Properties

Label 6400.2.a.cg.1.2
Level $6400$
Weight $2$
Character 6400.1
Self dual yes
Analytic conductor $51.104$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6400 = 2^{8} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6400.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(51.1042572936\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1600)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 6400.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.46410 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +3.46410 q^{7} -2.00000 q^{9} +3.00000 q^{11} +3.46410 q^{13} +3.00000 q^{17} -1.00000 q^{19} +3.46410 q^{21} -5.00000 q^{27} +10.3923 q^{29} +6.92820 q^{31} +3.00000 q^{33} -10.3923 q^{37} +3.46410 q^{39} +9.00000 q^{41} +4.00000 q^{43} -10.3923 q^{47} +5.00000 q^{49} +3.00000 q^{51} -1.00000 q^{57} -12.0000 q^{59} -3.46410 q^{61} -6.92820 q^{63} +11.0000 q^{67} -10.3923 q^{71} -7.00000 q^{73} +10.3923 q^{77} -10.3923 q^{79} +1.00000 q^{81} +15.0000 q^{83} +10.3923 q^{87} +3.00000 q^{89} +12.0000 q^{91} +6.92820 q^{93} +14.0000 q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} - 4 q^{9} + 6 q^{11} + 6 q^{17} - 2 q^{19} - 10 q^{27} + 6 q^{33} + 18 q^{41} + 8 q^{43} + 10 q^{49} + 6 q^{51} - 2 q^{57} - 24 q^{59} + 22 q^{67} - 14 q^{73} + 2 q^{81} + 30 q^{83} + 6 q^{89} + 24 q^{91} + 28 q^{97} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.46410 1.30931 0.654654 0.755929i \(-0.272814\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 3.46410 0.960769 0.480384 0.877058i \(-0.340497\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 3.46410 0.755929
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 10.3923 1.92980 0.964901 0.262613i \(-0.0845842\pi\)
0.964901 + 0.262613i \(0.0845842\pi\)
\(30\) 0 0
\(31\) 6.92820 1.24434 0.622171 0.782881i \(-0.286251\pi\)
0.622171 + 0.782881i \(0.286251\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.3923 −1.70848 −0.854242 0.519875i \(-0.825978\pi\)
−0.854242 + 0.519875i \(0.825978\pi\)
\(38\) 0 0
\(39\) 3.46410 0.554700
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.3923 −1.51587 −0.757937 0.652328i \(-0.773792\pi\)
−0.757937 + 0.652328i \(0.773792\pi\)
\(48\) 0 0
\(49\) 5.00000 0.714286
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −3.46410 −0.443533 −0.221766 0.975100i \(-0.571182\pi\)
−0.221766 + 0.975100i \(0.571182\pi\)
\(62\) 0 0
\(63\) −6.92820 −0.872872
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 11.0000 1.34386 0.671932 0.740613i \(-0.265465\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.3923 −1.23334 −0.616670 0.787222i \(-0.711519\pi\)
−0.616670 + 0.787222i \(0.711519\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.3923 1.18431
\(78\) 0 0
\(79\) −10.3923 −1.16923 −0.584613 0.811312i \(-0.698754\pi\)
−0.584613 + 0.811312i \(0.698754\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 15.0000 1.64646 0.823232 0.567705i \(-0.192169\pi\)
0.823232 + 0.567705i \(0.192169\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 10.3923 1.11417
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 6.92820 0.718421
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 10.3923 1.03407 0.517036 0.855963i \(-0.327035\pi\)
0.517036 + 0.855963i \(0.327035\pi\)
\(102\) 0 0
\(103\) 10.3923 1.02398 0.511992 0.858990i \(-0.328908\pi\)
0.511992 + 0.858990i \(0.328908\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000 0.870063 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(108\) 0 0
\(109\) −3.46410 −0.331801 −0.165900 0.986143i \(-0.553053\pi\)
−0.165900 + 0.986143i \(0.553053\pi\)
\(110\) 0 0
\(111\) −10.3923 −0.986394
\(112\) 0 0
\(113\) −15.0000 −1.41108 −0.705541 0.708669i \(-0.749296\pi\)
−0.705541 + 0.708669i \(0.749296\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −6.92820 −0.640513
\(118\) 0 0
\(119\) 10.3923 0.952661
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 9.00000 0.811503
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −3.46410 −0.300376
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) −10.3923 −0.875190
\(142\) 0 0
\(143\) 10.3923 0.869048
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.00000 0.412393
\(148\) 0 0
\(149\) −10.3923 −0.851371 −0.425685 0.904871i \(-0.639967\pi\)
−0.425685 + 0.904871i \(0.639967\pi\)
\(150\) 0 0
\(151\) 3.46410 0.281905 0.140952 0.990016i \(-0.454984\pi\)
0.140952 + 0.990016i \(0.454984\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.92820 0.552931 0.276465 0.961024i \(-0.410837\pi\)
0.276465 + 0.961024i \(0.410837\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 19.0000 1.48819 0.744097 0.668071i \(-0.232880\pi\)
0.744097 + 0.668071i \(0.232880\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.3923 −0.804181 −0.402090 0.915600i \(-0.631716\pi\)
−0.402090 + 0.915600i \(0.631716\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) −20.7846 −1.58022 −0.790112 0.612962i \(-0.789978\pi\)
−0.790112 + 0.612962i \(0.789978\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) 3.00000 0.224231 0.112115 0.993695i \(-0.464237\pi\)
0.112115 + 0.993695i \(0.464237\pi\)
\(180\) 0 0
\(181\) −13.8564 −1.02994 −0.514969 0.857209i \(-0.672197\pi\)
−0.514969 + 0.857209i \(0.672197\pi\)
\(182\) 0 0
\(183\) −3.46410 −0.256074
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 0 0
\(189\) −17.3205 −1.25988
\(190\) 0 0
\(191\) 20.7846 1.50392 0.751961 0.659208i \(-0.229108\pi\)
0.751961 + 0.659208i \(0.229108\pi\)
\(192\) 0 0
\(193\) 7.00000 0.503871 0.251936 0.967744i \(-0.418933\pi\)
0.251936 + 0.967744i \(0.418933\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.7846 1.48084 0.740421 0.672143i \(-0.234626\pi\)
0.740421 + 0.672143i \(0.234626\pi\)
\(198\) 0 0
\(199\) −13.8564 −0.982255 −0.491127 0.871088i \(-0.663415\pi\)
−0.491127 + 0.871088i \(0.663415\pi\)
\(200\) 0 0
\(201\) 11.0000 0.775880
\(202\) 0 0
\(203\) 36.0000 2.52670
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) 25.0000 1.72107 0.860535 0.509390i \(-0.170129\pi\)
0.860535 + 0.509390i \(0.170129\pi\)
\(212\) 0 0
\(213\) −10.3923 −0.712069
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 24.0000 1.62923
\(218\) 0 0
\(219\) −7.00000 −0.473016
\(220\) 0 0
\(221\) 10.3923 0.699062
\(222\) 0 0
\(223\) −13.8564 −0.927894 −0.463947 0.885863i \(-0.653567\pi\)
−0.463947 + 0.885863i \(0.653567\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −6.92820 −0.457829 −0.228914 0.973447i \(-0.573518\pi\)
−0.228914 + 0.973447i \(0.573518\pi\)
\(230\) 0 0
\(231\) 10.3923 0.683763
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −10.3923 −0.675053
\(238\) 0 0
\(239\) 10.3923 0.672222 0.336111 0.941822i \(-0.390888\pi\)
0.336111 + 0.941822i \(0.390888\pi\)
\(240\) 0 0
\(241\) 5.00000 0.322078 0.161039 0.986948i \(-0.448515\pi\)
0.161039 + 0.986948i \(0.448515\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.46410 −0.220416
\(248\) 0 0
\(249\) 15.0000 0.950586
\(250\) 0 0
\(251\) 9.00000 0.568075 0.284037 0.958813i \(-0.408326\pi\)
0.284037 + 0.958813i \(0.408326\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) −36.0000 −2.23693
\(260\) 0 0
\(261\) −20.7846 −1.28654
\(262\) 0 0
\(263\) −20.7846 −1.28163 −0.640817 0.767694i \(-0.721404\pi\)
−0.640817 + 0.767694i \(0.721404\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.00000 0.183597
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −20.7846 −1.26258 −0.631288 0.775549i \(-0.717473\pi\)
−0.631288 + 0.775549i \(0.717473\pi\)
\(272\) 0 0
\(273\) 12.0000 0.726273
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 17.3205 1.04069 0.520344 0.853957i \(-0.325804\pi\)
0.520344 + 0.853957i \(0.325804\pi\)
\(278\) 0 0
\(279\) −13.8564 −0.829561
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 11.0000 0.653882 0.326941 0.945045i \(-0.393982\pi\)
0.326941 + 0.945045i \(0.393982\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 31.1769 1.84032
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 14.0000 0.820695
\(292\) 0 0
\(293\) 10.3923 0.607125 0.303562 0.952812i \(-0.401824\pi\)
0.303562 + 0.952812i \(0.401824\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −15.0000 −0.870388
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 13.8564 0.798670
\(302\) 0 0
\(303\) 10.3923 0.597022
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −19.0000 −1.08439 −0.542194 0.840254i \(-0.682406\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) 0 0
\(309\) 10.3923 0.591198
\(310\) 0 0
\(311\) 10.3923 0.589294 0.294647 0.955606i \(-0.404798\pi\)
0.294647 + 0.955606i \(0.404798\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.7846 −1.16738 −0.583690 0.811977i \(-0.698392\pi\)
−0.583690 + 0.811977i \(0.698392\pi\)
\(318\) 0 0
\(319\) 31.1769 1.74557
\(320\) 0 0
\(321\) 9.00000 0.502331
\(322\) 0 0
\(323\) −3.00000 −0.166924
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.46410 −0.191565
\(328\) 0 0
\(329\) −36.0000 −1.98474
\(330\) 0 0
\(331\) 19.0000 1.04433 0.522167 0.852843i \(-0.325124\pi\)
0.522167 + 0.852843i \(0.325124\pi\)
\(332\) 0 0
\(333\) 20.7846 1.13899
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 0 0
\(339\) −15.0000 −0.814688
\(340\) 0 0
\(341\) 20.7846 1.12555
\(342\) 0 0
\(343\) −6.92820 −0.374088
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 33.0000 1.77153 0.885766 0.464131i \(-0.153633\pi\)
0.885766 + 0.464131i \(0.153633\pi\)
\(348\) 0 0
\(349\) −10.3923 −0.556287 −0.278144 0.960539i \(-0.589719\pi\)
−0.278144 + 0.960539i \(0.589719\pi\)
\(350\) 0 0
\(351\) −17.3205 −0.924500
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.3923 0.550019
\(358\) 0 0
\(359\) 10.3923 0.548485 0.274242 0.961661i \(-0.411573\pi\)
0.274242 + 0.961661i \(0.411573\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 6.92820 0.361649 0.180825 0.983515i \(-0.442123\pi\)
0.180825 + 0.983515i \(0.442123\pi\)
\(368\) 0 0
\(369\) −18.0000 −0.937043
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 13.8564 0.717458 0.358729 0.933442i \(-0.383210\pi\)
0.358729 + 0.933442i \(0.383210\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 36.0000 1.85409
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 31.1769 1.59307 0.796533 0.604595i \(-0.206665\pi\)
0.796533 + 0.604595i \(0.206665\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.00000 −0.406663
\(388\) 0 0
\(389\) 20.7846 1.05382 0.526911 0.849921i \(-0.323350\pi\)
0.526911 + 0.849921i \(0.323350\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −27.7128 −1.39087 −0.695433 0.718591i \(-0.744787\pi\)
−0.695433 + 0.718591i \(0.744787\pi\)
\(398\) 0 0
\(399\) −3.46410 −0.173422
\(400\) 0 0
\(401\) −3.00000 −0.149813 −0.0749064 0.997191i \(-0.523866\pi\)
−0.0749064 + 0.997191i \(0.523866\pi\)
\(402\) 0 0
\(403\) 24.0000 1.19553
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −31.1769 −1.54538
\(408\) 0 0
\(409\) 25.0000 1.23617 0.618085 0.786111i \(-0.287909\pi\)
0.618085 + 0.786111i \(0.287909\pi\)
\(410\) 0 0
\(411\) −9.00000 −0.443937
\(412\) 0 0
\(413\) −41.5692 −2.04549
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −5.00000 −0.244851
\(418\) 0 0
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 0 0
\(421\) −20.7846 −1.01298 −0.506490 0.862246i \(-0.669057\pi\)
−0.506490 + 0.862246i \(0.669057\pi\)
\(422\) 0 0
\(423\) 20.7846 1.01058
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −12.0000 −0.580721
\(428\) 0 0
\(429\) 10.3923 0.501745
\(430\) 0 0
\(431\) 10.3923 0.500580 0.250290 0.968171i \(-0.419474\pi\)
0.250290 + 0.968171i \(0.419474\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −17.3205 −0.826663 −0.413331 0.910581i \(-0.635635\pi\)
−0.413331 + 0.910581i \(0.635635\pi\)
\(440\) 0 0
\(441\) −10.0000 −0.476190
\(442\) 0 0
\(443\) 39.0000 1.85295 0.926473 0.376361i \(-0.122825\pi\)
0.926473 + 0.376361i \(0.122825\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −10.3923 −0.491539
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) 27.0000 1.27138
\(452\) 0 0
\(453\) 3.46410 0.162758
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −37.0000 −1.73079 −0.865393 0.501093i \(-0.832931\pi\)
−0.865393 + 0.501093i \(0.832931\pi\)
\(458\) 0 0
\(459\) −15.0000 −0.700140
\(460\) 0 0
\(461\) 20.7846 0.968036 0.484018 0.875058i \(-0.339177\pi\)
0.484018 + 0.875058i \(0.339177\pi\)
\(462\) 0 0
\(463\) −20.7846 −0.965943 −0.482971 0.875636i \(-0.660442\pi\)
−0.482971 + 0.875636i \(0.660442\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 38.1051 1.75953
\(470\) 0 0
\(471\) 6.92820 0.319235
\(472\) 0 0
\(473\) 12.0000 0.551761
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −41.5692 −1.89935 −0.949673 0.313243i \(-0.898585\pi\)
−0.949673 + 0.313243i \(0.898585\pi\)
\(480\) 0 0
\(481\) −36.0000 −1.64146
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −13.8564 −0.627894 −0.313947 0.949441i \(-0.601651\pi\)
−0.313947 + 0.949441i \(0.601651\pi\)
\(488\) 0 0
\(489\) 19.0000 0.859210
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 31.1769 1.40414
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −36.0000 −1.61482
\(498\) 0 0
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) 0 0
\(501\) −10.3923 −0.464294
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.00000 −0.0444116
\(508\) 0 0
\(509\) 20.7846 0.921262 0.460631 0.887592i \(-0.347623\pi\)
0.460631 + 0.887592i \(0.347623\pi\)
\(510\) 0 0
\(511\) −24.2487 −1.07270
\(512\) 0 0
\(513\) 5.00000 0.220755
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −31.1769 −1.37116
\(518\) 0 0
\(519\) −20.7846 −0.912343
\(520\) 0 0
\(521\) 21.0000 0.920027 0.460013 0.887912i \(-0.347845\pi\)
0.460013 + 0.887912i \(0.347845\pi\)
\(522\) 0 0
\(523\) 1.00000 0.0437269 0.0218635 0.999761i \(-0.493040\pi\)
0.0218635 + 0.999761i \(0.493040\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.7846 0.905392
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 24.0000 1.04151
\(532\) 0 0
\(533\) 31.1769 1.35042
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.00000 0.129460
\(538\) 0 0
\(539\) 15.0000 0.646096
\(540\) 0 0
\(541\) −6.92820 −0.297867 −0.148933 0.988847i \(-0.547584\pi\)
−0.148933 + 0.988847i \(0.547584\pi\)
\(542\) 0 0
\(543\) −13.8564 −0.594635
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.00000 0.0427569 0.0213785 0.999771i \(-0.493195\pi\)
0.0213785 + 0.999771i \(0.493195\pi\)
\(548\) 0 0
\(549\) 6.92820 0.295689
\(550\) 0 0
\(551\) −10.3923 −0.442727
\(552\) 0 0
\(553\) −36.0000 −1.53088
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.3923 0.440336 0.220168 0.975462i \(-0.429339\pi\)
0.220168 + 0.975462i \(0.429339\pi\)
\(558\) 0 0
\(559\) 13.8564 0.586064
\(560\) 0 0
\(561\) 9.00000 0.379980
\(562\) 0 0
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.46410 0.145479
\(568\) 0 0
\(569\) −3.00000 −0.125767 −0.0628833 0.998021i \(-0.520030\pi\)
−0.0628833 + 0.998021i \(0.520030\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) 20.7846 0.868290
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 17.0000 0.707719 0.353860 0.935299i \(-0.384869\pi\)
0.353860 + 0.935299i \(0.384869\pi\)
\(578\) 0 0
\(579\) 7.00000 0.290910
\(580\) 0 0
\(581\) 51.9615 2.15573
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.0000 0.619116 0.309558 0.950881i \(-0.399819\pi\)
0.309558 + 0.950881i \(0.399819\pi\)
\(588\) 0 0
\(589\) −6.92820 −0.285472
\(590\) 0 0
\(591\) 20.7846 0.854965
\(592\) 0 0
\(593\) −3.00000 −0.123195 −0.0615976 0.998101i \(-0.519620\pi\)
−0.0615976 + 0.998101i \(0.519620\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −13.8564 −0.567105
\(598\) 0 0
\(599\) 31.1769 1.27385 0.636927 0.770924i \(-0.280205\pi\)
0.636927 + 0.770924i \(0.280205\pi\)
\(600\) 0 0
\(601\) −41.0000 −1.67242 −0.836212 0.548406i \(-0.815235\pi\)
−0.836212 + 0.548406i \(0.815235\pi\)
\(602\) 0 0
\(603\) −22.0000 −0.895909
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −20.7846 −0.843621 −0.421811 0.906684i \(-0.638605\pi\)
−0.421811 + 0.906684i \(0.638605\pi\)
\(608\) 0 0
\(609\) 36.0000 1.45879
\(610\) 0 0
\(611\) −36.0000 −1.45640
\(612\) 0 0
\(613\) −20.7846 −0.839482 −0.419741 0.907644i \(-0.637879\pi\)
−0.419741 + 0.907644i \(0.637879\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.3923 0.416359
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3.00000 −0.119808
\(628\) 0 0
\(629\) −31.1769 −1.24310
\(630\) 0 0
\(631\) −13.8564 −0.551615 −0.275807 0.961213i \(-0.588945\pi\)
−0.275807 + 0.961213i \(0.588945\pi\)
\(632\) 0 0
\(633\) 25.0000 0.993661
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 17.3205 0.686264
\(638\) 0 0
\(639\) 20.7846 0.822226
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 41.5692 1.63425 0.817127 0.576457i \(-0.195565\pi\)
0.817127 + 0.576457i \(0.195565\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) 24.0000 0.940634
\(652\) 0 0
\(653\) −31.1769 −1.22005 −0.610023 0.792383i \(-0.708840\pi\)
−0.610023 + 0.792383i \(0.708840\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 14.0000 0.546192
\(658\) 0 0
\(659\) 33.0000 1.28550 0.642749 0.766077i \(-0.277794\pi\)
0.642749 + 0.766077i \(0.277794\pi\)
\(660\) 0 0
\(661\) −10.3923 −0.404214 −0.202107 0.979363i \(-0.564779\pi\)
−0.202107 + 0.979363i \(0.564779\pi\)
\(662\) 0 0
\(663\) 10.3923 0.403604
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −13.8564 −0.535720
\(670\) 0 0
\(671\) −10.3923 −0.401190
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.7846 0.798817 0.399409 0.916773i \(-0.369215\pi\)
0.399409 + 0.916773i \(0.369215\pi\)
\(678\) 0 0
\(679\) 48.4974 1.86116
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 9.00000 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −6.92820 −0.264327
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −37.0000 −1.40755 −0.703773 0.710425i \(-0.748503\pi\)
−0.703773 + 0.710425i \(0.748503\pi\)
\(692\) 0 0
\(693\) −20.7846 −0.789542
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 27.0000 1.02270
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −31.1769 −1.17754 −0.588768 0.808302i \(-0.700387\pi\)
−0.588768 + 0.808302i \(0.700387\pi\)
\(702\) 0 0
\(703\) 10.3923 0.391953
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.0000 1.35392
\(708\) 0 0
\(709\) −34.6410 −1.30097 −0.650485 0.759519i \(-0.725434\pi\)
−0.650485 + 0.759519i \(0.725434\pi\)
\(710\) 0 0
\(711\) 20.7846 0.779484
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.3923 0.388108
\(718\) 0 0
\(719\) −10.3923 −0.387568 −0.193784 0.981044i \(-0.562076\pi\)
−0.193784 + 0.981044i \(0.562076\pi\)
\(720\) 0 0
\(721\) 36.0000 1.34071
\(722\) 0 0
\(723\) 5.00000 0.185952
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 45.0333 1.67019 0.835097 0.550103i \(-0.185412\pi\)
0.835097 + 0.550103i \(0.185412\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 0 0
\(733\) 31.1769 1.15155 0.575773 0.817610i \(-0.304701\pi\)
0.575773 + 0.817610i \(0.304701\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.0000 1.21557
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) −3.46410 −0.127257
\(742\) 0 0
\(743\) −41.5692 −1.52503 −0.762513 0.646972i \(-0.776035\pi\)
−0.762513 + 0.646972i \(0.776035\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −30.0000 −1.09764
\(748\) 0 0
\(749\) 31.1769 1.13918
\(750\) 0 0
\(751\) 51.9615 1.89610 0.948051 0.318117i \(-0.103050\pi\)
0.948051 + 0.318117i \(0.103050\pi\)
\(752\) 0 0
\(753\) 9.00000 0.327978
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6.92820 −0.251810 −0.125905 0.992042i \(-0.540183\pi\)
−0.125905 + 0.992042i \(0.540183\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.00000 −0.108750 −0.0543750 0.998521i \(-0.517317\pi\)
−0.0543750 + 0.998521i \(0.517317\pi\)
\(762\) 0 0
\(763\) −12.0000 −0.434429
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −41.5692 −1.50098
\(768\) 0 0
\(769\) −7.00000 −0.252426 −0.126213 0.992003i \(-0.540282\pi\)
−0.126213 + 0.992003i \(0.540282\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) −10.3923 −0.373785 −0.186893 0.982380i \(-0.559842\pi\)
−0.186893 + 0.982380i \(0.559842\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −36.0000 −1.29149
\(778\) 0 0
\(779\) −9.00000 −0.322458
\(780\) 0 0
\(781\) −31.1769 −1.11560
\(782\) 0 0
\(783\) −51.9615 −1.85695
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 16.0000 0.570338 0.285169 0.958477i \(-0.407950\pi\)
0.285169 + 0.958477i \(0.407950\pi\)
\(788\) 0 0
\(789\) −20.7846 −0.739952
\(790\) 0 0
\(791\) −51.9615 −1.84754
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20.7846 0.736229 0.368114 0.929781i \(-0.380004\pi\)
0.368114 + 0.929781i \(0.380004\pi\)
\(798\) 0 0
\(799\) −31.1769 −1.10296
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) −21.0000 −0.741074
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) −20.7846 −0.728948
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) 0 0
\(819\) −24.0000 −0.838628
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 34.6410 1.20751 0.603755 0.797170i \(-0.293671\pi\)
0.603755 + 0.797170i \(0.293671\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.00000 0.104320 0.0521601 0.998639i \(-0.483389\pi\)
0.0521601 + 0.998639i \(0.483389\pi\)
\(828\) 0 0
\(829\) 10.3923 0.360940 0.180470 0.983581i \(-0.442238\pi\)
0.180470 + 0.983581i \(0.442238\pi\)
\(830\) 0 0
\(831\) 17.3205 0.600842
\(832\) 0 0
\(833\) 15.0000 0.519719
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −34.6410 −1.19737
\(838\) 0 0
\(839\) −41.5692 −1.43513 −0.717564 0.696492i \(-0.754743\pi\)
−0.717564 + 0.696492i \(0.754743\pi\)
\(840\) 0 0
\(841\) 79.0000 2.72414
\(842\) 0 0
\(843\) −18.0000 −0.619953
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −6.92820 −0.238056
\(848\) 0 0
\(849\) 11.0000 0.377519
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −55.4256 −1.89774 −0.948869 0.315671i \(-0.897770\pi\)
−0.948869 + 0.315671i \(0.897770\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 39.0000 1.33221 0.666107 0.745856i \(-0.267959\pi\)
0.666107 + 0.745856i \(0.267959\pi\)
\(858\) 0 0
\(859\) −13.0000 −0.443554 −0.221777 0.975097i \(-0.571186\pi\)
−0.221777 + 0.975097i \(0.571186\pi\)
\(860\) 0 0
\(861\) 31.1769 1.06251
\(862\) 0 0
\(863\) 10.3923 0.353758 0.176879 0.984233i \(-0.443400\pi\)
0.176879 + 0.984233i \(0.443400\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) −31.1769 −1.05760
\(870\) 0 0
\(871\) 38.1051 1.29114
\(872\) 0 0
\(873\) −28.0000 −0.947656
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 48.4974 1.63764 0.818821 0.574049i \(-0.194628\pi\)
0.818821 + 0.574049i \(0.194628\pi\)
\(878\) 0 0
\(879\) 10.3923 0.350524
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −35.0000 −1.17784 −0.588922 0.808190i \(-0.700447\pi\)
−0.588922 + 0.808190i \(0.700447\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 0 0
\(893\) 10.3923 0.347765
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 72.0000 2.40133
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 13.8564 0.461112
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −44.0000 −1.46100 −0.730498 0.682915i \(-0.760712\pi\)
−0.730498 + 0.682915i \(0.760712\pi\)
\(908\) 0 0
\(909\) −20.7846 −0.689382
\(910\) 0 0
\(911\) 20.7846 0.688625 0.344312 0.938855i \(-0.388112\pi\)
0.344312 + 0.938855i \(0.388112\pi\)
\(912\) 0 0
\(913\) 45.0000 1.48928
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −27.7128 −0.914161 −0.457081 0.889425i \(-0.651105\pi\)
−0.457081 + 0.889425i \(0.651105\pi\)
\(920\) 0 0
\(921\) −19.0000 −0.626071
\(922\) 0 0
\(923\) −36.0000 −1.18495
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −20.7846 −0.682656
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) −5.00000 −0.163868
\(932\) 0 0
\(933\) 10.3923 0.340229
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −35.0000 −1.14340 −0.571700 0.820463i \(-0.693716\pi\)
−0.571700 + 0.820463i \(0.693716\pi\)
\(938\) 0 0
\(939\) 22.0000 0.717943
\(940\) 0 0
\(941\) −51.9615 −1.69390 −0.846949 0.531675i \(-0.821563\pi\)
−0.846949 + 0.531675i \(0.821563\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) −24.2487 −0.787146
\(950\) 0 0
\(951\) −20.7846 −0.673987
\(952\) 0 0
\(953\) 39.0000 1.26333 0.631667 0.775240i \(-0.282371\pi\)
0.631667 + 0.775240i \(0.282371\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 31.1769 1.00781
\(958\) 0 0
\(959\) −31.1769 −1.00676
\(960\) 0 0
\(961\) 17.0000 0.548387
\(962\) 0 0
\(963\) −18.0000 −0.580042
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 20.7846 0.668388 0.334194 0.942504i \(-0.391536\pi\)
0.334194 + 0.942504i \(0.391536\pi\)
\(968\) 0 0
\(969\) −3.00000 −0.0963739
\(970\) 0 0
\(971\) −57.0000 −1.82922 −0.914609 0.404341i \(-0.867501\pi\)
−0.914609 + 0.404341i \(0.867501\pi\)
\(972\) 0 0
\(973\) −17.3205 −0.555270
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 27.0000 0.863807 0.431903 0.901920i \(-0.357842\pi\)
0.431903 + 0.901920i \(0.357842\pi\)
\(978\) 0 0
\(979\) 9.00000 0.287641
\(980\) 0 0
\(981\) 6.92820 0.221201
\(982\) 0 0
\(983\) −10.3923 −0.331463 −0.165732 0.986171i \(-0.552999\pi\)
−0.165732 + 0.986171i \(0.552999\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −36.0000 −1.14589
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −24.2487 −0.770286 −0.385143 0.922857i \(-0.625848\pi\)
−0.385143 + 0.922857i \(0.625848\pi\)
\(992\) 0 0
\(993\) 19.0000 0.602947
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 51.9615 1.64399
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6400.2.a.cg.1.2 2
4.3 odd 2 6400.2.a.ba.1.1 2
5.4 even 2 6400.2.a.bb.1.1 2
8.3 odd 2 inner 6400.2.a.cg.1.1 2
8.5 even 2 6400.2.a.ba.1.2 2
16.3 odd 4 1600.2.d.f.801.2 yes 4
16.5 even 4 1600.2.d.f.801.1 yes 4
16.11 odd 4 1600.2.d.f.801.4 yes 4
16.13 even 4 1600.2.d.f.801.3 yes 4
20.19 odd 2 6400.2.a.cf.1.2 2
40.19 odd 2 6400.2.a.bb.1.2 2
40.29 even 2 6400.2.a.cf.1.1 2
80.3 even 4 1600.2.f.g.1249.2 4
80.13 odd 4 1600.2.f.c.1249.3 4
80.19 odd 4 1600.2.d.e.801.3 yes 4
80.27 even 4 1600.2.f.g.1249.3 4
80.29 even 4 1600.2.d.e.801.2 yes 4
80.37 odd 4 1600.2.f.c.1249.2 4
80.43 even 4 1600.2.f.c.1249.1 4
80.53 odd 4 1600.2.f.g.1249.4 4
80.59 odd 4 1600.2.d.e.801.1 4
80.67 even 4 1600.2.f.c.1249.4 4
80.69 even 4 1600.2.d.e.801.4 yes 4
80.77 odd 4 1600.2.f.g.1249.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1600.2.d.e.801.1 4 80.59 odd 4
1600.2.d.e.801.2 yes 4 80.29 even 4
1600.2.d.e.801.3 yes 4 80.19 odd 4
1600.2.d.e.801.4 yes 4 80.69 even 4
1600.2.d.f.801.1 yes 4 16.5 even 4
1600.2.d.f.801.2 yes 4 16.3 odd 4
1600.2.d.f.801.3 yes 4 16.13 even 4
1600.2.d.f.801.4 yes 4 16.11 odd 4
1600.2.f.c.1249.1 4 80.43 even 4
1600.2.f.c.1249.2 4 80.37 odd 4
1600.2.f.c.1249.3 4 80.13 odd 4
1600.2.f.c.1249.4 4 80.67 even 4
1600.2.f.g.1249.1 4 80.77 odd 4
1600.2.f.g.1249.2 4 80.3 even 4
1600.2.f.g.1249.3 4 80.27 even 4
1600.2.f.g.1249.4 4 80.53 odd 4
6400.2.a.ba.1.1 2 4.3 odd 2
6400.2.a.ba.1.2 2 8.5 even 2
6400.2.a.bb.1.1 2 5.4 even 2
6400.2.a.bb.1.2 2 40.19 odd 2
6400.2.a.cf.1.1 2 40.29 even 2
6400.2.a.cf.1.2 2 20.19 odd 2
6400.2.a.cg.1.1 2 8.3 odd 2 inner
6400.2.a.cg.1.2 2 1.1 even 1 trivial