Defining parameters
Level: | \( N \) | \(=\) | \( 648 = 2^{3} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 648.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(648))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 12 | 120 |
Cusp forms | 85 | 12 | 73 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | $+$ | \(2\) |
\(+\) | \(-\) | $-$ | \(4\) |
\(-\) | \(+\) | $-$ | \(3\) |
\(-\) | \(-\) | $+$ | \(3\) |
Plus space | \(+\) | \(5\) | |
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(648))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(648))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(648)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(324))\)\(^{\oplus 2}\)