Properties

Label 644.1.h.d.643.2
Level $644$
Weight $1$
Character 644.643
Self dual yes
Analytic conductor $0.321$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -644
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [644,1,Mod(643,644)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(644, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("644.643");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 644 = 2^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 644.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.321397868136\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.4508.1
Artin image: $D_8$
Artin field: Galois closure of 8.0.1869629888.4

Embedding invariants

Embedding label 643.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 644.643

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.41421 q^{3} +1.00000 q^{4} -1.41421 q^{5} -1.41421 q^{6} +1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.41421 q^{3} +1.00000 q^{4} -1.41421 q^{5} -1.41421 q^{6} +1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +1.41421 q^{10} +1.41421 q^{12} -1.00000 q^{14} -2.00000 q^{15} +1.00000 q^{16} +1.41421 q^{17} -1.00000 q^{18} -1.41421 q^{20} +1.41421 q^{21} +1.00000 q^{23} -1.41421 q^{24} +1.00000 q^{25} +1.00000 q^{28} +2.00000 q^{30} -1.41421 q^{31} -1.00000 q^{32} -1.41421 q^{34} -1.41421 q^{35} +1.00000 q^{36} +1.41421 q^{40} -1.41421 q^{42} -2.00000 q^{43} -1.41421 q^{45} -1.00000 q^{46} -1.41421 q^{47} +1.41421 q^{48} +1.00000 q^{49} -1.00000 q^{50} +2.00000 q^{51} -1.00000 q^{56} +1.41421 q^{59} -2.00000 q^{60} -1.41421 q^{61} +1.41421 q^{62} +1.00000 q^{63} +1.00000 q^{64} +1.41421 q^{68} +1.41421 q^{69} +1.41421 q^{70} -1.00000 q^{72} +1.41421 q^{75} -1.41421 q^{80} -1.00000 q^{81} +1.41421 q^{84} -2.00000 q^{85} +2.00000 q^{86} +1.41421 q^{89} +1.41421 q^{90} +1.00000 q^{92} -2.00000 q^{93} +1.41421 q^{94} -1.41421 q^{96} -1.41421 q^{97} -1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{7} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{7} - 2 q^{8} + 2 q^{9} - 2 q^{14} - 4 q^{15} + 2 q^{16} - 2 q^{18} + 2 q^{23} + 2 q^{25} + 2 q^{28} + 4 q^{30} - 2 q^{32} + 2 q^{36} - 4 q^{43} - 2 q^{46} + 2 q^{49} - 2 q^{50} + 4 q^{51} - 2 q^{56} - 4 q^{60} + 2 q^{63} + 2 q^{64} - 2 q^{72} - 2 q^{81} - 4 q^{85} + 4 q^{86} + 2 q^{92} - 4 q^{93} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/644\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\) \(323\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −1.00000
\(3\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 1.00000 1.00000
\(5\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(6\) −1.41421 −1.41421
\(7\) 1.00000 1.00000
\(8\) −1.00000 −1.00000
\(9\) 1.00000 1.00000
\(10\) 1.41421 1.41421
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.41421 1.41421
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −1.00000 −1.00000
\(15\) −2.00000 −2.00000
\(16\) 1.00000 1.00000
\(17\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) −1.00000 −1.00000
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −1.41421 −1.41421
\(21\) 1.41421 1.41421
\(22\) 0 0
\(23\) 1.00000 1.00000
\(24\) −1.41421 −1.41421
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 1.00000 1.00000
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 2.00000 2.00000
\(31\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) −1.00000 −1.00000
\(33\) 0 0
\(34\) −1.41421 −1.41421
\(35\) −1.41421 −1.41421
\(36\) 1.00000 1.00000
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.41421 1.41421
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) −1.41421 −1.41421
\(43\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −1.41421 −1.41421
\(46\) −1.00000 −1.00000
\(47\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 1.41421 1.41421
\(49\) 1.00000 1.00000
\(50\) −1.00000 −1.00000
\(51\) 2.00000 2.00000
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.00000 −1.00000
\(57\) 0 0
\(58\) 0 0
\(59\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(60\) −2.00000 −2.00000
\(61\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(62\) 1.41421 1.41421
\(63\) 1.00000 1.00000
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 1.41421 1.41421
\(69\) 1.41421 1.41421
\(70\) 1.41421 1.41421
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −1.00000 −1.00000
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 1.41421 1.41421
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −1.41421 −1.41421
\(81\) −1.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 1.41421 1.41421
\(85\) −2.00000 −2.00000
\(86\) 2.00000 2.00000
\(87\) 0 0
\(88\) 0 0
\(89\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(90\) 1.41421 1.41421
\(91\) 0 0
\(92\) 1.00000 1.00000
\(93\) −2.00000 −2.00000
\(94\) 1.41421 1.41421
\(95\) 0 0
\(96\) −1.41421 −1.41421
\(97\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) −1.00000 −1.00000
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −2.00000 −2.00000
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −2.00000 −2.00000
\(106\) 0 0
\(107\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000 1.00000
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) −1.41421 −1.41421
\(116\) 0 0
\(117\) 0 0
\(118\) −1.41421 −1.41421
\(119\) 1.41421 1.41421
\(120\) 2.00000 2.00000
\(121\) −1.00000 −1.00000
\(122\) 1.41421 1.41421
\(123\) 0 0
\(124\) −1.41421 −1.41421
\(125\) 0 0
\(126\) −1.00000 −1.00000
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −1.00000 −1.00000
\(129\) −2.82843 −2.82843
\(130\) 0 0
\(131\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −1.41421 −1.41421
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) −1.41421 −1.41421
\(139\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(140\) −1.41421 −1.41421
\(141\) −2.00000 −2.00000
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 1.41421 1.41421
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −1.41421 −1.41421
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 1.41421 1.41421
\(154\) 0 0
\(155\) 2.00000 2.00000
\(156\) 0 0
\(157\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.41421 1.41421
\(161\) 1.00000 1.00000
\(162\) 1.00000 1.00000
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) −1.41421 −1.41421
\(169\) 1.00000 1.00000
\(170\) 2.00000 2.00000
\(171\) 0 0
\(172\) −2.00000 −2.00000
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 1.00000 1.00000
\(176\) 0 0
\(177\) 2.00000 2.00000
\(178\) −1.41421 −1.41421
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −1.41421 −1.41421
\(181\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(182\) 0 0
\(183\) −2.00000 −2.00000
\(184\) −1.00000 −1.00000
\(185\) 0 0
\(186\) 2.00000 2.00000
\(187\) 0 0
\(188\) −1.41421 −1.41421
\(189\) 0 0
\(190\) 0 0
\(191\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(192\) 1.41421 1.41421
\(193\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(194\) 1.41421 1.41421
\(195\) 0 0
\(196\) 1.00000 1.00000
\(197\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −1.00000 −1.00000
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 2.00000 2.00000
\(205\) 0 0
\(206\) 0 0
\(207\) 1.00000 1.00000
\(208\) 0 0
\(209\) 0 0
\(210\) 2.00000 2.00000
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 2.00000 2.00000
\(215\) 2.82843 2.82843
\(216\) 0 0
\(217\) −1.41421 −1.41421
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) −1.00000 −1.00000
\(225\) 1.00000 1.00000
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(230\) 1.41421 1.41421
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 2.00000 2.00000
\(236\) 1.41421 1.41421
\(237\) 0 0
\(238\) −1.41421 −1.41421
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −2.00000 −2.00000
\(241\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(242\) 1.00000 1.00000
\(243\) −1.41421 −1.41421
\(244\) −1.41421 −1.41421
\(245\) −1.41421 −1.41421
\(246\) 0 0
\(247\) 0 0
\(248\) 1.41421 1.41421
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 1.00000 1.00000
\(253\) 0 0
\(254\) 0 0
\(255\) −2.82843 −2.82843
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 2.82843 2.82843
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.41421 1.41421
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.00000 2.00000
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(272\) 1.41421 1.41421
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 1.41421 1.41421
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) −1.41421 −1.41421
\(279\) −1.41421 −1.41421
\(280\) 1.41421 1.41421
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 2.00000 2.00000
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) −2.00000 −2.00000
\(292\) 0 0
\(293\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) −1.41421 −1.41421
\(295\) −2.00000 −2.00000
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 1.41421 1.41421
\(301\) −2.00000 −2.00000
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.00000 2.00000
\(306\) −1.41421 −1.41421
\(307\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.00000 −2.00000
\(311\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(312\) 0 0
\(313\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) −1.41421 −1.41421
\(315\) −1.41421 −1.41421
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.41421 −1.41421
\(321\) −2.82843 −2.82843
\(322\) −1.00000 −1.00000
\(323\) 0 0
\(324\) −1.00000 −1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.41421 −1.41421
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 1.41421 1.41421
\(335\) 0 0
\(336\) 1.41421 1.41421
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −1.00000 −1.00000
\(339\) 0 0
\(340\) −2.00000 −2.00000
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 2.00000 2.00000
\(345\) −2.00000 −2.00000
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −1.00000 −1.00000
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) −2.00000 −2.00000
\(355\) 0 0
\(356\) 1.41421 1.41421
\(357\) 2.00000 2.00000
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 1.41421 1.41421
\(361\) 1.00000 1.00000
\(362\) −1.41421 −1.41421
\(363\) −1.41421 −1.41421
\(364\) 0 0
\(365\) 0 0
\(366\) 2.00000 2.00000
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 1.00000 1.00000
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −2.00000 −2.00000
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.41421 1.41421
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.00000 2.00000
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −1.41421 −1.41421
\(385\) 0 0
\(386\) 2.00000 2.00000
\(387\) −2.00000 −2.00000
\(388\) −1.41421 −1.41421
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 1.41421 1.41421
\(392\) −1.00000 −1.00000
\(393\) −2.00000 −2.00000
\(394\) −2.00000 −2.00000
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.41421 1.41421
\(406\) 0 0
\(407\) 0 0
\(408\) −2.00000 −2.00000
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.41421 1.41421
\(414\) −1.00000 −1.00000
\(415\) 0 0
\(416\) 0 0
\(417\) 2.00000 2.00000
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) −2.00000 −2.00000
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −1.41421 −1.41421
\(424\) 0 0
\(425\) 1.41421 1.41421
\(426\) 0 0
\(427\) −1.41421 −1.41421
\(428\) −2.00000 −2.00000
\(429\) 0 0
\(430\) −2.82843 −2.82843
\(431\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(432\) 0 0
\(433\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 1.41421 1.41421
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −2.00000 −2.00000
\(446\) −1.41421 −1.41421
\(447\) 0 0
\(448\) 1.00000 1.00000
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) −1.00000 −1.00000
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −1.41421 −1.41421
\(459\) 0 0
\(460\) −1.41421 −1.41421
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 2.82843 2.82843
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.00000 −2.00000
\(471\) 2.00000 2.00000
\(472\) −1.41421 −1.41421
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 1.41421 1.41421
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 2.00000 2.00000
\(481\) 0 0
\(482\) −1.41421 −1.41421
\(483\) 1.41421 1.41421
\(484\) −1.00000 −1.00000
\(485\) 2.00000 2.00000
\(486\) 1.41421 1.41421
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 1.41421 1.41421
\(489\) 0 0
\(490\) 1.41421 1.41421
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.41421 −1.41421
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) −2.00000 −2.00000
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −1.00000 −1.00000
\(505\) 0 0
\(506\) 0 0
\(507\) 1.41421 1.41421
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 2.82843 2.82843
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) −2.82843 −2.82843
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −1.41421 −1.41421
\(525\) 1.41421 1.41421
\(526\) 0 0
\(527\) −2.00000 −2.00000
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 1.41421 1.41421
\(532\) 0 0
\(533\) 0 0
\(534\) −2.00000 −2.00000
\(535\) 2.82843 2.82843
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) −1.41421 −1.41421
\(543\) 2.00000 2.00000
\(544\) −1.41421 −1.41421
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −1.41421 −1.41421
\(550\) 0 0
\(551\) 0 0
\(552\) −1.41421 −1.41421
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 1.41421 1.41421
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 1.41421 1.41421
\(559\) 0 0
\(560\) −1.41421 −1.41421
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) −2.00000 −2.00000
\(565\) 0 0
\(566\) 0 0
\(567\) −1.00000 −1.00000
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −2.82843 −2.82843
\(574\) 0 0
\(575\) 1.00000 1.00000
\(576\) 1.00000 1.00000
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1.00000 −1.00000
\(579\) −2.82843 −2.82843
\(580\) 0 0
\(581\) 0 0
\(582\) 2.00000 2.00000
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 1.41421 1.41421
\(587\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 1.41421 1.41421
\(589\) 0 0
\(590\) 2.00000 2.00000
\(591\) 2.82843 2.82843
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) −2.00000 −2.00000
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −1.41421 −1.41421
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 2.00000 2.00000
\(603\) 0 0
\(604\) 0 0
\(605\) 1.41421 1.41421
\(606\) 0 0
\(607\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −2.00000 −2.00000
\(611\) 0 0
\(612\) 1.41421 1.41421
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 1.41421 1.41421
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 2.00000 2.00000
\(621\) 0 0
\(622\) −1.41421 −1.41421
\(623\) 1.41421 1.41421
\(624\) 0 0
\(625\) −1.00000 −1.00000
\(626\) −1.41421 −1.41421
\(627\) 0 0
\(628\) 1.41421 1.41421
\(629\) 0 0
\(630\) 1.41421 1.41421
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.41421 1.41421
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 2.82843 2.82843
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 1.00000 1.00000
\(645\) 4.00000 4.00000
\(646\) 0 0
\(647\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 1.00000 1.00000
\(649\) 0 0
\(650\) 0 0
\(651\) −2.00000 −2.00000
\(652\) 0 0
\(653\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(654\) 0 0
\(655\) 2.00000 2.00000
\(656\) 0 0
\(657\) 0 0
\(658\) 1.41421 1.41421
\(659\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(660\) 0 0
\(661\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1.41421 −1.41421
\(669\) 2.00000 2.00000
\(670\) 0 0
\(671\) 0 0
\(672\) −1.41421 −1.41421
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 1.00000 1.00000
\(677\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) −1.41421 −1.41421
\(680\) 2.00000 2.00000
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 −1.00000
\(687\) 2.00000 2.00000
\(688\) −2.00000 −2.00000
\(689\) 0 0
\(690\) 2.00000 2.00000
\(691\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.00000 −2.00000
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.00000 1.00000
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 2.82843 2.82843
\(706\) 0 0
\(707\) 0 0
\(708\) 2.00000 2.00000
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.41421 −1.41421
\(713\) −1.41421 −1.41421
\(714\) −2.00000 −2.00000
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(720\) −1.41421 −1.41421
\(721\) 0 0
\(722\) −1.00000 −1.00000
\(723\) 2.00000 2.00000
\(724\) 1.41421 1.41421
\(725\) 0 0
\(726\) 1.41421 1.41421
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) −2.82843 −2.82843
\(732\) −2.00000 −2.00000
\(733\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0 0
\(735\) −2.00000 −2.00000
\(736\) −1.00000 −1.00000
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 2.00000 2.00000
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.00000 −2.00000
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) −1.41421 −1.41421
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −2.00000 −2.00000
\(765\) −2.00000 −2.00000
\(766\) 0 0
\(767\) 0 0
\(768\) 1.41421 1.41421
\(769\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.00000 −2.00000
\(773\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 2.00000 2.00000
\(775\) −1.41421 −1.41421
\(776\) 1.41421 1.41421
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −1.41421 −1.41421
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) −2.00000 −2.00000
\(786\) 2.00000 2.00000
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 2.00000 2.00000
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) −2.00000 −2.00000
\(800\) −1.00000 −1.00000
\(801\) 1.41421 1.41421
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −1.41421 −1.41421
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(810\) −1.41421 −1.41421
\(811\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(812\) 0 0
\(813\) 2.00000 2.00000
\(814\) 0 0
\(815\) 0 0
\(816\) 2.00000 2.00000
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1.41421 −1.41421
\(827\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(828\) 1.00000 1.00000
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.41421 1.41421
\(834\) −2.00000 −2.00000
\(835\) 2.00000 2.00000
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 2.00000 2.00000
\(841\) −1.00000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.41421 −1.41421
\(846\) 1.41421 1.41421
\(847\) −1.00000 −1.00000
\(848\) 0 0
\(849\) 0 0
\(850\) −1.41421 −1.41421
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 1.41421 1.41421
\(855\) 0 0
\(856\) 2.00000 2.00000
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(860\) 2.82843 2.82843
\(861\) 0 0
\(862\) −2.00000 −2.00000
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.41421 1.41421
\(867\) 1.41421 1.41421
\(868\) −1.41421 −1.41421
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1.41421 −1.41421
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) −1.41421 −1.41421
\(879\) −2.00000 −2.00000
\(880\) 0 0
\(881\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(882\) −1.00000 −1.00000
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) −2.82843 −2.82843
\(886\) 0 0
\(887\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 2.00000 2.00000
\(891\) 0 0
\(892\) 1.41421 1.41421
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.00000 −1.00000
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.00000 1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) −2.82843 −2.82843
\(904\) 0 0
\(905\) −2.00000 −2.00000
\(906\) 0 0
\(907\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 2.82843 2.82843
\(916\) 1.41421 1.41421
\(917\) −1.41421 −1.41421
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 1.41421 1.41421
\(921\) −2.00000 −2.00000
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) −2.82843 −2.82843
\(931\) 0 0
\(932\) 0 0
\(933\) 2.00000 2.00000
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 0 0
\(939\) 2.00000 2.00000
\(940\) 2.00000 2.00000
\(941\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(942\) −2.00000 −2.00000
\(943\) 0 0
\(944\) 1.41421 1.41421
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −1.41421 −1.41421
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 2.82843 2.82843
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −2.00000 −2.00000
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) −2.00000 −2.00000
\(964\) 1.41421 1.41421
\(965\) 2.82843 2.82843
\(966\) −1.41421 −1.41421
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.00000 1.00000
\(969\) 0 0
\(970\) −2.00000 −2.00000
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −1.41421 −1.41421
\(973\) 1.41421 1.41421
\(974\) 0 0
\(975\) 0 0
\(976\) −1.41421 −1.41421
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.41421 −1.41421
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −2.82843 −2.82843
\(986\) 0 0
\(987\) −2.00000 −2.00000
\(988\) 0 0
\(989\) −2.00000 −2.00000
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 1.41421 1.41421
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 644.1.h.d.643.2 yes 2
4.3 odd 2 644.1.h.c.643.1 2
7.6 odd 2 inner 644.1.h.d.643.1 yes 2
23.22 odd 2 644.1.h.c.643.2 yes 2
28.27 even 2 644.1.h.c.643.2 yes 2
92.91 even 2 inner 644.1.h.d.643.1 yes 2
161.160 even 2 644.1.h.c.643.1 2
644.643 odd 2 CM 644.1.h.d.643.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
644.1.h.c.643.1 2 4.3 odd 2
644.1.h.c.643.1 2 161.160 even 2
644.1.h.c.643.2 yes 2 23.22 odd 2
644.1.h.c.643.2 yes 2 28.27 even 2
644.1.h.d.643.1 yes 2 7.6 odd 2 inner
644.1.h.d.643.1 yes 2 92.91 even 2 inner
644.1.h.d.643.2 yes 2 1.1 even 1 trivial
644.1.h.d.643.2 yes 2 644.643 odd 2 CM