Properties

Label 6422.2.a
Level $6422$
Weight $2$
Character orbit 6422.a
Rep. character $\chi_{6422}(1,\cdot)$
Character field $\Q$
Dimension $233$
Newform subspaces $44$
Sturm bound $1820$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6422 = 2 \cdot 13^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6422.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 44 \)
Sturm bound: \(1820\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6422))\).

Total New Old
Modular forms 938 233 705
Cusp forms 883 233 650
Eisenstein series 55 0 55

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)\(19\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(26\)
\(+\)\(+\)\(-\)\(-\)\(30\)
\(+\)\(-\)\(+\)\(-\)\(33\)
\(+\)\(-\)\(-\)\(+\)\(27\)
\(-\)\(+\)\(+\)\(-\)\(34\)
\(-\)\(+\)\(-\)\(+\)\(23\)
\(-\)\(-\)\(+\)\(+\)\(24\)
\(-\)\(-\)\(-\)\(-\)\(36\)
Plus space\(+\)\(100\)
Minus space\(-\)\(133\)

Trace form

\( 233q + q^{2} - 4q^{3} + 233q^{4} - 6q^{5} - 6q^{6} - 6q^{7} + q^{8} + 235q^{9} + O(q^{10}) \) \( 233q + q^{2} - 4q^{3} + 233q^{4} - 6q^{5} - 6q^{6} - 6q^{7} + q^{8} + 235q^{9} + 2q^{10} + 8q^{11} - 4q^{12} - 4q^{14} - 4q^{15} + 233q^{16} + 8q^{17} + 13q^{18} - q^{19} - 6q^{20} - 4q^{21} - 4q^{22} - 14q^{23} - 6q^{24} + 223q^{25} - 16q^{27} - 6q^{28} + 2q^{29} + 12q^{30} - 20q^{31} + q^{32} + 18q^{34} + 36q^{35} + 235q^{36} - 2q^{37} + 3q^{38} + 2q^{40} - 6q^{41} + 26q^{42} - 12q^{43} + 8q^{44} - 10q^{45} + 4q^{46} + 4q^{47} - 4q^{48} + 211q^{49} + 15q^{50} + 32q^{51} + 26q^{53} - 18q^{54} - 8q^{55} - 4q^{56} - 2q^{57} - 12q^{59} - 4q^{60} + 10q^{61} + 28q^{62} + 32q^{63} + 233q^{64} + 36q^{66} - 4q^{67} + 8q^{68} + 12q^{69} - 4q^{70} + 12q^{71} + 13q^{72} - 36q^{73} + 18q^{74} + 52q^{75} - q^{76} + 20q^{77} + 20q^{79} - 6q^{80} + 241q^{81} + 26q^{82} + 48q^{83} - 4q^{84} + 40q^{85} + 24q^{86} + 26q^{87} - 4q^{88} + 6q^{89} + 38q^{90} - 14q^{92} + 20q^{93} - 24q^{94} - 2q^{95} - 6q^{96} + 38q^{97} + 33q^{98} + 52q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6422))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 13 19
6422.2.a.a \(1\) \(51.280\) \(\Q\) None \(-1\) \(-1\) \(1\) \(3\) \(+\) \(+\) \(-\) \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+3q^{7}+\cdots\)
6422.2.a.b \(1\) \(51.280\) \(\Q\) None \(-1\) \(-1\) \(4\) \(-3\) \(+\) \(+\) \(-\) \(q-q^{2}-q^{3}+q^{4}+4q^{5}+q^{6}-3q^{7}+\cdots\)
6422.2.a.c \(1\) \(51.280\) \(\Q\) None \(-1\) \(1\) \(3\) \(-1\) \(+\) \(-\) \(-\) \(q-q^{2}+q^{3}+q^{4}+3q^{5}-q^{6}-q^{7}+\cdots\)
6422.2.a.d \(1\) \(51.280\) \(\Q\) None \(-1\) \(2\) \(-3\) \(0\) \(+\) \(+\) \(-\) \(q-q^{2}+2q^{3}+q^{4}-3q^{5}-2q^{6}-q^{8}+\cdots\)
6422.2.a.e \(1\) \(51.280\) \(\Q\) None \(1\) \(-1\) \(-1\) \(1\) \(-\) \(+\) \(-\) \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
6422.2.a.f \(1\) \(51.280\) \(\Q\) None \(1\) \(0\) \(-2\) \(-4\) \(-\) \(+\) \(+\) \(q+q^{2}+q^{4}-2q^{5}-4q^{7}+q^{8}-3q^{9}+\cdots\)
6422.2.a.g \(1\) \(51.280\) \(\Q\) None \(1\) \(1\) \(-3\) \(1\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}-3q^{5}+q^{6}+q^{7}+\cdots\)
6422.2.a.h \(1\) \(51.280\) \(\Q\) None \(1\) \(1\) \(0\) \(1\) \(-\) \(+\) \(+\) \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{7}+q^{8}+\cdots\)
6422.2.a.i \(1\) \(51.280\) \(\Q\) None \(1\) \(2\) \(3\) \(0\) \(-\) \(+\) \(+\) \(q+q^{2}+2q^{3}+q^{4}+3q^{5}+2q^{6}+q^{8}+\cdots\)
6422.2.a.j \(1\) \(51.280\) \(\Q\) None \(1\) \(3\) \(3\) \(-3\) \(-\) \(+\) \(+\) \(q+q^{2}+3q^{3}+q^{4}+3q^{5}+3q^{6}-3q^{7}+\cdots\)
6422.2.a.k \(3\) \(51.280\) \(\Q(\zeta_{14})^+\) None \(-3\) \(-3\) \(-5\) \(2\) \(+\) \(-\) \(-\) \(q-q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+q^{4}+(-2+\cdots)q^{5}+\cdots\)
6422.2.a.l \(3\) \(51.280\) \(\Q(\zeta_{14})^+\) None \(-3\) \(-3\) \(3\) \(2\) \(+\) \(+\) \(-\) \(q-q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+q^{4}+(2\beta _{1}+\cdots)q^{5}+\cdots\)
6422.2.a.m \(3\) \(51.280\) 3.3.169.1 None \(-3\) \(-2\) \(-2\) \(1\) \(+\) \(+\) \(+\) \(q-q^{2}+(-1+\beta _{1})q^{3}+q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
6422.2.a.n \(3\) \(51.280\) \(\Q(\zeta_{14})^+\) None \(-3\) \(-1\) \(7\) \(4\) \(+\) \(-\) \(+\) \(q-q^{2}-\beta _{1}q^{3}+q^{4}+(3-\beta _{1}+\beta _{2})q^{5}+\cdots\)
6422.2.a.o \(3\) \(51.280\) 3.3.1129.1 None \(-3\) \(0\) \(0\) \(-4\) \(+\) \(+\) \(-\) \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{1}q^{6}+(-1+\cdots)q^{7}+\cdots\)
6422.2.a.p \(3\) \(51.280\) 3.3.1129.1 None \(-3\) \(0\) \(2\) \(3\) \(+\) \(+\) \(-\) \(q-q^{2}+\beta _{1}q^{3}+q^{4}+(1+\beta _{1}+\beta _{2})q^{5}+\cdots\)
6422.2.a.q \(3\) \(51.280\) \(\Q(\zeta_{14})^+\) None \(-3\) \(5\) \(-5\) \(2\) \(+\) \(+\) \(-\) \(q-q^{2}+(2-\beta _{1})q^{3}+q^{4}+(-2-\beta _{2})q^{5}+\cdots\)
6422.2.a.r \(3\) \(51.280\) \(\Q(\zeta_{14})^+\) None \(3\) \(-3\) \(-3\) \(-2\) \(-\) \(-\) \(+\) \(q+q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\)
6422.2.a.s \(3\) \(51.280\) \(\Q(\zeta_{18})^+\) None \(3\) \(-3\) \(-3\) \(6\) \(-\) \(+\) \(+\) \(q+q^{2}+(-1-2\beta _{1}+\beta _{2})q^{3}+q^{4}+\cdots\)
6422.2.a.t \(3\) \(51.280\) \(\Q(\zeta_{14})^+\) None \(3\) \(-3\) \(5\) \(-2\) \(-\) \(-\) \(+\) \(q+q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+q^{4}+(2+\cdots)q^{5}+\cdots\)
6422.2.a.u \(3\) \(51.280\) 3.3.169.1 None \(3\) \(-2\) \(2\) \(-1\) \(-\) \(+\) \(-\) \(q+q^{2}+(-1+\beta _{1})q^{3}+q^{4}+(\beta _{1}-\beta _{2})q^{5}+\cdots\)
6422.2.a.v \(3\) \(51.280\) \(\Q(\zeta_{14})^+\) None \(3\) \(-1\) \(-7\) \(-4\) \(-\) \(+\) \(-\) \(q+q^{2}-\beta _{1}q^{3}+q^{4}+(-3+\beta _{1}-\beta _{2})q^{5}+\cdots\)
6422.2.a.w \(3\) \(51.280\) 3.3.361.1 None \(3\) \(-1\) \(-1\) \(-2\) \(-\) \(+\) \(-\) \(q+q^{2}-\beta _{1}q^{3}+q^{4}-\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\)
6422.2.a.x \(3\) \(51.280\) 3.3.1129.1 None \(3\) \(0\) \(-2\) \(-3\) \(-\) \(+\) \(+\) \(q+q^{2}+\beta _{1}q^{3}+q^{4}+(-1-\beta _{1}-\beta _{2})q^{5}+\cdots\)
6422.2.a.y \(3\) \(51.280\) 3.3.1129.1 None \(3\) \(0\) \(0\) \(4\) \(-\) \(+\) \(+\) \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{1}q^{6}+(1+\beta _{1}+\cdots)q^{7}+\cdots\)
6422.2.a.z \(4\) \(51.280\) 4.4.10273.1 None \(-4\) \(-2\) \(-1\) \(1\) \(+\) \(+\) \(+\) \(q-q^{2}-\beta _{1}q^{3}+q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\)
6422.2.a.ba \(4\) \(51.280\) 4.4.16609.1 None \(-4\) \(2\) \(-2\) \(-7\) \(+\) \(+\) \(+\) \(q-q^{2}-\beta _{2}q^{3}+q^{4}+(-1+\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
6422.2.a.bb \(4\) \(51.280\) 4.4.10273.1 None \(4\) \(-2\) \(1\) \(-1\) \(-\) \(+\) \(-\) \(q+q^{2}-\beta _{1}q^{3}+q^{4}+(\beta _{1}-\beta _{3})q^{5}+\cdots\)
6422.2.a.bc \(6\) \(51.280\) 6.6.316645497.1 None \(-6\) \(2\) \(-2\) \(-1\) \(+\) \(+\) \(-\) \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\)
6422.2.a.bd \(6\) \(51.280\) 6.6.316645497.1 None \(6\) \(2\) \(2\) \(1\) \(-\) \(+\) \(+\) \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{2}q^{5}+\beta _{1}q^{6}+\cdots\)
6422.2.a.be \(7\) \(51.280\) \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(-7\) \(2\) \(-2\) \(-1\) \(+\) \(-\) \(+\) \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\)
6422.2.a.bf \(7\) \(51.280\) \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(7\) \(2\) \(2\) \(1\) \(-\) \(-\) \(-\) \(q+q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{2}q^{5}+\beta _{1}q^{6}+\cdots\)
6422.2.a.bg \(8\) \(51.280\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-8\) \(-4\) \(2\) \(2\) \(+\) \(-\) \(-\) \(q-q^{2}-\beta _{1}q^{3}+q^{4}-\beta _{6}q^{5}+\beta _{1}q^{6}+\cdots\)
6422.2.a.bh \(8\) \(51.280\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(8\) \(-4\) \(-2\) \(-2\) \(-\) \(-\) \(+\) \(q+q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{6}q^{5}-\beta _{1}q^{6}+\cdots\)
6422.2.a.bi \(9\) \(51.280\) \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(-9\) \(-5\) \(-1\) \(13\) \(+\) \(-\) \(+\) \(q-q^{2}+(-1+\beta _{7})q^{3}+q^{4}+\beta _{4}q^{5}+\cdots\)
6422.2.a.bj \(9\) \(51.280\) \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(-9\) \(1\) \(-1\) \(13\) \(+\) \(+\) \(-\) \(q-q^{2}+\beta _{6}q^{3}+q^{4}+(-1+\beta _{1}+\beta _{4}+\cdots)q^{5}+\cdots\)
6422.2.a.bk \(9\) \(51.280\) \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(9\) \(-5\) \(1\) \(-13\) \(-\) \(+\) \(-\) \(q+q^{2}+(-1+\beta _{7})q^{3}+q^{4}-\beta _{4}q^{5}+\cdots\)
6422.2.a.bl \(9\) \(51.280\) \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(9\) \(1\) \(1\) \(-13\) \(-\) \(-\) \(+\) \(q+q^{2}+\beta _{6}q^{3}+q^{4}+(1-\beta _{1}-\beta _{4}+\cdots)q^{5}+\cdots\)
6422.2.a.bm \(14\) \(51.280\) \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None \(-14\) \(4\) \(2\) \(-2\) \(+\) \(-\) \(+\) \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{4}q^{5}-\beta _{1}q^{6}+\cdots\)
6422.2.a.bn \(14\) \(51.280\) \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None \(14\) \(4\) \(-2\) \(2\) \(-\) \(-\) \(-\) \(q+q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{4}q^{5}+\beta _{1}q^{6}+\cdots\)
6422.2.a.bo \(15\) \(51.280\) \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(-15\) \(0\) \(-1\) \(-18\) \(+\) \(-\) \(-\) \(q-q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{10}q^{5}-\beta _{1}q^{6}+\cdots\)
6422.2.a.bp \(15\) \(51.280\) \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(-15\) \(4\) \(-3\) \(-10\) \(+\) \(+\) \(+\) \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{13}q^{5}-\beta _{1}q^{6}+\cdots\)
6422.2.a.bq \(15\) \(51.280\) \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(15\) \(0\) \(1\) \(18\) \(-\) \(+\) \(+\) \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{10}q^{5}+\beta _{1}q^{6}+\cdots\)
6422.2.a.br \(15\) \(51.280\) \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(15\) \(4\) \(3\) \(10\) \(-\) \(-\) \(-\) \(q+q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{13}q^{5}+\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6422))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(6422)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(247))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(494))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3211))\)\(^{\oplus 2}\)