Defining parameters
Level: | \( N \) | \(=\) | \( 644 = 2^{2} \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 644.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(644))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 102 | 12 | 90 |
Cusp forms | 91 | 12 | 79 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(23\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | $-$ | \(5\) |
\(-\) | \(+\) | \(-\) | $+$ | \(1\) |
\(-\) | \(-\) | \(+\) | $+$ | \(1\) |
\(-\) | \(-\) | \(-\) | $-$ | \(5\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(10\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(644))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | 23 | |||||||
644.2.a.a | $1$ | $5.142$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | \(q-q^{3}+q^{7}-2q^{9}-2q^{11}-3q^{13}+\cdots\) | |
644.2.a.b | $1$ | $5.142$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(-1\) | $-$ | $+$ | $-$ | \(q+q^{3}-2q^{5}-q^{7}-2q^{9}-2q^{11}+\cdots\) | |
644.2.a.c | $5$ | $5.142$ | 5.5.8580816.1 | None | \(0\) | \(1\) | \(4\) | \(5\) | $-$ | $-$ | $-$ | \(q+\beta _{1}q^{3}+(1+\beta _{4})q^{5}+q^{7}+(2+\beta _{2}+\cdots)q^{9}+\cdots\) | |
644.2.a.d | $5$ | $5.142$ | 5.5.6963152.1 | None | \(0\) | \(3\) | \(2\) | \(-5\) | $-$ | $+$ | $+$ | \(q+(1-\beta _{1})q^{3}+(1-\beta _{2}+\beta _{3})q^{5}-q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(644))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(644)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 2}\)