Defining parameters
| Level: | \( N \) | \(=\) | \( 648 = 2^{3} \cdot 3^{4} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 648.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 11 \) | ||
| Sturm bound: | \(216\) | ||
| Trace bound: | \(14\) | ||
| Distinguishing \(T_p\): | \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(648, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 120 | 52 | 68 |
| Cusp forms | 96 | 44 | 52 |
| Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(648, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(648, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(648, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)