.221989i \(-0.928745\pi\)
0.992171 + 0.124885i \(0.0398561\pi\)
\(744\) 0 0
\(745\) 1.08790 0.912858i 0.0398576 0.0334445i
\(746\) −34.7660 + 19.9038i −1.27287 + 0.728731i
\(747\) 0 0
\(748\) −7.27646 4.27197i −0.266054 0.156199i
\(749\) 6.52355 17.9233i 0.238365 0.654903i
\(750\) 0 0
\(751\) −35.3934 29.6986i −1.29153 1.08372i −0.991544 0.129773i \(-0.958575\pi\)
−0.299982 0.953945i \(-0.596981\pi\)
\(752\) −6.16409 + 32.2097i −0.224781 + 1.17457i
\(753\) 0 0
\(754\) −0.799994 0.294475i −0.0291341 0.0107241i
\(755\) 0.476553i 0.0173435i
\(756\) 0 0
\(757\) 41.2974i 1.50098i −0.660883 0.750489i \(-0.729818\pi\)
0.660883 0.750489i \(-0.270182\pi\)
\(758\) 4.49666 12.2160i 0.163326 0.443705i
\(759\) 0 0
\(760\) −1.08635 + 0.382024i −0.0394062 + 0.0138575i
\(761\) −16.6555 13.9756i −0.603762 0.506616i 0.288891 0.957362i \(-0.406714\pi\)
−0.892652 + 0.450746i \(0.851158\pi\)
\(762\) 0 0
\(763\) 11.6591 32.0330i 0.422086 1.15967i
\(764\) 16.8505 28.7016i 0.609631 1.03839i
\(765\) 0 0
\(766\) −16.5703 28.9433i −0.598710 1.04576i
\(767\) −4.21254 + 3.53474i −0.152106 + 0.127632i
\(768\) 0 0
\(769\) 4.86149 27.5709i 0.175310 0.994232i −0.762476 0.647017i \(-0.776016\pi\)
0.937786 0.347215i \(-0.112873\pi\)
\(770\) −0.462975 0.391362i −0.0166845 0.0141037i
\(771\) 0 0
\(772\) −1.54752 0.576039i −0.0556964 0.0207321i
\(773\) 23.6486 + 13.6535i 0.850580 + 0.491083i 0.860847 0.508864i \(-0.169935\pi\)
−0.0102662 + 0.999947i \(0.503268\pi\)
\(774\) 0 0
\(775\) 21.6229 + 37.4519i 0.776717 + 1.34531i
\(776\) −30.9164 11.6364i −1.10983 0.417721i
\(777\) 0 0
\(778\) 14.4115 + 40.0479i 0.516676 + 1.43579i
\(779\) −1.07002 2.93986i −0.0383375 0.105331i
\(780\) 0 0
\(781\) 5.09352 0.898125i 0.182260 0.0321374i
\(782\) −15.0911 + 25.9203i −0.539656 + 0.926907i
\(783\) 0 0
\(784\) 0.744476 1.24719i 0.0265884 0.0445426i
\(785\) 0.382380 + 2.16858i 0.0136477 + 0.0774001i
\(786\) 0 0
\(787\) 7.72182 + 21.2155i 0.275253 + 0.756252i 0.997884 + 0.0650180i \(0.0207105\pi\)
−0.722631 + 0.691234i \(0.757067\pi\)
\(788\) 29.6683 + 5.45423i 1.05689 + 0.194299i
\(789\) 0 0
\(790\) −0.655192 0.786622i −0.0233107 0.0279868i
\(791\) 11.8140 + 20.4625i 0.420059 + 0.727564i
\(792\) 0 0
\(793\) 2.77747 4.81073i 0.0986310 0.170834i
\(794\) 24.9192 4.30050i 0.884350 0.152619i
\(795\) 0 0
\(796\) −29.3128 + 10.4280i −1.03896 + 0.369612i
\(797\) 19.2857 + 3.40058i 0.683133 + 0.120455i 0.504436 0.863449i \(-0.331701\pi\)
0.178697 + 0.983904i \(0.442812\pi\)
\(798\) 0 0
\(799\) 28.4196 23.8469i 1.00541 0.843641i
\(800\) −28.0994 0.511274i −0.993465 0.0180762i
\(801\) 0 0
\(802\) 14.0446 + 0.0511034i 0.495933 + 0.00180452i
\(803\) −3.04211 + 8.35812i −0.107354 + 0.294952i
\(804\) 0 0
\(805\) −1.38515 + 1.65076i −0.0488202 + 0.0581816i
\(806\) 4.53233 + 0.816188i 0.159645 + 0.0287490i
\(807\) 0 0
\(808\) 5.98540 0.988147i 0.210566 0.0347629i
\(809\) 27.8483 0.979094 0.489547 0.871977i \(-0.337162\pi\)
0.489547 + 0.871977i \(0.337162\pi\)
\(810\) 0 0
\(811\) 7.82601i 0.274808i 0.990515 + 0.137404i \(0.0438759\pi\)
−0.990515 + 0.137404i \(0.956124\pi\)
\(812\) −5.29007 6.39845i −0.185645 0.224541i
\(813\) 0 0
\(814\) −1.03271 + 5.73470i −0.0361965 + 0.201001i
\(815\) 1.86628 + 1.56600i 0.0653730 + 0.0548545i
\(816\) 0 0
\(817\) 10.9535 + 3.98673i 0.383213 + 0.139478i
\(818\) −7.83013 0.0284911i −0.273774 0.000996167i
\(819\) 0 0
\(820\) −0.00356220 + 0.489489i −0.000124397 + 0.0170937i
\(821\) 9.82911 + 11.7139i 0.343038 + 0.408817i 0.909788 0.415073i \(-0.136244\pi\)
−0.566750 + 0.823890i \(0.691799\pi\)
\(822\) 0 0
\(823\) −4.11133 + 23.3165i −0.143312 + 0.812763i 0.825395 + 0.564556i \(0.190953\pi\)
−0.968707 + 0.248207i \(0.920159\pi\)
\(824\) −6.11262 + 32.5825i −0.212943 + 1.13506i
\(825\) 0 0
\(826\) −52.7748 + 9.10774i −1.83627 + 0.316899i
\(827\) 0.0403168 + 0.0232769i 0.00140195 + 0.000809419i 0.500701 0.865620i \(-0.333076\pi\)
−0.499299 + 0.866430i \(0.666409\pi\)
\(828\) 0 0
\(829\) −6.44307 + 3.71991i −0.223777 + 0.129198i −0.607698 0.794168i \(-0.707907\pi\)
0.383921 + 0.923366i \(0.374574\pi\)
\(830\) −2.96016 + 2.46557i −0.102749 + 0.0855812i
\(831\) 0 0
\(832\) −1.97333 + 2.25008i −0.0684128 + 0.0780074i
\(833\) −1.54406 + 0.561994i −0.0534987 + 0.0194719i
\(834\) 0 0
\(835\) 0.736742 0.129908i 0.0254960 0.00449564i
\(836\) 2.10007 + 3.69934i 0.0726325 + 0.127944i
\(837\) 0 0
\(838\) −5.00008 2.91111i −0.172725 0.100562i
\(839\) 3.69536 + 20.9574i 0.127578 + 0.723531i 0.979743 + 0.200258i \(0.0641780\pi\)
−0.852165 + 0.523273i \(0.824711\pi\)
\(840\) 0 0
\(841\) −24.8114 + 9.03060i −0.855565 + 0.311400i
\(842\) 11.7644 + 32.6920i 0.405427 + 1.12664i
\(843\) 0 0
\(844\) 10.8986 1.84004i 0.375146 0.0633369i
\(845\) −1.98764 + 1.14756i −0.0683768 + 0.0394774i
\(846\) 0 0
\(847\) 13.0495 22.6024i 0.448385 0.776626i
\(848\) 35.8495 5.78458i 1.23108 0.198643i
\(849\) 0 0
\(850\) 24.2806 + 20.5248i 0.832816 + 0.703996i
\(851\) 20.3980 + 3.59671i 0.699234 + 0.123294i
\(852\) 0 0
\(853\) −11.8527 14.1255i −0.405829 0.483648i 0.523959 0.851744i \(-0.324455\pi\)
−0.929788 + 0.368095i \(0.880010\pi\)
\(854\) 46.9492 26.8788i 1.60657 0.919774i
\(855\) 0 0
\(856\) 18.2486 10.2719i 0.623723 0.351085i
\(857\) 18.6167 + 6.77591i 0.635933 + 0.231461i 0.639812 0.768532i \(-0.279012\pi\)
−0.00387866 + 0.999992i \(0.501235\pi\)
\(858\) 0 0
\(859\) 5.06270 6.03349i 0.172737 0.205860i −0.672729 0.739889i \(-0.734878\pi\)
0.845466 + 0.534029i \(0.179323\pi\)
\(860\) −1.38855 1.18246i −0.0473491 0.0403214i
\(861\) 0 0
\(862\) −18.5879 6.84214i −0.633106 0.233044i
\(863\) 3.41425 0.116222 0.0581111 0.998310i \(-0.481492\pi\)
0.0581111 + 0.998310i \(0.481492\pi\)
\(864\) 0 0
\(865\) 3.57559 0.121574
\(866\) 16.5761 + 6.10159i 0.563278 + 0.207340i
\(867\) 0 0
\(868\) 34.1463 + 29.0782i 1.15900 + 0.986977i
\(869\) −2.43082 + 2.89694i −0.0824600 + 0.0982720i
\(870\) 0 0
\(871\) 0.614953 + 0.223825i 0.0208369 + 0.00758401i
\(872\) 32.6143 18.3581i 1.10446 0.621685i
\(873\) 0 0
\(874\) 13.1226 7.51278i 0.443877 0.254124i
\(875\) 2.94597 + 3.51087i 0.0995919 + 0.118689i
\(876\) 0 0
\(877\) 13.1746 + 2.32305i 0.444876 + 0.0784437i 0.391599 0.920136i \(-0.371922\pi\)
0.0532774 + 0.998580i \(0.483033\pi\)
\(878\) −11.6597 9.85613i −0.393494 0.332628i
\(879\) 0 0
\(880\) −0.106024 0.657078i −0.00357408 0.0221501i
\(881\) −28.5441 + 49.4399i −0.961676 + 1.66567i −0.243384 + 0.969930i \(0.578257\pi\)
−0.718292 + 0.695742i \(0.755076\pi\)
\(882\) 0 0
\(883\) −17.0975 + 9.87122i −0.575375 + 0.332193i −0.759293 0.650749i \(-0.774455\pi\)
0.183918 + 0.982942i \(0.441122\pi\)
\(884\) 3.33842 0.563635i 0.112283 0.0189571i
\(885\) 0 0
\(886\) 13.9302 + 38.7106i 0.467995 + 1.30051i
\(887\) 53.6182 19.5154i 1.80032 0.655264i 0.802004 0.597319i \(-0.203767\pi\)
0.998320 0.0579452i \(-0.0184549\pi\)
\(888\) 0 0
\(889\) −8.57547 48.6339i −0.287612 1.63113i
\(890\) −3.56127 2.07341i −0.119374 0.0695010i
\(891\) 0 0
\(892\) 5.16138 + 9.09194i 0.172816 + 0.304421i
\(893\) −18.4192 + 3.24779i −0.616373 + 0.108683i
\(894\) 0 0
\(895\) 1.34942 0.491147i 0.0451060 0.0164172i
\(896\) −27.6338 + 9.26794i −0.923180 + 0.309620i
\(897\) 0 0
\(898\) 32.7050 27.2406i 1.09138 0.909030i
\(899\) −12.1466 + 7.01286i −0.405113 + 0.233892i
\(900\) 0 0
\(901\) −35.5763 20.5400i −1.18522 0.684286i
\(902\) 1.78187 0.307511i 0.0593298 0.0102390i
\(903\) 0 0
\(904\) −4.78325 + 25.4965i −0.159089 + 0.848001i
\(905\) 0.250440 1.42031i 0.00832490 0.0472128i
\(906\) 0 0
\(907\) 15.5646 + 18.5491i 0.516813 + 0.615914i 0.959824 0.280602i \(-0.0905342\pi\)
−0.443011 + 0.896516i \(0.646090\pi\)
\(908\) −0.128128 + 17.6064i −0.00425209 + 0.584288i
\(909\) 0 0
\(910\) 0.243246 0.000885087i 0.00806354 2.93403e-5i
\(911\) −21.3962 7.78758i −0.708888 0.258014i −0.0376870 0.999290i \(-0.511999\pi\)
−0.671201 + 0.741275i \(0.734221\pi\)
\(912\) 0 0
\(913\) 10.9016 + 9.14750i 0.360789 + 0.302738i
\(914\) −3.91388 + 21.7340i −0.129460 + 0.718897i
\(915\) 0 0
\(916\) 11.0122 + 13.3195i 0.363854 + 0.440089i
\(917\) 2.35315i 0.0777078i
\(918\) 0 0
\(919\) 3.40847 0.112435 0.0562174 0.998419i \(-0.482096\pi\)
0.0562174 + 0.998419i \(0.482096\pi\)
\(920\) −2.33428 + 0.385374i −0.0769591 + 0.0127054i
\(921\) 0 0
\(922\) −17.9613 3.23449i −0.591524 0.106522i
\(923\) −1.33398 + 1.58977i −0.0439084 + 0.0523279i
\(924\) 0 0
\(925\) 7.50928 20.6316i 0.246904 0.678362i
\(926\) 49.0984 + 0.178652i 1.61348 + 0.00587086i
\(927\) 0 0
\(928\) 0.165819 9.11338i 0.00544328 0.299161i
\(929\) 16.2267 13.6158i 0.532381 0.446721i −0.336541 0.941669i \(-0.609257\pi\)
0.868923 + 0.494948i \(0.164813\pi\)
\(930\) 0 0
\(931\) 0.815804 + 0.143848i 0.0267369 + 0.00471443i
\(932\) 1.58526 0.563955i 0.0519268 0.0184730i
\(933\) 0 0
\(934\) 19.9883 3.44954i 0.654039 0.112872i
\(935\) −0.376473 + 0.652071i −0.0123120 + 0.0213250i
\(936\) 0 0
\(937\) 20.8301 + 36.0788i 0.680489 + 1.17864i 0.974832 + 0.222942i \(0.0715661\pi\)
−0.294342 + 0.955700i \(0.595101\pi\)
\(938\) 4.07889 + 4.89711i 0.133181 + 0.159896i
\(939\) 0 0
\(940\) 2.87815 + 0.529121i 0.0938750 + 0.0172580i
\(941\) 17.2670 + 47.4407i 0.562888 + 1.54652i 0.815382 + 0.578924i \(0.196527\pi\)
−0.252493 + 0.967599i \(0.581251\pi\)
\(942\) 0 0
\(943\) −1.11613 6.32988i −0.0363461 0.206129i
\(944\) −50.4873 30.1370i −1.64322 0.980874i
\(945\) 0 0
\(946\) −3.38976 + 5.82221i −0.110211 + 0.189296i
\(947\) −38.1758 + 6.73142i −1.24055 + 0.218742i −0.755149 0.655553i \(-0.772436\pi\)
−0.485396 + 0.874294i \(0.661325\pi\)
\(948\) 0 0
\(949\) −1.22064 3.35369i −0.0396238 0.108865i
\(950\) −5.42719 15.0816i −0.176081 0.489312i
\(951\) 0 0
\(952\) 30.8591 + 11.6148i 1.00015 + 0.376439i
\(953\) 17.7159 + 30.6848i 0.573873 + 0.993977i 0.996163 + 0.0875165i \(0.0278931\pi\)
−0.422290 + 0.906461i \(0.638774\pi\)
\(954\) 0 0
\(955\) −2.57205 1.48498i −0.0832297 0.0480527i
\(956\) −25.8804 9.63354i −0.837031 0.311571i
\(957\) 0 0
\(958\) −0.651868 0.551037i −0.0210609 0.0178032i
\(959\) 2.56577 14.5512i 0.0828531 0.469883i
\(960\) 0 0
\(961\) 34.2959 28.7776i 1.10632 0.928311i
\(962\) −1.16165 2.02906i −0.0374532 0.0654194i
\(963\) 0 0
\(964\) −15.2683 + 26.0065i −0.491757 + 0.837612i
\(965\) −0.0503964 + 0.138463i −0.00162232 + 0.00445728i
\(966\) 0 0
\(967\) −1.48262 1.24406i −0.0476777 0.0400064i 0.618637 0.785677i \(-0.287685\pi\)
−0.666315 + 0.745670i \(0.732129\pi\)
\(968\) 27.0314 9.50577i 0.868822 0.305527i
\(969\) 0 0
\(970\) −1.01826 + 2.76630i −0.0326945 + 0.0888204i
\(971\) 30.4220i 0.976288i −0.872763 0.488144i \(-0.837674\pi\)
0.872763 0.488144i \(-0.162326\pi\)
\(972\) 0 0
\(973\) 54.5148i 1.74766i
\(974\) −30.3568 11.1742i −0.972693 0.358045i
\(975\) 0 0
\(976\) 58.3366 + 11.1641i 1.86731 + 0.357354i
\(977\) −2.40690 2.01963i −0.0770035 0.0646136i 0.603473 0.797383i \(-0.293783\pi\)
−0.680477 + 0.732769i \(0.738227\pi\)
\(978\) 0 0
\(979\) −5.20639 + 14.3044i −0.166397 + 0.457172i
\(980\) −0.111773 0.0656215i −0.00357047 0.00209620i
\(981\) 0 0
\(982\) 11.0166 6.30710i 0.351554 0.201268i
\(983\) −44.9828 + 37.7451i −1.43473 + 1.20388i −0.491880 + 0.870663i \(0.663690\pi\)
−0.942850 + 0.333218i \(0.891865\pi\)
\(984\) 0 0
\(985\) 0.467428 2.65092i 0.0148935 0.0844652i
\(986\) −6.65673 + 7.87482i −0.211994 + 0.250785i
\(987\) 0 0
\(988\) −1.59964 0.595438i −0.0508912 0.0189434i
\(989\) 20.7395 + 11.9740i 0.659479 + 0.380750i
\(990\) 0 0
\(991\) 10.3807 + 17.9799i 0.329754 + 0.571150i 0.982463 0.186458i \(-0.0597009\pi\)
−0.652709 + 0.757609i \(0.726368\pi\)
\(992\) 7.66695 + 48.6401i 0.243426 + 1.54433i
\(993\) 0 0
\(994\) −19.0172 + 6.84344i −0.603190 + 0.217061i
\(995\) 0.949553 + 2.60888i 0.0301029 + 0.0827069i
\(996\) 0 0
\(997\) 32.5454 5.73863i 1.03072 0.181744i 0.367389 0.930067i \(-0.380252\pi\)
0.663335 + 0.748323i \(0.269141\pi\)
\(998\) −53.7331 31.2841i −1.70089 0.990280i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.253.30 204
3.2 odd 2 216.2.t.a.13.5 204
8.5 even 2 inner 648.2.t.a.253.7 204
12.11 even 2 864.2.bf.a.337.13 204
24.5 odd 2 216.2.t.a.13.28 yes 204
24.11 even 2 864.2.bf.a.337.22 204
27.2 odd 18 216.2.t.a.133.28 yes 204
27.25 even 9 inner 648.2.t.a.397.7 204
108.83 even 18 864.2.bf.a.241.22 204
216.29 odd 18 216.2.t.a.133.5 yes 204
216.83 even 18 864.2.bf.a.241.13 204
216.133 even 18 inner 648.2.t.a.397.30 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.5 204 3.2 odd 2
216.2.t.a.13.28 yes 204 24.5 odd 2
216.2.t.a.133.5 yes 204 216.29 odd 18
216.2.t.a.133.28 yes 204 27.2 odd 18
648.2.t.a.253.7 204 8.5 even 2 inner
648.2.t.a.253.30 204 1.1 even 1 trivial
648.2.t.a.397.7 204 27.25 even 9 inner
648.2.t.a.397.30 204 216.133 even 18 inner
864.2.bf.a.241.13 204 216.83 even 18
864.2.bf.a.241.22 204 108.83 even 18
864.2.bf.a.337.13 204 12.11 even 2
864.2.bf.a.337.22 204 24.11 even 2