Properties

Label 648.2.f.a.323.3
Level $648$
Weight $2$
Character 648.323
Analytic conductor $5.174$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,2,Mod(323,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 323.3
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 648.323
Dual form 648.2.f.a.323.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} -2.82843i q^{8} +O(q^{10})\) \(q+1.41421i q^{2} -2.00000 q^{4} -2.82843i q^{8} -6.61037i q^{11} +4.00000 q^{16} -2.36773i q^{17} +6.34847 q^{19} +9.34847 q^{22} -5.00000 q^{25} +5.65685i q^{32} +3.34847 q^{34} +8.97809i q^{38} -10.8530i q^{41} +12.3485 q^{43} +13.2207i q^{44} +7.00000 q^{49} -7.07107i q^{50} +1.87492i q^{59} -8.00000 q^{64} +0.348469 q^{67} +4.73545i q^{68} -15.6969 q^{73} -12.6969 q^{76} +15.3485 q^{82} +2.82843i q^{83} +17.4634i q^{86} -18.6969 q^{88} -5.65685i q^{89} -9.69694 q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{4} + 16 q^{16} - 4 q^{19} + 8 q^{22} - 20 q^{25} - 16 q^{34} + 20 q^{43} + 28 q^{49} - 32 q^{64} - 28 q^{67} - 4 q^{73} + 8 q^{76} + 32 q^{82} - 16 q^{88} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) − 2.82843i − 1.00000i
\(9\) 0 0
\(10\) 0 0
\(11\) − 6.61037i − 1.99310i −0.0829925 0.996550i \(-0.526448\pi\)
0.0829925 0.996550i \(-0.473552\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) − 2.36773i − 0.574258i −0.957892 0.287129i \(-0.907299\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) 0 0
\(19\) 6.34847 1.45644 0.728219 0.685344i \(-0.240348\pi\)
0.728219 + 0.685344i \(0.240348\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 9.34847 1.99310
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) 3.34847 0.574258
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 8.97809i 1.45644i
\(39\) 0 0
\(40\) 0 0
\(41\) − 10.8530i − 1.69495i −0.530831 0.847477i \(-0.678120\pi\)
0.530831 0.847477i \(-0.321880\pi\)
\(42\) 0 0
\(43\) 12.3485 1.88312 0.941562 0.336840i \(-0.109358\pi\)
0.941562 + 0.336840i \(0.109358\pi\)
\(44\) 13.2207i 1.99310i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) − 7.07107i − 1.00000i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.87492i 0.244093i 0.992524 + 0.122047i \(0.0389457\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0.348469 0.0425723 0.0212861 0.999773i \(-0.493224\pi\)
0.0212861 + 0.999773i \(0.493224\pi\)
\(68\) 4.73545i 0.574258i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −15.6969 −1.83719 −0.918594 0.395203i \(-0.870674\pi\)
−0.918594 + 0.395203i \(0.870674\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −12.6969 −1.45644
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 15.3485 1.69495
\(83\) 2.82843i 0.310460i 0.987878 + 0.155230i \(0.0496119\pi\)
−0.987878 + 0.155230i \(0.950388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 17.4634i 1.88312i
\(87\) 0 0
\(88\) −18.6969 −1.99310
\(89\) − 5.65685i − 0.599625i −0.953998 0.299813i \(-0.903076\pi\)
0.953998 0.299813i \(-0.0969242\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.69694 −0.984575 −0.492287 0.870433i \(-0.663839\pi\)
−0.492287 + 0.870433i \(0.663839\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 15.0956i − 1.45935i −0.683793 0.729676i \(-0.739671\pi\)
0.683793 0.729676i \(-0.260329\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.3137i 1.06430i 0.846649 + 0.532152i \(0.178617\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −2.65153 −0.244093
\(119\) 0 0
\(120\) 0 0
\(121\) −32.6969 −2.97245
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) − 11.3137i − 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) − 14.1421i − 1.23560i −0.786334 0.617802i \(-0.788023\pi\)
0.786334 0.617802i \(-0.211977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.492810i 0.0425723i
\(135\) 0 0
\(136\) −6.69694 −0.574258
\(137\) 6.11756i 0.522658i 0.965250 + 0.261329i \(0.0841608\pi\)
−0.965250 + 0.261329i \(0.915839\pi\)
\(138\) 0 0
\(139\) 18.3485 1.55630 0.778148 0.628080i \(-0.216159\pi\)
0.778148 + 0.628080i \(0.216159\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) − 22.1988i − 1.83719i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) − 17.9562i − 1.45644i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 21.7060i 1.69495i
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −24.6969 −1.88312
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 26.4415i − 1.99310i
\(177\) 0 0
\(178\) 8.00000 0.599625
\(179\) 19.7990i 1.47985i 0.672692 + 0.739923i \(0.265138\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −15.6515 −1.14455
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −3.69694 −0.266111 −0.133056 0.991109i \(-0.542479\pi\)
−0.133056 + 0.991109i \(0.542479\pi\)
\(194\) − 13.7135i − 0.984575i
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 14.1421i 1.00000i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 41.9657i − 2.90283i
\(210\) 0 0
\(211\) 14.0000 0.963800 0.481900 0.876226i \(-0.339947\pi\)
0.481900 + 0.876226i \(0.339947\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 21.3485 1.45935
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −16.0000 −1.06430
\(227\) 24.5665i 1.63054i 0.579082 + 0.815270i \(0.303411\pi\)
−0.579082 + 0.815270i \(0.696589\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 28.8092i 1.88735i 0.330870 + 0.943676i \(0.392658\pi\)
−0.330870 + 0.943676i \(0.607342\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 3.74983i − 0.244093i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −27.6969 −1.78412 −0.892058 0.451920i \(-0.850739\pi\)
−0.892058 + 0.451920i \(0.850739\pi\)
\(242\) − 46.2405i − 2.97245i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.3602i 0.653930i 0.945036 + 0.326965i \(0.106026\pi\)
−0.945036 + 0.326965i \(0.893974\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 20.3239i 1.26777i 0.773427 + 0.633885i \(0.218541\pi\)
−0.773427 + 0.633885i \(0.781459\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.696938 −0.0425723
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) − 9.47090i − 0.574258i
\(273\) 0 0
\(274\) −8.65153 −0.522658
\(275\) 33.0518i 1.99310i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 25.9487i 1.55630i
\(279\) 0 0
\(280\) 0 0
\(281\) 28.2843i 1.68730i 0.536895 + 0.843649i \(0.319597\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) −22.0000 −1.30776 −0.653882 0.756596i \(-0.726861\pi\)
−0.653882 + 0.756596i \(0.726861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 11.3939 0.670228
\(290\) 0 0
\(291\) 0 0
\(292\) 31.3939 1.83719
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 25.3939 1.45644
\(305\) 0 0
\(306\) 0 0
\(307\) 24.3485 1.38964 0.694820 0.719183i \(-0.255484\pi\)
0.694820 + 0.719183i \(0.255484\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 34.3939 1.94406 0.972028 0.234863i \(-0.0754642\pi\)
0.972028 + 0.234863i \(0.0754642\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 15.0314i − 0.836371i
\(324\) 0 0
\(325\) 0 0
\(326\) 2.82843i 0.156652i
\(327\) 0 0
\(328\) −30.6969 −1.69495
\(329\) 0 0
\(330\) 0 0
\(331\) 26.0000 1.42909 0.714545 0.699590i \(-0.246634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) − 5.65685i − 0.310460i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 22.3939 1.21987 0.609936 0.792451i \(-0.291195\pi\)
0.609936 + 0.792451i \(0.291195\pi\)
\(338\) 18.3848i 1.00000i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) − 34.9267i − 1.88312i
\(345\) 0 0
\(346\) 0 0
\(347\) − 23.5809i − 1.26589i −0.774197 0.632945i \(-0.781846\pi\)
0.774197 0.632945i \(-0.218154\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 37.3939 1.99310
\(353\) 37.2945i 1.98498i 0.122308 + 0.992492i \(0.460970\pi\)
−0.122308 + 0.992492i \(0.539030\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 11.3137i 0.599625i
\(357\) 0 0
\(358\) −28.0000 −1.47985
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 21.3031 1.12121
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) − 22.1346i − 1.14455i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −11.6515 −0.598499 −0.299249 0.954175i \(-0.596736\pi\)
−0.299249 + 0.954175i \(0.596736\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 5.22826i − 0.266111i
\(387\) 0 0
\(388\) 19.3939 0.984575
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 19.7990i − 1.00000i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 14.6028i 0.729231i 0.931158 + 0.364615i \(0.118800\pi\)
−0.931158 + 0.364615i \(0.881200\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 40.3939 1.99735 0.998674 0.0514740i \(-0.0163919\pi\)
0.998674 + 0.0514740i \(0.0163919\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 59.3485 2.90283
\(419\) 36.7696i 1.79631i 0.439679 + 0.898155i \(0.355092\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 19.7990i 0.963800i
\(423\) 0 0
\(424\) 0 0
\(425\) 11.8386i 0.574258i
\(426\) 0 0
\(427\) 0 0
\(428\) 30.1913i 1.45935i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −33.6969 −1.61937 −0.809686 0.586864i \(-0.800362\pi\)
−0.809686 + 0.586864i \(0.800362\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 37.7873i − 1.79533i −0.440681 0.897664i \(-0.645263\pi\)
0.440681 0.897664i \(-0.354737\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 33.5446i − 1.58307i −0.611124 0.791535i \(-0.709282\pi\)
0.611124 0.791535i \(-0.290718\pi\)
\(450\) 0 0
\(451\) −71.7423 −3.37822
\(452\) − 22.6274i − 1.06430i
\(453\) 0 0
\(454\) −34.7423 −1.63054
\(455\) 0 0
\(456\) 0 0
\(457\) 16.3939 0.766873 0.383437 0.923567i \(-0.374740\pi\)
0.383437 + 0.923567i \(0.374740\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −40.7423 −1.88735
\(467\) 41.5371i 1.92211i 0.276360 + 0.961054i \(0.410872\pi\)
−0.276360 + 0.961054i \(0.589128\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 5.30306 0.244093
\(473\) − 81.6279i − 3.75325i
\(474\) 0 0
\(475\) −31.7423 −1.45644
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) − 39.1694i − 1.78412i
\(483\) 0 0
\(484\) 65.3939 2.97245
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 29.3020i − 1.32238i −0.750218 0.661190i \(-0.770052\pi\)
0.750218 0.661190i \(-0.229948\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −43.7423 −1.95818 −0.979088 0.203436i \(-0.934789\pi\)
−0.979088 + 0.203436i \(0.934789\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −14.6515 −0.653930
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) −28.7423 −1.26777
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 27.8236i − 1.21897i −0.792797 0.609486i \(-0.791376\pi\)
0.792797 0.609486i \(-0.208624\pi\)
\(522\) 0 0
\(523\) 38.0000 1.66162 0.830812 0.556553i \(-0.187876\pi\)
0.830812 + 0.556553i \(0.187876\pi\)
\(524\) 28.2843i 1.23560i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) − 0.985620i − 0.0425723i
\(537\) 0 0
\(538\) 0 0
\(539\) − 46.2726i − 1.99310i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 13.3939 0.574258
\(545\) 0 0
\(546\) 0 0
\(547\) 30.3485 1.29761 0.648803 0.760956i \(-0.275270\pi\)
0.648803 + 0.760956i \(0.275270\pi\)
\(548\) − 12.2351i − 0.522658i
\(549\) 0 0
\(550\) −46.7423 −1.99310
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −36.6969 −1.55630
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −40.0000 −1.68730
\(563\) 7.59599i 0.320133i 0.987106 + 0.160066i \(0.0511708\pi\)
−0.987106 + 0.160066i \(0.948829\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 31.1127i − 1.30776i
\(567\) 0 0
\(568\) 0 0
\(569\) − 25.0594i − 1.05054i −0.850935 0.525271i \(-0.823964\pi\)
0.850935 0.525271i \(-0.176036\pi\)
\(570\) 0 0
\(571\) −25.7423 −1.07728 −0.538642 0.842535i \(-0.681062\pi\)
−0.538642 + 0.842535i \(0.681062\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 46.3939 1.93140 0.965701 0.259656i \(-0.0836092\pi\)
0.965701 + 0.259656i \(0.0836092\pi\)
\(578\) 16.1134i 0.670228i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 44.3976i 1.83719i
\(585\) 0 0
\(586\) 0 0
\(587\) 18.8455i 0.777836i 0.921272 + 0.388918i \(0.127151\pi\)
−0.921272 + 0.388918i \(0.872849\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.2548i 1.85839i 0.369586 + 0.929197i \(0.379500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 8.30306 0.338689 0.169344 0.985557i \(-0.445835\pi\)
0.169344 + 0.985557i \(0.445835\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 35.9124i 1.45644i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 34.4339i 1.38964i
\(615\) 0 0
\(616\) 0 0
\(617\) 45.7798i 1.84302i 0.388351 + 0.921512i \(0.373045\pi\)
−0.388351 + 0.921512i \(0.626955\pi\)
\(618\) 0 0
\(619\) −49.7423 −1.99931 −0.999657 0.0261952i \(-0.991661\pi\)
−0.999657 + 0.0261952i \(0.991661\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 48.6403i 1.94406i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 50.5152i − 1.99523i −0.0690201 0.997615i \(-0.521987\pi\)
0.0690201 0.997615i \(-0.478013\pi\)
\(642\) 0 0
\(643\) −17.6515 −0.696108 −0.348054 0.937474i \(-0.613157\pi\)
−0.348054 + 0.937474i \(0.613157\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 21.2577 0.836371
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 12.3939 0.486502
\(650\) 0 0
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 43.4120i − 1.69495i
\(657\) 0 0
\(658\) 0 0
\(659\) − 48.0833i − 1.87306i −0.350590 0.936529i \(-0.614019\pi\)
0.350590 0.936529i \(-0.385981\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 36.7696i 1.42909i
\(663\) 0 0
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 31.6697i 1.21987i
\(675\) 0 0
\(676\) −26.0000 −1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 20.8167i − 0.796530i −0.917270 0.398265i \(-0.869613\pi\)
0.917270 0.398265i \(-0.130387\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 49.3939 1.88312
\(689\) 0 0
\(690\) 0 0
\(691\) −46.0000 −1.74992 −0.874961 0.484193i \(-0.839113\pi\)
−0.874961 + 0.484193i \(0.839113\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 33.3485 1.26589
\(695\) 0 0
\(696\) 0 0
\(697\) −25.6969 −0.973341
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 52.8829i 1.99310i
\(705\) 0 0
\(706\) −52.7423 −1.98498
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −16.0000 −0.599625
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) − 39.5980i − 1.47985i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 30.1271i 1.12121i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 29.2378i − 1.08140i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 2.30351i − 0.0848508i
\(738\) 0 0
\(739\) −19.7423 −0.726234 −0.363117 0.931744i \(-0.618287\pi\)
−0.363117 + 0.931744i \(0.618287\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 31.3031 1.14455
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) − 16.4778i − 0.598499i
\(759\) 0 0
\(760\) 0 0
\(761\) 11.3137i 0.410122i 0.978749 + 0.205061i \(0.0657392\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 7.39388 0.266111
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 27.4271i 0.984575i
\(777\) 0 0
\(778\) 0 0
\(779\) − 68.9000i − 2.46860i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 50.0000 1.78231 0.891154 0.453701i \(-0.149897\pi\)
0.891154 + 0.453701i \(0.149897\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) − 28.2843i − 1.00000i
\(801\) 0 0
\(802\) −20.6515 −0.729231
\(803\) 103.763i 3.66170i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.0881i 0.811735i 0.913932 + 0.405868i \(0.133031\pi\)
−0.913932 + 0.405868i \(0.866969\pi\)
\(810\) 0 0
\(811\) −55.7423 −1.95738 −0.978689 0.205347i \(-0.934168\pi\)
−0.978689 + 0.205347i \(0.934168\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 78.3939 2.74265
\(818\) 57.1256i 1.99735i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.7990i 0.688478i 0.938882 + 0.344239i \(0.111863\pi\)
−0.938882 + 0.344239i \(0.888137\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 16.5741i − 0.574258i
\(834\) 0 0
\(835\) 0 0
\(836\) 83.9314i 2.90283i
\(837\) 0 0
\(838\) −52.0000 −1.79631
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) −28.0000 −0.963800
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) −16.7423 −0.574258
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −42.6969 −1.45935
\(857\) − 22.6274i − 0.772938i −0.922302 0.386469i \(-0.873695\pi\)
0.922302 0.386469i \(-0.126305\pi\)
\(858\) 0 0
\(859\) 36.3485 1.24019 0.620097 0.784525i \(-0.287093\pi\)
0.620097 + 0.784525i \(0.287093\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 47.6547i − 1.61937i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 56.5685i − 1.90584i −0.303218 0.952921i \(-0.598061\pi\)
0.303218 0.952921i \(-0.401939\pi\)
\(882\) 0 0
\(883\) 50.4393 1.69742 0.848709 0.528861i \(-0.177381\pi\)
0.848709 + 0.528861i \(0.177381\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 53.4393 1.79533
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 47.4393 1.58307
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) − 101.459i − 3.37822i
\(903\) 0 0
\(904\) 32.0000 1.06430
\(905\) 0 0
\(906\) 0 0
\(907\) 56.4393 1.87404 0.937018 0.349281i \(-0.113574\pi\)
0.937018 + 0.349281i \(0.113574\pi\)
\(908\) − 49.1331i − 1.63054i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 18.6969 0.618778
\(914\) 23.1844i 0.766873i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28.2843i 0.927977i 0.885841 + 0.463988i \(0.153582\pi\)
−0.885841 + 0.463988i \(0.846418\pi\)
\(930\) 0 0
\(931\) 44.4393 1.45644
\(932\) − 57.6184i − 1.88735i
\(933\) 0 0
\(934\) −58.7423 −1.92211
\(935\) 0 0
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 7.49966i 0.244093i
\(945\) 0 0
\(946\) 115.439 3.75325
\(947\) − 0.889296i − 0.0288982i −0.999896 0.0144491i \(-0.995401\pi\)
0.999896 0.0144491i \(-0.00459946\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) − 44.8905i − 1.45644i
\(951\) 0 0
\(952\) 0 0
\(953\) − 59.0005i − 1.91121i −0.294646 0.955607i \(-0.595202\pi\)
0.294646 0.955607i \(-0.404798\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 55.3939 1.78412
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 92.4809i 2.97245i
\(969\) 0 0
\(970\) 0 0
\(971\) − 31.1127i − 0.998454i −0.866471 0.499227i \(-0.833617\pi\)
0.866471 0.499227i \(-0.166383\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 36.3089i − 1.16162i −0.814038 0.580812i \(-0.802735\pi\)
0.814038 0.580812i \(-0.197265\pi\)
\(978\) 0 0
\(979\) −37.3939 −1.19511
\(980\) 0 0
\(981\) 0 0
\(982\) 41.4393 1.32238
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) − 61.8610i − 1.95818i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.f.a.323.3 4
3.2 odd 2 inner 648.2.f.a.323.2 4
4.3 odd 2 2592.2.f.a.1295.4 4
8.3 odd 2 CM 648.2.f.a.323.3 4
8.5 even 2 2592.2.f.a.1295.4 4
9.2 odd 6 216.2.l.a.179.1 4
9.4 even 3 216.2.l.a.35.1 4
9.5 odd 6 72.2.l.a.11.2 4
9.7 even 3 72.2.l.a.59.2 yes 4
12.11 even 2 2592.2.f.a.1295.1 4
24.5 odd 2 2592.2.f.a.1295.1 4
24.11 even 2 inner 648.2.f.a.323.2 4
36.7 odd 6 288.2.p.a.239.2 4
36.11 even 6 864.2.p.a.719.1 4
36.23 even 6 288.2.p.a.47.2 4
36.31 odd 6 864.2.p.a.143.1 4
72.5 odd 6 288.2.p.a.47.2 4
72.11 even 6 216.2.l.a.179.1 4
72.13 even 6 864.2.p.a.143.1 4
72.29 odd 6 864.2.p.a.719.1 4
72.43 odd 6 72.2.l.a.59.2 yes 4
72.59 even 6 72.2.l.a.11.2 4
72.61 even 6 288.2.p.a.239.2 4
72.67 odd 6 216.2.l.a.35.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.l.a.11.2 4 9.5 odd 6
72.2.l.a.11.2 4 72.59 even 6
72.2.l.a.59.2 yes 4 9.7 even 3
72.2.l.a.59.2 yes 4 72.43 odd 6
216.2.l.a.35.1 4 9.4 even 3
216.2.l.a.35.1 4 72.67 odd 6
216.2.l.a.179.1 4 9.2 odd 6
216.2.l.a.179.1 4 72.11 even 6
288.2.p.a.47.2 4 36.23 even 6
288.2.p.a.47.2 4 72.5 odd 6
288.2.p.a.239.2 4 36.7 odd 6
288.2.p.a.239.2 4 72.61 even 6
648.2.f.a.323.2 4 3.2 odd 2 inner
648.2.f.a.323.2 4 24.11 even 2 inner
648.2.f.a.323.3 4 1.1 even 1 trivial
648.2.f.a.323.3 4 8.3 odd 2 CM
864.2.p.a.143.1 4 36.31 odd 6
864.2.p.a.143.1 4 72.13 even 6
864.2.p.a.719.1 4 36.11 even 6
864.2.p.a.719.1 4 72.29 odd 6
2592.2.f.a.1295.1 4 12.11 even 2
2592.2.f.a.1295.1 4 24.5 odd 2
2592.2.f.a.1295.4 4 4.3 odd 2
2592.2.f.a.1295.4 4 8.5 even 2