Properties

Label 6400.2.a.ci.1.2
Level $6400$
Weight $2$
Character 6400.1
Self dual yes
Analytic conductor $51.104$
Analytic rank $0$
Dimension $2$
CM discriminant -8
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6400 = 2^{8} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6400.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(51.1042572936\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1600)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 6400.1

$q$-expansion

\(f(q)\) \(=\) \(q+3.44949 q^{3} +8.89898 q^{9} +O(q^{10})\) \(q+3.44949 q^{3} +8.89898 q^{9} +5.44949 q^{11} -1.89898 q^{17} -6.34847 q^{19} +20.3485 q^{27} +18.7980 q^{33} +6.79796 q^{41} +10.0000 q^{43} -7.00000 q^{49} -6.55051 q^{51} -21.8990 q^{57} -6.00000 q^{59} +0.348469 q^{67} +15.6969 q^{73} +43.4949 q^{81} +6.55051 q^{83} +4.10102 q^{89} +10.0000 q^{97} +48.4949 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 8 q^{9} + 6 q^{11} + 6 q^{17} + 2 q^{19} + 26 q^{27} + 18 q^{33} - 6 q^{41} + 20 q^{43} - 14 q^{49} - 18 q^{51} - 34 q^{57} - 12 q^{59} - 14 q^{67} + 2 q^{73} + 38 q^{81} + 18 q^{83} + 18 q^{89} + 20 q^{97} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.44949 1.99156 0.995782 0.0917517i \(-0.0292466\pi\)
0.995782 + 0.0917517i \(0.0292466\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 8.89898 2.96633
\(10\) 0 0
\(11\) 5.44949 1.64308 0.821541 0.570149i \(-0.193114\pi\)
0.821541 + 0.570149i \(0.193114\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.89898 −0.460570 −0.230285 0.973123i \(-0.573966\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 0 0
\(19\) −6.34847 −1.45644 −0.728219 0.685344i \(-0.759652\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 20.3485 3.91606
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 18.7980 3.27230
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.79796 1.06166 0.530831 0.847477i \(-0.321880\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) −6.55051 −0.917255
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −21.8990 −2.90059
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.348469 0.0425723 0.0212861 0.999773i \(-0.493224\pi\)
0.0212861 + 0.999773i \(0.493224\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 15.6969 1.83719 0.918594 0.395203i \(-0.129326\pi\)
0.918594 + 0.395203i \(0.129326\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 43.4949 4.83277
\(82\) 0 0
\(83\) 6.55051 0.719012 0.359506 0.933143i \(-0.382945\pi\)
0.359506 + 0.933143i \(0.382945\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.10102 0.434707 0.217354 0.976093i \(-0.430258\pi\)
0.217354 + 0.976093i \(0.430258\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 48.4949 4.87392
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.1464 −1.36759 −0.683793 0.729676i \(-0.739671\pi\)
−0.683793 + 0.729676i \(0.739671\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.7980 −1.76836 −0.884182 0.467143i \(-0.845283\pi\)
−0.884182 + 0.467143i \(0.845283\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 18.6969 1.69972
\(122\) 0 0
\(123\) 23.4495 2.11437
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 34.4949 3.03711
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −22.5959 −1.93050 −0.965250 0.261329i \(-0.915839\pi\)
−0.965250 + 0.261329i \(0.915839\pi\)
\(138\) 0 0
\(139\) 3.65153 0.309719 0.154859 0.987937i \(-0.450508\pi\)
0.154859 + 0.987937i \(0.450508\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −24.1464 −1.99156
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −16.8990 −1.36620
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −21.0454 −1.64840 −0.824202 0.566296i \(-0.808376\pi\)
−0.824202 + 0.566296i \(0.808376\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −56.4949 −4.32027
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −20.6969 −1.55568
\(178\) 0 0
\(179\) −8.14643 −0.608893 −0.304446 0.952529i \(-0.598471\pi\)
−0.304446 + 0.952529i \(0.598471\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −10.3485 −0.756755
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 25.6969 1.84971 0.924853 0.380325i \(-0.124188\pi\)
0.924853 + 0.380325i \(0.124188\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 1.20204 0.0847854
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −34.5959 −2.39305
\(210\) 0 0
\(211\) −29.0454 −1.99957 −0.999784 0.0207756i \(-0.993386\pi\)
−0.999784 + 0.0207756i \(0.993386\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 54.1464 3.65888
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 30.0000 1.99117 0.995585 0.0938647i \(-0.0299221\pi\)
0.995585 + 0.0938647i \(0.0299221\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.0000 1.96537 0.982683 0.185296i \(-0.0593245\pi\)
0.982683 + 0.185296i \(0.0593245\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −27.6969 −1.78412 −0.892058 0.451920i \(-0.850739\pi\)
−0.892058 + 0.451920i \(0.850739\pi\)
\(242\) 0 0
\(243\) 88.9898 5.70870
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 22.5959 1.43196
\(250\) 0 0
\(251\) 29.9444 1.89007 0.945036 0.326965i \(-0.106026\pi\)
0.945036 + 0.326965i \(0.106026\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −30.0000 −1.87135 −0.935674 0.352865i \(-0.885208\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 14.1464 0.865747
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) −11.0454 −0.656581 −0.328291 0.944577i \(-0.606473\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.3939 −0.787875
\(290\) 0 0
\(291\) 34.4949 2.02213
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 110.889 6.43442
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.65153 0.550842 0.275421 0.961324i \(-0.411183\pi\)
0.275421 + 0.961324i \(0.411183\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −48.7980 −2.72364
\(322\) 0 0
\(323\) 12.0556 0.670792
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 9.04541 0.497181 0.248590 0.968609i \(-0.420033\pi\)
0.248590 + 0.968609i \(0.420033\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 36.3939 1.98250 0.991250 0.131995i \(-0.0421382\pi\)
0.991250 + 0.131995i \(0.0421382\pi\)
\(338\) 0 0
\(339\) −64.8434 −3.52181
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 34.8434 1.87049 0.935245 0.354001i \(-0.115179\pi\)
0.935245 + 0.354001i \(0.115179\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 21.3031 1.12121
\(362\) 0 0
\(363\) 64.4949 3.38510
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 60.4949 3.14924
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 26.3485 1.35343 0.676715 0.736245i \(-0.263403\pi\)
0.676715 + 0.736245i \(0.263403\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 88.9898 4.52361
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −62.0908 −3.13207
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −31.2929 −1.56269 −0.781345 0.624099i \(-0.785466\pi\)
−0.781345 + 0.624099i \(0.785466\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −40.3939 −1.99735 −0.998674 0.0514740i \(-0.983608\pi\)
−0.998674 + 0.0514740i \(0.983608\pi\)
\(410\) 0 0
\(411\) −77.9444 −3.84471
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.5959 0.616825
\(418\) 0 0
\(419\) 40.8434 1.99533 0.997665 0.0683046i \(-0.0217590\pi\)
0.997665 + 0.0683046i \(0.0217590\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 4.30306 0.206792 0.103396 0.994640i \(-0.467029\pi\)
0.103396 + 0.994640i \(0.467029\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −62.2929 −2.96633
\(442\) 0 0
\(443\) −23.4495 −1.11412 −0.557059 0.830473i \(-0.688070\pi\)
−0.557059 + 0.830473i \(0.688070\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −25.8990 −1.22225 −0.611124 0.791535i \(-0.709282\pi\)
−0.611124 + 0.791535i \(0.709282\pi\)
\(450\) 0 0
\(451\) 37.0454 1.74440
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −16.3939 −0.766873 −0.383437 0.923567i \(-0.625260\pi\)
−0.383437 + 0.923567i \(0.625260\pi\)
\(458\) 0 0
\(459\) −38.6413 −1.80362
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.0000 1.38823 0.694117 0.719862i \(-0.255795\pi\)
0.694117 + 0.719862i \(0.255795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 54.4949 2.50568
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) −72.5959 −3.28290
\(490\) 0 0
\(491\) 42.0000 1.89543 0.947717 0.319113i \(-0.103385\pi\)
0.947717 + 0.319113i \(0.103385\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.0000 0.626726 0.313363 0.949633i \(-0.398544\pi\)
0.313363 + 0.949633i \(0.398544\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −44.8434 −1.99156
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −129.182 −5.70351
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.1918 −1.84846 −0.924229 0.381839i \(-0.875291\pi\)
−0.924229 + 0.381839i \(0.875291\pi\)
\(522\) 0 0
\(523\) 41.0454 1.79479 0.897395 0.441228i \(-0.145457\pi\)
0.897395 + 0.441228i \(0.145457\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −53.3939 −2.31710
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −28.1010 −1.21265
\(538\) 0 0
\(539\) −38.1464 −1.64308
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −30.3485 −1.29761 −0.648803 0.760956i \(-0.724730\pi\)
−0.648803 + 0.760956i \(0.724730\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −35.6969 −1.50713
\(562\) 0 0
\(563\) 30.0000 1.26435 0.632175 0.774826i \(-0.282163\pi\)
0.632175 + 0.774826i \(0.282163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.40408 0.0588622 0.0294311 0.999567i \(-0.490630\pi\)
0.0294311 + 0.999567i \(0.490630\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −46.3939 −1.93140 −0.965701 0.259656i \(-0.916391\pi\)
−0.965701 + 0.259656i \(0.916391\pi\)
\(578\) 0 0
\(579\) 88.6413 3.68381
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −38.6413 −1.59490 −0.797449 0.603386i \(-0.793818\pi\)
−0.797449 + 0.603386i \(0.793818\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.1918 1.23983 0.619915 0.784669i \(-0.287167\pi\)
0.619915 + 0.784669i \(0.287167\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −37.6969 −1.53769 −0.768845 0.639435i \(-0.779168\pi\)
−0.768845 + 0.639435i \(0.779168\pi\)
\(602\) 0 0
\(603\) 3.10102 0.126283
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 0 0
\(619\) 26.0000 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −119.338 −4.76591
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −100.192 −3.98227
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) 0 0
\(643\) −50.0000 −1.97181 −0.985904 0.167313i \(-0.946491\pi\)
−0.985904 + 0.167313i \(0.946491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −32.6969 −1.28347
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 139.687 5.44970
\(658\) 0 0
\(659\) −32.6413 −1.27153 −0.635763 0.771885i \(-0.719314\pi\)
−0.635763 + 0.771885i \(0.719314\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 103.485 3.96554
\(682\) 0 0
\(683\) −47.9444 −1.83454 −0.917270 0.398265i \(-0.869613\pi\)
−0.917270 + 0.398265i \(0.869613\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −0.954592 −0.0363144 −0.0181572 0.999835i \(-0.505780\pi\)
−0.0181572 + 0.999835i \(0.505780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −12.9092 −0.488970
\(698\) 0 0
\(699\) 103.485 3.91415
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −95.5403 −3.55318
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 176.485 6.53647
\(730\) 0 0
\(731\) −18.9898 −0.702363
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.89898 0.0699498
\(738\) 0 0
\(739\) −34.0000 −1.25071 −0.625355 0.780340i \(-0.715046\pi\)
−0.625355 + 0.780340i \(0.715046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 58.2929 2.13282
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 103.293 3.76420
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −36.7980 −1.33392 −0.666962 0.745091i \(-0.732406\pi\)
−0.666962 + 0.745091i \(0.732406\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −33.0908 −1.19329 −0.596643 0.802507i \(-0.703499\pi\)
−0.596643 + 0.802507i \(0.703499\pi\)
\(770\) 0 0
\(771\) −103.485 −3.72691
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −43.1566 −1.54625
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −50.0000 −1.78231 −0.891154 0.453701i \(-0.850103\pi\)
−0.891154 + 0.453701i \(0.850103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 36.4949 1.28948
\(802\) 0 0
\(803\) 85.5403 3.01865
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −38.0000 −1.33436 −0.667180 0.744896i \(-0.732499\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −63.4847 −2.22105
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 44.1464 1.53512 0.767561 0.640976i \(-0.221470\pi\)
0.767561 + 0.640976i \(0.221470\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 13.2929 0.460570
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −62.0908 −2.13852
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −38.1010 −1.30762
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7.40408 −0.252919 −0.126459 0.991972i \(-0.540361\pi\)
−0.126459 + 0.991972i \(0.540361\pi\)
\(858\) 0 0
\(859\) −36.3485 −1.24019 −0.620097 0.784525i \(-0.712907\pi\)
−0.620097 + 0.784525i \(0.712907\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −46.2020 −1.56910
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 88.9898 3.01185
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 52.4393 1.76472 0.882361 0.470573i \(-0.155953\pi\)
0.882361 + 0.470573i \(0.155953\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 237.025 7.94064
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 10.0000 0.332045 0.166022 0.986122i \(-0.446908\pi\)
0.166022 + 0.986122i \(0.446908\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 35.6969 1.18140
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 33.2929 1.09704
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −54.0000 −1.77168 −0.885841 0.463988i \(-0.846418\pi\)
−0.885841 + 0.463988i \(0.846418\pi\)
\(930\) 0 0
\(931\) 44.4393 1.45644
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −27.0908 −0.885018 −0.442509 0.896764i \(-0.645912\pi\)
−0.442509 + 0.896764i \(0.645912\pi\)
\(938\) 0 0
\(939\) −34.4949 −1.12570
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.0000 0.974869 0.487435 0.873160i \(-0.337933\pi\)
0.487435 + 0.873160i \(0.337933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 60.1918 1.94980 0.974902 0.222633i \(-0.0714650\pi\)
0.974902 + 0.222633i \(0.0714650\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −125.889 −4.05671
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 41.5857 1.33593
\(970\) 0 0
\(971\) 0.0556128 0.00178470 0.000892350 1.00000i \(-0.499716\pi\)
0.000892350 1.00000i \(0.499716\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −50.8888 −1.62808 −0.814038 0.580812i \(-0.802735\pi\)
−0.814038 + 0.580812i \(0.802735\pi\)
\(978\) 0 0
\(979\) 22.3485 0.714260
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 31.2020 0.990167
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6400.2.a.ci.1.2 2
4.3 odd 2 6400.2.a.bc.1.1 2
5.4 even 2 6400.2.a.bd.1.1 2
8.3 odd 2 CM 6400.2.a.ci.1.2 2
8.5 even 2 6400.2.a.bc.1.1 2
16.3 odd 4 1600.2.d.d.801.1 yes 4
16.5 even 4 1600.2.d.d.801.1 yes 4
16.11 odd 4 1600.2.d.d.801.4 yes 4
16.13 even 4 1600.2.d.d.801.4 yes 4
20.19 odd 2 6400.2.a.ch.1.2 2
40.19 odd 2 6400.2.a.bd.1.1 2
40.29 even 2 6400.2.a.ch.1.2 2
80.3 even 4 1600.2.f.j.1249.4 4
80.13 odd 4 1600.2.f.f.1249.1 4
80.19 odd 4 1600.2.d.c.801.4 yes 4
80.27 even 4 1600.2.f.j.1249.3 4
80.29 even 4 1600.2.d.c.801.1 4
80.37 odd 4 1600.2.f.f.1249.2 4
80.43 even 4 1600.2.f.f.1249.1 4
80.53 odd 4 1600.2.f.j.1249.4 4
80.59 odd 4 1600.2.d.c.801.1 4
80.67 even 4 1600.2.f.f.1249.2 4
80.69 even 4 1600.2.d.c.801.4 yes 4
80.77 odd 4 1600.2.f.j.1249.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1600.2.d.c.801.1 4 80.29 even 4
1600.2.d.c.801.1 4 80.59 odd 4
1600.2.d.c.801.4 yes 4 80.19 odd 4
1600.2.d.c.801.4 yes 4 80.69 even 4
1600.2.d.d.801.1 yes 4 16.3 odd 4
1600.2.d.d.801.1 yes 4 16.5 even 4
1600.2.d.d.801.4 yes 4 16.11 odd 4
1600.2.d.d.801.4 yes 4 16.13 even 4
1600.2.f.f.1249.1 4 80.13 odd 4
1600.2.f.f.1249.1 4 80.43 even 4
1600.2.f.f.1249.2 4 80.37 odd 4
1600.2.f.f.1249.2 4 80.67 even 4
1600.2.f.j.1249.3 4 80.27 even 4
1600.2.f.j.1249.3 4 80.77 odd 4
1600.2.f.j.1249.4 4 80.3 even 4
1600.2.f.j.1249.4 4 80.53 odd 4
6400.2.a.bc.1.1 2 4.3 odd 2
6400.2.a.bc.1.1 2 8.5 even 2
6400.2.a.bd.1.1 2 5.4 even 2
6400.2.a.bd.1.1 2 40.19 odd 2
6400.2.a.ch.1.2 2 20.19 odd 2
6400.2.a.ch.1.2 2 40.29 even 2
6400.2.a.ci.1.2 2 1.1 even 1 trivial
6400.2.a.ci.1.2 2 8.3 odd 2 CM