Properties

Label 648.2.d
Level $648$
Weight $2$
Character orbit 648.d
Rep. character $\chi_{648}(325,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $11$
Sturm bound $216$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 11 \)
Sturm bound: \(216\)
Trace bound: \(14\)
Distinguishing \(T_p\): \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(648, [\chi])\).

Total New Old
Modular forms 120 52 68
Cusp forms 96 44 52
Eisenstein series 24 8 16

Trace form

\( 44 q + 2 q^{4} + 4 q^{7} - 8 q^{10} - 10 q^{16} + 22 q^{22} - 24 q^{25} + 16 q^{28} + 4 q^{31} - 6 q^{34} - 20 q^{40} + 24 q^{46} + 24 q^{49} - 28 q^{55} + 16 q^{58} + 2 q^{64} - 4 q^{70} - 8 q^{73} - 30 q^{76}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(648, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
648.2.d.a 648.d 8.b $2$ $5.174$ \(\Q(\sqrt{-1}) \) None 72.2.n.a \(-2\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-1)q^{2}-2 i q^{4}-2 i q^{5}+4 q^{7}+\cdots\)
648.2.d.b 648.d 8.b $2$ $5.174$ \(\Q(\sqrt{-7}) \) None 648.2.d.b \(-1\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{2}+(-2+\beta )q^{4}+(-1+2\beta )q^{5}+\cdots\)
648.2.d.c 648.d 8.b $2$ $5.174$ \(\Q(\sqrt{-7}) \) None 648.2.d.b \(1\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+(-2+\beta )q^{4}+(1-2\beta )q^{5}+\cdots\)
648.2.d.d 648.d 8.b $2$ $5.174$ \(\Q(\sqrt{-1}) \) None 72.2.n.a \(2\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+1)q^{2}+2 i q^{4}-2 i q^{5}+4 q^{7}+\cdots\)
648.2.d.e 648.d 8.b $4$ $5.174$ \(\Q(\zeta_{12})\) None 648.2.d.e \(-2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}-\beta_1)q^{2}+(\beta_{3}+\beta_1)q^{4}+(-\beta_{3}+2\beta_{2}+\beta_1-1)q^{5}+\cdots\)
648.2.d.f 648.d 8.b $4$ $5.174$ \(\Q(\sqrt{3}, \sqrt{-5})\) None 648.2.d.f \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(\beta _{1}+\beta _{3})q^{5}-4q^{7}+\cdots\)
648.2.d.g 648.d 8.b $4$ $5.174$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 648.2.d.g \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(1+\beta _{3})q^{4}+(\beta _{2}-\beta _{3})q^{5}+\cdots\)
648.2.d.h 648.d 8.b $4$ $5.174$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 648.2.d.g \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(1+\beta _{3})q^{4}+(\beta _{2}+\beta _{3})q^{5}+\cdots\)
648.2.d.i 648.d 8.b $4$ $5.174$ \(\Q(\zeta_{12})\) None 648.2.d.e \(2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{2}+(\beta_{3}+\beta_1)q^{4}+\cdots\)
648.2.d.j 648.d 8.b $8$ $5.174$ 8.0.\(\cdots\).1 None 72.2.n.b \(-1\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{2}-\beta _{5}q^{4}+(\beta _{1}+\beta _{4}-\beta _{7})q^{5}+\cdots\)
648.2.d.k 648.d 8.b $8$ $5.174$ 8.0.\(\cdots\).1 None 72.2.n.b \(1\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}-\beta _{5}q^{4}+(-\beta _{1}-\beta _{4}+\beta _{7})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(648, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(648, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)