Properties

Label 648.1.j.a.53.1
Level $648$
Weight $1$
Character 648.53
Analytic conductor $0.323$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 648.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.323394128186\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 216)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.216.1
Artin image: $C_3\times S_3$
Artin field: Galois closure of 6.0.10077696.3

Embedding invariants

Embedding label 53.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 648.53
Dual form 648.1.j.a.269.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} +1.00000 q^{8} -1.00000 q^{10} +(0.500000 + 0.866025i) q^{11} +(0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(0.500000 + 0.866025i) q^{20} +(0.500000 - 0.866025i) q^{22} -1.00000 q^{28} +(-1.00000 - 1.73205i) q^{29} +(0.500000 - 0.866025i) q^{31} +(-0.500000 + 0.866025i) q^{32} +1.00000 q^{35} +(0.500000 - 0.866025i) q^{40} -1.00000 q^{44} -1.00000 q^{53} +1.00000 q^{55} +(0.500000 + 0.866025i) q^{56} +(-1.00000 + 1.73205i) q^{58} +(-1.00000 + 1.73205i) q^{59} -1.00000 q^{62} +1.00000 q^{64} +(-0.500000 - 0.866025i) q^{70} -1.00000 q^{73} +(-0.500000 + 0.866025i) q^{77} +(-1.00000 - 1.73205i) q^{79} -1.00000 q^{80} +(0.500000 + 0.866025i) q^{83} +(0.500000 + 0.866025i) q^{88} +(0.500000 + 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{4} + q^{5} + q^{7} + 2q^{8} + O(q^{10}) \) \( 2q - q^{2} - q^{4} + q^{5} + q^{7} + 2q^{8} - 2q^{10} + q^{11} + q^{14} - q^{16} + q^{20} + q^{22} - 2q^{28} - 2q^{29} + q^{31} - q^{32} + 2q^{35} + q^{40} - 2q^{44} - 2q^{53} + 2q^{55} + q^{56} - 2q^{58} - 2q^{59} - 2q^{62} + 2q^{64} - q^{70} - 2q^{73} - q^{77} - 2q^{79} - 2q^{80} + q^{83} + q^{88} + q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.500000 0.866025i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(5\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 1.00000 1.00000
\(9\) 0 0
\(10\) −1.00000 −1.00000
\(11\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0.500000 0.866025i 0.500000 0.866025i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(21\) 0 0
\(22\) 0.500000 0.866025i 0.500000 0.866025i
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) −1.00000 −1.00000
\(29\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(30\) 0 0
\(31\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(32\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 1.00000
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.500000 0.866025i 0.500000 0.866025i
\(41\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(42\) 0 0
\(43\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(44\) −1.00000 −1.00000
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 0 0
\(55\) 1.00000 1.00000
\(56\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(57\) 0 0
\(58\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(59\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) −1.00000 −1.00000
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.500000 0.866025i −0.500000 0.866025i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(78\) 0 0
\(79\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(80\) −1.00000 −1.00000
\(81\) 0 0
\(82\) 0 0
\(83\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(107\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −0.500000 0.866025i −0.500000 0.866025i
\(111\) 0 0
\(112\) 0.500000 0.866025i 0.500000 0.866025i
\(113\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.00000 2.00000
\(117\) 0 0
\(118\) 2.00000 2.00000
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(125\) 1.00000 1.00000
\(126\) 0 0
\(127\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(128\) −0.500000 0.866025i −0.500000 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −2.00000 −2.00000
\(146\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(147\) 0 0
\(148\) 0 0
\(149\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(150\) 0 0
\(151\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1.00000 1.00000
\(155\) −0.500000 0.866025i −0.500000 0.866025i
\(156\) 0 0
\(157\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(159\) 0 0
\(160\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.500000 0.866025i 0.500000 0.866025i
\(167\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.500000 0.866025i 0.500000 0.866025i
\(177\) 0 0
\(178\) 0 0
\(179\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(194\) 0.500000 0.866025i 0.500000 0.866025i
\(195\) 0 0
\(196\) 0 0
\(197\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0.500000 0.866025i 0.500000 0.866025i
\(203\) 1.00000 1.73205i 1.00000 1.73205i
\(204\) 0 0
\(205\) 0 0
\(206\) 2.00000 2.00000
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0.500000 0.866025i 0.500000 0.866025i
\(213\) 0 0
\(214\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(215\) 0 0
\(216\) 0 0
\(217\) 1.00000 1.00000
\(218\) 0 0
\(219\) 0 0
\(220\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(224\) −1.00000 −1.00000
\(225\) 0 0
\(226\) 0 0
\(227\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.00000 1.73205i −1.00000 1.73205i
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.00000 1.73205i −1.00000 1.73205i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0 0
\(241\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0.500000 0.866025i 0.500000 0.866025i
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.500000 0.866025i
\(251\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −1.00000 −1.00000
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(270\) 0 0
\(271\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 1.00000 1.00000
\(281\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(282\) 0 0
\(283\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 1.00000
\(290\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(291\) 0 0
\(292\) 0.500000 0.866025i 0.500000 0.866025i
\(293\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 0 0
\(295\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(296\) 0 0
\(297\) 0 0
\(298\) −1.00000 −1.00000
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0.500000 0.866025i 0.500000 0.866025i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −0.500000 0.866025i −0.500000 0.866025i
\(309\) 0 0
\(310\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.00000 2.00000
\(317\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 1.00000 1.73205i 1.00000 1.73205i
\(320\) 0.500000 0.866025i 0.500000 0.866025i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) −1.00000 −1.00000
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(339\) 0 0
\(340\) 0 0
\(341\) 1.00000 1.00000
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0.500000 0.866025i 0.500000 0.866025i
\(347\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(348\) 0 0
\(349\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −1.00000
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(366\) 0 0
\(367\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.500000 0.866025i −0.500000 0.866025i
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0 0
\(385\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(386\) −1.00000 −1.00000
\(387\) 0 0
\(388\) −1.00000 −1.00000
\(389\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(395\) −2.00000 −2.00000
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.00000 −1.00000
\(405\) 0 0
\(406\) −2.00000 −2.00000
\(407\) 0 0
\(408\) 0 0
\(409\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.00000 1.73205i −1.00000 1.73205i
\(413\) −2.00000 −2.00000
\(414\) 0 0
\(415\) 1.00000 1.00000
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.00000 −1.00000
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.500000 0.866025i 0.500000 0.866025i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(434\) −0.500000 0.866025i −0.500000 0.866025i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 1.00000 1.00000
\(441\) 0 0
\(442\) 0 0
\(443\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(447\) 0 0
\(448\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(464\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(465\) 0 0
\(466\) 0 0
\(467\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000 1.00000
\(486\) 0 0
\(487\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 −1.00000
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(501\) 0 0
\(502\) −1.00000 1.73205i −1.00000 1.73205i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 1.00000 1.00000
\(506\) 0 0
\(507\) 0 0
\(508\) 0.500000 0.866025i 0.500000 0.866025i
\(509\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(510\) 0 0
\(511\) −0.500000 0.866025i −0.500000 0.866025i
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.500000 0.866025i −0.500000 0.866025i
\(530\) 1.00000 1.00000
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(536\) 0 0
\(537\) 0 0
\(538\) −1.00000 1.73205i −1.00000 1.73205i
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1.00000 1.73205i 1.00000 1.73205i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −0.500000 0.866025i −0.500000 0.866025i
\(561\) 0 0
\(562\) 0 0
\(563\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(578\) −0.500000 0.866025i −0.500000 0.866025i
\(579\) 0 0
\(580\) 1.00000 1.73205i 1.00000 1.73205i
\(581\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(582\) 0 0
\(583\) −0.500000 0.866025i −0.500000 0.866025i
\(584\) −1.00000 −1.00000
\(585\) 0 0
\(586\) 2.00000 2.00000
\(587\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 1.00000 1.73205i 1.00000 1.73205i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.00000 −1.00000
\(605\) 0 0
\(606\) 0 0
\(607\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(617\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 1.00000 1.00000
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.500000 0.866025i 0.500000 0.866025i
\(626\) 0.500000 0.866025i 0.500000 0.866025i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) −1.00000 1.73205i −1.00000 1.73205i
\(633\) 0 0
\(634\) 0.500000 0.866025i 0.500000 0.866025i
\(635\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(636\) 0 0
\(637\) 0 0
\(638\) −2.00000 −2.00000
\(639\) 0 0
\(640\) −1.00000 −1.00000
\(641\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) 0 0
\(643\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −2.00000 −2.00000
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(654\) 0 0
\(655\) −0.500000 0.866025i −0.500000 0.866025i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 2.00000 2.00000
\(675\) 0 0
\(676\) 1.00000 1.00000
\(677\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(678\) 0 0
\(679\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(680\) 0 0
\(681\) 0 0
\(682\) −0.500000 0.866025i −0.500000 0.866025i
\(683\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.500000 0.866025i −0.500000 0.866025i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) −1.00000 −1.00000
\(693\) 0 0
\(694\) −1.00000 −1.00000
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(705\) 0 0
\(706\) 0 0
\(707\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(708\) 0 0
\(709\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.500000 0.866025i 0.500000 0.866025i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) −2.00000 −2.00000
\(722\) −0.500000 0.866025i −0.500000 0.866025i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.00000 1.00000
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0.500000 0.866025i 0.500000 0.866025i
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(743\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0 0
\(745\) −0.500000 0.866025i −0.500000 0.866025i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.500000 0.866025i −0.500000 0.866025i
\(750\) 0 0
\(751\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.00000 1.00000
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(770\) 0.500000 0.866025i 0.500000 0.866025i
\(771\) 0 0
\(772\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(773\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(777\) 0 0
\(778\) 0.500000 0.866025i 0.500000 0.866025i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0.500000 0.866025i 0.500000 0.866025i
\(789\) 0 0
\(790\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.500000 0.866025i 0.500000 0.866025i
\(797\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.500000 0.866025i −0.500000 0.866025i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.500000 + 0.866025i