Properties

Label 648.2.a.a.1.1
Level $648$
Weight $2$
Character 648.1
Self dual yes
Analytic conductor $5.174$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(5.17430605098\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 72)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 648.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{5} -3.00000 q^{7} +O(q^{10})\) \(q-1.00000 q^{5} -3.00000 q^{7} +5.00000 q^{11} -5.00000 q^{13} -2.00000 q^{17} -4.00000 q^{19} -1.00000 q^{23} -4.00000 q^{25} -9.00000 q^{29} -1.00000 q^{31} +3.00000 q^{35} -6.00000 q^{37} +3.00000 q^{41} +1.00000 q^{43} -3.00000 q^{47} +2.00000 q^{49} +2.00000 q^{53} -5.00000 q^{55} +11.0000 q^{59} +7.00000 q^{61} +5.00000 q^{65} -1.00000 q^{67} +4.00000 q^{71} -2.00000 q^{73} -15.0000 q^{77} +1.00000 q^{79} +1.00000 q^{83} +2.00000 q^{85} -18.0000 q^{89} +15.0000 q^{91} +4.00000 q^{95} -13.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605 −0.0898027 0.995960i \(-0.528624\pi\)
−0.0898027 + 0.995960i \(0.528624\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) −5.00000 −0.674200
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.0000 1.43208 0.716039 0.698060i \(-0.245953\pi\)
0.716039 + 0.698060i \(0.245953\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.00000 0.620174
\(66\) 0 0
\(67\) −1.00000 −0.122169 −0.0610847 0.998133i \(-0.519456\pi\)
−0.0610847 + 0.998133i \(0.519456\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −15.0000 −1.70941
\(78\) 0 0
\(79\) 1.00000 0.112509 0.0562544 0.998416i \(-0.482084\pi\)
0.0562544 + 0.998416i \(0.482084\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.00000 0.109764 0.0548821 0.998493i \(-0.482522\pi\)
0.0548821 + 0.998493i \(0.482522\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 15.0000 1.57243
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −5.00000 −0.492665 −0.246332 0.969185i \(-0.579225\pi\)
−0.246332 + 0.969185i \(0.579225\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.00000 −0.846649 −0.423324 0.905978i \(-0.639137\pi\)
−0.423324 + 0.905978i \(0.639137\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.00000 −0.436852 −0.218426 0.975854i \(-0.570092\pi\)
−0.218426 + 0.975854i \(0.570092\pi\)
\(132\) 0 0
\(133\) 12.0000 1.04053
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) 3.00000 0.254457 0.127228 0.991873i \(-0.459392\pi\)
0.127228 + 0.991873i \(0.459392\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −25.0000 −2.09061
\(144\) 0 0
\(145\) 9.00000 0.747409
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 19.0000 1.55654 0.778270 0.627929i \(-0.216097\pi\)
0.778270 + 0.627929i \(0.216097\pi\)
\(150\) 0 0
\(151\) 17.0000 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.0000 −1.62503 −0.812514 0.582941i \(-0.801902\pi\)
−0.812514 + 0.582941i \(0.801902\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.00000 0.228086 0.114043 0.993476i \(-0.463620\pi\)
0.114043 + 0.993476i \(0.463620\pi\)
\(174\) 0 0
\(175\) 12.0000 0.907115
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) −10.0000 −0.731272
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −27.0000 −1.95365 −0.976826 0.214036i \(-0.931339\pi\)
−0.976826 + 0.214036i \(0.931339\pi\)
\(192\) 0 0
\(193\) −13.0000 −0.935760 −0.467880 0.883792i \(-0.654982\pi\)
−0.467880 + 0.883792i \(0.654982\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 27.0000 1.89503
\(204\) 0 0
\(205\) −3.00000 −0.209529
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.0000 −1.38343
\(210\) 0 0
\(211\) 7.00000 0.481900 0.240950 0.970538i \(-0.422541\pi\)
0.240950 + 0.970538i \(0.422541\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.00000 −0.0681994
\(216\) 0 0
\(217\) 3.00000 0.203653
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.0000 0.672673
\(222\) 0 0
\(223\) −11.0000 −0.736614 −0.368307 0.929704i \(-0.620063\pi\)
−0.368307 + 0.929704i \(0.620063\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.0000 1.39382 0.696909 0.717159i \(-0.254558\pi\)
0.696909 + 0.717159i \(0.254558\pi\)
\(228\) 0 0
\(229\) −17.0000 −1.12339 −0.561696 0.827344i \(-0.689851\pi\)
−0.561696 + 0.827344i \(0.689851\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.0000 1.70332 0.851658 0.524097i \(-0.175597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) 0 0
\(235\) 3.00000 0.195698
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −17.0000 −1.09964 −0.549819 0.835284i \(-0.685303\pi\)
−0.549819 + 0.835284i \(0.685303\pi\)
\(240\) 0 0
\(241\) 15.0000 0.966235 0.483117 0.875556i \(-0.339504\pi\)
0.483117 + 0.875556i \(0.339504\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 20.0000 1.27257
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) −5.00000 −0.314347
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.00000 0.436648 0.218324 0.975876i \(-0.429941\pi\)
0.218324 + 0.975876i \(0.429941\pi\)
\(258\) 0 0
\(259\) 18.0000 1.11847
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.00000 −0.431638 −0.215819 0.976433i \(-0.569242\pi\)
−0.215819 + 0.976433i \(0.569242\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −20.0000 −1.20605
\(276\) 0 0
\(277\) −29.0000 −1.74244 −0.871221 0.490892i \(-0.836671\pi\)
−0.871221 + 0.490892i \(0.836671\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.0000 1.13344 0.566722 0.823909i \(-0.308211\pi\)
0.566722 + 0.823909i \(0.308211\pi\)
\(282\) 0 0
\(283\) −13.0000 −0.772770 −0.386385 0.922338i \(-0.626276\pi\)
−0.386385 + 0.922338i \(0.626276\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.00000 −0.531253
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.00000 −0.525786 −0.262893 0.964825i \(-0.584677\pi\)
−0.262893 + 0.964825i \(0.584677\pi\)
\(294\) 0 0
\(295\) −11.0000 −0.640445
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.00000 0.289157
\(300\) 0 0
\(301\) −3.00000 −0.172917
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.00000 −0.400819
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.00000 −0.510343 −0.255172 0.966896i \(-0.582132\pi\)
−0.255172 + 0.966896i \(0.582132\pi\)
\(312\) 0 0
\(313\) −9.00000 −0.508710 −0.254355 0.967111i \(-0.581863\pi\)
−0.254355 + 0.967111i \(0.581863\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.0000 0.842484 0.421242 0.906948i \(-0.361594\pi\)
0.421242 + 0.906948i \(0.361594\pi\)
\(318\) 0 0
\(319\) −45.0000 −2.51952
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) 20.0000 1.10940
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.00000 0.496186
\(330\) 0 0
\(331\) −19.0000 −1.04433 −0.522167 0.852843i \(-0.674876\pi\)
−0.522167 + 0.852843i \(0.674876\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.00000 0.0546358
\(336\) 0 0
\(337\) −9.00000 −0.490261 −0.245131 0.969490i \(-0.578831\pi\)
−0.245131 + 0.969490i \(0.578831\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.00000 −0.270765
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.00000 −0.483145 −0.241573 0.970383i \(-0.577663\pi\)
−0.241573 + 0.970383i \(0.577663\pi\)
\(348\) 0 0
\(349\) −21.0000 −1.12410 −0.562052 0.827102i \(-0.689988\pi\)
−0.562052 + 0.827102i \(0.689988\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.00000 −0.266123 −0.133062 0.991108i \(-0.542481\pi\)
−0.133062 + 0.991108i \(0.542481\pi\)
\(354\) 0 0
\(355\) −4.00000 −0.212298
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) −23.0000 −1.20059 −0.600295 0.799779i \(-0.704950\pi\)
−0.600295 + 0.799779i \(0.704950\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) 35.0000 1.81223 0.906116 0.423030i \(-0.139034\pi\)
0.906116 + 0.423030i \(0.139034\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 45.0000 2.31762
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 27.0000 1.37964 0.689818 0.723983i \(-0.257691\pi\)
0.689818 + 0.723983i \(0.257691\pi\)
\(384\) 0 0
\(385\) 15.0000 0.764471
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 35.0000 1.77457 0.887285 0.461221i \(-0.152589\pi\)
0.887285 + 0.461221i \(0.152589\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.00000 −0.0503155
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −21.0000 −1.04869 −0.524345 0.851506i \(-0.675690\pi\)
−0.524345 + 0.851506i \(0.675690\pi\)
\(402\) 0 0
\(403\) 5.00000 0.249068
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −30.0000 −1.48704
\(408\) 0 0
\(409\) −33.0000 −1.63174 −0.815872 0.578232i \(-0.803743\pi\)
−0.815872 + 0.578232i \(0.803743\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −33.0000 −1.62382
\(414\) 0 0
\(415\) −1.00000 −0.0490881
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 15.0000 0.732798 0.366399 0.930458i \(-0.380591\pi\)
0.366399 + 0.930458i \(0.380591\pi\)
\(420\) 0 0
\(421\) −1.00000 −0.0487370 −0.0243685 0.999703i \(-0.507758\pi\)
−0.0243685 + 0.999703i \(0.507758\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 8.00000 0.388057
\(426\) 0 0
\(427\) −21.0000 −1.01626
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.00000 0.191346
\(438\) 0 0
\(439\) 33.0000 1.57500 0.787502 0.616312i \(-0.211374\pi\)
0.787502 + 0.616312i \(0.211374\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.0000 −1.09276 −0.546381 0.837536i \(-0.683995\pi\)
−0.546381 + 0.837536i \(0.683995\pi\)
\(444\) 0 0
\(445\) 18.0000 0.853282
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) 0 0
\(451\) 15.0000 0.706322
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −15.0000 −0.703211
\(456\) 0 0
\(457\) 11.0000 0.514558 0.257279 0.966337i \(-0.417174\pi\)
0.257279 + 0.966337i \(0.417174\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.0000 −1.16437 −0.582183 0.813058i \(-0.697801\pi\)
−0.582183 + 0.813058i \(0.697801\pi\)
\(462\) 0 0
\(463\) 23.0000 1.06890 0.534450 0.845200i \(-0.320519\pi\)
0.534450 + 0.845200i \(0.320519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 3.00000 0.138527
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.00000 0.229900
\(474\) 0 0
\(475\) 16.0000 0.734130
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.00000 0.0456912 0.0228456 0.999739i \(-0.492727\pi\)
0.0228456 + 0.999739i \(0.492727\pi\)
\(480\) 0 0
\(481\) 30.0000 1.36788
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.0000 0.590300
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 27.0000 1.21849 0.609246 0.792981i \(-0.291472\pi\)
0.609246 + 0.792981i \(0.291472\pi\)
\(492\) 0 0
\(493\) 18.0000 0.810679
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 27.0000 1.20869 0.604343 0.796724i \(-0.293436\pi\)
0.604343 + 0.796724i \(0.293436\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.00000 0.132973 0.0664863 0.997787i \(-0.478821\pi\)
0.0664863 + 0.997787i \(0.478821\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.00000 0.220326
\(516\) 0 0
\(517\) −15.0000 −0.659699
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) 40.0000 1.74908 0.874539 0.484955i \(-0.161164\pi\)
0.874539 + 0.484955i \(0.161164\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.00000 0.0871214
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −15.0000 −0.649722
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10.0000 0.430730
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) −19.0000 −0.812381 −0.406191 0.913788i \(-0.633143\pi\)
−0.406191 + 0.913788i \(0.633143\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) −3.00000 −0.127573
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.0000 −0.932170 −0.466085 0.884740i \(-0.654336\pi\)
−0.466085 + 0.884740i \(0.654336\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.00000 −0.0421450 −0.0210725 0.999778i \(-0.506708\pi\)
−0.0210725 + 0.999778i \(0.506708\pi\)
\(564\) 0 0
\(565\) 9.00000 0.378633
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −25.0000 −1.04805 −0.524027 0.851701i \(-0.675571\pi\)
−0.524027 + 0.851701i \(0.675571\pi\)
\(570\) 0 0
\(571\) 15.0000 0.627730 0.313865 0.949468i \(-0.398376\pi\)
0.313865 + 0.949468i \(0.398376\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.00000 −0.124461
\(582\) 0 0
\(583\) 10.0000 0.414158
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.0000 0.701665 0.350833 0.936438i \(-0.385899\pi\)
0.350833 + 0.936438i \(0.385899\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −34.0000 −1.39621 −0.698106 0.715994i \(-0.745974\pi\)
−0.698106 + 0.715994i \(0.745974\pi\)
\(594\) 0 0
\(595\) −6.00000 −0.245976
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.0000 −0.858037 −0.429018 0.903296i \(-0.641140\pi\)
−0.429018 + 0.903296i \(0.641140\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.0000 −0.569181
\(606\) 0 0
\(607\) −13.0000 −0.527654 −0.263827 0.964570i \(-0.584985\pi\)
−0.263827 + 0.964570i \(0.584985\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.0000 0.606835
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 0.120775 0.0603877 0.998175i \(-0.480766\pi\)
0.0603877 + 0.998175i \(0.480766\pi\)
\(618\) 0 0
\(619\) −11.0000 −0.442127 −0.221064 0.975259i \(-0.570953\pi\)
−0.221064 + 0.975259i \(0.570953\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 54.0000 2.16346
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) −10.0000 −0.396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.00000 −0.0394976 −0.0197488 0.999805i \(-0.506287\pi\)
−0.0197488 + 0.999805i \(0.506287\pi\)
\(642\) 0 0
\(643\) 15.0000 0.591542 0.295771 0.955259i \(-0.404423\pi\)
0.295771 + 0.955259i \(0.404423\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 55.0000 2.15894
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −33.0000 −1.29139 −0.645695 0.763596i \(-0.723432\pi\)
−0.645695 + 0.763596i \(0.723432\pi\)
\(654\) 0 0
\(655\) 5.00000 0.195366
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.0000 0.818044 0.409022 0.912525i \(-0.365870\pi\)
0.409022 + 0.912525i \(0.365870\pi\)
\(660\) 0 0
\(661\) −25.0000 −0.972387 −0.486194 0.873851i \(-0.661615\pi\)
−0.486194 + 0.873851i \(0.661615\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) 9.00000 0.348481
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 35.0000 1.35116
\(672\) 0 0
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.0000 1.34516 0.672580 0.740025i \(-0.265186\pi\)
0.672580 + 0.740025i \(0.265186\pi\)
\(678\) 0 0
\(679\) 39.0000 1.49668
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) −3.00000 −0.114624
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −10.0000 −0.380970
\(690\) 0 0
\(691\) 41.0000 1.55971 0.779857 0.625958i \(-0.215292\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.00000 −0.113796
\(696\) 0 0
\(697\) −6.00000 −0.227266
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.00000 −0.338480
\(708\) 0 0
\(709\) 11.0000 0.413114 0.206557 0.978435i \(-0.433774\pi\)
0.206557 + 0.978435i \(0.433774\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.00000 0.0374503
\(714\) 0 0
\(715\) 25.0000 0.934947
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 32.0000 1.19340 0.596699 0.802465i \(-0.296479\pi\)
0.596699 + 0.802465i \(0.296479\pi\)
\(720\) 0 0
\(721\) 15.0000 0.558629
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 36.0000 1.33701
\(726\) 0 0
\(727\) −39.0000 −1.44643 −0.723215 0.690623i \(-0.757336\pi\)
−0.723215 + 0.690623i \(0.757336\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.00000 −0.0739727
\(732\) 0 0
\(733\) −13.0000 −0.480166 −0.240083 0.970752i \(-0.577175\pi\)
−0.240083 + 0.970752i \(0.577175\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.00000 −0.184177
\(738\) 0 0
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.0000 0.403551 0.201775 0.979432i \(-0.435329\pi\)
0.201775 + 0.979432i \(0.435329\pi\)
\(744\) 0 0
\(745\) −19.0000 −0.696106
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −36.0000 −1.31541
\(750\) 0 0
\(751\) 27.0000 0.985244 0.492622 0.870243i \(-0.336039\pi\)
0.492622 + 0.870243i \(0.336039\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.0000 −0.618693
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.00000 −0.181250 −0.0906249 0.995885i \(-0.528886\pi\)
−0.0906249 + 0.995885i \(0.528886\pi\)
\(762\) 0 0
\(763\) −30.0000 −1.08607
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −55.0000 −1.98593
\(768\) 0 0
\(769\) −1.00000 −0.0360609 −0.0180305 0.999837i \(-0.505740\pi\)
−0.0180305 + 0.999837i \(0.505740\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 20.0000 0.715656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.00000 −0.249841
\(786\) 0 0
\(787\) −53.0000 −1.88925 −0.944623 0.328158i \(-0.893572\pi\)
−0.944623 + 0.328158i \(0.893572\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 27.0000 0.960009
\(792\) 0 0
\(793\) −35.0000 −1.24289
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.0000 −0.460484 −0.230242 0.973133i \(-0.573952\pi\)
−0.230242 + 0.973133i \(0.573952\pi\)
\(798\) 0 0
\(799\) 6.00000 0.212265
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.0000 −0.352892
\(804\) 0 0
\(805\) −3.00000 −0.105736
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −50.0000 −1.75791 −0.878953 0.476908i \(-0.841757\pi\)
−0.878953 + 0.476908i \(0.841757\pi\)
\(810\) 0 0
\(811\) −44.0000 −1.54505 −0.772524 0.634985i \(-0.781006\pi\)
−0.772524 + 0.634985i \(0.781006\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −33.0000 −1.15171 −0.575854 0.817553i \(-0.695330\pi\)
−0.575854 + 0.817553i \(0.695330\pi\)
\(822\) 0 0
\(823\) −49.0000 −1.70803 −0.854016 0.520246i \(-0.825840\pi\)
−0.854016 + 0.520246i \(0.825840\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.00000 −0.138592
\(834\) 0 0
\(835\) 21.0000 0.726735
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.0000 0.725001 0.362500 0.931984i \(-0.381923\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) −42.0000 −1.44314
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) −1.00000 −0.0342393 −0.0171197 0.999853i \(-0.505450\pi\)
−0.0171197 + 0.999853i \(0.505450\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.0000 0.922302 0.461151 0.887322i \(-0.347437\pi\)
0.461151 + 0.887322i \(0.347437\pi\)
\(858\) 0 0
\(859\) −9.00000 −0.307076 −0.153538 0.988143i \(-0.549067\pi\)
−0.153538 + 0.988143i \(0.549067\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 56.0000 1.90626 0.953131 0.302558i \(-0.0978405\pi\)
0.953131 + 0.302558i \(0.0978405\pi\)
\(864\) 0 0
\(865\) −3.00000 −0.102003
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.00000 0.169613
\(870\) 0 0
\(871\) 5.00000 0.169419
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −27.0000 −0.912767
\(876\) 0 0
\(877\) 3.00000 0.101303 0.0506514 0.998716i \(-0.483870\pi\)
0.0506514 + 0.998716i \(0.483870\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26.0000 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 55.0000 1.84672 0.923360 0.383936i \(-0.125432\pi\)
0.923360 + 0.383936i \(0.125432\pi\)
\(888\) 0 0
\(889\) −48.0000 −1.60987
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) −12.0000 −0.401116
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.00000 0.300167
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.00000 0.199447
\(906\) 0 0
\(907\) 49.0000 1.62702 0.813509 0.581552i \(-0.197554\pi\)
0.813509 + 0.581552i \(0.197554\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 41.0000 1.35839 0.679195 0.733958i \(-0.262329\pi\)
0.679195 + 0.733958i \(0.262329\pi\)
\(912\) 0 0
\(913\) 5.00000 0.165476
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.0000 0.495344
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20.0000 −0.658308
\(924\) 0 0
\(925\) 24.0000 0.789115
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −29.0000 −0.951459 −0.475730 0.879592i \(-0.657816\pi\)
−0.475730 + 0.879592i \(0.657816\pi\)
\(930\) 0 0
\(931\) −8.00000 −0.262189
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 10.0000 0.327035
\(936\) 0 0
\(937\) −42.0000 −1.37208 −0.686040 0.727564i \(-0.740653\pi\)
−0.686040 + 0.727564i \(0.740653\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −33.0000 −1.07577 −0.537885 0.843018i \(-0.680776\pi\)
−0.537885 + 0.843018i \(0.680776\pi\)
\(942\) 0 0
\(943\) −3.00000 −0.0976934
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.0000 −0.877382 −0.438691 0.898638i \(-0.644558\pi\)
−0.438691 + 0.898638i \(0.644558\pi\)
\(948\) 0 0
\(949\) 10.0000 0.324614
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) 27.0000 0.873699
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.00000 −0.290625
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.0000 0.418485
\(966\) 0 0
\(967\) −25.0000 −0.803946 −0.401973 0.915652i \(-0.631675\pi\)
−0.401973 + 0.915652i \(0.631675\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −9.00000 −0.288527
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 39.0000 1.24772 0.623860 0.781536i \(-0.285563\pi\)
0.623860 + 0.781536i \(0.285563\pi\)
\(978\) 0 0
\(979\) −90.0000 −2.87641
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −15.0000 −0.478426 −0.239213 0.970967i \(-0.576889\pi\)
−0.239213 + 0.970967i \(0.576889\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.00000 −0.0317982
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20.0000 0.634043
\(996\) 0 0
\(997\) 19.0000 0.601736 0.300868 0.953666i \(-0.402724\pi\)
0.300868 + 0.953666i \(0.402724\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.a.a.1.1 1
3.2 odd 2 648.2.a.c.1.1 1
4.3 odd 2 1296.2.a.e.1.1 1
8.3 odd 2 5184.2.a.x.1.1 1
8.5 even 2 5184.2.a.s.1.1 1
9.2 odd 6 216.2.i.a.145.1 2
9.4 even 3 72.2.i.a.25.1 2
9.5 odd 6 216.2.i.a.73.1 2
9.7 even 3 72.2.i.a.49.1 yes 2
12.11 even 2 1296.2.a.i.1.1 1
24.5 odd 2 5184.2.a.i.1.1 1
24.11 even 2 5184.2.a.n.1.1 1
36.7 odd 6 144.2.i.b.49.1 2
36.11 even 6 432.2.i.a.145.1 2
36.23 even 6 432.2.i.a.289.1 2
36.31 odd 6 144.2.i.b.97.1 2
72.5 odd 6 1728.2.i.h.1153.1 2
72.11 even 6 1728.2.i.g.577.1 2
72.13 even 6 576.2.i.d.385.1 2
72.29 odd 6 1728.2.i.h.577.1 2
72.43 odd 6 576.2.i.c.193.1 2
72.59 even 6 1728.2.i.g.1153.1 2
72.61 even 6 576.2.i.d.193.1 2
72.67 odd 6 576.2.i.c.385.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.i.a.25.1 2 9.4 even 3
72.2.i.a.49.1 yes 2 9.7 even 3
144.2.i.b.49.1 2 36.7 odd 6
144.2.i.b.97.1 2 36.31 odd 6
216.2.i.a.73.1 2 9.5 odd 6
216.2.i.a.145.1 2 9.2 odd 6
432.2.i.a.145.1 2 36.11 even 6
432.2.i.a.289.1 2 36.23 even 6
576.2.i.c.193.1 2 72.43 odd 6
576.2.i.c.385.1 2 72.67 odd 6
576.2.i.d.193.1 2 72.61 even 6
576.2.i.d.385.1 2 72.13 even 6
648.2.a.a.1.1 1 1.1 even 1 trivial
648.2.a.c.1.1 1 3.2 odd 2
1296.2.a.e.1.1 1 4.3 odd 2
1296.2.a.i.1.1 1 12.11 even 2
1728.2.i.g.577.1 2 72.11 even 6
1728.2.i.g.1153.1 2 72.59 even 6
1728.2.i.h.577.1 2 72.29 odd 6
1728.2.i.h.1153.1 2 72.5 odd 6
5184.2.a.i.1.1 1 24.5 odd 2
5184.2.a.n.1.1 1 24.11 even 2
5184.2.a.s.1.1 1 8.5 even 2
5184.2.a.x.1.1 1 8.3 odd 2