Properties

Label 644.2
Level 644
Weight 2
Dimension 6848
Nonzero newspaces 16
Newform subspaces 27
Sturm bound 50688
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 644 = 2^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 16 \)
Newform subspaces: \( 27 \)
Sturm bound: \(50688\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(644))\).

Total New Old
Modular forms 13332 7264 6068
Cusp forms 12013 6848 5165
Eisenstein series 1319 416 903

Trace form

\( 6848 q - 38 q^{2} + 2 q^{3} - 38 q^{4} - 70 q^{5} - 44 q^{6} + 8 q^{7} - 104 q^{8} - 80 q^{9} - 56 q^{10} - 6 q^{11} - 68 q^{12} - 96 q^{13} - 73 q^{14} + 10 q^{15} - 62 q^{16} - 48 q^{17} - 50 q^{18} + 20 q^{19}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(644))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
644.2.a \(\chi_{644}(1, \cdot)\) 644.2.a.a 1 1
644.2.a.b 1
644.2.a.c 5
644.2.a.d 5
644.2.c \(\chi_{644}(183, \cdot)\) 644.2.c.a 36 1
644.2.c.b 36
644.2.d \(\chi_{644}(321, \cdot)\) 644.2.d.a 16 1
644.2.f \(\chi_{644}(139, \cdot)\) 644.2.f.a 4 1
644.2.f.b 4
644.2.f.c 80
644.2.i \(\chi_{644}(93, \cdot)\) 644.2.i.a 14 2
644.2.i.b 14
644.2.k \(\chi_{644}(47, \cdot)\) 644.2.k.a 176 2
644.2.m \(\chi_{644}(45, \cdot)\) 644.2.m.a 32 2
644.2.p \(\chi_{644}(275, \cdot)\) 644.2.p.a 184 2
644.2.q \(\chi_{644}(29, \cdot)\) 644.2.q.a 60 10
644.2.q.b 60
644.2.t \(\chi_{644}(27, \cdot)\) 644.2.t.a 20 10
644.2.t.b 20
644.2.t.c 880
644.2.v \(\chi_{644}(97, \cdot)\) 644.2.v.a 160 10
644.2.w \(\chi_{644}(15, \cdot)\) 644.2.w.a 360 10
644.2.w.b 360
644.2.y \(\chi_{644}(9, \cdot)\) 644.2.y.a 320 20
644.2.z \(\chi_{644}(11, \cdot)\) 644.2.z.a 1840 20
644.2.bc \(\chi_{644}(5, \cdot)\) 644.2.bc.a 320 20
644.2.be \(\chi_{644}(3, \cdot)\) 644.2.be.a 1840 20

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(644))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(644)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(322))\)\(^{\oplus 2}\)