Properties

Label 648.2.t.a.253.15
Level $648$
Weight $2$
Character 648.253
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 253.15
Character \(\chi\) \(=\) 648.253
Dual form 648.2.t.a.397.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.289471 - 1.38427i) q^{2} +(-1.83241 + 0.801412i) q^{4} +(1.55785 - 1.85658i) q^{5} +(0.763942 + 0.278052i) q^{7} +(1.63980 + 2.30457i) q^{8} +(-3.02096 - 1.61907i) q^{10} +(2.23007 + 2.65769i) q^{11} +(2.83964 + 0.500705i) q^{13} +(0.163761 - 1.13799i) q^{14} +(2.71548 - 2.93704i) q^{16} +(3.55127 - 6.15099i) q^{17} +(-5.16371 + 2.98127i) q^{19} +(-1.36675 + 4.65050i) q^{20} +(3.03343 - 3.85634i) q^{22} +(6.58997 - 2.39855i) q^{23} +(-0.151733 - 0.860521i) q^{25} +(-0.128881 - 4.07577i) q^{26} +(-1.62269 + 0.102726i) q^{28} +(-6.59552 + 1.16297i) q^{29} +(2.55724 - 0.930757i) q^{31} +(-4.85171 - 2.90877i) q^{32} +(-9.54262 - 3.13539i) q^{34} +(1.70634 - 0.985154i) q^{35} +(3.59434 + 2.07519i) q^{37} +(5.62163 + 6.28499i) q^{38} +(6.83319 + 0.545766i) q^{40} +(0.742124 - 4.20880i) q^{41} +(-1.77034 - 2.10981i) q^{43} +(-6.21631 - 3.08279i) q^{44} +(-5.22785 - 8.42800i) q^{46} +(-2.80028 - 1.01922i) q^{47} +(-4.85602 - 4.07468i) q^{49} +(-1.14727 + 0.459136i) q^{50} +(-5.60467 + 1.35822i) q^{52} -7.38929i q^{53} +8.40834 q^{55} +(0.611922 + 2.21651i) q^{56} +(3.51907 + 8.79334i) q^{58} +(4.72368 - 5.62947i) q^{59} +(0.0900385 - 0.247379i) q^{61} +(-2.02867 - 3.27048i) q^{62} +(-2.62210 + 7.55808i) q^{64} +(5.35335 - 4.49199i) q^{65} +(2.20513 + 0.388825i) q^{67} +(-1.57793 + 14.1172i) q^{68} +(-1.85765 - 2.07686i) q^{70} +(-2.69918 + 4.67512i) q^{71} +(-1.97245 - 3.41639i) q^{73} +(1.83217 - 5.57624i) q^{74} +(7.07283 - 9.60118i) q^{76} +(0.964666 + 2.65040i) q^{77} +(1.76846 + 10.0295i) q^{79} +(-1.22252 - 9.61697i) q^{80} +(-6.04094 + 0.191022i) q^{82} +(-7.86515 + 1.38684i) q^{83} +(-5.88742 - 16.1756i) q^{85} +(-2.40809 + 3.06136i) q^{86} +(-2.46797 + 9.49744i) q^{88} +(-2.14833 - 3.72101i) q^{89} +(2.03010 + 1.17208i) q^{91} +(-10.1533 + 9.67643i) q^{92} +(-0.600276 + 4.17138i) q^{94} +(-2.50935 + 14.2312i) q^{95} +(4.28345 - 3.59424i) q^{97} +(-4.23479 + 7.90155i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.289471 1.38427i −0.204687 0.978828i
\(3\) 0 0
\(4\) −1.83241 + 0.801412i −0.916207 + 0.400706i
\(5\) 1.55785 1.85658i 0.696694 0.830287i −0.295454 0.955357i \(-0.595471\pi\)
0.992148 + 0.125070i \(0.0399154\pi\)
\(6\) 0 0
\(7\) 0.763942 + 0.278052i 0.288743 + 0.105094i 0.482331 0.875989i \(-0.339790\pi\)
−0.193588 + 0.981083i \(0.562012\pi\)
\(8\) 1.63980 + 2.30457i 0.579758 + 0.814789i
\(9\) 0 0
\(10\) −3.02096 1.61907i −0.955312 0.511994i
\(11\) 2.23007 + 2.65769i 0.672391 + 0.801324i 0.989107 0.147196i \(-0.0470248\pi\)
−0.316716 + 0.948520i \(0.602580\pi\)
\(12\) 0 0
\(13\) 2.83964 + 0.500705i 0.787574 + 0.138871i 0.552949 0.833215i \(-0.313502\pi\)
0.234626 + 0.972086i \(0.424614\pi\)
\(14\) 0.163761 1.13799i 0.0437669 0.304141i
\(15\) 0 0
\(16\) 2.71548 2.93704i 0.678869 0.734259i
\(17\) 3.55127 6.15099i 0.861310 1.49183i −0.00935441 0.999956i \(-0.502978\pi\)
0.870665 0.491877i \(-0.163689\pi\)
\(18\) 0 0
\(19\) −5.16371 + 2.98127i −1.18464 + 0.683950i −0.957083 0.289815i \(-0.906406\pi\)
−0.227554 + 0.973765i \(0.573073\pi\)
\(20\) −1.36675 + 4.65050i −0.305614 + 1.03988i
\(21\) 0 0
\(22\) 3.03343 3.85634i 0.646729 0.822175i
\(23\) 6.58997 2.39855i 1.37410 0.500133i 0.453719 0.891145i \(-0.350097\pi\)
0.920386 + 0.391012i \(0.127875\pi\)
\(24\) 0 0
\(25\) −0.151733 0.860521i −0.0303466 0.172104i
\(26\) −0.128881 4.07577i −0.0252757 0.799325i
\(27\) 0 0
\(28\) −1.62269 + 0.102726i −0.306660 + 0.0194134i
\(29\) −6.59552 + 1.16297i −1.22476 + 0.215958i −0.748372 0.663279i \(-0.769164\pi\)
−0.476385 + 0.879237i \(0.658053\pi\)
\(30\) 0 0
\(31\) 2.55724 0.930757i 0.459293 0.167169i −0.102003 0.994784i \(-0.532525\pi\)
0.561296 + 0.827615i \(0.310303\pi\)
\(32\) −4.85171 2.90877i −0.857669 0.514203i
\(33\) 0 0
\(34\) −9.54262 3.13539i −1.63655 0.537716i
\(35\) 1.70634 0.985154i 0.288423 0.166521i
\(36\) 0 0
\(37\) 3.59434 + 2.07519i 0.590905 + 0.341159i 0.765455 0.643489i \(-0.222514\pi\)
−0.174550 + 0.984648i \(0.555847\pi\)
\(38\) 5.62163 + 6.28499i 0.911949 + 1.01956i
\(39\) 0 0
\(40\) 6.83319 + 0.545766i 1.08042 + 0.0862932i
\(41\) 0.742124 4.20880i 0.115900 0.657304i −0.870400 0.492345i \(-0.836140\pi\)
0.986301 0.164959i \(-0.0527490\pi\)
\(42\) 0 0
\(43\) −1.77034 2.10981i −0.269975 0.321743i 0.613975 0.789326i \(-0.289570\pi\)
−0.883950 + 0.467582i \(0.845125\pi\)
\(44\) −6.21631 3.08279i −0.937145 0.464748i
\(45\) 0 0
\(46\) −5.22785 8.42800i −0.770805 1.24264i
\(47\) −2.80028 1.01922i −0.408463 0.148668i 0.129613 0.991565i \(-0.458626\pi\)
−0.538076 + 0.842896i \(0.680849\pi\)
\(48\) 0 0
\(49\) −4.85602 4.07468i −0.693717 0.582097i
\(50\) −1.14727 + 0.459136i −0.162249 + 0.0649316i
\(51\) 0 0
\(52\) −5.60467 + 1.35822i −0.777227 + 0.188352i
\(53\) 7.38929i 1.01500i −0.861653 0.507498i \(-0.830570\pi\)
0.861653 0.507498i \(-0.169430\pi\)
\(54\) 0 0
\(55\) 8.40834 1.13378
\(56\) 0.611922 + 2.21651i 0.0817716 + 0.296194i
\(57\) 0 0
\(58\) 3.51907 + 8.79334i 0.462077 + 1.15462i
\(59\) 4.72368 5.62947i 0.614971 0.732894i −0.365226 0.930919i \(-0.619008\pi\)
0.980197 + 0.198025i \(0.0634526\pi\)
\(60\) 0 0
\(61\) 0.0900385 0.247379i 0.0115283 0.0316736i −0.933795 0.357808i \(-0.883524\pi\)
0.945323 + 0.326135i \(0.105746\pi\)
\(62\) −2.02867 3.27048i −0.257641 0.415351i
\(63\) 0 0
\(64\) −2.62210 + 7.55808i −0.327762 + 0.944760i
\(65\) 5.35335 4.49199i 0.664001 0.557163i
\(66\) 0 0
\(67\) 2.20513 + 0.388825i 0.269400 + 0.0475025i 0.306716 0.951801i \(-0.400770\pi\)
−0.0373162 + 0.999304i \(0.511881\pi\)
\(68\) −1.57793 + 14.1172i −0.191352 + 1.71196i
\(69\) 0 0
\(70\) −1.85765 2.07686i −0.222032 0.248232i
\(71\) −2.69918 + 4.67512i −0.320334 + 0.554835i −0.980557 0.196235i \(-0.937129\pi\)
0.660223 + 0.751070i \(0.270462\pi\)
\(72\) 0 0
\(73\) −1.97245 3.41639i −0.230858 0.399858i 0.727203 0.686423i \(-0.240820\pi\)
−0.958061 + 0.286565i \(0.907487\pi\)
\(74\) 1.83217 5.57624i 0.212986 0.648225i
\(75\) 0 0
\(76\) 7.07283 9.60118i 0.811309 1.10133i
\(77\) 0.964666 + 2.65040i 0.109934 + 0.302041i
\(78\) 0 0
\(79\) 1.76846 + 10.0295i 0.198968 + 1.12840i 0.906654 + 0.421875i \(0.138628\pi\)
−0.707686 + 0.706527i \(0.750261\pi\)
\(80\) −1.22252 9.61697i −0.136682 1.07521i
\(81\) 0 0
\(82\) −6.04094 + 0.191022i −0.667110 + 0.0210949i
\(83\) −7.86515 + 1.38684i −0.863312 + 0.152225i −0.587735 0.809054i \(-0.699980\pi\)
−0.275577 + 0.961279i \(0.588869\pi\)
\(84\) 0 0
\(85\) −5.88742 16.1756i −0.638581 1.75449i
\(86\) −2.40809 + 3.06136i −0.259671 + 0.330115i
\(87\) 0 0
\(88\) −2.46797 + 9.49744i −0.263087 + 1.01243i
\(89\) −2.14833 3.72101i −0.227722 0.394426i 0.729410 0.684076i \(-0.239794\pi\)
−0.957133 + 0.289650i \(0.906461\pi\)
\(90\) 0 0
\(91\) 2.03010 + 1.17208i 0.212812 + 0.122867i
\(92\) −10.1533 + 9.67643i −1.05856 + 1.00884i
\(93\) 0 0
\(94\) −0.600276 + 4.17138i −0.0619137 + 0.430245i
\(95\) −2.50935 + 14.2312i −0.257454 + 1.46009i
\(96\) 0 0
\(97\) 4.28345 3.59424i 0.434918 0.364940i −0.398886 0.917001i \(-0.630603\pi\)
0.833804 + 0.552061i \(0.186159\pi\)
\(98\) −4.23479 + 7.90155i −0.427778 + 0.798177i
\(99\) 0 0
\(100\) 0.967670 + 1.45523i 0.0967670 + 0.145523i
\(101\) −5.64914 + 15.5209i −0.562110 + 1.54438i 0.254427 + 0.967092i \(0.418113\pi\)
−0.816537 + 0.577293i \(0.804109\pi\)
\(102\) 0 0
\(103\) 14.0312 + 11.7736i 1.38254 + 1.16009i 0.968262 + 0.249938i \(0.0804101\pi\)
0.414278 + 0.910151i \(0.364034\pi\)
\(104\) 3.50254 + 7.36521i 0.343452 + 0.722218i
\(105\) 0 0
\(106\) −10.2288 + 2.13898i −0.993506 + 0.207756i
\(107\) 17.0660i 1.64983i 0.565254 + 0.824917i \(0.308778\pi\)
−0.565254 + 0.824917i \(0.691222\pi\)
\(108\) 0 0
\(109\) 18.3759i 1.76009i 0.474890 + 0.880045i \(0.342488\pi\)
−0.474890 + 0.880045i \(0.657512\pi\)
\(110\) −2.43397 11.6394i −0.232070 1.10978i
\(111\) 0 0
\(112\) 2.89112 1.48868i 0.273185 0.140667i
\(113\) −6.55711 5.50207i −0.616841 0.517591i 0.279968 0.960009i \(-0.409676\pi\)
−0.896809 + 0.442418i \(0.854121\pi\)
\(114\) 0 0
\(115\) 5.81311 15.9714i 0.542076 1.48934i
\(116\) 11.1537 7.41677i 1.03560 0.688630i
\(117\) 0 0
\(118\) −9.16008 4.90929i −0.843254 0.451937i
\(119\) 4.42326 3.71156i 0.405480 0.340238i
\(120\) 0 0
\(121\) −0.179992 + 1.02079i −0.0163629 + 0.0927987i
\(122\) −0.368503 0.0530288i −0.0333627 0.00480100i
\(123\) 0 0
\(124\) −3.93999 + 3.75493i −0.353822 + 0.337203i
\(125\) 8.66046 + 5.00012i 0.774615 + 0.447224i
\(126\) 0 0
\(127\) −2.28240 3.95324i −0.202530 0.350793i 0.746813 0.665034i \(-0.231583\pi\)
−0.949343 + 0.314242i \(0.898250\pi\)
\(128\) 11.2215 + 1.44185i 0.991846 + 0.127443i
\(129\) 0 0
\(130\) −7.76777 6.11018i −0.681278 0.535898i
\(131\) −4.55139 12.5048i −0.397657 1.09255i −0.963422 0.267987i \(-0.913641\pi\)
0.565766 0.824566i \(-0.308581\pi\)
\(132\) 0 0
\(133\) −4.77372 + 0.841736i −0.413934 + 0.0729878i
\(134\) −0.100083 3.16506i −0.00864587 0.273419i
\(135\) 0 0
\(136\) 19.9988 1.90223i 1.71488 0.163115i
\(137\) 0.374428 + 2.12348i 0.0319895 + 0.181422i 0.996616 0.0821992i \(-0.0261944\pi\)
−0.964626 + 0.263621i \(0.915083\pi\)
\(138\) 0 0
\(139\) −0.200125 0.549839i −0.0169744 0.0466367i 0.930916 0.365233i \(-0.119011\pi\)
−0.947890 + 0.318596i \(0.896789\pi\)
\(140\) −2.33720 + 3.17269i −0.197529 + 0.268141i
\(141\) 0 0
\(142\) 7.25297 + 2.38309i 0.608656 + 0.199985i
\(143\) 5.00187 + 8.66350i 0.418278 + 0.724478i
\(144\) 0 0
\(145\) −8.11572 + 14.0568i −0.673974 + 1.16736i
\(146\) −4.15824 + 3.71936i −0.344139 + 0.307816i
\(147\) 0 0
\(148\) −8.24940 0.922063i −0.678096 0.0757931i
\(149\) 21.5708 + 3.80351i 1.76715 + 0.311596i 0.960259 0.279109i \(-0.0900390\pi\)
0.806888 + 0.590705i \(0.201150\pi\)
\(150\) 0 0
\(151\) 5.91767 4.96552i 0.481573 0.404088i −0.369422 0.929262i \(-0.620444\pi\)
0.850995 + 0.525174i \(0.176000\pi\)
\(152\) −15.3380 7.01145i −1.24408 0.568704i
\(153\) 0 0
\(154\) 3.38963 2.10257i 0.273144 0.169430i
\(155\) 2.25578 6.19769i 0.181188 0.497811i
\(156\) 0 0
\(157\) −0.882254 + 1.05143i −0.0704116 + 0.0839132i −0.800100 0.599866i \(-0.795220\pi\)
0.729689 + 0.683779i \(0.239665\pi\)
\(158\) 13.3716 5.35127i 1.06378 0.425724i
\(159\) 0 0
\(160\) −12.9586 + 4.47613i −1.02447 + 0.353869i
\(161\) 5.70128 0.449324
\(162\) 0 0
\(163\) 13.5989i 1.06515i 0.846383 + 0.532574i \(0.178775\pi\)
−0.846383 + 0.532574i \(0.821225\pi\)
\(164\) 2.01310 + 8.30700i 0.157197 + 0.648668i
\(165\) 0 0
\(166\) 4.19649 + 10.4861i 0.325711 + 0.813875i
\(167\) −3.38292 2.83861i −0.261778 0.219658i 0.502446 0.864609i \(-0.332434\pi\)
−0.764224 + 0.644950i \(0.776878\pi\)
\(168\) 0 0
\(169\) −4.40315 1.60262i −0.338704 0.123278i
\(170\) −20.6871 + 12.8321i −1.58663 + 0.984180i
\(171\) 0 0
\(172\) 4.93483 + 2.44727i 0.376277 + 0.186603i
\(173\) −12.4793 14.8722i −0.948781 1.13071i −0.991301 0.131617i \(-0.957983\pi\)
0.0425201 0.999096i \(-0.486461\pi\)
\(174\) 0 0
\(175\) 0.123355 0.699578i 0.00932472 0.0528831i
\(176\) 13.8614 + 0.667109i 1.04485 + 0.0502853i
\(177\) 0 0
\(178\) −4.52901 + 4.05099i −0.339464 + 0.303635i
\(179\) −4.00038 2.30962i −0.299002 0.172629i 0.342992 0.939338i \(-0.388559\pi\)
−0.641995 + 0.766709i \(0.721893\pi\)
\(180\) 0 0
\(181\) 5.55052 3.20459i 0.412567 0.238195i −0.279325 0.960197i \(-0.590111\pi\)
0.691892 + 0.722001i \(0.256777\pi\)
\(182\) 1.03482 3.14949i 0.0767059 0.233456i
\(183\) 0 0
\(184\) 16.3339 + 11.2539i 1.20415 + 0.829649i
\(185\) 9.45221 3.44032i 0.694940 0.252938i
\(186\) 0 0
\(187\) 24.2670 4.27893i 1.77458 0.312906i
\(188\) 5.94809 0.376549i 0.433809 0.0274626i
\(189\) 0 0
\(190\) 20.4263 0.645905i 1.48188 0.0468588i
\(191\) 3.51460 + 19.9323i 0.254307 + 1.44225i 0.797844 + 0.602864i \(0.205974\pi\)
−0.543537 + 0.839385i \(0.682915\pi\)
\(192\) 0 0
\(193\) 5.28857 1.92488i 0.380680 0.138556i −0.144590 0.989492i \(-0.546186\pi\)
0.525270 + 0.850935i \(0.323964\pi\)
\(194\) −6.21533 4.88902i −0.446235 0.351011i
\(195\) 0 0
\(196\) 12.1637 + 3.57483i 0.868838 + 0.255345i
\(197\) −3.79439 + 2.19069i −0.270339 + 0.156080i −0.629042 0.777371i \(-0.716553\pi\)
0.358703 + 0.933452i \(0.383219\pi\)
\(198\) 0 0
\(199\) −6.64564 + 11.5106i −0.471097 + 0.815963i −0.999453 0.0330592i \(-0.989475\pi\)
0.528357 + 0.849022i \(0.322808\pi\)
\(200\) 1.73432 1.76076i 0.122635 0.124505i
\(201\) 0 0
\(202\) 23.1204 + 3.32710i 1.62674 + 0.234094i
\(203\) −5.36196 0.945458i −0.376336 0.0663582i
\(204\) 0 0
\(205\) −6.65784 7.93450i −0.465004 0.554170i
\(206\) 12.2362 22.8312i 0.852539 1.59072i
\(207\) 0 0
\(208\) 9.18157 6.98047i 0.636627 0.484009i
\(209\) −19.4387 7.07512i −1.34460 0.489396i
\(210\) 0 0
\(211\) −16.0858 + 19.1703i −1.10739 + 1.31974i −0.164597 + 0.986361i \(0.552632\pi\)
−0.942794 + 0.333376i \(0.891812\pi\)
\(212\) 5.92186 + 13.5402i 0.406715 + 0.929946i
\(213\) 0 0
\(214\) 23.6240 4.94011i 1.61490 0.337699i
\(215\) −6.67497 −0.455229
\(216\) 0 0
\(217\) 2.21238 0.150186
\(218\) 25.4372 5.31928i 1.72283 0.360267i
\(219\) 0 0
\(220\) −15.4076 + 6.73854i −1.03878 + 0.454313i
\(221\) 13.1642 15.6884i 0.885518 1.05532i
\(222\) 0 0
\(223\) 1.52221 + 0.554040i 0.101935 + 0.0371013i 0.392484 0.919759i \(-0.371616\pi\)
−0.290549 + 0.956860i \(0.593838\pi\)
\(224\) −2.89763 3.57116i −0.193606 0.238608i
\(225\) 0 0
\(226\) −5.71827 + 10.6695i −0.380373 + 0.709725i
\(227\) −4.47903 5.33790i −0.297284 0.354289i 0.596639 0.802510i \(-0.296502\pi\)
−0.893923 + 0.448221i \(0.852058\pi\)
\(228\) 0 0
\(229\) −24.7618 4.36618i −1.63631 0.288525i −0.721500 0.692415i \(-0.756547\pi\)
−0.914808 + 0.403890i \(0.867658\pi\)
\(230\) −23.7915 3.42367i −1.56876 0.225750i
\(231\) 0 0
\(232\) −13.4955 13.2928i −0.886022 0.872716i
\(233\) −7.86096 + 13.6156i −0.514989 + 0.891987i 0.484860 + 0.874592i \(0.338871\pi\)
−0.999849 + 0.0173948i \(0.994463\pi\)
\(234\) 0 0
\(235\) −6.25469 + 3.61115i −0.408011 + 0.235565i
\(236\) −4.14422 + 14.1011i −0.269766 + 0.917905i
\(237\) 0 0
\(238\) −6.41821 5.04861i −0.416031 0.327253i
\(239\) −14.6050 + 5.31579i −0.944720 + 0.343850i −0.768028 0.640416i \(-0.778762\pi\)
−0.176692 + 0.984266i \(0.556540\pi\)
\(240\) 0 0
\(241\) −2.19088 12.4251i −0.141127 0.800370i −0.970396 0.241520i \(-0.922354\pi\)
0.829269 0.558850i \(-0.188757\pi\)
\(242\) 1.46515 0.0463299i 0.0941832 0.00297820i
\(243\) 0 0
\(244\) 0.0332646 + 0.525458i 0.00212955 + 0.0336390i
\(245\) −15.1299 + 2.66782i −0.966616 + 0.170441i
\(246\) 0 0
\(247\) −16.1558 + 5.88024i −1.02797 + 0.374151i
\(248\) 6.33836 + 4.36707i 0.402486 + 0.277309i
\(249\) 0 0
\(250\) 4.41457 13.4358i 0.279202 0.849755i
\(251\) −4.86765 + 2.81034i −0.307244 + 0.177387i −0.645692 0.763598i \(-0.723431\pi\)
0.338449 + 0.940985i \(0.390098\pi\)
\(252\) 0 0
\(253\) 21.0707 + 12.1652i 1.32470 + 0.764818i
\(254\) −4.81166 + 4.30381i −0.301910 + 0.270045i
\(255\) 0 0
\(256\) −1.25237 15.9509i −0.0782730 0.996932i
\(257\) −3.35726 + 19.0399i −0.209420 + 1.18768i 0.680911 + 0.732366i \(0.261584\pi\)
−0.890331 + 0.455313i \(0.849527\pi\)
\(258\) 0 0
\(259\) 2.16885 + 2.58474i 0.134766 + 0.160608i
\(260\) −6.20961 + 12.5214i −0.385103 + 0.776545i
\(261\) 0 0
\(262\) −15.9926 + 9.92015i −0.988026 + 0.612869i
\(263\) −10.8424 3.94631i −0.668571 0.243340i −0.0146383 0.999893i \(-0.504660\pi\)
−0.653932 + 0.756553i \(0.726882\pi\)
\(264\) 0 0
\(265\) −13.7188 11.5114i −0.842739 0.707142i
\(266\) 2.54705 + 6.36447i 0.156169 + 0.390231i
\(267\) 0 0
\(268\) −4.35233 + 1.05473i −0.265861 + 0.0644281i
\(269\) 13.3630i 0.814758i −0.913259 0.407379i \(-0.866443\pi\)
0.913259 0.407379i \(-0.133557\pi\)
\(270\) 0 0
\(271\) 3.26667 0.198436 0.0992182 0.995066i \(-0.468366\pi\)
0.0992182 + 0.995066i \(0.468366\pi\)
\(272\) −8.42227 27.1331i −0.510675 1.64518i
\(273\) 0 0
\(274\) 2.83109 1.13300i 0.171033 0.0684468i
\(275\) 1.94863 2.32228i 0.117507 0.140039i
\(276\) 0 0
\(277\) 0.102104 0.280528i 0.00613482 0.0168553i −0.936587 0.350434i \(-0.886034\pi\)
0.942722 + 0.333579i \(0.108256\pi\)
\(278\) −0.703196 + 0.436190i −0.0421749 + 0.0261609i
\(279\) 0 0
\(280\) 5.06841 + 2.31692i 0.302895 + 0.138462i
\(281\) 13.3262 11.1820i 0.794976 0.667064i −0.151996 0.988381i \(-0.548570\pi\)
0.946972 + 0.321317i \(0.104126\pi\)
\(282\) 0 0
\(283\) −1.31422 0.231732i −0.0781220 0.0137750i 0.134451 0.990920i \(-0.457073\pi\)
−0.212573 + 0.977145i \(0.568184\pi\)
\(284\) 1.19932 10.7299i 0.0711665 0.636704i
\(285\) 0 0
\(286\) 10.5447 9.43178i 0.623523 0.557713i
\(287\) 1.73720 3.00893i 0.102544 0.177611i
\(288\) 0 0
\(289\) −16.7231 28.9652i −0.983711 1.70384i
\(290\) 21.8077 + 7.16531i 1.28059 + 0.420762i
\(291\) 0 0
\(292\) 6.35229 + 4.67949i 0.371739 + 0.273846i
\(293\) 2.77744 + 7.63095i 0.162260 + 0.445805i 0.994003 0.109356i \(-0.0348789\pi\)
−0.831743 + 0.555161i \(0.812657\pi\)
\(294\) 0 0
\(295\) −3.09274 17.5398i −0.180066 1.02121i
\(296\) 1.11157 + 11.6863i 0.0646089 + 0.679253i
\(297\) 0 0
\(298\) −0.979021 30.9608i −0.0567132 1.79351i
\(299\) 19.9141 3.51140i 1.15166 0.203069i
\(300\) 0 0
\(301\) −0.765801 2.10402i −0.0441400 0.121274i
\(302\) −8.58661 6.75429i −0.494104 0.388666i
\(303\) 0 0
\(304\) −5.26584 + 23.2616i −0.302017 + 1.33414i
\(305\) −0.319011 0.552544i −0.0182665 0.0316386i
\(306\) 0 0
\(307\) −22.1985 12.8163i −1.26693 0.731464i −0.292527 0.956257i \(-0.594496\pi\)
−0.974406 + 0.224793i \(0.927829\pi\)
\(308\) −3.89173 4.08353i −0.221752 0.232681i
\(309\) 0 0
\(310\) −9.23227 1.32855i −0.524358 0.0754568i
\(311\) 3.08781 17.5119i 0.175094 0.993007i −0.762942 0.646467i \(-0.776246\pi\)
0.938035 0.346539i \(-0.112643\pi\)
\(312\) 0 0
\(313\) −25.2201 + 21.1622i −1.42553 + 1.19616i −0.477226 + 0.878781i \(0.658358\pi\)
−0.948299 + 0.317377i \(0.897198\pi\)
\(314\) 1.71085 + 0.916921i 0.0965489 + 0.0517448i
\(315\) 0 0
\(316\) −11.2783 16.9608i −0.634453 0.954122i
\(317\) 2.41535 6.63611i 0.135659 0.372721i −0.853198 0.521587i \(-0.825340\pi\)
0.988857 + 0.148866i \(0.0475624\pi\)
\(318\) 0 0
\(319\) −17.7993 14.9354i −0.996568 0.836220i
\(320\) 9.94732 + 16.6425i 0.556072 + 0.930346i
\(321\) 0 0
\(322\) −1.65035 7.89212i −0.0919706 0.439810i
\(323\) 42.3492i 2.35637i
\(324\) 0 0
\(325\) 2.51954i 0.139759i
\(326\) 18.8246 3.93649i 1.04260 0.218022i
\(327\) 0 0
\(328\) 10.9164 5.19131i 0.602758 0.286642i
\(329\) −1.85586 1.55725i −0.102317 0.0858539i
\(330\) 0 0
\(331\) 4.15163 11.4065i 0.228194 0.626958i −0.771766 0.635907i \(-0.780626\pi\)
0.999960 + 0.00894876i \(0.00284852\pi\)
\(332\) 13.3008 8.84449i 0.729975 0.485404i
\(333\) 0 0
\(334\) −2.95015 + 5.50457i −0.161425 + 0.301197i
\(335\) 4.15716 3.48827i 0.227130 0.190585i
\(336\) 0 0
\(337\) −4.48506 + 25.4361i −0.244317 + 1.38559i 0.577757 + 0.816209i \(0.303928\pi\)
−0.822074 + 0.569381i \(0.807183\pi\)
\(338\) −0.943872 + 6.55907i −0.0513399 + 0.356766i
\(339\) 0 0
\(340\) 23.7515 + 24.9221i 1.28811 + 1.35159i
\(341\) 8.17648 + 4.72069i 0.442781 + 0.255640i
\(342\) 0 0
\(343\) −5.42214 9.39142i −0.292768 0.507089i
\(344\) 1.95920 7.53955i 0.105633 0.406506i
\(345\) 0 0
\(346\) −16.9748 + 21.5797i −0.912570 + 1.16013i
\(347\) −4.43311 12.1799i −0.237982 0.653849i −0.999980 0.00627055i \(-0.998004\pi\)
0.761999 0.647578i \(-0.224218\pi\)
\(348\) 0 0
\(349\) 1.00479 0.177171i 0.0537849 0.00948374i −0.146691 0.989182i \(-0.546862\pi\)
0.200476 + 0.979699i \(0.435751\pi\)
\(350\) −1.00411 + 0.0317514i −0.0536721 + 0.00169718i
\(351\) 0 0
\(352\) −3.08902 19.3811i −0.164645 1.03302i
\(353\) 2.87234 + 16.2899i 0.152879 + 0.867022i 0.960699 + 0.277592i \(0.0895364\pi\)
−0.807820 + 0.589430i \(0.799352\pi\)
\(354\) 0 0
\(355\) 4.47480 + 12.2944i 0.237498 + 0.652520i
\(356\) 6.91869 + 5.09673i 0.366690 + 0.270126i
\(357\) 0 0
\(358\) −2.03915 + 6.20617i −0.107772 + 0.328006i
\(359\) −9.03871 15.6555i −0.477045 0.826266i 0.522609 0.852573i \(-0.324959\pi\)
−0.999654 + 0.0263063i \(0.991625\pi\)
\(360\) 0 0
\(361\) 8.27594 14.3343i 0.435576 0.754439i
\(362\) −6.04274 6.75579i −0.317599 0.355076i
\(363\) 0 0
\(364\) −4.65930 0.520786i −0.244213 0.0272966i
\(365\) −9.41559 1.66022i −0.492835 0.0869000i
\(366\) 0 0
\(367\) −15.6345 + 13.1189i −0.816112 + 0.684799i −0.952058 0.305917i \(-0.901037\pi\)
0.135946 + 0.990716i \(0.456593\pi\)
\(368\) 10.8503 25.8682i 0.565610 1.34847i
\(369\) 0 0
\(370\) −7.49848 12.0886i −0.389827 0.628454i
\(371\) 2.05461 5.64499i 0.106670 0.293073i
\(372\) 0 0
\(373\) 18.6443 22.2194i 0.965366 1.15048i −0.0232061 0.999731i \(-0.507387\pi\)
0.988572 0.150748i \(-0.0481681\pi\)
\(374\) −12.9478 32.3535i −0.669514 1.67296i
\(375\) 0 0
\(376\) −2.24304 8.12476i −0.115676 0.419003i
\(377\) −19.3112 −0.994578
\(378\) 0 0
\(379\) 18.7878i 0.965062i −0.875879 0.482531i \(-0.839718\pi\)
0.875879 0.482531i \(-0.160282\pi\)
\(380\) −6.80691 28.0885i −0.349187 1.44091i
\(381\) 0 0
\(382\) 26.5743 10.6350i 1.35966 0.544132i
\(383\) 11.4097 + 9.57391i 0.583010 + 0.489204i 0.885934 0.463811i \(-0.153518\pi\)
−0.302924 + 0.953015i \(0.597963\pi\)
\(384\) 0 0
\(385\) 6.42348 + 2.33796i 0.327371 + 0.119153i
\(386\) −4.19545 6.76362i −0.213543 0.344259i
\(387\) 0 0
\(388\) −4.96858 + 10.0189i −0.252241 + 0.508634i
\(389\) 11.3184 + 13.4888i 0.573866 + 0.683907i 0.972420 0.233238i \(-0.0749321\pi\)
−0.398553 + 0.917145i \(0.630488\pi\)
\(390\) 0 0
\(391\) 8.64932 49.0527i 0.437415 2.48070i
\(392\) 1.42749 17.8727i 0.0720992 0.902708i
\(393\) 0 0
\(394\) 4.13088 + 4.61833i 0.208111 + 0.232668i
\(395\) 21.3755 + 12.3411i 1.07552 + 0.620950i
\(396\) 0 0
\(397\) 13.1290 7.58002i 0.658924 0.380430i −0.132943 0.991124i \(-0.542443\pi\)
0.791867 + 0.610694i \(0.209109\pi\)
\(398\) 17.8575 + 5.86739i 0.895115 + 0.294105i
\(399\) 0 0
\(400\) −2.93941 1.89108i −0.146971 0.0945540i
\(401\) −0.563391 + 0.205057i −0.0281344 + 0.0102401i −0.356049 0.934467i \(-0.615876\pi\)
0.327915 + 0.944707i \(0.393654\pi\)
\(402\) 0 0
\(403\) 7.72766 1.36260i 0.384942 0.0678757i
\(404\) −2.08706 32.9679i −0.103835 1.64022i
\(405\) 0 0
\(406\) 0.243360 + 7.69609i 0.0120778 + 0.381951i
\(407\) 2.50040 + 14.1805i 0.123940 + 0.702899i
\(408\) 0 0
\(409\) 26.7235 9.72655i 1.32139 0.480947i 0.417487 0.908683i \(-0.362911\pi\)
0.903904 + 0.427736i \(0.140689\pi\)
\(410\) −9.05626 + 11.5131i −0.447257 + 0.568590i
\(411\) 0 0
\(412\) −35.1466 10.3293i −1.73155 0.508889i
\(413\) 5.17391 2.98716i 0.254591 0.146988i
\(414\) 0 0
\(415\) −9.67799 + 16.7628i −0.475074 + 0.822852i
\(416\) −12.3207 10.6891i −0.604070 0.524078i
\(417\) 0 0
\(418\) −4.16694 + 28.9565i −0.203812 + 1.41631i
\(419\) −27.5479 4.85743i −1.34580 0.237301i −0.546110 0.837713i \(-0.683892\pi\)
−0.799691 + 0.600412i \(0.795003\pi\)
\(420\) 0 0
\(421\) 21.0378 + 25.0719i 1.02532 + 1.22193i 0.974771 + 0.223208i \(0.0716530\pi\)
0.0505502 + 0.998722i \(0.483903\pi\)
\(422\) 31.1932 + 16.7178i 1.51846 + 0.813812i
\(423\) 0 0
\(424\) 17.0291 12.1170i 0.827008 0.588452i
\(425\) −5.83190 2.12264i −0.282889 0.102963i
\(426\) 0 0
\(427\) 0.137568 0.163948i 0.00665740 0.00793398i
\(428\) −13.6769 31.2720i −0.661098 1.51159i
\(429\) 0 0
\(430\) 1.93221 + 9.23997i 0.0931794 + 0.445591i
\(431\) 9.98011 0.480725 0.240363 0.970683i \(-0.422734\pi\)
0.240363 + 0.970683i \(0.422734\pi\)
\(432\) 0 0
\(433\) 17.4899 0.840513 0.420257 0.907405i \(-0.361940\pi\)
0.420257 + 0.907405i \(0.361940\pi\)
\(434\) −0.640419 3.06253i −0.0307411 0.147006i
\(435\) 0 0
\(436\) −14.7267 33.6722i −0.705279 1.61261i
\(437\) −26.8780 + 32.0319i −1.28575 + 1.53229i
\(438\) 0 0
\(439\) 7.21777 + 2.62705i 0.344485 + 0.125382i 0.508468 0.861081i \(-0.330212\pi\)
−0.163983 + 0.986463i \(0.552434\pi\)
\(440\) 13.7880 + 19.3776i 0.657317 + 0.923792i
\(441\) 0 0
\(442\) −25.5277 13.6814i −1.21423 0.650759i
\(443\) −3.13735 3.73895i −0.149060 0.177643i 0.686348 0.727274i \(-0.259213\pi\)
−0.835408 + 0.549631i \(0.814768\pi\)
\(444\) 0 0
\(445\) −10.2551 1.80826i −0.486140 0.0857196i
\(446\) 0.326306 2.26753i 0.0154510 0.107371i
\(447\) 0 0
\(448\) −4.10467 + 5.04486i −0.193928 + 0.238347i
\(449\) 2.49179 4.31590i 0.117595 0.203680i −0.801219 0.598371i \(-0.795815\pi\)
0.918814 + 0.394691i \(0.129148\pi\)
\(450\) 0 0
\(451\) 12.8407 7.41357i 0.604644 0.349091i
\(452\) 16.4248 + 4.82712i 0.772556 + 0.227049i
\(453\) 0 0
\(454\) −6.09255 + 7.74536i −0.285938 + 0.363508i
\(455\) 5.33865 1.94311i 0.250280 0.0910944i
\(456\) 0 0
\(457\) 3.50014 + 19.8503i 0.163729 + 0.928556i 0.950365 + 0.311138i \(0.100710\pi\)
−0.786635 + 0.617418i \(0.788179\pi\)
\(458\) 1.12385 + 35.5410i 0.0525141 + 1.66072i
\(459\) 0 0
\(460\) 2.14765 + 33.9249i 0.100135 + 1.58176i
\(461\) −33.4428 + 5.89687i −1.55759 + 0.274645i −0.885077 0.465444i \(-0.845895\pi\)
−0.672510 + 0.740088i \(0.734784\pi\)
\(462\) 0 0
\(463\) −35.9891 + 13.0990i −1.67256 + 0.608760i −0.992260 0.124178i \(-0.960371\pi\)
−0.680295 + 0.732938i \(0.738148\pi\)
\(464\) −14.4943 + 22.5293i −0.672881 + 1.04590i
\(465\) 0 0
\(466\) 21.1232 + 6.94039i 0.978512 + 0.321507i
\(467\) 9.53283 5.50378i 0.441127 0.254685i −0.262949 0.964810i \(-0.584695\pi\)
0.704075 + 0.710125i \(0.251362\pi\)
\(468\) 0 0
\(469\) 1.57648 + 0.910182i 0.0727951 + 0.0420283i
\(470\) 6.80936 + 7.61287i 0.314092 + 0.351155i
\(471\) 0 0
\(472\) 20.7194 + 1.65486i 0.953689 + 0.0761710i
\(473\) 1.65925 9.41005i 0.0762922 0.432675i
\(474\) 0 0
\(475\) 3.34895 + 3.99113i 0.153660 + 0.183125i
\(476\) −5.13076 + 10.3460i −0.235168 + 0.474206i
\(477\) 0 0
\(478\) 11.5862 + 18.6785i 0.529942 + 0.854337i
\(479\) −21.5794 7.85427i −0.985989 0.358871i −0.201823 0.979422i \(-0.564687\pi\)
−0.784166 + 0.620551i \(0.786909\pi\)
\(480\) 0 0
\(481\) 9.16757 + 7.69250i 0.418005 + 0.350748i
\(482\) −16.5655 + 6.62947i −0.754537 + 0.301964i
\(483\) 0 0
\(484\) −0.488250 2.01475i −0.0221932 0.0915795i
\(485\) 13.5519i 0.615358i
\(486\) 0 0
\(487\) 8.81274 0.399343 0.199672 0.979863i \(-0.436012\pi\)
0.199672 + 0.979863i \(0.436012\pi\)
\(488\) 0.717747 0.198152i 0.0324909 0.00896992i
\(489\) 0 0
\(490\) 8.07266 + 20.1717i 0.364685 + 0.911264i
\(491\) −7.55920 + 9.00870i −0.341142 + 0.406557i −0.909152 0.416465i \(-0.863269\pi\)
0.568010 + 0.823022i \(0.307713\pi\)
\(492\) 0 0
\(493\) −16.2691 + 44.6990i −0.732723 + 2.01314i
\(494\) 12.8165 + 20.6619i 0.576641 + 0.929622i
\(495\) 0 0
\(496\) 4.21044 10.0381i 0.189055 0.450726i
\(497\) −3.36195 + 2.82101i −0.150804 + 0.126540i
\(498\) 0 0
\(499\) −17.3768 3.06399i −0.777891 0.137163i −0.229414 0.973329i \(-0.573681\pi\)
−0.548477 + 0.836166i \(0.684792\pi\)
\(500\) −19.8767 2.22169i −0.888913 0.0993568i
\(501\) 0 0
\(502\) 5.29932 + 5.92464i 0.236520 + 0.264430i
\(503\) 10.0037 17.3268i 0.446041 0.772565i −0.552083 0.833789i \(-0.686167\pi\)
0.998124 + 0.0612236i \(0.0195003\pi\)
\(504\) 0 0
\(505\) 20.0152 + 34.6673i 0.890664 + 1.54268i
\(506\) 10.7406 32.6890i 0.477476 1.45320i
\(507\) 0 0
\(508\) 7.35047 + 5.41482i 0.326125 + 0.240244i
\(509\) 3.57485 + 9.82182i 0.158452 + 0.435345i 0.993360 0.115045i \(-0.0367013\pi\)
−0.834908 + 0.550390i \(0.814479\pi\)
\(510\) 0 0
\(511\) −0.556906 3.15837i −0.0246361 0.139718i
\(512\) −21.7179 + 6.35094i −0.959803 + 0.280675i
\(513\) 0 0
\(514\) 27.3283 0.864155i 1.20540 0.0381163i
\(515\) 43.7173 7.70853i 1.92641 0.339679i
\(516\) 0 0
\(517\) −3.53605 9.71521i −0.155515 0.427274i
\(518\) 2.95016 3.75049i 0.129623 0.164787i
\(519\) 0 0
\(520\) 19.1305 + 4.97119i 0.838930 + 0.218001i
\(521\) 10.0111 + 17.3397i 0.438593 + 0.759665i 0.997581 0.0695105i \(-0.0221437\pi\)
−0.558988 + 0.829175i \(0.688810\pi\)
\(522\) 0 0
\(523\) −17.8863 10.3267i −0.782114 0.451554i 0.0550649 0.998483i \(-0.482463\pi\)
−0.837179 + 0.546929i \(0.815797\pi\)
\(524\) 18.3616 + 19.2665i 0.802129 + 0.841661i
\(525\) 0 0
\(526\) −2.32421 + 16.1512i −0.101340 + 0.704224i
\(527\) 3.35636 19.0349i 0.146206 0.829173i
\(528\) 0 0
\(529\) 20.0556 16.8287i 0.871985 0.731682i
\(530\) −11.9638 + 22.3228i −0.519672 + 0.969638i
\(531\) 0 0
\(532\) 8.07286 5.36813i 0.350003 0.232738i
\(533\) 4.21473 11.5799i 0.182560 0.501580i
\(534\) 0 0
\(535\) 31.6844 + 26.5864i 1.36984 + 1.14943i
\(536\) 2.71991 + 5.71949i 0.117482 + 0.247044i
\(537\) 0 0
\(538\) −18.4981 + 3.86821i −0.797508 + 0.166770i
\(539\) 21.9926i 0.947289i
\(540\) 0 0
\(541\) 31.7185i 1.36368i −0.731499 0.681842i \(-0.761179\pi\)
0.731499 0.681842i \(-0.238821\pi\)
\(542\) −0.945607 4.52196i −0.0406173 0.194235i
\(543\) 0 0
\(544\) −35.1215 + 19.5129i −1.50582 + 0.836610i
\(545\) 34.1163 + 28.6270i 1.46138 + 1.22624i
\(546\) 0 0
\(547\) −2.69951 + 7.41685i −0.115423 + 0.317122i −0.983930 0.178555i \(-0.942858\pi\)
0.868507 + 0.495677i \(0.165080\pi\)
\(548\) −2.38789 3.59103i −0.102006 0.153401i
\(549\) 0 0
\(550\) −3.77874 2.02519i −0.161126 0.0863545i
\(551\) 30.5902 25.6683i 1.30319 1.09350i
\(552\) 0 0
\(553\) −1.43771 + 8.15365i −0.0611376 + 0.346728i
\(554\) −0.417883 0.0601347i −0.0177541 0.00255488i
\(555\) 0 0
\(556\) 0.807359 + 0.847150i 0.0342397 + 0.0359271i
\(557\) −11.9380 6.89241i −0.505829 0.292041i 0.225288 0.974292i \(-0.427668\pi\)
−0.731118 + 0.682251i \(0.761001\pi\)
\(558\) 0 0
\(559\) −3.97074 6.87753i −0.167944 0.290888i
\(560\) 1.74008 7.68673i 0.0735320 0.324824i
\(561\) 0 0
\(562\) −19.3365 15.2102i −0.815662 0.641605i
\(563\) −4.49431 12.3480i −0.189413 0.520407i 0.808242 0.588850i \(-0.200419\pi\)
−0.997655 + 0.0684431i \(0.978197\pi\)
\(564\) 0 0
\(565\) −20.4301 + 3.60237i −0.859499 + 0.151553i
\(566\) 0.0596476 + 1.88631i 0.00250718 + 0.0792876i
\(567\) 0 0
\(568\) −15.2003 + 1.44581i −0.637790 + 0.0606650i
\(569\) 6.12718 + 34.7490i 0.256865 + 1.45675i 0.791241 + 0.611505i \(0.209436\pi\)
−0.534376 + 0.845247i \(0.679453\pi\)
\(570\) 0 0
\(571\) 13.0508 + 35.8568i 0.546159 + 1.50056i 0.838856 + 0.544354i \(0.183225\pi\)
−0.292697 + 0.956205i \(0.594553\pi\)
\(572\) −16.1085 11.8665i −0.673531 0.496165i
\(573\) 0 0
\(574\) −4.66804 1.53377i −0.194840 0.0640182i
\(575\) −3.06392 5.30687i −0.127774 0.221312i
\(576\) 0 0
\(577\) −13.9536 + 24.1683i −0.580895 + 1.00614i 0.414478 + 0.910059i \(0.363964\pi\)
−0.995374 + 0.0960807i \(0.969369\pi\)
\(578\) −35.2549 + 31.5339i −1.46641 + 1.31164i
\(579\) 0 0
\(580\) 3.60603 32.2620i 0.149732 1.33961i
\(581\) −6.39413 1.12746i −0.265273 0.0467748i
\(582\) 0 0
\(583\) 19.6384 16.4786i 0.813341 0.682474i
\(584\) 4.63888 10.1479i 0.191958 0.419921i
\(585\) 0 0
\(586\) 9.75931 6.05366i 0.403153 0.250074i
\(587\) 3.04495 8.36592i 0.125678 0.345299i −0.860857 0.508847i \(-0.830072\pi\)
0.986535 + 0.163549i \(0.0522941\pi\)
\(588\) 0 0
\(589\) −10.4300 + 12.4300i −0.429760 + 0.512168i
\(590\) −23.3846 + 9.35844i −0.962727 + 0.385281i
\(591\) 0 0
\(592\) 15.8553 4.92156i 0.651647 0.202275i
\(593\) 13.6477 0.560446 0.280223 0.959935i \(-0.409592\pi\)
0.280223 + 0.959935i \(0.409592\pi\)
\(594\) 0 0
\(595\) 13.9942i 0.573706i
\(596\) −42.5748 + 10.3175i −1.74393 + 0.422621i
\(597\) 0 0
\(598\) −10.6253 26.5501i −0.434500 1.08571i
\(599\) −23.2233 19.4867i −0.948878 0.796203i 0.0302302 0.999543i \(-0.490376\pi\)
−0.979108 + 0.203340i \(0.934820\pi\)
\(600\) 0 0
\(601\) 2.85426 + 1.03887i 0.116428 + 0.0423762i 0.399577 0.916700i \(-0.369157\pi\)
−0.283149 + 0.959076i \(0.591379\pi\)
\(602\) −2.69086 + 1.66913i −0.109671 + 0.0680286i
\(603\) 0 0
\(604\) −6.86419 + 13.8414i −0.279300 + 0.563197i
\(605\) 1.61477 + 1.92441i 0.0656497 + 0.0782382i
\(606\) 0 0
\(607\) −4.34423 + 24.6374i −0.176327 + 0.999999i 0.760274 + 0.649602i \(0.225065\pi\)
−0.936601 + 0.350397i \(0.886047\pi\)
\(608\) 33.7246 + 0.555803i 1.36771 + 0.0225408i
\(609\) 0 0
\(610\) −0.672526 + 0.601543i −0.0272298 + 0.0243558i
\(611\) −7.44146 4.29633i −0.301049 0.173811i
\(612\) 0 0
\(613\) −11.1629 + 6.44490i −0.450865 + 0.260307i −0.708195 0.706017i \(-0.750490\pi\)
0.257331 + 0.966323i \(0.417157\pi\)
\(614\) −11.3154 + 34.4386i −0.456653 + 1.38983i
\(615\) 0 0
\(616\) −4.52617 + 6.56927i −0.182365 + 0.264683i
\(617\) −23.2620 + 8.46669i −0.936495 + 0.340856i −0.764781 0.644291i \(-0.777153\pi\)
−0.171714 + 0.985147i \(0.554930\pi\)
\(618\) 0 0
\(619\) −7.07392 + 1.24732i −0.284325 + 0.0501341i −0.313992 0.949426i \(-0.601666\pi\)
0.0296670 + 0.999560i \(0.490555\pi\)
\(620\) 0.833393 + 13.1645i 0.0334699 + 0.528701i
\(621\) 0 0
\(622\) −25.1350 + 0.794801i −1.00782 + 0.0318686i
\(623\) −0.606562 3.43998i −0.0243014 0.137820i
\(624\) 0 0
\(625\) 26.8803 9.78364i 1.07521 0.391346i
\(626\) 36.5947 + 28.7856i 1.46262 + 1.15051i
\(627\) 0 0
\(628\) 0.774026 2.63370i 0.0308870 0.105096i
\(629\) 25.5289 14.7391i 1.01791 0.587688i
\(630\) 0 0
\(631\) 19.7806 34.2610i 0.787453 1.36391i −0.140070 0.990142i \(-0.544733\pi\)
0.927523 0.373767i \(-0.121934\pi\)
\(632\) −20.2137 + 20.5219i −0.804057 + 0.816316i
\(633\) 0 0
\(634\) −9.88534 1.42253i −0.392597 0.0564960i
\(635\) −10.8951 1.92111i −0.432361 0.0762368i
\(636\) 0 0
\(637\) −11.7491 14.0021i −0.465517 0.554782i
\(638\) −15.5222 + 28.9624i −0.614531 + 1.14663i
\(639\) 0 0
\(640\) 20.1583 18.5873i 0.796827 0.734728i
\(641\) −20.4795 7.45392i −0.808891 0.294412i −0.0957255 0.995408i \(-0.530517\pi\)
−0.713166 + 0.700995i \(0.752739\pi\)
\(642\) 0 0
\(643\) 24.0829 28.7008i 0.949735 1.13185i −0.0414197 0.999142i \(-0.513188\pi\)
0.991155 0.132709i \(-0.0423675\pi\)
\(644\) −10.4471 + 4.56907i −0.411673 + 0.180047i
\(645\) 0 0
\(646\) 58.6228 12.2589i 2.30648 0.482318i
\(647\) 13.9531 0.548554 0.274277 0.961651i \(-0.411561\pi\)
0.274277 + 0.961651i \(0.411561\pi\)
\(648\) 0 0
\(649\) 25.4955 1.00079
\(650\) −3.48773 + 0.729335i −0.136800 + 0.0286069i
\(651\) 0 0
\(652\) −10.8983 24.9188i −0.426812 0.975896i
\(653\) 16.3129 19.4409i 0.638372 0.760782i −0.345740 0.938330i \(-0.612372\pi\)
0.984112 + 0.177548i \(0.0568166\pi\)
\(654\) 0 0
\(655\) −30.3066 11.0307i −1.18418 0.431006i
\(656\) −10.3462 13.6085i −0.403950 0.531324i
\(657\) 0 0
\(658\) −1.61844 + 3.01979i −0.0630933 + 0.117724i
\(659\) 23.0007 + 27.4112i 0.895981 + 1.06779i 0.997336 + 0.0729384i \(0.0232376\pi\)
−0.101355 + 0.994850i \(0.532318\pi\)
\(660\) 0 0
\(661\) 29.1329 + 5.13692i 1.13314 + 0.199803i 0.708603 0.705608i \(-0.249326\pi\)
0.424536 + 0.905411i \(0.360437\pi\)
\(662\) −16.9915 2.44513i −0.660392 0.0950326i
\(663\) 0 0
\(664\) −16.0934 15.8517i −0.624543 0.615164i
\(665\) −5.87402 + 10.1741i −0.227785 + 0.394535i
\(666\) 0 0
\(667\) −40.6749 + 23.4836i −1.57494 + 0.909290i
\(668\) 8.47380 + 2.49039i 0.327861 + 0.0963560i
\(669\) 0 0
\(670\) −6.03209 4.74489i −0.233040 0.183311i
\(671\) 0.858249 0.312377i 0.0331323 0.0120592i
\(672\) 0 0
\(673\) 3.21781 + 18.2491i 0.124038 + 0.703452i 0.981875 + 0.189531i \(0.0606967\pi\)
−0.857837 + 0.513922i \(0.828192\pi\)
\(674\) 36.5087 1.15445i 1.40626 0.0444678i
\(675\) 0 0
\(676\) 9.35275 0.592084i 0.359721 0.0227725i
\(677\) 31.1495 5.49250i 1.19717 0.211094i 0.460698 0.887557i \(-0.347599\pi\)
0.736477 + 0.676463i \(0.236488\pi\)
\(678\) 0 0
\(679\) 4.27169 1.55477i 0.163932 0.0596665i
\(680\) 27.6235 40.0927i 1.05931 1.53748i
\(681\) 0 0
\(682\) 4.16787 12.6850i 0.159596 0.485732i
\(683\) −29.5187 + 17.0426i −1.12950 + 0.652117i −0.943809 0.330491i \(-0.892786\pi\)
−0.185691 + 0.982608i \(0.559452\pi\)
\(684\) 0 0
\(685\) 4.52572 + 2.61293i 0.172919 + 0.0998348i
\(686\) −11.4307 + 10.2242i −0.436427 + 0.390364i
\(687\) 0 0
\(688\) −11.0039 0.529586i −0.419520 0.0201903i
\(689\) 3.69985 20.9829i 0.140953 0.799385i
\(690\) 0 0
\(691\) 5.27112 + 6.28188i 0.200523 + 0.238974i 0.856930 0.515433i \(-0.172369\pi\)
−0.656407 + 0.754407i \(0.727925\pi\)
\(692\) 34.7859 + 17.2510i 1.32236 + 0.655784i
\(693\) 0 0
\(694\) −15.5770 + 9.66233i −0.591294 + 0.366777i
\(695\) −1.33259 0.485021i −0.0505478 0.0183979i
\(696\) 0 0
\(697\) −23.2528 19.5114i −0.880761 0.739046i
\(698\) −0.536109 1.33961i −0.0202920 0.0507050i
\(699\) 0 0
\(700\) 0.334614 + 1.38077i 0.0126472 + 0.0521884i
\(701\) 1.97965i 0.0747704i 0.999301 + 0.0373852i \(0.0119029\pi\)
−0.999301 + 0.0373852i \(0.988097\pi\)
\(702\) 0 0
\(703\) −24.7468 −0.933344
\(704\) −25.9345 + 9.88631i −0.977444 + 0.372604i
\(705\) 0 0
\(706\) 21.7181 8.69154i 0.817373 0.327110i
\(707\) −8.63122 + 10.2863i −0.324611 + 0.386856i
\(708\) 0 0
\(709\) 5.97488 16.4158i 0.224391 0.616510i −0.775499 0.631349i \(-0.782501\pi\)
0.999890 + 0.0148394i \(0.00472370\pi\)
\(710\) 15.7235 9.75321i 0.590092 0.366031i
\(711\) 0 0
\(712\) 5.05251 11.0527i 0.189351 0.414217i
\(713\) 14.6196 12.2673i 0.547510 0.459415i
\(714\) 0 0
\(715\) 23.8767 + 4.21010i 0.892936 + 0.157449i
\(716\) 9.18130 + 1.02622i 0.343121 + 0.0383518i
\(717\) 0 0
\(718\) −19.0550 + 17.0438i −0.711127 + 0.636071i
\(719\) −17.2073 + 29.8038i −0.641722 + 1.11150i 0.343326 + 0.939216i \(0.388446\pi\)
−0.985048 + 0.172279i \(0.944887\pi\)
\(720\) 0 0
\(721\) 7.44538 + 12.8958i 0.277280 + 0.480264i
\(722\) −22.2383 7.30677i −0.827623 0.271930i
\(723\) 0 0
\(724\) −7.60264 + 10.3204i −0.282550 + 0.383554i
\(725\) 2.00152 + 5.49913i 0.0743345 + 0.204232i
\(726\) 0 0
\(727\) 4.21802 + 23.9216i 0.156438 + 0.887203i 0.957460 + 0.288567i \(0.0931789\pi\)
−0.801022 + 0.598635i \(0.795710\pi\)
\(728\) 0.627822 + 6.60048i 0.0232686 + 0.244630i
\(729\) 0 0
\(730\) 0.427340 + 13.5143i 0.0158166 + 0.500187i
\(731\) −19.2644 + 3.39683i −0.712519 + 0.125636i
\(732\) 0 0
\(733\) 7.76866 + 21.3442i 0.286942 + 0.788366i 0.996490 + 0.0837095i \(0.0266768\pi\)
−0.709548 + 0.704657i \(0.751101\pi\)
\(734\) 22.6858 + 17.8448i 0.837348 + 0.658663i
\(735\) 0 0
\(736\) −38.9494 7.53164i −1.43570 0.277620i
\(737\) 3.88422 + 6.72767i 0.143077 + 0.247817i
\(738\) 0 0
\(739\) 0.214406 + 0.123787i 0.00788706 + 0.00455360i 0.503938 0.863740i \(-0.331884\pi\)
−0.496051 + 0.868293i \(0.665217\pi\)
\(740\) −14.5632 + 13.8792i −0.535355 + 0.510210i
\(741\) 0 0
\(742\) −8.40894 1.21007i −0.308702 0.0444232i
\(743\) −0.843956 + 4.78631i −0.0309618 + 0.175593i −0.996367 0.0851603i \(-0.972860\pi\)
0.965406 + 0.260753i \(0.0839709\pi\)
\(744\) 0 0
\(745\) 40.6657 34.1225i 1.48987 1.25015i
\(746\) −36.1547 19.3769i −1.32372 0.709439i
\(747\) 0 0
\(748\) −41.0380 + 27.2886i −1.50050 + 0.997772i
\(749\) −4.74524 + 13.0374i −0.173387 + 0.476378i
\(750\) 0 0
\(751\) 23.6852 + 19.8743i 0.864287 + 0.725223i 0.962887 0.269905i \(-0.0869921\pi\)
−0.0986005 + 0.995127i \(0.531437\pi\)
\(752\) −10.5976 + 5.45686i −0.386454 + 0.198991i
\(753\) 0 0
\(754\) 5.59003 + 26.7320i 0.203577 + 0.973520i
\(755\) 18.7222i 0.681370i
\(756\) 0 0
\(757\) 15.9221i 0.578697i 0.957224 + 0.289349i \(0.0934387\pi\)
−0.957224 + 0.289349i \(0.906561\pi\)
\(758\) −26.0074 + 5.43851i −0.944630 + 0.197535i
\(759\) 0 0
\(760\) −36.9117 + 17.5534i −1.33893 + 0.636729i
\(761\) −12.1040 10.1564i −0.438768 0.368170i 0.396480 0.918043i \(-0.370232\pi\)
−0.835248 + 0.549873i \(0.814676\pi\)
\(762\) 0 0
\(763\) −5.10946 + 14.0381i −0.184975 + 0.508214i
\(764\) −22.4142 33.7075i −0.810916 1.21950i
\(765\) 0 0
\(766\) 9.95010 18.5655i 0.359512 0.670800i
\(767\) 16.2323 13.6205i 0.586113 0.491807i
\(768\) 0 0
\(769\) −7.98567 + 45.2890i −0.287970 + 1.63316i 0.406507 + 0.913648i \(0.366747\pi\)
−0.694478 + 0.719514i \(0.744365\pi\)
\(770\) 1.37696 9.56861i 0.0496220 0.344829i
\(771\) 0 0
\(772\) −8.14823 + 7.76551i −0.293261 + 0.279487i
\(773\) −35.6666 20.5921i −1.28284 0.740647i −0.305472 0.952201i \(-0.598814\pi\)
−0.977366 + 0.211554i \(0.932147\pi\)
\(774\) 0 0
\(775\) −1.18895 2.05933i −0.0427085 0.0739733i
\(776\) 15.3072 + 3.97767i 0.549496 + 0.142790i
\(777\) 0 0
\(778\) 15.3957 19.5724i 0.551964 0.701703i
\(779\) 8.71544 + 23.9455i 0.312263 + 0.857936i
\(780\) 0 0
\(781\) −18.4444 + 3.25225i −0.659993 + 0.116375i
\(782\) −70.4060 + 2.22633i −2.51771 + 0.0796134i
\(783\) 0 0
\(784\) −25.1539 + 3.19759i −0.898353 + 0.114200i
\(785\) 0.577638 + 3.27595i 0.0206168 + 0.116924i
\(786\) 0 0
\(787\) 6.23669 + 17.1352i 0.222314 + 0.610803i 0.999837 0.0180518i \(-0.00574638\pi\)
−0.777523 + 0.628854i \(0.783524\pi\)
\(788\) 5.19725 7.05513i 0.185144 0.251329i
\(789\) 0 0
\(790\) 10.8959 33.1619i 0.387659 1.17985i
\(791\) −3.47939 6.02648i −0.123713 0.214277i
\(792\) 0 0
\(793\) 0.379541 0.657384i 0.0134779 0.0233444i
\(794\) −14.2933 15.9799i −0.507249 0.567104i
\(795\) 0 0
\(796\) 2.95283 26.4180i 0.104660 0.936362i
\(797\) 40.7976 + 7.19372i 1.44512 + 0.254814i 0.840550 0.541734i \(-0.182232\pi\)
0.604575 + 0.796548i \(0.293343\pi\)
\(798\) 0 0
\(799\) −16.2138 + 13.6050i −0.573602 + 0.481309i
\(800\) −1.76689 + 4.61635i −0.0624692 + 0.163213i
\(801\) 0 0
\(802\) 0.446940 + 0.720527i 0.0157820 + 0.0254427i
\(803\) 4.68101 12.8610i 0.165189 0.453853i
\(804\) 0 0
\(805\) 8.88176 10.5849i 0.313041 0.373068i
\(806\) −4.12313 10.3027i −0.145231 0.362899i
\(807\) 0 0
\(808\) −45.0324 + 12.4323i −1.58424 + 0.437367i
\(809\) 19.2719 0.677564 0.338782 0.940865i \(-0.389985\pi\)
0.338782 + 0.940865i \(0.389985\pi\)
\(810\) 0 0
\(811\) 15.7750i 0.553935i −0.960879 0.276968i \(-0.910671\pi\)
0.960879 0.276968i \(-0.0893295\pi\)
\(812\) 10.5830 2.56467i 0.371392 0.0900023i
\(813\) 0 0
\(814\) 18.9058 7.56606i 0.662648 0.265190i
\(815\) 25.2474 + 21.1851i 0.884380 + 0.742083i
\(816\) 0 0
\(817\) 15.4315 + 5.61659i 0.539878 + 0.196500i
\(818\) −21.1999 34.1770i −0.741236 1.19497i
\(819\) 0 0
\(820\) 18.5587 + 9.20362i 0.648099 + 0.321404i
\(821\) 6.66717 + 7.94562i 0.232686 + 0.277304i 0.869735 0.493519i \(-0.164290\pi\)
−0.637049 + 0.770823i \(0.719845\pi\)
\(822\) 0 0
\(823\) 9.20557 52.2074i 0.320886 1.81983i −0.216249 0.976338i \(-0.569382\pi\)
0.537135 0.843496i \(-0.319507\pi\)
\(824\) −4.12467 + 51.6424i −0.143690 + 1.79905i
\(825\) 0 0
\(826\) −5.63273 6.29740i −0.195988 0.219114i
\(827\) −23.9359 13.8194i −0.832332 0.480547i 0.0223184 0.999751i \(-0.492895\pi\)
−0.854650 + 0.519204i \(0.826229\pi\)
\(828\) 0 0
\(829\) 34.2649 19.7829i 1.19007 0.687088i 0.231748 0.972776i \(-0.425555\pi\)
0.958323 + 0.285688i \(0.0922221\pi\)
\(830\) 26.0057 + 8.54463i 0.902671 + 0.296588i
\(831\) 0 0
\(832\) −11.2302 + 20.1493i −0.389337 + 0.698552i
\(833\) −42.3084 + 15.3990i −1.46590 + 0.533543i
\(834\) 0 0
\(835\) −10.5402 + 1.85852i −0.364759 + 0.0643168i
\(836\) 41.2899 2.61389i 1.42804 0.0904033i
\(837\) 0 0
\(838\) 1.25030 + 39.5398i 0.0431909 + 1.36588i
\(839\) −4.95699 28.1125i −0.171134 0.970551i −0.942512 0.334173i \(-0.891543\pi\)
0.771378 0.636378i \(-0.219568\pi\)
\(840\) 0 0
\(841\) 14.8973 5.42218i 0.513700 0.186972i
\(842\) 28.6165 36.3796i 0.986189 1.25373i
\(843\) 0 0
\(844\) 14.1125 48.0192i 0.485772 1.65289i
\(845\) −9.83486 + 5.67816i −0.338329 + 0.195335i
\(846\) 0 0
\(847\) −0.421335 + 0.729774i −0.0144773 + 0.0250753i
\(848\) −21.7026 20.0654i −0.745270 0.689050i
\(849\) 0 0
\(850\) −1.25014 + 8.68737i −0.0428795 + 0.297974i
\(851\) 28.6640 + 5.05424i 0.982591 + 0.173257i
\(852\) 0 0
\(853\) −4.41611 5.26292i −0.151205 0.180199i 0.685125 0.728425i \(-0.259748\pi\)
−0.836330 + 0.548227i \(0.815303\pi\)
\(854\) −0.266770 0.142974i −0.00912868 0.00489247i
\(855\) 0 0
\(856\) −39.3298 + 27.9849i −1.34427 + 0.956503i
\(857\) 26.6254 + 9.69084i 0.909505 + 0.331033i 0.754055 0.656811i \(-0.228095\pi\)
0.155450 + 0.987844i \(0.450317\pi\)
\(858\) 0 0
\(859\) −14.7282 + 17.5524i −0.502520 + 0.598879i −0.956355 0.292206i \(-0.905611\pi\)
0.453836 + 0.891085i \(0.350055\pi\)
\(860\) 12.2313 5.34940i 0.417084 0.182413i
\(861\) 0 0
\(862\) −2.88895 13.8152i −0.0983981 0.470547i
\(863\) −24.0297 −0.817980 −0.408990 0.912539i \(-0.634119\pi\)
−0.408990 + 0.912539i \(0.634119\pi\)
\(864\) 0 0
\(865\) −47.0523 −1.59983
\(866\) −5.06283 24.2108i −0.172042 0.822717i
\(867\) 0 0
\(868\) −4.05399 + 1.77303i −0.137601 + 0.0601805i
\(869\) −22.7114 + 27.0664i −0.770432 + 0.918165i
\(870\) 0 0
\(871\) 6.06710 + 2.20824i 0.205576 + 0.0748235i
\(872\) −42.3485 + 30.1328i −1.43410 + 1.02043i
\(873\) 0 0
\(874\) 52.1213 + 27.9341i 1.76303 + 0.944885i
\(875\) 5.22579 + 6.22786i 0.176664 + 0.210540i
\(876\) 0 0
\(877\) 0.500115 + 0.0881838i 0.0168877 + 0.00297776i 0.182086 0.983283i \(-0.441715\pi\)
−0.165198 + 0.986260i \(0.552826\pi\)
\(878\) 1.54722 10.7518i 0.0522162 0.362856i
\(879\) 0 0
\(880\) 22.8326 24.6956i 0.769688 0.832488i
\(881\) 11.2219 19.4369i 0.378076 0.654847i −0.612706 0.790311i \(-0.709919\pi\)
0.990782 + 0.135464i \(0.0432525\pi\)
\(882\) 0 0
\(883\) 45.9402 26.5236i 1.54601 0.892589i 0.547570 0.836760i \(-0.315553\pi\)
0.998440 0.0558294i \(-0.0177803\pi\)
\(884\) −11.5493 + 39.2976i −0.388445 + 1.32172i
\(885\) 0 0
\(886\) −4.26755 + 5.42526i −0.143371 + 0.182265i
\(887\) 26.2975 9.57151i 0.882984 0.321380i 0.139571 0.990212i \(-0.455428\pi\)
0.743413 + 0.668832i \(0.233206\pi\)
\(888\) 0 0
\(889\) −0.644417 3.65467i −0.0216130 0.122574i
\(890\) 0.465444 + 14.7193i 0.0156017 + 0.493393i
\(891\) 0 0
\(892\) −3.23334 + 0.204689i −0.108260 + 0.00685351i
\(893\) 17.4984 3.08544i 0.585562 0.103250i
\(894\) 0 0
\(895\) −10.5200 + 3.82896i −0.351644 + 0.127988i
\(896\) 8.17163 + 4.22164i 0.272995 + 0.141035i
\(897\) 0 0
\(898\) −6.69567 2.19998i −0.223438 0.0734143i
\(899\) −15.7839 + 9.11281i −0.526421 + 0.303929i
\(900\) 0 0
\(901\) −45.4514 26.2414i −1.51421 0.874227i
\(902\) −13.9794 15.6290i −0.465463 0.520387i
\(903\) 0 0
\(904\) 1.92755 24.1336i 0.0641094 0.802673i
\(905\) 2.69732 15.2973i 0.0896620 0.508498i
\(906\) 0 0
\(907\) −17.3874 20.7215i −0.577338 0.688045i 0.395781 0.918345i \(-0.370474\pi\)
−0.973120 + 0.230300i \(0.926029\pi\)
\(908\) 12.4853 + 6.19169i 0.414339 + 0.205478i
\(909\) 0 0
\(910\) −4.23518 6.82767i −0.140395 0.226335i
\(911\) −9.03367 3.28799i −0.299299 0.108936i 0.188006 0.982168i \(-0.439798\pi\)
−0.487305 + 0.873232i \(0.662020\pi\)
\(912\) 0 0
\(913\) −21.2256 17.8104i −0.702465 0.589438i
\(914\) 26.4649 10.5912i 0.875383 0.350326i
\(915\) 0 0
\(916\) 48.8730 11.8438i 1.61481 0.391330i
\(917\) 10.8185i 0.357258i
\(918\) 0 0
\(919\) 0.257674 0.00849989 0.00424994 0.999991i \(-0.498647\pi\)
0.00424994 + 0.999991i \(0.498647\pi\)
\(920\) 46.3396 12.7932i 1.52777 0.421779i
\(921\) 0 0
\(922\) 17.8436 + 44.5870i 0.587647 + 1.46839i
\(923\) −10.0056 + 11.9242i −0.329337 + 0.392489i
\(924\) 0 0
\(925\) 1.24037 3.40788i 0.0407830 0.112050i
\(926\) 28.5503 + 46.0269i 0.938221 + 1.51254i
\(927\) 0 0
\(928\) 35.3823 + 13.5425i 1.16148 + 0.444554i
\(929\) 27.9758 23.4745i 0.917856 0.770173i −0.0557411 0.998445i \(-0.517752\pi\)
0.973597 + 0.228273i \(0.0733077\pi\)
\(930\) 0 0
\(931\) 37.2228 + 6.56338i 1.21993 + 0.215106i
\(932\) 3.49284 31.2492i 0.114412 1.02360i
\(933\) 0 0
\(934\) −10.3782 11.6028i −0.339585 0.379656i
\(935\) 29.8603 51.7196i 0.976536 1.69141i
\(936\) 0 0
\(937\) −4.21635 7.30293i −0.137742 0.238576i 0.788899 0.614522i \(-0.210651\pi\)
−0.926642 + 0.375946i \(0.877318\pi\)
\(938\) 0.803593 2.44575i 0.0262382 0.0798565i
\(939\) 0 0
\(940\) 8.56716 11.6297i 0.279430 0.379319i
\(941\) 6.23285 + 17.1246i 0.203185 + 0.558246i 0.998873 0.0474602i \(-0.0151127\pi\)
−0.795688 + 0.605707i \(0.792891\pi\)
\(942\) 0 0
\(943\) −5.20444 29.5159i −0.169480 0.961169i
\(944\) −3.70690 29.1603i −0.120649 0.949088i
\(945\) 0 0
\(946\) −13.5064 + 0.427089i −0.439130 + 0.0138859i
\(947\) −30.4479 + 5.36879i −0.989424 + 0.174462i −0.644860 0.764301i \(-0.723084\pi\)
−0.344564 + 0.938763i \(0.611973\pi\)
\(948\) 0 0
\(949\) −3.89045 10.6889i −0.126289 0.346977i
\(950\) 4.55538 5.79117i 0.147796 0.187890i
\(951\) 0 0
\(952\) 15.8068 + 4.10750i 0.512302 + 0.133125i
\(953\) −17.3439 30.0406i −0.561825 0.973109i −0.997337 0.0729266i \(-0.976766\pi\)
0.435512 0.900183i \(-0.356567\pi\)
\(954\) 0 0
\(955\) 42.4811 + 24.5265i 1.37466 + 0.793658i
\(956\) 22.5023 21.4454i 0.727776 0.693593i
\(957\) 0 0
\(958\) −4.62583 + 32.1454i −0.149454 + 1.03857i
\(959\) −0.304398 + 1.72633i −0.00982954 + 0.0557461i
\(960\) 0 0
\(961\) −18.0742 + 15.1661i −0.583040 + 0.489229i
\(962\) 7.99476 14.9172i 0.257762 0.480948i
\(963\) 0 0
\(964\) 13.9722 + 21.0121i 0.450015 + 0.676754i
\(965\) 4.66513 12.8173i 0.150176 0.412605i
\(966\) 0 0
\(967\) 23.6086 + 19.8100i 0.759202 + 0.637046i 0.937919 0.346854i \(-0.112750\pi\)
−0.178717 + 0.983901i \(0.557195\pi\)
\(968\) −2.64763 + 1.25908i −0.0850979 + 0.0404684i
\(969\) 0 0
\(970\) −18.7594 + 3.92287i −0.602329 + 0.125956i
\(971\) 43.2999i 1.38956i −0.719223 0.694779i \(-0.755502\pi\)
0.719223 0.694779i \(-0.244498\pi\)
\(972\) 0 0
\(973\) 0.475690i 0.0152499i
\(974\) −2.55103 12.1992i −0.0817403 0.390888i
\(975\) 0 0
\(976\) −0.482063 0.936198i −0.0154305 0.0299670i
\(977\) −4.11710 3.45466i −0.131718 0.110524i 0.574549 0.818470i \(-0.305178\pi\)
−0.706267 + 0.707946i \(0.749622\pi\)
\(978\) 0 0
\(979\) 5.09839 14.0077i 0.162945 0.447688i
\(980\) 25.5863 17.0139i 0.817324 0.543488i
\(981\) 0 0
\(982\) 14.6587 + 7.85622i 0.467776 + 0.250702i
\(983\) −0.806129 + 0.676422i −0.0257115 + 0.0215745i −0.655553 0.755149i \(-0.727564\pi\)
0.629841 + 0.776724i \(0.283120\pi\)
\(984\) 0 0
\(985\) −1.84392 + 10.4574i −0.0587521 + 0.333200i
\(986\) 66.5849 + 9.58179i 2.12050 + 0.305146i
\(987\) 0 0
\(988\) 24.8916 23.7225i 0.791909 0.754713i
\(989\) −16.7270 9.65734i −0.531888 0.307086i
\(990\) 0 0
\(991\) 10.7235 + 18.5737i 0.340644 + 0.590013i 0.984553 0.175090i \(-0.0560215\pi\)
−0.643908 + 0.765103i \(0.722688\pi\)
\(992\) −15.1143 2.92265i −0.479880 0.0927942i
\(993\) 0 0
\(994\) 4.87823 + 3.83725i 0.154728 + 0.121710i
\(995\) 11.0174 + 30.2700i 0.349274 + 0.959622i
\(996\) 0 0
\(997\) −9.02724 + 1.59175i −0.285896 + 0.0504111i −0.314757 0.949172i \(-0.601923\pi\)
0.0288614 + 0.999583i \(0.490812\pi\)
\(998\) 0.788669 + 24.9411i 0.0249649 + 0.789496i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.253.15 204
3.2 odd 2 216.2.t.a.13.20 yes 204
8.5 even 2 inner 648.2.t.a.253.16 204
12.11 even 2 864.2.bf.a.337.29 204
24.5 odd 2 216.2.t.a.13.19 204
24.11 even 2 864.2.bf.a.337.6 204
27.2 odd 18 216.2.t.a.133.19 yes 204
27.25 even 9 inner 648.2.t.a.397.16 204
108.83 even 18 864.2.bf.a.241.6 204
216.29 odd 18 216.2.t.a.133.20 yes 204
216.83 even 18 864.2.bf.a.241.29 204
216.133 even 18 inner 648.2.t.a.397.15 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.19 204 24.5 odd 2
216.2.t.a.13.20 yes 204 3.2 odd 2
216.2.t.a.133.19 yes 204 27.2 odd 18
216.2.t.a.133.20 yes 204 216.29 odd 18
648.2.t.a.253.15 204 1.1 even 1 trivial
648.2.t.a.253.16 204 8.5 even 2 inner
648.2.t.a.397.15 204 216.133 even 18 inner
648.2.t.a.397.16 204 27.25 even 9 inner
864.2.bf.a.241.6 204 108.83 even 18
864.2.bf.a.241.29 204 216.83 even 18
864.2.bf.a.337.6 204 24.11 even 2
864.2.bf.a.337.29 204 12.11 even 2