Properties

Label 648.2.f.a.323.1
Level $648$
Weight $2$
Character 648.323
Analytic conductor $5.174$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,2,Mod(323,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 323.1
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 648.323
Dual form 648.2.f.a.323.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +2.82843i q^{8} +O(q^{10})\) \(q-1.41421i q^{2} -2.00000 q^{4} +2.82843i q^{8} -3.78194i q^{11} +4.00000 q^{16} -8.02458i q^{17} -8.34847 q^{19} -5.34847 q^{22} -5.00000 q^{25} -5.65685i q^{32} -11.3485 q^{34} +11.8065i q^{38} +0.460702i q^{41} -2.34847 q^{43} +7.56388i q^{44} +7.00000 q^{49} +7.07107i q^{50} -12.2672i q^{59} -8.00000 q^{64} -14.3485 q^{67} +16.0492i q^{68} +13.6969 q^{73} +16.6969 q^{76} +0.651531 q^{82} -2.82843i q^{83} +3.32124i q^{86} +10.6969 q^{88} +5.65685i q^{89} +19.6969 q^{97} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{4} + 16 q^{16} - 4 q^{19} + 8 q^{22} - 20 q^{25} - 16 q^{34} + 20 q^{43} + 28 q^{49} - 32 q^{64} - 28 q^{67} - 4 q^{73} + 8 q^{76} + 32 q^{82} - 16 q^{88} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 1.00000i
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.78194i − 1.14030i −0.821541 0.570149i \(-0.806886\pi\)
0.821541 0.570149i \(-0.193114\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) − 8.02458i − 1.94625i −0.230285 0.973123i \(-0.573966\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 0 0
\(19\) −8.34847 −1.91527 −0.957635 0.287984i \(-0.907015\pi\)
−0.957635 + 0.287984i \(0.907015\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −5.34847 −1.14030
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) − 5.65685i − 1.00000i
\(33\) 0 0
\(34\) −11.3485 −1.94625
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 11.8065i 1.91527i
\(39\) 0 0
\(40\) 0 0
\(41\) 0.460702i 0.0719495i 0.999353 + 0.0359748i \(0.0114536\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) 0 0
\(43\) −2.34847 −0.358138 −0.179069 0.983836i \(-0.557309\pi\)
−0.179069 + 0.983836i \(0.557309\pi\)
\(44\) 7.56388i 1.14030i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 7.07107i 1.00000i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 12.2672i − 1.59706i −0.601958 0.798528i \(-0.705612\pi\)
0.601958 0.798528i \(-0.294388\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −14.3485 −1.75294 −0.876472 0.481452i \(-0.840109\pi\)
−0.876472 + 0.481452i \(0.840109\pi\)
\(68\) 16.0492i 1.94625i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 13.6969 1.60311 0.801553 0.597924i \(-0.204008\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 16.6969 1.91527
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0.651531 0.0719495
\(83\) − 2.82843i − 0.310460i −0.987878 0.155230i \(-0.950388\pi\)
0.987878 0.155230i \(-0.0496119\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.32124i 0.358138i
\(87\) 0 0
\(88\) 10.6969 1.14030
\(89\) 5.65685i 0.599625i 0.953998 + 0.299813i \(0.0969242\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 19.6969 1.99992 0.999961 0.00888289i \(-0.00282755\pi\)
0.999961 + 0.00888289i \(0.00282755\pi\)
\(98\) − 9.89949i − 1.00000i
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.70334i 0.454689i 0.973814 + 0.227345i \(0.0730044\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 11.3137i − 1.06430i −0.846649 0.532152i \(-0.821383\pi\)
0.846649 0.532152i \(-0.178617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −17.3485 −1.59706
\(119\) 0 0
\(120\) 0 0
\(121\) −3.30306 −0.300278
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) 14.1421i 1.23560i 0.786334 + 0.617802i \(0.211977\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 20.2918i 1.75294i
\(135\) 0 0
\(136\) 22.6969 1.94625
\(137\) − 16.5099i − 1.41053i −0.708942 0.705266i \(-0.750827\pi\)
0.708942 0.705266i \(-0.249173\pi\)
\(138\) 0 0
\(139\) 3.65153 0.309719 0.154859 0.987937i \(-0.450508\pi\)
0.154859 + 0.987937i \(0.450508\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) − 19.3704i − 1.60311i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) − 23.6130i − 1.91527i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) − 0.921404i − 0.0719495i
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 4.69694 0.358138
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 15.1278i − 1.14030i
\(177\) 0 0
\(178\) 8.00000 0.599625
\(179\) − 19.7990i − 1.47985i −0.672692 0.739923i \(-0.734862\pi\)
0.672692 0.739923i \(-0.265138\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −30.3485 −2.21930
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 25.6969 1.84971 0.924853 0.380325i \(-0.124188\pi\)
0.924853 + 0.380325i \(0.124188\pi\)
\(194\) − 27.8557i − 1.99992i
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) − 14.1421i − 1.00000i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 31.5734i 2.18398i
\(210\) 0 0
\(211\) 14.0000 0.963800 0.481900 0.876226i \(-0.339947\pi\)
0.481900 + 0.876226i \(0.339947\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 6.65153 0.454689
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −16.0000 −1.06430
\(227\) 27.3950i 1.81827i 0.416503 + 0.909134i \(0.363255\pi\)
−0.416503 + 0.909134i \(0.636745\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.1523i 1.51676i 0.651813 + 0.758380i \(0.274009\pi\)
−0.651813 + 0.758380i \(0.725991\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 24.5344i 1.59706i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 1.69694 0.109309 0.0546547 0.998505i \(-0.482594\pi\)
0.0546547 + 0.998505i \(0.482594\pi\)
\(242\) 4.67123i 0.300278i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 20.7525i − 1.30989i −0.755678 0.654943i \(-0.772693\pi\)
0.755678 0.654943i \(-0.227307\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 31.6376i 1.97350i 0.162247 + 0.986750i \(0.448126\pi\)
−0.162247 + 0.986750i \(0.551874\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 28.6969 1.75294
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) − 32.0983i − 1.94625i
\(273\) 0 0
\(274\) −23.3485 −1.41053
\(275\) 18.9097i 1.14030i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) − 5.16404i − 0.309719i
\(279\) 0 0
\(280\) 0 0
\(281\) − 28.2843i − 1.68730i −0.536895 0.843649i \(-0.680403\pi\)
0.536895 0.843649i \(-0.319597\pi\)
\(282\) 0 0
\(283\) −22.0000 −1.30776 −0.653882 0.756596i \(-0.726861\pi\)
−0.653882 + 0.756596i \(0.726861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −47.3939 −2.78788
\(290\) 0 0
\(291\) 0 0
\(292\) −27.3939 −1.60311
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −33.3939 −1.91527
\(305\) 0 0
\(306\) 0 0
\(307\) 9.65153 0.550842 0.275421 0.961324i \(-0.411183\pi\)
0.275421 + 0.961324i \(0.411183\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −24.3939 −1.37882 −0.689412 0.724370i \(-0.742131\pi\)
−0.689412 + 0.724370i \(0.742131\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 66.9930i 3.72759i
\(324\) 0 0
\(325\) 0 0
\(326\) − 2.82843i − 0.156652i
\(327\) 0 0
\(328\) −1.30306 −0.0719495
\(329\) 0 0
\(330\) 0 0
\(331\) 26.0000 1.42909 0.714545 0.699590i \(-0.246634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) 5.65685i 0.310460i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −36.3939 −1.98250 −0.991250 0.131995i \(-0.957862\pi\)
−0.991250 + 0.131995i \(0.957862\pi\)
\(338\) − 18.3848i − 1.00000i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) − 6.64247i − 0.358138i
\(345\) 0 0
\(346\) 0 0
\(347\) 13.1886i 0.708002i 0.935245 + 0.354001i \(0.115179\pi\)
−0.935245 + 0.354001i \(0.884821\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −21.3939 −1.14030
\(353\) 14.6671i 0.780648i 0.920677 + 0.390324i \(0.127637\pi\)
−0.920677 + 0.390324i \(0.872363\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 11.3137i − 0.599625i
\(357\) 0 0
\(358\) −28.0000 −1.47985
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 50.6969 2.66826
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 42.9192i 2.21930i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −26.3485 −1.35343 −0.676715 0.736245i \(-0.736597\pi\)
−0.676715 + 0.736245i \(0.736597\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 36.3410i − 1.84971i
\(387\) 0 0
\(388\) −39.3939 −1.99992
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 19.7990i 1.00000i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) − 24.9951i − 1.24820i −0.781345 0.624099i \(-0.785466\pi\)
0.781345 0.624099i \(-0.214534\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −18.3939 −0.909519 −0.454759 0.890614i \(-0.650275\pi\)
−0.454759 + 0.890614i \(0.650275\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 44.6515 2.18398
\(419\) − 36.7696i − 1.79631i −0.439679 0.898155i \(-0.644908\pi\)
0.439679 0.898155i \(-0.355092\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) − 19.7990i − 0.963800i
\(423\) 0 0
\(424\) 0 0
\(425\) 40.1229i 1.94625i
\(426\) 0 0
\(427\) 0 0
\(428\) − 9.40669i − 0.454689i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −4.30306 −0.206792 −0.103396 0.994640i \(-0.532971\pi\)
−0.103396 + 0.994640i \(0.532971\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 34.9589i − 1.66095i −0.557059 0.830473i \(-0.688070\pi\)
0.557059 0.830473i \(-0.311930\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 39.2015i − 1.85003i −0.379927 0.925016i \(-0.624051\pi\)
0.379927 0.925016i \(-0.375949\pi\)
\(450\) 0 0
\(451\) 1.74235 0.0820439
\(452\) 22.6274i 1.06430i
\(453\) 0 0
\(454\) 38.7423 1.81827
\(455\) 0 0
\(456\) 0 0
\(457\) −42.3939 −1.98310 −0.991551 0.129718i \(-0.958593\pi\)
−0.991551 + 0.129718i \(0.958593\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 32.7423 1.51676
\(467\) 10.4244i 0.482384i 0.970477 + 0.241192i \(0.0775384\pi\)
−0.970477 + 0.241192i \(0.922462\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 34.6969 1.59706
\(473\) 8.88177i 0.408384i
\(474\) 0 0
\(475\) 41.7423 1.91527
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) − 2.39983i − 0.109309i
\(483\) 0 0
\(484\) 6.60612 0.300278
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 43.4441i − 1.96061i −0.197499 0.980303i \(-0.563282\pi\)
0.197499 0.980303i \(-0.436718\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 29.7423 1.33145 0.665725 0.746197i \(-0.268122\pi\)
0.665725 + 0.746197i \(0.268122\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −29.3485 −1.30989
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 22.6274i − 1.00000i
\(513\) 0 0
\(514\) 44.7423 1.97350
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.4313i 0.763678i 0.924229 + 0.381839i \(0.124709\pi\)
−0.924229 + 0.381839i \(0.875291\pi\)
\(522\) 0 0
\(523\) 38.0000 1.66162 0.830812 0.556553i \(-0.187876\pi\)
0.830812 + 0.556553i \(0.187876\pi\)
\(524\) − 28.2843i − 1.23560i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) − 40.5836i − 1.75294i
\(537\) 0 0
\(538\) 0 0
\(539\) − 26.4736i − 1.14030i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −45.3939 −1.94625
\(545\) 0 0
\(546\) 0 0
\(547\) 15.6515 0.669211 0.334606 0.942358i \(-0.391397\pi\)
0.334606 + 0.942358i \(0.391397\pi\)
\(548\) 33.0197i 1.41053i
\(549\) 0 0
\(550\) 26.7423 1.14030
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −7.30306 −0.309719
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −40.0000 −1.68730
\(563\) 44.3655i 1.86978i 0.354932 + 0.934892i \(0.384504\pi\)
−0.354932 + 0.934892i \(0.615496\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 31.1127i 1.30776i
\(567\) 0 0
\(568\) 0 0
\(569\) − 47.6868i − 1.99913i −0.0294311 0.999567i \(-0.509370\pi\)
0.0294311 0.999567i \(-0.490630\pi\)
\(570\) 0 0
\(571\) 47.7423 1.99796 0.998978 0.0452101i \(-0.0143957\pi\)
0.998978 + 0.0452101i \(0.0143957\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −12.3939 −0.515964 −0.257982 0.966150i \(-0.583058\pi\)
−0.257982 + 0.966150i \(0.583058\pi\)
\(578\) 67.0251i 2.78788i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 38.7408i 1.60311i
\(585\) 0 0
\(586\) 0 0
\(587\) − 29.2378i − 1.20677i −0.797449 0.603386i \(-0.793818\pi\)
0.797449 0.603386i \(-0.206182\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 45.2548i − 1.85839i −0.369586 0.929197i \(-0.620500\pi\)
0.369586 0.929197i \(-0.379500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 37.6969 1.53769 0.768845 0.639435i \(-0.220832\pi\)
0.768845 + 0.639435i \(0.220832\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 47.2261i 1.91527i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) − 13.6493i − 0.550842i
\(615\) 0 0
\(616\) 0 0
\(617\) 6.18177i 0.248869i 0.992228 + 0.124434i \(0.0397116\pi\)
−0.992228 + 0.124434i \(0.960288\pi\)
\(618\) 0 0
\(619\) 23.7423 0.954285 0.477143 0.878826i \(-0.341672\pi\)
0.477143 + 0.878826i \(0.341672\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 34.4982i 1.37882i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 22.2309i − 0.878069i −0.898470 0.439034i \(-0.855321\pi\)
0.898470 0.439034i \(-0.144679\pi\)
\(642\) 0 0
\(643\) −32.3485 −1.27570 −0.637850 0.770161i \(-0.720176\pi\)
−0.637850 + 0.770161i \(0.720176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 94.7423 3.72759
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −46.3939 −1.82112
\(650\) 0 0
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.84281i 0.0719495i
\(657\) 0 0
\(658\) 0 0
\(659\) 48.0833i 1.87306i 0.350590 + 0.936529i \(0.385981\pi\)
−0.350590 + 0.936529i \(0.614019\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) − 36.7696i − 1.42909i
\(663\) 0 0
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 51.4687i 1.98250i
\(675\) 0 0
\(676\) −26.0000 −1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 51.9294i − 1.98702i −0.113728 0.993512i \(-0.536279\pi\)
0.113728 0.993512i \(-0.463721\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −9.39388 −0.358138
\(689\) 0 0
\(690\) 0 0
\(691\) −46.0000 −1.74992 −0.874961 0.484193i \(-0.839113\pi\)
−0.874961 + 0.484193i \(0.839113\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 18.6515 0.708002
\(695\) 0 0
\(696\) 0 0
\(697\) 3.69694 0.140032
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 30.2555i 1.14030i
\(705\) 0 0
\(706\) 20.7423 0.780648
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −16.0000 −0.599625
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 39.5980i 1.47985i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 71.6963i − 2.66826i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.8455i 0.697025i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 54.2650i 1.99888i
\(738\) 0 0
\(739\) 53.7423 1.97694 0.988472 0.151403i \(-0.0483792\pi\)
0.988472 + 0.151403i \(0.0483792\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 60.6969 2.21930
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 37.2624i 1.35343i
\(759\) 0 0
\(760\) 0 0
\(761\) − 11.3137i − 0.410122i −0.978749 0.205061i \(-0.934261\pi\)
0.978749 0.205061i \(-0.0657392\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −51.3939 −1.84971
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 55.7114i 1.99992i
\(777\) 0 0
\(778\) 0 0
\(779\) − 3.84616i − 0.137803i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 50.0000 1.78231 0.891154 0.453701i \(-0.149897\pi\)
0.891154 + 0.453701i \(0.149897\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 28.2843i 1.00000i
\(801\) 0 0
\(802\) −35.3485 −1.24820
\(803\) − 51.8010i − 1.82802i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 33.4804i − 1.17711i −0.808458 0.588555i \(-0.799697\pi\)
0.808458 0.588555i \(-0.200303\pi\)
\(810\) 0 0
\(811\) 17.7423 0.623018 0.311509 0.950243i \(-0.399166\pi\)
0.311509 + 0.950243i \(0.399166\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 19.6061 0.685931
\(818\) 26.0129i 0.909519i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 19.7990i − 0.688478i −0.938882 0.344239i \(-0.888137\pi\)
0.938882 0.344239i \(-0.111863\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 56.1721i − 1.94625i
\(834\) 0 0
\(835\) 0 0
\(836\) − 63.1468i − 2.18398i
\(837\) 0 0
\(838\) −52.0000 −1.79631
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) −28.0000 −0.963800
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 56.7423 1.94625
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −13.3031 −0.454689
\(857\) 22.6274i 0.772938i 0.922302 + 0.386469i \(0.126305\pi\)
−0.922302 + 0.386469i \(0.873695\pi\)
\(858\) 0 0
\(859\) 21.6515 0.738741 0.369370 0.929282i \(-0.379573\pi\)
0.369370 + 0.929282i \(0.379573\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 6.08545i 0.206792i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 56.5685i 1.90584i 0.303218 + 0.952921i \(0.401939\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −52.4393 −1.76472 −0.882361 0.470573i \(-0.844047\pi\)
−0.882361 + 0.470573i \(0.844047\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −49.4393 −1.66095
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −55.4393 −1.85003
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) − 2.46405i − 0.0820439i
\(903\) 0 0
\(904\) 32.0000 1.06430
\(905\) 0 0
\(906\) 0 0
\(907\) −46.4393 −1.54199 −0.770996 0.636841i \(-0.780241\pi\)
−0.770996 + 0.636841i \(0.780241\pi\)
\(908\) − 54.7900i − 1.81827i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −10.6969 −0.354017
\(914\) 59.9540i 1.98310i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 28.2843i − 0.927977i −0.885841 0.463988i \(-0.846418\pi\)
0.885841 0.463988i \(-0.153582\pi\)
\(930\) 0 0
\(931\) −58.4393 −1.91527
\(932\) − 46.3047i − 1.51676i
\(933\) 0 0
\(934\) 14.7423 0.482384
\(935\) 0 0
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) − 49.0689i − 1.59706i
\(945\) 0 0
\(946\) 12.5607 0.408384
\(947\) 52.8508i 1.71742i 0.512461 + 0.858710i \(0.328734\pi\)
−0.512461 + 0.858710i \(0.671266\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) − 59.0326i − 1.91527i
\(951\) 0 0
\(952\) 0 0
\(953\) − 13.7456i − 0.445265i −0.974902 0.222633i \(-0.928535\pi\)
0.974902 0.222633i \(-0.0714650\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) −3.39388 −0.109309
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) − 9.34247i − 0.300278i
\(969\) 0 0
\(970\) 0 0
\(971\) 31.1127i 0.998454i 0.866471 + 0.499227i \(0.166383\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.9165i 0.829144i 0.910017 + 0.414572i \(0.136069\pi\)
−0.910017 + 0.414572i \(0.863931\pi\)
\(978\) 0 0
\(979\) 21.3939 0.683751
\(980\) 0 0
\(981\) 0 0
\(982\) −61.4393 −1.96061
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) − 42.0620i − 1.33145i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.f.a.323.1 4
3.2 odd 2 inner 648.2.f.a.323.4 4
4.3 odd 2 2592.2.f.a.1295.3 4
8.3 odd 2 CM 648.2.f.a.323.1 4
8.5 even 2 2592.2.f.a.1295.3 4
9.2 odd 6 216.2.l.a.179.2 4
9.4 even 3 216.2.l.a.35.2 4
9.5 odd 6 72.2.l.a.11.1 4
9.7 even 3 72.2.l.a.59.1 yes 4
12.11 even 2 2592.2.f.a.1295.2 4
24.5 odd 2 2592.2.f.a.1295.2 4
24.11 even 2 inner 648.2.f.a.323.4 4
36.7 odd 6 288.2.p.a.239.1 4
36.11 even 6 864.2.p.a.719.2 4
36.23 even 6 288.2.p.a.47.1 4
36.31 odd 6 864.2.p.a.143.2 4
72.5 odd 6 288.2.p.a.47.1 4
72.11 even 6 216.2.l.a.179.2 4
72.13 even 6 864.2.p.a.143.2 4
72.29 odd 6 864.2.p.a.719.2 4
72.43 odd 6 72.2.l.a.59.1 yes 4
72.59 even 6 72.2.l.a.11.1 4
72.61 even 6 288.2.p.a.239.1 4
72.67 odd 6 216.2.l.a.35.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.l.a.11.1 4 9.5 odd 6
72.2.l.a.11.1 4 72.59 even 6
72.2.l.a.59.1 yes 4 9.7 even 3
72.2.l.a.59.1 yes 4 72.43 odd 6
216.2.l.a.35.2 4 9.4 even 3
216.2.l.a.35.2 4 72.67 odd 6
216.2.l.a.179.2 4 9.2 odd 6
216.2.l.a.179.2 4 72.11 even 6
288.2.p.a.47.1 4 36.23 even 6
288.2.p.a.47.1 4 72.5 odd 6
288.2.p.a.239.1 4 36.7 odd 6
288.2.p.a.239.1 4 72.61 even 6
648.2.f.a.323.1 4 1.1 even 1 trivial
648.2.f.a.323.1 4 8.3 odd 2 CM
648.2.f.a.323.4 4 3.2 odd 2 inner
648.2.f.a.323.4 4 24.11 even 2 inner
864.2.p.a.143.2 4 36.31 odd 6
864.2.p.a.143.2 4 72.13 even 6
864.2.p.a.719.2 4 36.11 even 6
864.2.p.a.719.2 4 72.29 odd 6
2592.2.f.a.1295.2 4 12.11 even 2
2592.2.f.a.1295.2 4 24.5 odd 2
2592.2.f.a.1295.3 4 4.3 odd 2
2592.2.f.a.1295.3 4 8.5 even 2