Properties

Label 648.2.t.a.253.24
Level $648$
Weight $2$
Character 648.253
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 253.24
Character \(\chi\) \(=\) 648.253
Dual form 648.2.t.a.397.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.691259 - 1.23376i) q^{2} +(-1.04432 - 1.70569i) q^{4} +(-1.90914 + 2.27523i) q^{5} +(1.28267 + 0.466852i) q^{7} +(-2.82631 + 0.109365i) q^{8} +(1.48737 + 3.92819i) q^{10} +(2.78354 + 3.31729i) q^{11} +(4.65386 + 0.820601i) q^{13} +(1.46264 - 1.25978i) q^{14} +(-1.81878 + 3.56259i) q^{16} +(-0.356888 + 0.618149i) q^{17} +(-6.43384 + 3.71458i) q^{19} +(5.87460 + 0.880343i) q^{20} +(6.01689 - 1.14111i) q^{22} +(4.17513 - 1.51962i) q^{23} +(-0.663593 - 3.76342i) q^{25} +(4.22945 - 5.17449i) q^{26} +(-0.543209 - 2.67538i) q^{28} +(6.69820 - 1.18107i) q^{29} +(5.02097 - 1.82748i) q^{31} +(3.13812 + 4.70661i) q^{32} +(0.515944 + 0.867615i) q^{34} +(-3.51099 + 2.02707i) q^{35} +(0.547039 + 0.315833i) q^{37} +(0.135445 + 10.5055i) q^{38} +(5.14700 - 6.63929i) q^{40} +(-0.356345 + 2.02093i) q^{41} +(2.43534 + 2.90233i) q^{43} +(2.75138 - 8.21219i) q^{44} +(1.01125 - 6.20155i) q^{46} +(-5.10473 - 1.85797i) q^{47} +(-3.93503 - 3.30188i) q^{49} +(-5.10187 - 1.78279i) q^{50} +(-3.46043 - 8.79504i) q^{52} +11.4745i q^{53} -12.8618 q^{55} +(-3.67627 - 1.17919i) q^{56} +(3.17303 - 9.08039i) q^{58} +(0.803086 - 0.957081i) q^{59} +(0.216792 - 0.595632i) q^{61} +(1.21612 - 7.45793i) q^{62} +(7.97608 - 0.618197i) q^{64} +(-10.7519 + 9.02195i) q^{65} +(-14.0227 - 2.47258i) q^{67} +(1.42708 - 0.0368039i) q^{68} +(0.0739130 + 5.73294i) q^{70} +(0.414463 - 0.717870i) q^{71} +(7.29258 + 12.6311i) q^{73} +(0.767808 - 0.456592i) q^{74} +(13.0549 + 7.09494i) q^{76} +(2.02167 + 5.55448i) q^{77} +(-1.22756 - 6.96183i) q^{79} +(-4.63338 - 10.9396i) q^{80} +(2.24702 + 1.83663i) q^{82} +(-1.29008 + 0.227475i) q^{83} +(-0.725078 - 1.99214i) q^{85} +(5.26422 - 0.998364i) q^{86} +(-8.22995 - 9.07129i) q^{88} +(-2.66374 - 4.61373i) q^{89} +(5.58625 + 3.22522i) q^{91} +(-6.95219 - 5.53452i) q^{92} +(-5.82098 + 5.01367i) q^{94} +(3.83160 - 21.7301i) q^{95} +(-1.52072 + 1.27604i) q^{97} +(-6.79385 + 2.57242i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.691259 1.23376i 0.488794 0.872399i
\(3\) 0 0
\(4\) −1.04432 1.70569i −0.522161 0.852847i
\(5\) −1.90914 + 2.27523i −0.853794 + 1.01751i 0.145808 + 0.989313i \(0.453422\pi\)
−0.999602 + 0.0281995i \(0.991023\pi\)
\(6\) 0 0
\(7\) 1.28267 + 0.466852i 0.484802 + 0.176454i 0.572846 0.819663i \(-0.305839\pi\)
−0.0880438 + 0.996117i \(0.528062\pi\)
\(8\) −2.82631 + 0.109365i −0.999252 + 0.0386662i
\(9\) 0 0
\(10\) 1.48737 + 3.92819i 0.470348 + 1.24220i
\(11\) 2.78354 + 3.31729i 0.839269 + 1.00020i 0.999913 + 0.0131894i \(0.00419844\pi\)
−0.160644 + 0.987012i \(0.551357\pi\)
\(12\) 0 0
\(13\) 4.65386 + 0.820601i 1.29075 + 0.227594i 0.776538 0.630070i \(-0.216974\pi\)
0.514211 + 0.857664i \(0.328085\pi\)
\(14\) 1.46264 1.25978i 0.390906 0.336692i
\(15\) 0 0
\(16\) −1.81878 + 3.56259i −0.454696 + 0.890647i
\(17\) −0.356888 + 0.618149i −0.0865581 + 0.149923i −0.906054 0.423162i \(-0.860920\pi\)
0.819496 + 0.573085i \(0.194254\pi\)
\(18\) 0 0
\(19\) −6.43384 + 3.71458i −1.47602 + 0.852183i −0.999634 0.0270519i \(-0.991388\pi\)
−0.476389 + 0.879234i \(0.658055\pi\)
\(20\) 5.87460 + 0.880343i 1.31360 + 0.196851i
\(21\) 0 0
\(22\) 6.01689 1.14111i 1.28280 0.243285i
\(23\) 4.17513 1.51962i 0.870574 0.316863i 0.132175 0.991226i \(-0.457804\pi\)
0.738400 + 0.674363i \(0.235582\pi\)
\(24\) 0 0
\(25\) −0.663593 3.76342i −0.132719 0.752685i
\(26\) 4.22945 5.17449i 0.829463 1.01480i
\(27\) 0 0
\(28\) −0.543209 2.67538i −0.102657 0.505599i
\(29\) 6.69820 1.18107i 1.24382 0.219320i 0.487270 0.873251i \(-0.337993\pi\)
0.756554 + 0.653931i \(0.226882\pi\)
\(30\) 0 0
\(31\) 5.02097 1.82748i 0.901793 0.328226i 0.150822 0.988561i \(-0.451808\pi\)
0.750971 + 0.660335i \(0.229586\pi\)
\(32\) 3.13812 + 4.70661i 0.554747 + 0.832019i
\(33\) 0 0
\(34\) 0.515944 + 0.867615i 0.0884837 + 0.148795i
\(35\) −3.51099 + 2.02707i −0.593465 + 0.342637i
\(36\) 0 0
\(37\) 0.547039 + 0.315833i 0.0899327 + 0.0519226i 0.544292 0.838896i \(-0.316798\pi\)
−0.454359 + 0.890819i \(0.650132\pi\)
\(38\) 0.135445 + 10.5055i 0.0219720 + 1.70422i
\(39\) 0 0
\(40\) 5.14700 6.63929i 0.813812 1.04976i
\(41\) −0.356345 + 2.02093i −0.0556517 + 0.315617i −0.999908 0.0135959i \(-0.995672\pi\)
0.944256 + 0.329213i \(0.106783\pi\)
\(42\) 0 0
\(43\) 2.43534 + 2.90233i 0.371386 + 0.442601i 0.919076 0.394081i \(-0.128937\pi\)
−0.547690 + 0.836682i \(0.684493\pi\)
\(44\) 2.75138 8.21219i 0.414786 1.23803i
\(45\) 0 0
\(46\) 1.01125 6.20155i 0.149100 0.914369i
\(47\) −5.10473 1.85797i −0.744601 0.271013i −0.0582692 0.998301i \(-0.518558\pi\)
−0.686332 + 0.727288i \(0.740780\pi\)
\(48\) 0 0
\(49\) −3.93503 3.30188i −0.562147 0.471697i
\(50\) −5.10187 1.78279i −0.721514 0.252124i
\(51\) 0 0
\(52\) −3.46043 8.79504i −0.479876 1.21965i
\(53\) 11.4745i 1.57614i 0.615583 + 0.788072i \(0.288921\pi\)
−0.615583 + 0.788072i \(0.711079\pi\)
\(54\) 0 0
\(55\) −12.8618 −1.73428
\(56\) −3.67627 1.17919i −0.491262 0.157576i
\(57\) 0 0
\(58\) 3.17303 9.08039i 0.416639 1.19231i
\(59\) 0.803086 0.957081i 0.104553 0.124601i −0.711230 0.702959i \(-0.751862\pi\)
0.815783 + 0.578358i \(0.196306\pi\)
\(60\) 0 0
\(61\) 0.216792 0.595632i 0.0277574 0.0762629i −0.925040 0.379870i \(-0.875969\pi\)
0.952797 + 0.303607i \(0.0981910\pi\)
\(62\) 1.21612 7.45793i 0.154447 0.947158i
\(63\) 0 0
\(64\) 7.97608 0.618197i 0.997010 0.0772747i
\(65\) −10.7519 + 9.02195i −1.33361 + 1.11903i
\(66\) 0 0
\(67\) −14.0227 2.47258i −1.71314 0.302074i −0.770889 0.636969i \(-0.780188\pi\)
−0.942255 + 0.334896i \(0.891299\pi\)
\(68\) 1.42708 0.0368039i 0.173059 0.00446312i
\(69\) 0 0
\(70\) 0.0739130 + 5.73294i 0.00883429 + 0.685217i
\(71\) 0.414463 0.717870i 0.0491877 0.0851955i −0.840383 0.541993i \(-0.817670\pi\)
0.889571 + 0.456797i \(0.151003\pi\)
\(72\) 0 0
\(73\) 7.29258 + 12.6311i 0.853532 + 1.47836i 0.878000 + 0.478660i \(0.158877\pi\)
−0.0244686 + 0.999701i \(0.507789\pi\)
\(74\) 0.767808 0.456592i 0.0892558 0.0530777i
\(75\) 0 0
\(76\) 13.0549 + 7.09494i 1.49750 + 0.813846i
\(77\) 2.02167 + 5.55448i 0.230390 + 0.632992i
\(78\) 0 0
\(79\) −1.22756 6.96183i −0.138111 0.783267i −0.972643 0.232306i \(-0.925373\pi\)
0.834532 0.550960i \(-0.185738\pi\)
\(80\) −4.63338 10.9396i −0.518027 1.22309i
\(81\) 0 0
\(82\) 2.24702 + 1.83663i 0.248141 + 0.202822i
\(83\) −1.29008 + 0.227475i −0.141604 + 0.0249686i −0.244001 0.969775i \(-0.578460\pi\)
0.102397 + 0.994744i \(0.467349\pi\)
\(84\) 0 0
\(85\) −0.725078 1.99214i −0.0786458 0.216077i
\(86\) 5.26422 0.998364i 0.567656 0.107656i
\(87\) 0 0
\(88\) −8.22995 9.07129i −0.877315 0.967002i
\(89\) −2.66374 4.61373i −0.282356 0.489054i 0.689609 0.724182i \(-0.257782\pi\)
−0.971964 + 0.235128i \(0.924449\pi\)
\(90\) 0 0
\(91\) 5.58625 + 3.22522i 0.585598 + 0.338095i
\(92\) −6.95219 5.53452i −0.724816 0.577013i
\(93\) 0 0
\(94\) −5.82098 + 5.01367i −0.600388 + 0.517120i
\(95\) 3.83160 21.7301i 0.393114 2.22946i
\(96\) 0 0
\(97\) −1.52072 + 1.27604i −0.154406 + 0.129562i −0.716718 0.697363i \(-0.754356\pi\)
0.562312 + 0.826925i \(0.309912\pi\)
\(98\) −6.79385 + 2.57242i −0.686283 + 0.259854i
\(99\) 0 0
\(100\) −5.72624 + 5.06211i −0.572624 + 0.506211i
\(101\) −1.46496 + 4.02494i −0.145769 + 0.400497i −0.990993 0.133916i \(-0.957245\pi\)
0.845224 + 0.534412i \(0.179467\pi\)
\(102\) 0 0
\(103\) −8.54275 7.16822i −0.841743 0.706306i 0.116212 0.993224i \(-0.462925\pi\)
−0.957955 + 0.286919i \(0.907369\pi\)
\(104\) −13.2430 1.81031i −1.29858 0.177515i
\(105\) 0 0
\(106\) 14.1568 + 7.93185i 1.37503 + 0.770410i
\(107\) 11.6290i 1.12422i −0.827064 0.562108i \(-0.809991\pi\)
0.827064 0.562108i \(-0.190009\pi\)
\(108\) 0 0
\(109\) 2.12823i 0.203848i 0.994792 + 0.101924i \(0.0324998\pi\)
−0.994792 + 0.101924i \(0.967500\pi\)
\(110\) −8.89082 + 15.8683i −0.847706 + 1.51299i
\(111\) 0 0
\(112\) −3.99609 + 3.72051i −0.377595 + 0.351555i
\(113\) 13.3788 + 11.2261i 1.25857 + 1.05607i 0.995833 + 0.0912002i \(0.0290703\pi\)
0.262739 + 0.964867i \(0.415374\pi\)
\(114\) 0 0
\(115\) −4.51343 + 12.4005i −0.420879 + 1.15636i
\(116\) −9.00962 10.1917i −0.836522 0.946271i
\(117\) 0 0
\(118\) −0.625666 1.65241i −0.0575973 0.152116i
\(119\) −0.746353 + 0.626264i −0.0684180 + 0.0574096i
\(120\) 0 0
\(121\) −1.34621 + 7.63476i −0.122383 + 0.694069i
\(122\) −0.585007 0.679206i −0.0529641 0.0614924i
\(123\) 0 0
\(124\) −8.36063 6.65576i −0.750807 0.597705i
\(125\) −3.03136 1.75016i −0.271133 0.156539i
\(126\) 0 0
\(127\) 2.78247 + 4.81937i 0.246904 + 0.427650i 0.962665 0.270695i \(-0.0872534\pi\)
−0.715761 + 0.698345i \(0.753920\pi\)
\(128\) 4.75083 10.2679i 0.419918 0.907562i
\(129\) 0 0
\(130\) 3.69853 + 19.5018i 0.324383 + 1.71042i
\(131\) −3.27187 8.98940i −0.285865 0.785407i −0.996634 0.0819818i \(-0.973875\pi\)
0.710769 0.703426i \(-0.248347\pi\)
\(132\) 0 0
\(133\) −9.98662 + 1.76091i −0.865950 + 0.152690i
\(134\) −12.7439 + 15.5914i −1.10090 + 1.34689i
\(135\) 0 0
\(136\) 0.941074 1.78611i 0.0806964 0.153158i
\(137\) −0.661480 3.75144i −0.0565140 0.320507i 0.943425 0.331587i \(-0.107584\pi\)
−0.999939 + 0.0110802i \(0.996473\pi\)
\(138\) 0 0
\(139\) −0.433062 1.18983i −0.0367318 0.100920i 0.919971 0.391987i \(-0.128212\pi\)
−0.956703 + 0.291067i \(0.905990\pi\)
\(140\) 7.12416 + 3.87176i 0.602101 + 0.327223i
\(141\) 0 0
\(142\) −0.599178 1.00758i −0.0502819 0.0845544i
\(143\) 10.2320 + 17.7224i 0.855646 + 1.48202i
\(144\) 0 0
\(145\) −10.1006 + 17.4948i −0.838809 + 1.45286i
\(146\) 20.6248 0.265909i 1.70692 0.0220068i
\(147\) 0 0
\(148\) −0.0325701 1.26291i −0.00267724 0.103811i
\(149\) 9.84675 + 1.73625i 0.806677 + 0.142239i 0.561755 0.827304i \(-0.310126\pi\)
0.244922 + 0.969543i \(0.421238\pi\)
\(150\) 0 0
\(151\) 16.1625 13.5620i 1.31529 1.10366i 0.328008 0.944675i \(-0.393623\pi\)
0.987281 0.158983i \(-0.0508216\pi\)
\(152\) 17.7778 11.2022i 1.44197 0.908618i
\(153\) 0 0
\(154\) 8.25039 + 1.34534i 0.664835 + 0.108410i
\(155\) −5.42780 + 14.9128i −0.435972 + 1.19782i
\(156\) 0 0
\(157\) 5.71532 6.81126i 0.456133 0.543598i −0.488139 0.872766i \(-0.662324\pi\)
0.944271 + 0.329168i \(0.106768\pi\)
\(158\) −9.43777 3.29792i −0.750829 0.262368i
\(159\) 0 0
\(160\) −16.6997 1.84565i −1.32023 0.145912i
\(161\) 6.06473 0.477968
\(162\) 0 0
\(163\) 17.7771i 1.39241i −0.717845 0.696203i \(-0.754871\pi\)
0.717845 0.696203i \(-0.245129\pi\)
\(164\) 3.81923 1.50269i 0.298232 0.117340i
\(165\) 0 0
\(166\) −0.611127 + 1.74889i −0.0474327 + 0.135740i
\(167\) 5.29501 + 4.44304i 0.409740 + 0.343813i 0.824244 0.566235i \(-0.191600\pi\)
−0.414504 + 0.910048i \(0.636045\pi\)
\(168\) 0 0
\(169\) 8.76904 + 3.19167i 0.674541 + 0.245513i
\(170\) −2.95903 0.482510i −0.226947 0.0370069i
\(171\) 0 0
\(172\) 2.40720 7.18491i 0.183547 0.547844i
\(173\) −14.6599 17.4709i −1.11457 1.32829i −0.939037 0.343817i \(-0.888280\pi\)
−0.175531 0.984474i \(-0.556164\pi\)
\(174\) 0 0
\(175\) 0.905794 5.13702i 0.0684716 0.388322i
\(176\) −16.8808 + 3.88316i −1.27244 + 0.292704i
\(177\) 0 0
\(178\) −7.53356 + 0.0971278i −0.564664 + 0.00728004i
\(179\) −10.8469 6.26245i −0.810734 0.468077i 0.0364770 0.999334i \(-0.488386\pi\)
−0.847211 + 0.531257i \(0.821720\pi\)
\(180\) 0 0
\(181\) −10.6636 + 6.15662i −0.792618 + 0.457618i −0.840883 0.541217i \(-0.817964\pi\)
0.0482656 + 0.998835i \(0.484631\pi\)
\(182\) 7.84069 4.66262i 0.581191 0.345616i
\(183\) 0 0
\(184\) −11.6340 + 4.75154i −0.857671 + 0.350288i
\(185\) −1.76297 + 0.641668i −0.129616 + 0.0471763i
\(186\) 0 0
\(187\) −3.04399 + 0.536738i −0.222599 + 0.0392502i
\(188\) 2.16185 + 10.6474i 0.157669 + 0.776543i
\(189\) 0 0
\(190\) −24.1611 19.7484i −1.75283 1.43270i
\(191\) −0.0708406 0.401757i −0.00512584 0.0290701i 0.982138 0.188164i \(-0.0602538\pi\)
−0.987263 + 0.159094i \(0.949143\pi\)
\(192\) 0 0
\(193\) 20.6767 7.52571i 1.48834 0.541712i 0.535330 0.844643i \(-0.320187\pi\)
0.953013 + 0.302930i \(0.0979650\pi\)
\(194\) 0.523109 + 2.75828i 0.0375571 + 0.198033i
\(195\) 0 0
\(196\) −1.52256 + 10.1602i −0.108755 + 0.725727i
\(197\) 18.0410 10.4160i 1.28537 0.742108i 0.307544 0.951534i \(-0.400493\pi\)
0.977824 + 0.209426i \(0.0671596\pi\)
\(198\) 0 0
\(199\) −1.53489 + 2.65851i −0.108805 + 0.188457i −0.915287 0.402803i \(-0.868036\pi\)
0.806481 + 0.591260i \(0.201369\pi\)
\(200\) 2.28711 + 10.5640i 0.161723 + 0.746990i
\(201\) 0 0
\(202\) 3.95314 + 4.58968i 0.278142 + 0.322929i
\(203\) 9.14294 + 1.61215i 0.641708 + 0.113150i
\(204\) 0 0
\(205\) −3.91777 4.66901i −0.273629 0.326098i
\(206\) −14.7491 + 5.58460i −1.02762 + 0.389097i
\(207\) 0 0
\(208\) −11.3878 + 15.0873i −0.789604 + 1.04612i
\(209\) −30.2312 11.0033i −2.09114 0.761111i
\(210\) 0 0
\(211\) 1.48569 1.77058i 0.102279 0.121892i −0.712477 0.701696i \(-0.752427\pi\)
0.814756 + 0.579804i \(0.196871\pi\)
\(212\) 19.5720 11.9831i 1.34421 0.823001i
\(213\) 0 0
\(214\) −14.3473 8.03863i −0.980764 0.549510i
\(215\) −11.2529 −0.767439
\(216\) 0 0
\(217\) 7.29339 0.495108
\(218\) 2.62573 + 1.47116i 0.177837 + 0.0996395i
\(219\) 0 0
\(220\) 13.4318 + 21.9382i 0.905574 + 1.47908i
\(221\) −2.16816 + 2.58392i −0.145846 + 0.173813i
\(222\) 0 0
\(223\) 3.40012 + 1.23754i 0.227689 + 0.0828721i 0.453345 0.891335i \(-0.350230\pi\)
−0.225656 + 0.974207i \(0.572453\pi\)
\(224\) 1.82787 + 7.50205i 0.122130 + 0.501252i
\(225\) 0 0
\(226\) 23.0986 8.74604i 1.53649 0.581778i
\(227\) −12.6692 15.0985i −0.840883 1.00212i −0.999890 0.0148475i \(-0.995274\pi\)
0.159007 0.987277i \(-0.449171\pi\)
\(228\) 0 0
\(229\) 17.3012 + 3.05066i 1.14329 + 0.201593i 0.713045 0.701118i \(-0.247315\pi\)
0.430247 + 0.902711i \(0.358426\pi\)
\(230\) 12.1793 + 14.1405i 0.803081 + 0.932394i
\(231\) 0 0
\(232\) −18.8020 + 4.07063i −1.23441 + 0.267250i
\(233\) −9.53675 + 16.5181i −0.624774 + 1.08214i 0.363811 + 0.931473i \(0.381475\pi\)
−0.988585 + 0.150667i \(0.951858\pi\)
\(234\) 0 0
\(235\) 13.9730 8.06729i 0.911495 0.526252i
\(236\) −2.47117 0.370319i −0.160859 0.0241057i
\(237\) 0 0
\(238\) 0.256736 + 1.35373i 0.0166417 + 0.0877493i
\(239\) 1.39969 0.509446i 0.0905384 0.0329533i −0.296354 0.955078i \(-0.595771\pi\)
0.386892 + 0.922125i \(0.373549\pi\)
\(240\) 0 0
\(241\) 0.766076 + 4.34463i 0.0493473 + 0.279862i 0.999489 0.0319552i \(-0.0101734\pi\)
−0.950142 + 0.311817i \(0.899062\pi\)
\(242\) 8.48887 + 6.93850i 0.545685 + 0.446024i
\(243\) 0 0
\(244\) −1.24237 + 0.252250i −0.0795345 + 0.0161487i
\(245\) 15.0251 2.64932i 0.959916 0.169259i
\(246\) 0 0
\(247\) −32.9904 + 12.0075i −2.09913 + 0.764020i
\(248\) −13.9910 + 5.71415i −0.888427 + 0.362849i
\(249\) 0 0
\(250\) −4.25473 + 2.53016i −0.269093 + 0.160021i
\(251\) −23.4897 + 13.5618i −1.48265 + 0.856011i −0.999806 0.0196931i \(-0.993731\pi\)
−0.482848 + 0.875704i \(0.660398\pi\)
\(252\) 0 0
\(253\) 16.6627 + 9.62020i 1.04757 + 0.604817i
\(254\) 7.86935 0.101457i 0.493767 0.00636598i
\(255\) 0 0
\(256\) −9.38405 12.9592i −0.586503 0.809947i
\(257\) 2.75518 15.6254i 0.171864 0.974687i −0.769839 0.638239i \(-0.779663\pi\)
0.941702 0.336448i \(-0.109226\pi\)
\(258\) 0 0
\(259\) 0.554221 + 0.660495i 0.0344376 + 0.0410412i
\(260\) 26.6172 + 8.91770i 1.65073 + 0.553052i
\(261\) 0 0
\(262\) −13.3525 2.17730i −0.824918 0.134514i
\(263\) −1.51313 0.550733i −0.0933034 0.0339597i 0.294947 0.955514i \(-0.404698\pi\)
−0.388250 + 0.921554i \(0.626920\pi\)
\(264\) 0 0
\(265\) −26.1071 21.9065i −1.60375 1.34570i
\(266\) −4.73080 + 13.5383i −0.290064 + 0.830088i
\(267\) 0 0
\(268\) 10.4267 + 26.5006i 0.636914 + 1.61878i
\(269\) 2.95858i 0.180388i 0.995924 + 0.0901940i \(0.0287487\pi\)
−0.995924 + 0.0901940i \(0.971251\pi\)
\(270\) 0 0
\(271\) 6.23755 0.378904 0.189452 0.981890i \(-0.439329\pi\)
0.189452 + 0.981890i \(0.439329\pi\)
\(272\) −1.55311 2.39572i −0.0941709 0.145262i
\(273\) 0 0
\(274\) −5.08562 1.77711i −0.307234 0.107359i
\(275\) 10.6372 12.6770i 0.641450 0.764450i
\(276\) 0 0
\(277\) 7.97956 21.9237i 0.479445 1.31727i −0.430520 0.902581i \(-0.641670\pi\)
0.909965 0.414684i \(-0.136108\pi\)
\(278\) −1.76732 0.288185i −0.105997 0.0172842i
\(279\) 0 0
\(280\) 9.70145 6.11311i 0.579773 0.365328i
\(281\) 5.53822 4.64712i 0.330383 0.277224i −0.462473 0.886633i \(-0.653038\pi\)
0.792856 + 0.609409i \(0.208593\pi\)
\(282\) 0 0
\(283\) 1.34312 + 0.236829i 0.0798404 + 0.0140780i 0.213426 0.976959i \(-0.431538\pi\)
−0.133585 + 0.991037i \(0.542649\pi\)
\(284\) −1.65730 + 0.0427412i −0.0983426 + 0.00253622i
\(285\) 0 0
\(286\) 28.9382 0.373090i 1.71115 0.0220613i
\(287\) −1.40055 + 2.42582i −0.0826718 + 0.143192i
\(288\) 0 0
\(289\) 8.24526 + 14.2812i 0.485015 + 0.840071i
\(290\) 14.6022 + 24.5551i 0.857469 + 1.44193i
\(291\) 0 0
\(292\) 13.9290 25.6299i 0.815134 1.49987i
\(293\) −5.01243 13.7715i −0.292829 0.804541i −0.995650 0.0931743i \(-0.970299\pi\)
0.702821 0.711367i \(-0.251924\pi\)
\(294\) 0 0
\(295\) 0.644371 + 3.65441i 0.0375167 + 0.212768i
\(296\) −1.58064 0.832816i −0.0918731 0.0484065i
\(297\) 0 0
\(298\) 8.94876 10.9483i 0.518388 0.634219i
\(299\) 20.6775 3.64600i 1.19581 0.210853i
\(300\) 0 0
\(301\) 1.76877 + 4.85966i 0.101950 + 0.280106i
\(302\) −5.55971 29.3155i −0.319925 1.68692i
\(303\) 0 0
\(304\) −1.53174 29.6771i −0.0878515 1.70210i
\(305\) 0.941311 + 1.63040i 0.0538993 + 0.0933564i
\(306\) 0 0
\(307\) 9.62473 + 5.55684i 0.549313 + 0.317146i 0.748845 0.662746i \(-0.230609\pi\)
−0.199532 + 0.979891i \(0.563942\pi\)
\(308\) 7.36298 9.24901i 0.419545 0.527011i
\(309\) 0 0
\(310\) 14.6467 + 17.0052i 0.831879 + 0.965830i
\(311\) −1.91302 + 10.8493i −0.108477 + 0.615206i 0.881297 + 0.472563i \(0.156671\pi\)
−0.989774 + 0.142643i \(0.954440\pi\)
\(312\) 0 0
\(313\) −1.97229 + 1.65494i −0.111480 + 0.0935430i −0.696824 0.717242i \(-0.745404\pi\)
0.585344 + 0.810785i \(0.300960\pi\)
\(314\) −4.45268 11.7597i −0.251279 0.663637i
\(315\) 0 0
\(316\) −10.5928 + 9.36422i −0.595890 + 0.526779i
\(317\) 1.43808 3.95110i 0.0807708 0.221916i −0.892733 0.450585i \(-0.851215\pi\)
0.973504 + 0.228669i \(0.0734375\pi\)
\(318\) 0 0
\(319\) 22.5627 + 18.9323i 1.26327 + 1.06001i
\(320\) −13.8209 + 19.3276i −0.772613 + 1.08045i
\(321\) 0 0
\(322\) 4.19230 7.48242i 0.233628 0.416979i
\(323\) 5.30276i 0.295053i
\(324\) 0 0
\(325\) 18.0590i 1.00173i
\(326\) −21.9326 12.2886i −1.21473 0.680600i
\(327\) 0 0
\(328\) 0.786123 5.75076i 0.0434064 0.317532i
\(329\) −5.68027 4.76631i −0.313163 0.262775i
\(330\) 0 0
\(331\) 0.147225 0.404498i 0.00809223 0.0222332i −0.935581 0.353113i \(-0.885123\pi\)
0.943673 + 0.330880i \(0.107345\pi\)
\(332\) 1.73526 + 1.96292i 0.0952346 + 0.107729i
\(333\) 0 0
\(334\) 9.14187 3.46148i 0.500221 0.189403i
\(335\) 32.3970 27.1843i 1.77004 1.48524i
\(336\) 0 0
\(337\) 2.69206 15.2674i 0.146646 0.831671i −0.819385 0.573244i \(-0.805685\pi\)
0.966031 0.258427i \(-0.0832041\pi\)
\(338\) 9.99943 8.61261i 0.543897 0.468464i
\(339\) 0 0
\(340\) −2.64076 + 3.31719i −0.143215 + 0.179900i
\(341\) 20.0384 + 11.5692i 1.08514 + 0.626505i
\(342\) 0 0
\(343\) −8.28328 14.3471i −0.447255 0.774669i
\(344\) −7.20045 7.93654i −0.388222 0.427910i
\(345\) 0 0
\(346\) −31.6887 + 6.00978i −1.70359 + 0.323088i
\(347\) 2.18648 + 6.00732i 0.117377 + 0.322490i 0.984443 0.175702i \(-0.0562197\pi\)
−0.867067 + 0.498192i \(0.833997\pi\)
\(348\) 0 0
\(349\) 35.8064 6.31363i 1.91667 0.337961i 0.918345 0.395781i \(-0.129526\pi\)
0.998327 + 0.0578197i \(0.0184148\pi\)
\(350\) −5.71170 4.66854i −0.305303 0.249544i
\(351\) 0 0
\(352\) −6.87813 + 23.5111i −0.366605 + 1.25315i
\(353\) 2.81872 + 15.9857i 0.150025 + 0.850835i 0.963194 + 0.268807i \(0.0866295\pi\)
−0.813169 + 0.582028i \(0.802259\pi\)
\(354\) 0 0
\(355\) 0.842050 + 2.31351i 0.0446914 + 0.122789i
\(356\) −5.08781 + 9.36174i −0.269653 + 0.496171i
\(357\) 0 0
\(358\) −15.2244 + 9.05346i −0.804632 + 0.478490i
\(359\) 2.92393 + 5.06440i 0.154319 + 0.267289i 0.932811 0.360366i \(-0.117348\pi\)
−0.778492 + 0.627655i \(0.784015\pi\)
\(360\) 0 0
\(361\) 18.0962 31.3435i 0.952430 1.64966i
\(362\) 0.224489 + 17.4121i 0.0117989 + 0.915160i
\(363\) 0 0
\(364\) −0.332599 12.8966i −0.0174329 0.675966i
\(365\) −42.6612 7.52233i −2.23299 0.393737i
\(366\) 0 0
\(367\) 14.7699 12.3934i 0.770981 0.646930i −0.169979 0.985448i \(-0.554370\pi\)
0.940960 + 0.338518i \(0.109925\pi\)
\(368\) −2.17987 + 17.6381i −0.113634 + 0.919450i
\(369\) 0 0
\(370\) −0.427004 + 2.61864i −0.0221989 + 0.136136i
\(371\) −5.35690 + 14.7180i −0.278116 + 0.764118i
\(372\) 0 0
\(373\) −4.04624 + 4.82212i −0.209506 + 0.249680i −0.860557 0.509355i \(-0.829884\pi\)
0.651050 + 0.759034i \(0.274329\pi\)
\(374\) −1.44198 + 4.12658i −0.0745632 + 0.213380i
\(375\) 0 0
\(376\) 14.6308 + 4.69293i 0.754524 + 0.242019i
\(377\) 32.1417 1.65538
\(378\) 0 0
\(379\) 17.2449i 0.885812i −0.896568 0.442906i \(-0.853948\pi\)
0.896568 0.442906i \(-0.146052\pi\)
\(380\) −41.0663 + 16.1577i −2.10666 + 0.828871i
\(381\) 0 0
\(382\) −0.544640 0.190318i −0.0278662 0.00973751i
\(383\) −20.5611 17.2528i −1.05062 0.881578i −0.0574646 0.998348i \(-0.518302\pi\)
−0.993159 + 0.116770i \(0.962746\pi\)
\(384\) 0 0
\(385\) −16.4974 6.00455i −0.840783 0.306020i
\(386\) 5.00806 30.7123i 0.254903 1.56321i
\(387\) 0 0
\(388\) 3.76465 + 1.26129i 0.191121 + 0.0640324i
\(389\) −10.1688 12.1187i −0.515578 0.614442i 0.443951 0.896051i \(-0.353576\pi\)
−0.959529 + 0.281609i \(0.909132\pi\)
\(390\) 0 0
\(391\) −0.550702 + 3.12319i −0.0278502 + 0.157946i
\(392\) 11.4827 + 8.90180i 0.579966 + 0.449609i
\(393\) 0 0
\(394\) −0.379797 29.4584i −0.0191339 1.48409i
\(395\) 18.1833 + 10.4981i 0.914902 + 0.528219i
\(396\) 0 0
\(397\) −31.3595 + 18.1054i −1.57389 + 0.908686i −0.578205 + 0.815892i \(0.696246\pi\)
−0.995685 + 0.0927941i \(0.970420\pi\)
\(398\) 2.21895 + 3.73140i 0.111226 + 0.187038i
\(399\) 0 0
\(400\) 14.6145 + 4.48075i 0.730723 + 0.224037i
\(401\) 29.9275 10.8927i 1.49451 0.543957i 0.539876 0.841744i \(-0.318471\pi\)
0.954632 + 0.297788i \(0.0962488\pi\)
\(402\) 0 0
\(403\) 24.8665 4.38464i 1.23869 0.218414i
\(404\) 8.39521 1.70456i 0.417677 0.0848051i
\(405\) 0 0
\(406\) 8.30914 10.1658i 0.412376 0.504519i
\(407\) 0.474994 + 2.69382i 0.0235446 + 0.133528i
\(408\) 0 0
\(409\) −15.5146 + 5.64685i −0.767147 + 0.279219i −0.695802 0.718233i \(-0.744951\pi\)
−0.0713442 + 0.997452i \(0.522729\pi\)
\(410\) −8.46863 + 1.60608i −0.418236 + 0.0793187i
\(411\) 0 0
\(412\) −3.30541 + 22.0573i −0.162846 + 1.08668i
\(413\) 1.47691 0.852693i 0.0726738 0.0419583i
\(414\) 0 0
\(415\) 1.94538 3.36950i 0.0954950 0.165402i
\(416\) 10.7421 + 24.4791i 0.526676 + 1.20018i
\(417\) 0 0
\(418\) −34.4729 + 29.6919i −1.68613 + 1.45228i
\(419\) 18.1570 + 3.20156i 0.887026 + 0.156407i 0.598555 0.801082i \(-0.295742\pi\)
0.288471 + 0.957489i \(0.406853\pi\)
\(420\) 0 0
\(421\) −6.32940 7.54309i −0.308476 0.367627i 0.589426 0.807822i \(-0.299354\pi\)
−0.897902 + 0.440195i \(0.854909\pi\)
\(422\) −1.15747 3.05692i −0.0563448 0.148808i
\(423\) 0 0
\(424\) −1.25491 32.4305i −0.0609436 1.57497i
\(425\) 2.56318 + 0.932923i 0.124333 + 0.0452534i
\(426\) 0 0
\(427\) 0.556145 0.662787i 0.0269137 0.0320745i
\(428\) −19.8355 + 12.1444i −0.958783 + 0.587021i
\(429\) 0 0
\(430\) −7.77865 + 13.8833i −0.375120 + 0.669513i
\(431\) −5.60936 −0.270193 −0.135097 0.990832i \(-0.543134\pi\)
−0.135097 + 0.990832i \(0.543134\pi\)
\(432\) 0 0
\(433\) −21.7801 −1.04669 −0.523343 0.852122i \(-0.675315\pi\)
−0.523343 + 0.852122i \(0.675315\pi\)
\(434\) 5.04162 8.99829i 0.242006 0.431932i
\(435\) 0 0
\(436\) 3.63011 2.22256i 0.173851 0.106441i
\(437\) −21.2173 + 25.2858i −1.01496 + 1.20959i
\(438\) 0 0
\(439\) 14.2403 + 5.18304i 0.679652 + 0.247373i 0.658698 0.752408i \(-0.271108\pi\)
0.0209536 + 0.999780i \(0.493330\pi\)
\(440\) 36.3514 1.40662i 1.73298 0.0670581i
\(441\) 0 0
\(442\) 1.68917 + 4.46115i 0.0803455 + 0.212195i
\(443\) −6.71247 7.99962i −0.318919 0.380073i 0.582639 0.812731i \(-0.302020\pi\)
−0.901558 + 0.432658i \(0.857576\pi\)
\(444\) 0 0
\(445\) 15.5827 + 2.74766i 0.738692 + 0.130251i
\(446\) 3.87720 3.33947i 0.183591 0.158128i
\(447\) 0 0
\(448\) 10.5193 + 2.93071i 0.496988 + 0.138463i
\(449\) 13.4948 23.3737i 0.636860 1.10307i −0.349258 0.937027i \(-0.613566\pi\)
0.986118 0.166047i \(-0.0531004\pi\)
\(450\) 0 0
\(451\) −7.69593 + 4.44325i −0.362387 + 0.209224i
\(452\) 5.17660 34.5439i 0.243487 1.62481i
\(453\) 0 0
\(454\) −27.3856 + 5.19371i −1.28527 + 0.243753i
\(455\) −18.0031 + 6.55258i −0.843996 + 0.307190i
\(456\) 0 0
\(457\) 5.06627 + 28.7322i 0.236990 + 1.34404i 0.838382 + 0.545083i \(0.183502\pi\)
−0.601392 + 0.798954i \(0.705387\pi\)
\(458\) 15.7234 19.2367i 0.734704 0.898870i
\(459\) 0 0
\(460\) 25.8650 5.25163i 1.20596 0.244858i
\(461\) 4.19983 0.740544i 0.195606 0.0344906i −0.0749868 0.997185i \(-0.523891\pi\)
0.270593 + 0.962694i \(0.412780\pi\)
\(462\) 0 0
\(463\) −26.4209 + 9.61641i −1.22788 + 0.446912i −0.872872 0.487950i \(-0.837745\pi\)
−0.355010 + 0.934862i \(0.615523\pi\)
\(464\) −7.97490 + 26.0110i −0.370225 + 1.20753i
\(465\) 0 0
\(466\) 13.7870 + 23.1844i 0.638672 + 1.07400i
\(467\) 5.86716 3.38741i 0.271500 0.156750i −0.358069 0.933695i \(-0.616565\pi\)
0.629569 + 0.776945i \(0.283231\pi\)
\(468\) 0 0
\(469\) −16.8321 9.71802i −0.777234 0.448736i
\(470\) −0.294157 22.8158i −0.0135685 1.05242i
\(471\) 0 0
\(472\) −2.16510 + 2.79284i −0.0996569 + 0.128551i
\(473\) −2.84900 + 16.1575i −0.130997 + 0.742922i
\(474\) 0 0
\(475\) 18.2490 + 21.7483i 0.837321 + 0.997880i
\(476\) 1.84765 + 0.619028i 0.0846868 + 0.0283731i
\(477\) 0 0
\(478\) 0.339016 2.07904i 0.0155062 0.0950930i
\(479\) 33.0606 + 12.0331i 1.51058 + 0.549806i 0.958775 0.284168i \(-0.0917173\pi\)
0.551804 + 0.833974i \(0.313940\pi\)
\(480\) 0 0
\(481\) 2.28667 + 1.91874i 0.104263 + 0.0874872i
\(482\) 5.88978 + 2.05811i 0.268272 + 0.0937445i
\(483\) 0 0
\(484\) 14.4284 5.67691i 0.655838 0.258042i
\(485\) 5.89612i 0.267729i
\(486\) 0 0
\(487\) −6.71410 −0.304245 −0.152122 0.988362i \(-0.548611\pi\)
−0.152122 + 0.988362i \(0.548611\pi\)
\(488\) −0.547582 + 1.70715i −0.0247879 + 0.0772792i
\(489\) 0 0
\(490\) 7.11758 20.3687i 0.321540 0.920163i
\(491\) 2.85750 3.40543i 0.128957 0.153685i −0.697702 0.716388i \(-0.745794\pi\)
0.826659 + 0.562703i \(0.190239\pi\)
\(492\) 0 0
\(493\) −1.66043 + 4.56199i −0.0747820 + 0.205462i
\(494\) −7.99052 + 49.0025i −0.359510 + 2.20473i
\(495\) 0 0
\(496\) −2.62149 + 21.2114i −0.117708 + 0.952422i
\(497\) 0.866757 0.727295i 0.0388793 0.0326236i
\(498\) 0 0
\(499\) −19.6511 3.46501i −0.879702 0.155115i −0.284485 0.958680i \(-0.591823\pi\)
−0.595217 + 0.803565i \(0.702934\pi\)
\(500\) 0.180484 + 6.99831i 0.00807148 + 0.312974i
\(501\) 0 0
\(502\) 0.494502 + 38.3553i 0.0220707 + 1.71188i
\(503\) −17.6903 + 30.6405i −0.788771 + 1.36619i 0.137949 + 0.990439i \(0.455949\pi\)
−0.926720 + 0.375753i \(0.877384\pi\)
\(504\) 0 0
\(505\) −6.36084 11.0173i −0.283054 0.490263i
\(506\) 23.3872 13.9077i 1.03969 0.618271i
\(507\) 0 0
\(508\) 5.31459 9.77901i 0.235797 0.433874i
\(509\) 10.5192 + 28.9013i 0.466256 + 1.28103i 0.920707 + 0.390255i \(0.127613\pi\)
−0.454451 + 0.890772i \(0.650164\pi\)
\(510\) 0 0
\(511\) 3.45708 + 19.6061i 0.152932 + 0.867321i
\(512\) −22.4753 + 2.61952i −0.993276 + 0.115768i
\(513\) 0 0
\(514\) −17.3734 14.2004i −0.766310 0.626355i
\(515\) 32.6187 5.75155i 1.43735 0.253444i
\(516\) 0 0
\(517\) −8.04579 22.1056i −0.353853 0.972204i
\(518\) 1.19800 0.227202i 0.0526372 0.00998268i
\(519\) 0 0
\(520\) 29.4016 26.6747i 1.28935 1.16976i
\(521\) 7.26319 + 12.5802i 0.318206 + 0.551149i 0.980114 0.198436i \(-0.0635863\pi\)
−0.661908 + 0.749585i \(0.730253\pi\)
\(522\) 0 0
\(523\) −27.5376 15.8989i −1.20414 0.695209i −0.242665 0.970110i \(-0.578021\pi\)
−0.961472 + 0.274901i \(0.911355\pi\)
\(524\) −11.9163 + 14.9686i −0.520565 + 0.653908i
\(525\) 0 0
\(526\) −1.72544 + 1.48614i −0.0752326 + 0.0647986i
\(527\) −0.662269 + 3.75591i −0.0288489 + 0.163610i
\(528\) 0 0
\(529\) −2.49659 + 2.09488i −0.108547 + 0.0910819i
\(530\) −45.0741 + 17.0668i −1.95789 + 0.741336i
\(531\) 0 0
\(532\) 13.4328 + 15.1952i 0.582387 + 0.658794i
\(533\) −3.31676 + 9.11272i −0.143665 + 0.394716i
\(534\) 0 0
\(535\) 26.4585 + 22.2014i 1.14390 + 0.959848i
\(536\) 39.9029 + 5.45469i 1.72354 + 0.235607i
\(537\) 0 0
\(538\) 3.65018 + 2.04515i 0.157370 + 0.0881726i
\(539\) 22.2446i 0.958142i
\(540\) 0 0
\(541\) 35.1941i 1.51311i 0.653929 + 0.756556i \(0.273120\pi\)
−0.653929 + 0.756556i \(0.726880\pi\)
\(542\) 4.31176 7.69563i 0.185206 0.330556i
\(543\) 0 0
\(544\) −4.02935 + 0.260091i −0.172757 + 0.0111513i
\(545\) −4.84221 4.06310i −0.207418 0.174044i
\(546\) 0 0
\(547\) 1.10913 3.04730i 0.0474228 0.130293i −0.913720 0.406344i \(-0.866804\pi\)
0.961143 + 0.276051i \(0.0890258\pi\)
\(548\) −5.70801 + 5.04599i −0.243834 + 0.215554i
\(549\) 0 0
\(550\) −8.28724 21.8869i −0.353369 0.933259i
\(551\) −38.7079 + 32.4798i −1.64901 + 1.38369i
\(552\) 0 0
\(553\) 1.67560 9.50278i 0.0712536 0.404100i
\(554\) −21.5326 24.9998i −0.914831 1.06214i
\(555\) 0 0
\(556\) −1.57723 + 1.98123i −0.0668893 + 0.0840231i
\(557\) −20.4301 11.7954i −0.865653 0.499785i 0.000248175 1.00000i \(-0.499921\pi\)
−0.865901 + 0.500215i \(0.833254\pi\)
\(558\) 0 0
\(559\) 8.95209 + 15.5055i 0.378633 + 0.655812i
\(560\) −0.835882 16.1950i −0.0353225 0.684363i
\(561\) 0 0
\(562\) −1.90508 10.0452i −0.0803609 0.423731i
\(563\) 7.83509 + 21.5267i 0.330210 + 0.907244i 0.988057 + 0.154092i \(0.0492452\pi\)
−0.657847 + 0.753152i \(0.728533\pi\)
\(564\) 0 0
\(565\) −51.0841 + 9.00750i −2.14912 + 0.378948i
\(566\) 1.22064 1.49338i 0.0513072 0.0627715i
\(567\) 0 0
\(568\) −1.09289 + 2.07425i −0.0458567 + 0.0870337i
\(569\) −5.27628 29.9233i −0.221193 1.25445i −0.869830 0.493351i \(-0.835772\pi\)
0.648637 0.761098i \(-0.275339\pi\)
\(570\) 0 0
\(571\) 11.6641 + 32.0469i 0.488129 + 1.34112i 0.902373 + 0.430957i \(0.141824\pi\)
−0.414244 + 0.910166i \(0.635954\pi\)
\(572\) 19.5435 35.9606i 0.817153 1.50359i
\(573\) 0 0
\(574\) 2.02474 + 3.40481i 0.0845109 + 0.142114i
\(575\) −8.48957 14.7044i −0.354039 0.613214i
\(576\) 0 0
\(577\) 5.70949 9.88913i 0.237689 0.411690i −0.722362 0.691516i \(-0.756943\pi\)
0.960051 + 0.279826i \(0.0902767\pi\)
\(578\) 23.3192 0.300647i 0.969950 0.0125053i
\(579\) 0 0
\(580\) 40.3890 1.04162i 1.67706 0.0432508i
\(581\) −1.76093 0.310500i −0.0730558 0.0128817i
\(582\) 0 0
\(583\) −38.0643 + 31.9397i −1.57646 + 1.32281i
\(584\) −21.9925 34.9019i −0.910056 1.44425i
\(585\) 0 0
\(586\) −20.4556 3.33557i −0.845014 0.137791i
\(587\) −10.9697 + 30.1389i −0.452766 + 1.24396i 0.478004 + 0.878358i \(0.341361\pi\)
−0.930770 + 0.365606i \(0.880862\pi\)
\(588\) 0 0
\(589\) −25.5158 + 30.4085i −1.05136 + 1.25296i
\(590\) 4.95408 + 1.73114i 0.203956 + 0.0712701i
\(591\) 0 0
\(592\) −2.12013 + 1.37444i −0.0871368 + 0.0564892i
\(593\) −19.2802 −0.791741 −0.395871 0.918306i \(-0.629557\pi\)
−0.395871 + 0.918306i \(0.629557\pi\)
\(594\) 0 0
\(595\) 2.89375i 0.118632i
\(596\) −7.32166 18.6087i −0.299907 0.762244i
\(597\) 0 0
\(598\) 9.79521 28.0313i 0.400556 1.14629i
\(599\) −31.8430 26.7195i −1.30107 1.09173i −0.989959 0.141354i \(-0.954855\pi\)
−0.311111 0.950374i \(-0.600701\pi\)
\(600\) 0 0
\(601\) −5.75768 2.09562i −0.234861 0.0854822i 0.221909 0.975067i \(-0.428771\pi\)
−0.456769 + 0.889585i \(0.650994\pi\)
\(602\) 7.21833 + 1.17705i 0.294197 + 0.0479728i
\(603\) 0 0
\(604\) −40.0115 13.4053i −1.62804 0.545453i
\(605\) −14.8007 17.6388i −0.601734 0.717118i
\(606\) 0 0
\(607\) 3.21106 18.2108i 0.130333 0.739155i −0.847664 0.530534i \(-0.821991\pi\)
0.977997 0.208621i \(-0.0668975\pi\)
\(608\) −37.6732 18.6248i −1.52785 0.755334i
\(609\) 0 0
\(610\) 2.66221 0.0343230i 0.107790 0.00138970i
\(611\) −22.2321 12.8357i −0.899413 0.519276i
\(612\) 0 0
\(613\) −16.0146 + 9.24602i −0.646823 + 0.373443i −0.787238 0.616650i \(-0.788490\pi\)
0.140415 + 0.990093i \(0.455156\pi\)
\(614\) 13.5090 8.03338i 0.545178 0.324201i
\(615\) 0 0
\(616\) −6.32132 15.4776i −0.254693 0.623610i
\(617\) −29.7070 + 10.8125i −1.19596 + 0.435294i −0.861813 0.507227i \(-0.830671\pi\)
−0.334148 + 0.942521i \(0.608448\pi\)
\(618\) 0 0
\(619\) −15.2623 + 2.69116i −0.613445 + 0.108167i −0.471734 0.881741i \(-0.656372\pi\)
−0.141712 + 0.989908i \(0.545261\pi\)
\(620\) 31.1050 6.31556i 1.24921 0.253639i
\(621\) 0 0
\(622\) 12.0630 + 9.85987i 0.483682 + 0.395345i
\(623\) −1.26276 7.16145i −0.0505913 0.286917i
\(624\) 0 0
\(625\) 27.7244 10.0909i 1.10898 0.403634i
\(626\) 0.678441 + 3.57732i 0.0271160 + 0.142978i
\(627\) 0 0
\(628\) −17.5866 2.63545i −0.701780 0.105166i
\(629\) −0.390464 + 0.225434i −0.0155688 + 0.00898866i
\(630\) 0 0
\(631\) 11.8337 20.4966i 0.471093 0.815957i −0.528360 0.849020i \(-0.677193\pi\)
0.999453 + 0.0330630i \(0.0105262\pi\)
\(632\) 4.23084 + 19.5420i 0.168294 + 0.777341i
\(633\) 0 0
\(634\) −3.88062 4.50548i −0.154119 0.178936i
\(635\) −16.2773 2.87013i −0.645945 0.113897i
\(636\) 0 0
\(637\) −15.6036 18.5956i −0.618235 0.736784i
\(638\) 38.9546 14.7497i 1.54223 0.583948i
\(639\) 0 0
\(640\) 14.2918 + 30.4121i 0.564932 + 1.20214i
\(641\) 11.7394 + 4.27278i 0.463677 + 0.168765i 0.563286 0.826262i \(-0.309537\pi\)
−0.0996090 + 0.995027i \(0.531759\pi\)
\(642\) 0 0
\(643\) 9.44368 11.2545i 0.372422 0.443836i −0.546985 0.837142i \(-0.684225\pi\)
0.919407 + 0.393307i \(0.128669\pi\)
\(644\) −6.33353 10.3446i −0.249576 0.407633i
\(645\) 0 0
\(646\) −6.54232 3.66558i −0.257404 0.144220i
\(647\) −9.10943 −0.358129 −0.179064 0.983837i \(-0.557307\pi\)
−0.179064 + 0.983837i \(0.557307\pi\)
\(648\) 0 0
\(649\) 5.41034 0.212375
\(650\) −22.2805 12.4834i −0.873911 0.489641i
\(651\) 0 0
\(652\) −30.3222 + 18.5650i −1.18751 + 0.727060i
\(653\) 11.0736 13.1970i 0.433345 0.516440i −0.504540 0.863389i \(-0.668338\pi\)
0.937884 + 0.346949i \(0.112782\pi\)
\(654\) 0 0
\(655\) 26.6994 + 9.71778i 1.04323 + 0.379705i
\(656\) −6.55163 4.94515i −0.255798 0.193076i
\(657\) 0 0
\(658\) −9.80701 + 3.71332i −0.382317 + 0.144760i
\(659\) 13.0287 + 15.5270i 0.507525 + 0.604844i 0.957584 0.288154i \(-0.0930416\pi\)
−0.450059 + 0.892999i \(0.648597\pi\)
\(660\) 0 0
\(661\) 28.8852 + 5.09323i 1.12350 + 0.198104i 0.704378 0.709825i \(-0.251226\pi\)
0.419125 + 0.907929i \(0.362337\pi\)
\(662\) −0.397282 0.461253i −0.0154408 0.0179271i
\(663\) 0 0
\(664\) 3.62128 0.784005i 0.140533 0.0304253i
\(665\) 15.0594 26.0837i 0.583979 1.01148i
\(666\) 0 0
\(667\) 26.1710 15.1099i 1.01335 0.585056i
\(668\) 2.04878 13.6716i 0.0792695 0.528972i
\(669\) 0 0
\(670\) −11.1442 58.7615i −0.430536 2.27015i
\(671\) 2.57934 0.938803i 0.0995743 0.0362421i
\(672\) 0 0
\(673\) −8.11942 46.0475i −0.312980 1.77500i −0.583327 0.812237i \(-0.698249\pi\)
0.270346 0.962763i \(-0.412862\pi\)
\(674\) −16.9754 13.8751i −0.653869 0.534450i
\(675\) 0 0
\(676\) −3.71369 18.2904i −0.142834 0.703478i
\(677\) −10.5443 + 1.85925i −0.405251 + 0.0714567i −0.372558 0.928009i \(-0.621519\pi\)
−0.0326928 + 0.999465i \(0.510408\pi\)
\(678\) 0 0
\(679\) −2.54630 + 0.926777i −0.0977180 + 0.0355664i
\(680\) 2.26717 + 5.55110i 0.0869419 + 0.212875i
\(681\) 0 0
\(682\) 28.1253 16.7252i 1.07697 0.640442i
\(683\) 17.0645 9.85219i 0.652955 0.376984i −0.136632 0.990622i \(-0.543628\pi\)
0.789587 + 0.613638i \(0.210295\pi\)
\(684\) 0 0
\(685\) 9.79823 + 5.65701i 0.374371 + 0.216143i
\(686\) −23.4267 + 0.302033i −0.894436 + 0.0115317i
\(687\) 0 0
\(688\) −14.7692 + 3.39741i −0.563069 + 0.129525i
\(689\) −9.41599 + 53.4008i −0.358721 + 2.03441i
\(690\) 0 0
\(691\) 4.57312 + 5.45003i 0.173970 + 0.207329i 0.845983 0.533210i \(-0.179015\pi\)
−0.672013 + 0.740539i \(0.734570\pi\)
\(692\) −14.4905 + 43.2505i −0.550845 + 1.64414i
\(693\) 0 0
\(694\) 8.92301 + 1.45502i 0.338713 + 0.0552317i
\(695\) 3.53391 + 1.28624i 0.134049 + 0.0487897i
\(696\) 0 0
\(697\) −1.12206 0.941521i −0.0425011 0.0356627i
\(698\) 16.9620 48.5408i 0.642021 1.83730i
\(699\) 0 0
\(700\) −9.70812 + 3.81969i −0.366932 + 0.144371i
\(701\) 10.6994i 0.404109i 0.979374 + 0.202055i \(0.0647618\pi\)
−0.979374 + 0.202055i \(0.935238\pi\)
\(702\) 0 0
\(703\) −4.69275 −0.176990
\(704\) 24.2525 + 24.7382i 0.914050 + 0.932357i
\(705\) 0 0
\(706\) 21.6710 + 7.57267i 0.815600 + 0.285001i
\(707\) −3.75811 + 4.47874i −0.141338 + 0.168440i
\(708\) 0 0
\(709\) −9.95367 + 27.3475i −0.373818 + 1.02706i 0.600054 + 0.799959i \(0.295146\pi\)
−0.973872 + 0.227097i \(0.927077\pi\)
\(710\) 3.43639 + 0.560350i 0.128965 + 0.0210296i
\(711\) 0 0
\(712\) 8.03313 + 12.7485i 0.301054 + 0.477771i
\(713\) 18.1861 15.2600i 0.681075 0.571490i
\(714\) 0 0
\(715\) −59.8569 10.5544i −2.23852 0.394712i
\(716\) 0.645810 + 25.0415i 0.0241351 + 0.935843i
\(717\) 0 0
\(718\) 8.26944 0.106615i 0.308613 0.00397885i
\(719\) 4.95129 8.57588i 0.184652 0.319826i −0.758807 0.651315i \(-0.774218\pi\)
0.943459 + 0.331489i \(0.107551\pi\)
\(720\) 0 0
\(721\) −7.61100 13.1826i −0.283448 0.490947i
\(722\) −26.1612 43.9928i −0.973618 1.63724i
\(723\) 0 0
\(724\) 21.6375 + 11.7593i 0.804152 + 0.437031i
\(725\) −8.88976 24.4244i −0.330157 0.907100i
\(726\) 0 0
\(727\) −4.91637 27.8821i −0.182338 1.03409i −0.929328 0.369255i \(-0.879613\pi\)
0.746990 0.664835i \(-0.231498\pi\)
\(728\) −16.1412 8.50455i −0.598233 0.315200i
\(729\) 0 0
\(730\) −38.7707 + 47.4338i −1.43497 + 1.75560i
\(731\) −2.66321 + 0.469597i −0.0985026 + 0.0173687i
\(732\) 0 0
\(733\) −13.4575 36.9742i −0.497065 1.36567i −0.894098 0.447871i \(-0.852182\pi\)
0.397033 0.917804i \(-0.370040\pi\)
\(734\) −5.08065 26.7895i −0.187530 0.988819i
\(735\) 0 0
\(736\) 20.2543 + 14.8819i 0.746584 + 0.548556i
\(737\) −30.8304 53.3999i −1.13565 1.96701i
\(738\) 0 0
\(739\) 40.7334 + 23.5175i 1.49840 + 0.865104i 0.999998 0.00184073i \(-0.000585924\pi\)
0.498405 + 0.866944i \(0.333919\pi\)
\(740\) 2.93559 + 2.33698i 0.107915 + 0.0859089i
\(741\) 0 0
\(742\) 14.4554 + 16.7830i 0.530675 + 0.616125i
\(743\) −4.48040 + 25.4096i −0.164370 + 0.932189i 0.785342 + 0.619063i \(0.212487\pi\)
−0.949712 + 0.313126i \(0.898624\pi\)
\(744\) 0 0
\(745\) −22.7492 + 19.0888i −0.833466 + 0.699361i
\(746\) 3.15233 + 8.32542i 0.115415 + 0.304815i
\(747\) 0 0
\(748\) 4.09442 + 4.63160i 0.149707 + 0.169348i
\(749\) 5.42901 14.9161i 0.198372 0.545022i
\(750\) 0 0
\(751\) 27.2407 + 22.8576i 0.994026 + 0.834087i 0.986146 0.165882i \(-0.0530472\pi\)
0.00788021 + 0.999969i \(0.497492\pi\)
\(752\) 15.9036 14.8068i 0.579944 0.539948i
\(753\) 0 0
\(754\) 22.2182 39.6551i 0.809140 1.44415i
\(755\) 62.6652i 2.28062i
\(756\) 0 0
\(757\) 4.81926i 0.175159i −0.996158 0.0875795i \(-0.972087\pi\)
0.996158 0.0875795i \(-0.0279132\pi\)
\(758\) −21.2761 11.9207i −0.772782 0.432979i
\(759\) 0 0
\(760\) −8.45280 + 61.8351i −0.306615 + 2.24299i
\(761\) −5.92907 4.97508i −0.214929 0.180347i 0.528967 0.848642i \(-0.322580\pi\)
−0.743896 + 0.668296i \(0.767024\pi\)
\(762\) 0 0
\(763\) −0.993570 + 2.72981i −0.0359697 + 0.0988258i
\(764\) −0.611294 + 0.540396i −0.0221158 + 0.0195508i
\(765\) 0 0
\(766\) −35.4989 + 13.4413i −1.28263 + 0.485653i
\(767\) 4.52284 3.79511i 0.163310 0.137033i
\(768\) 0 0
\(769\) −5.50477 + 31.2191i −0.198507 + 1.12579i 0.708828 + 0.705382i \(0.249224\pi\)
−0.907335 + 0.420409i \(0.861887\pi\)
\(770\) −18.8121 + 16.2031i −0.677941 + 0.583918i
\(771\) 0 0
\(772\) −34.4297 27.4089i −1.23915 0.986468i
\(773\) 27.4650 + 15.8569i 0.987847 + 0.570334i 0.904630 0.426197i \(-0.140147\pi\)
0.0832173 + 0.996531i \(0.473480\pi\)
\(774\) 0 0
\(775\) −10.2095 17.6833i −0.366735 0.635204i
\(776\) 4.15848 3.77279i 0.149281 0.135435i
\(777\) 0 0
\(778\) −21.9808 + 4.16868i −0.788050 + 0.149454i
\(779\) −5.21424 14.3260i −0.186820 0.513283i
\(780\) 0 0
\(781\) 3.53506 0.623327i 0.126494 0.0223044i
\(782\) 3.47258 + 2.83836i 0.124179 + 0.101500i
\(783\) 0 0
\(784\) 18.9202 8.01347i 0.675722 0.286196i
\(785\) 4.58579 + 26.0073i 0.163674 + 0.928241i
\(786\) 0 0
\(787\) −2.68876 7.38730i −0.0958438 0.263329i 0.882501 0.470311i \(-0.155858\pi\)
−0.978345 + 0.206982i \(0.933636\pi\)
\(788\) −36.6071 19.8948i −1.30407 0.708723i
\(789\) 0 0
\(790\) 25.5216 15.1769i 0.908016 0.539969i
\(791\) 11.9196 + 20.6453i 0.423812 + 0.734063i
\(792\) 0 0
\(793\) 1.49770 2.59409i 0.0531849 0.0921189i
\(794\) 0.660178 + 51.2057i 0.0234288 + 1.81722i
\(795\) 0 0
\(796\) 6.13752 0.158284i 0.217539 0.00561024i
\(797\) 34.5495 + 6.09202i 1.22381 + 0.215790i 0.747964 0.663740i \(-0.231032\pi\)
0.475844 + 0.879530i \(0.342143\pi\)
\(798\) 0 0
\(799\) 2.97032 2.49239i 0.105082 0.0881746i
\(800\) 15.6305 14.9334i 0.552623 0.527974i
\(801\) 0 0
\(802\) 7.24867 44.4530i 0.255959 1.56969i
\(803\) −21.6019 + 59.3509i −0.762316 + 2.09445i
\(804\) 0 0
\(805\) −11.5784 + 13.7986i −0.408086 + 0.486338i
\(806\) 11.7796 33.7102i 0.414920 1.18739i
\(807\) 0 0
\(808\) 3.70024 11.5360i 0.130174 0.405834i
\(809\) −42.6190 −1.49840 −0.749202 0.662341i \(-0.769563\pi\)
−0.749202 + 0.662341i \(0.769563\pi\)
\(810\) 0 0
\(811\) 40.0596i 1.40668i 0.710852 + 0.703341i \(0.248309\pi\)
−0.710852 + 0.703341i \(0.751691\pi\)
\(812\) −6.79834 17.2787i −0.238575 0.606362i
\(813\) 0 0
\(814\) 3.65187 + 1.27610i 0.127998 + 0.0447274i
\(815\) 40.4468 + 33.9389i 1.41679 + 1.18883i
\(816\) 0 0
\(817\) −26.4495 9.62683i −0.925351 0.336800i
\(818\) −3.75775 + 23.0447i −0.131387 + 0.805739i
\(819\) 0 0
\(820\) −3.87250 + 11.5585i −0.135233 + 0.403639i
\(821\) −1.07655 1.28299i −0.0375720 0.0447766i 0.746931 0.664901i \(-0.231526\pi\)
−0.784503 + 0.620125i \(0.787082\pi\)
\(822\) 0 0
\(823\) 0.234450 1.32963i 0.00817242 0.0463481i −0.980449 0.196774i \(-0.936953\pi\)
0.988621 + 0.150426i \(0.0480645\pi\)
\(824\) 24.9284 + 19.3254i 0.868423 + 0.673231i
\(825\) 0 0
\(826\) −0.0310917 2.41158i −0.00108182 0.0839096i
\(827\) −10.0199 5.78501i −0.348427 0.201165i 0.315565 0.948904i \(-0.397806\pi\)
−0.663992 + 0.747739i \(0.731139\pi\)
\(828\) 0 0
\(829\) 34.1730 19.7298i 1.18688 0.685243i 0.229281 0.973360i \(-0.426363\pi\)
0.957595 + 0.288117i \(0.0930292\pi\)
\(830\) −2.81239 4.72933i −0.0976193 0.164157i
\(831\) 0 0
\(832\) 37.6269 + 3.66818i 1.30448 + 0.127171i
\(833\) 3.44542 1.25403i 0.119377 0.0434496i
\(834\) 0 0
\(835\) −20.2179 + 3.56496i −0.699668 + 0.123370i
\(836\) 12.8029 + 63.0561i 0.442798 + 2.18084i
\(837\) 0 0
\(838\) 16.5011 20.1882i 0.570022 0.697390i
\(839\) 6.51330 + 36.9388i 0.224864 + 1.27527i 0.862945 + 0.505299i \(0.168618\pi\)
−0.638080 + 0.769970i \(0.720271\pi\)
\(840\) 0 0
\(841\) 16.2198 5.90354i 0.559305 0.203570i
\(842\) −13.6816 + 2.59473i −0.471499 + 0.0894202i
\(843\) 0 0
\(844\) −4.57161 0.685083i −0.157361 0.0235815i
\(845\) −24.0031 + 13.8582i −0.825732 + 0.476737i
\(846\) 0 0
\(847\) −5.29105 + 9.16436i −0.181803 + 0.314891i
\(848\) −40.8789 20.8696i −1.40379 0.716667i
\(849\) 0 0
\(850\) 2.92283 2.51746i 0.100252 0.0863482i
\(851\) 2.76390 + 0.487351i 0.0947454 + 0.0167062i
\(852\) 0 0
\(853\) 16.8181 + 20.0430i 0.575840 + 0.686260i 0.972819 0.231568i \(-0.0743856\pi\)
−0.396978 + 0.917828i \(0.629941\pi\)
\(854\) −0.433280 1.14431i −0.0148265 0.0391574i
\(855\) 0 0
\(856\) 1.27180 + 32.8671i 0.0434692 + 1.12337i
\(857\) 19.6602 + 7.15571i 0.671578 + 0.244434i 0.655227 0.755432i \(-0.272573\pi\)
0.0163509 + 0.999866i \(0.494795\pi\)
\(858\) 0 0
\(859\) 18.2371 21.7341i 0.622241 0.741558i −0.359213 0.933256i \(-0.616955\pi\)
0.981454 + 0.191698i \(0.0613993\pi\)
\(860\) 11.7516 + 19.1939i 0.400727 + 0.654508i
\(861\) 0 0
\(862\) −3.87752 + 6.92060i −0.132069 + 0.235716i
\(863\) 37.5798 1.27923 0.639616 0.768694i \(-0.279093\pi\)
0.639616 + 0.768694i \(0.279093\pi\)
\(864\) 0 0
\(865\) 67.7381 2.30316
\(866\) −15.0557 + 26.8714i −0.511614 + 0.913129i
\(867\) 0 0
\(868\) −7.61665 12.4403i −0.258526 0.422251i
\(869\) 19.6775 23.4507i 0.667512 0.795510i
\(870\) 0 0
\(871\) −63.2307 23.0141i −2.14249 0.779802i
\(872\) −0.232753 6.01505i −0.00788203 0.203695i
\(873\) 0 0
\(874\) 16.5299 + 43.6561i 0.559134 + 1.47669i
\(875\) −3.07116 3.66007i −0.103824 0.123733i
\(876\) 0 0
\(877\) −23.8777 4.21027i −0.806291 0.142171i −0.244714 0.969595i \(-0.578694\pi\)
−0.561577 + 0.827424i \(0.689805\pi\)
\(878\) 16.2383 13.9862i 0.548018 0.472013i
\(879\) 0 0
\(880\) 23.3928 45.8212i 0.788571 1.54463i
\(881\) 15.8494 27.4519i 0.533980 0.924880i −0.465232 0.885189i \(-0.654029\pi\)
0.999212 0.0396911i \(-0.0126374\pi\)
\(882\) 0 0
\(883\) −19.1513 + 11.0570i −0.644492 + 0.372098i −0.786343 0.617790i \(-0.788028\pi\)
0.141851 + 0.989888i \(0.454695\pi\)
\(884\) 6.67163 + 0.999783i 0.224391 + 0.0336263i
\(885\) 0 0
\(886\) −14.5097 + 2.75177i −0.487461 + 0.0924474i
\(887\) −0.923934 + 0.336285i −0.0310227 + 0.0112913i −0.357485 0.933919i \(-0.616366\pi\)
0.326462 + 0.945210i \(0.394143\pi\)
\(888\) 0 0
\(889\) 1.31904 + 7.48065i 0.0442392 + 0.250893i
\(890\) 14.1617 17.3260i 0.474700 0.580769i
\(891\) 0 0
\(892\) −1.43995 7.09197i −0.0482132 0.237457i
\(893\) 39.7446 7.00804i 1.33000 0.234515i
\(894\) 0 0
\(895\) 34.9567 12.7232i 1.16847 0.425290i
\(896\) 10.8873 10.9523i 0.363720 0.365892i
\(897\) 0 0
\(898\) −19.5091 32.8067i −0.651028 1.09477i
\(899\) 31.4731 18.1710i 1.04969 0.606036i
\(900\) 0 0
\(901\) −7.09295 4.09512i −0.236300 0.136428i
\(902\) 0.162014 + 12.5664i 0.00539447 + 0.418414i
\(903\) 0 0
\(904\) −39.0404 30.2654i −1.29846 1.00661i
\(905\) 6.35058 36.0159i 0.211100 1.19721i
\(906\) 0 0
\(907\) −26.0101 30.9976i −0.863651 1.02926i −0.999259 0.0384971i \(-0.987743\pi\)
0.135607 0.990763i \(-0.456701\pi\)
\(908\) −12.5228 + 37.3775i −0.415583 + 1.24041i
\(909\) 0 0
\(910\) −4.36048 + 26.7410i −0.144548 + 0.886454i
\(911\) −28.6333 10.4217i −0.948664 0.345286i −0.179083 0.983834i \(-0.557313\pi\)
−0.769582 + 0.638548i \(0.779535\pi\)
\(912\) 0 0
\(913\) −4.34558 3.64637i −0.143818 0.120677i
\(914\) 38.9507 + 13.6109i 1.28838 + 0.450207i
\(915\) 0 0
\(916\) −12.8645 32.6963i −0.425054 1.08032i
\(917\) 13.0579i 0.431209i
\(918\) 0 0
\(919\) −28.9703 −0.955641 −0.477820 0.878458i \(-0.658573\pi\)
−0.477820 + 0.878458i \(0.658573\pi\)
\(920\) 11.4002 35.5414i 0.375852 1.17177i
\(921\) 0 0
\(922\) 1.98952 5.69349i 0.0655214 0.187505i
\(923\) 2.51794 3.00076i 0.0828789 0.0987713i
\(924\) 0 0
\(925\) 0.825603 2.26832i 0.0271456 0.0745821i
\(926\) −6.39933 + 39.2444i −0.210295 + 1.28965i
\(927\) 0 0
\(928\) 26.5786 + 27.8195i 0.872486 + 0.913219i
\(929\) 21.4798 18.0237i 0.704730 0.591338i −0.218385 0.975863i \(-0.570079\pi\)
0.923115 + 0.384524i \(0.125634\pi\)
\(930\) 0 0
\(931\) 37.5824 + 6.62680i 1.23171 + 0.217185i
\(932\) 38.1343 0.983471i 1.24913 0.0322147i
\(933\) 0 0
\(934\) −0.123515 9.58023i −0.00404153 0.313475i
\(935\) 4.59022 7.95049i 0.150116 0.260009i
\(936\) 0 0
\(937\) −10.0264 17.3662i −0.327548 0.567329i 0.654477 0.756082i \(-0.272889\pi\)
−0.982025 + 0.188753i \(0.939556\pi\)
\(938\) −23.6250 + 14.0491i −0.771385 + 0.458719i
\(939\) 0 0
\(940\) −28.3526 15.4087i −0.924760 0.502578i
\(941\) 7.11484 + 19.5479i 0.231937 + 0.637242i 0.999995 0.00313816i \(-0.000998909\pi\)
−0.768058 + 0.640380i \(0.778777\pi\)
\(942\) 0 0
\(943\) 1.58327 + 8.97916i 0.0515583 + 0.292402i
\(944\) 1.94904 + 4.60179i 0.0634360 + 0.149775i
\(945\) 0 0
\(946\) 17.9650 + 14.6840i 0.584094 + 0.477418i
\(947\) −31.3017 + 5.51933i −1.01717 + 0.179354i −0.657284 0.753643i \(-0.728295\pi\)
−0.359884 + 0.932997i \(0.617184\pi\)
\(948\) 0 0
\(949\) 23.5735 + 64.7678i 0.765230 + 2.10245i
\(950\) 39.4469 7.48114i 1.27983 0.242720i
\(951\) 0 0
\(952\) 2.04093 1.85164i 0.0661471 0.0600121i
\(953\) 6.86849 + 11.8966i 0.222492 + 0.385368i 0.955564 0.294783i \(-0.0952475\pi\)
−0.733072 + 0.680151i \(0.761914\pi\)
\(954\) 0 0
\(955\) 1.04933 + 0.605833i 0.0339556 + 0.0196043i
\(956\) −2.33069 1.85542i −0.0753798 0.0600085i
\(957\) 0 0
\(958\) 37.6994 32.4709i 1.21801 1.04909i
\(959\) 0.902910 5.12065i 0.0291565 0.165355i
\(960\) 0 0
\(961\) −1.87694 + 1.57494i −0.0605465 + 0.0508046i
\(962\) 3.94795 1.49485i 0.127287 0.0481959i
\(963\) 0 0
\(964\) 6.61058 5.84388i 0.212913 0.188219i
\(965\) −22.3521 + 61.4119i −0.719539 + 1.97692i
\(966\) 0 0
\(967\) 10.5560 + 8.85755i 0.339458 + 0.284839i 0.796541 0.604585i \(-0.206661\pi\)
−0.457082 + 0.889424i \(0.651105\pi\)
\(968\) 2.96985 21.7254i 0.0954545 0.698282i
\(969\) 0 0
\(970\) −7.27439 4.07575i −0.233567 0.130864i
\(971\) 1.88573i 0.0605161i −0.999542 0.0302580i \(-0.990367\pi\)
0.999542 0.0302580i \(-0.00963290\pi\)
\(972\) 0 0
\(973\) 1.72833i 0.0554077i
\(974\) −4.64118 + 8.28358i −0.148713 + 0.265423i
\(975\) 0 0
\(976\) 1.72769 + 1.85567i 0.0553021 + 0.0593985i
\(977\) 19.2464 + 16.1496i 0.615746 + 0.516672i 0.896463 0.443119i \(-0.146128\pi\)
−0.280717 + 0.959790i \(0.590572\pi\)
\(978\) 0 0
\(979\) 7.89048 21.6789i 0.252181 0.692861i
\(980\) −20.2099 22.8614i −0.645583 0.730281i
\(981\) 0 0
\(982\) −2.22621 5.87949i −0.0710412 0.187622i
\(983\) 38.8553 32.6035i 1.23929 1.03989i 0.241714 0.970348i \(-0.422290\pi\)
0.997579 0.0695429i \(-0.0221541\pi\)
\(984\) 0 0
\(985\) −10.7441 + 60.9330i −0.342336 + 1.94149i
\(986\) 4.48061 + 5.20209i 0.142692 + 0.165668i
\(987\) 0 0
\(988\) 54.9337 + 43.7318i 1.74767 + 1.39129i
\(989\) 14.5783 + 8.41679i 0.463563 + 0.267638i
\(990\) 0 0
\(991\) −16.9675 29.3886i −0.538991 0.933559i −0.998959 0.0456239i \(-0.985472\pi\)
0.459968 0.887936i \(-0.347861\pi\)
\(992\) 24.3577 + 17.8969i 0.773357 + 0.568227i
\(993\) 0 0
\(994\) −0.298153 1.57212i −0.00945685 0.0498646i
\(995\) −3.11838 8.56769i −0.0988594 0.271614i
\(996\) 0 0
\(997\) −14.9293 + 2.63244i −0.472817 + 0.0833703i −0.404979 0.914326i \(-0.632721\pi\)
−0.0678377 + 0.997696i \(0.521610\pi\)
\(998\) −17.8590 + 21.8494i −0.565316 + 0.691632i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.253.24 204
3.2 odd 2 216.2.t.a.13.11 204
8.5 even 2 inner 648.2.t.a.253.8 204
12.11 even 2 864.2.bf.a.337.7 204
24.5 odd 2 216.2.t.a.13.27 yes 204
24.11 even 2 864.2.bf.a.337.28 204
27.2 odd 18 216.2.t.a.133.27 yes 204
27.25 even 9 inner 648.2.t.a.397.8 204
108.83 even 18 864.2.bf.a.241.28 204
216.29 odd 18 216.2.t.a.133.11 yes 204
216.83 even 18 864.2.bf.a.241.7 204
216.133 even 18 inner 648.2.t.a.397.24 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.11 204 3.2 odd 2
216.2.t.a.13.27 yes 204 24.5 odd 2
216.2.t.a.133.11 yes 204 216.29 odd 18
216.2.t.a.133.27 yes 204 27.2 odd 18
648.2.t.a.253.8 204 8.5 even 2 inner
648.2.t.a.253.24 204 1.1 even 1 trivial
648.2.t.a.397.8 204 27.25 even 9 inner
648.2.t.a.397.24 204 216.133 even 18 inner
864.2.bf.a.241.7 204 216.83 even 18
864.2.bf.a.241.28 204 108.83 even 18
864.2.bf.a.337.7 204 12.11 even 2
864.2.bf.a.337.28 204 24.11 even 2