Properties

Label 640.2.q.f.609.5
Level $640$
Weight $2$
Character 640.609
Analytic conductor $5.110$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,2,Mod(289,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,8,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.534694406811304329216.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} - 2x^{12} + 4x^{10} + 4x^{8} + 16x^{6} - 32x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 609.5
Root \(-1.32661 + 0.490008i\) of defining polynomial
Character \(\chi\) \(=\) 640.609
Dual form 640.2.q.f.289.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.183790 + 0.183790i) q^{3} +(2.16225 + 0.569800i) q^{5} +3.84853 q^{7} -2.93244i q^{9} +(1.60020 + 1.60020i) q^{11} +(-1.80775 - 1.80775i) q^{13} +(0.292677 + 0.502125i) q^{15} -4.93886i q^{17} +(-4.77162 + 4.77162i) q^{19} +(0.707323 + 0.707323i) q^{21} +0.134544 q^{23} +(4.35066 + 2.46410i) q^{25} +(1.09033 - 1.09033i) q^{27} +(-2.17142 + 2.17142i) q^{29} -2.26371 q^{31} +0.588201i q^{33} +(8.32149 + 2.19289i) q^{35} +(4.35066 - 4.35066i) q^{37} -0.664493i q^{39} +3.34709i q^{41} +(2.70896 - 2.70896i) q^{43} +(1.67091 - 6.34067i) q^{45} +7.03343i q^{47} +7.81119 q^{49} +(0.907714 - 0.907714i) q^{51} +(-3.40020 + 3.40020i) q^{53} +(2.54823 + 4.37182i) q^{55} -1.75396 q^{57} +(-0.107127 - 0.107127i) q^{59} +(3.46410 - 3.46410i) q^{61} -11.2856i q^{63} +(-2.87875 - 4.93886i) q^{65} +(1.91078 + 1.91078i) q^{67} +(0.0247279 + 0.0247279i) q^{69} +9.32899i q^{71} -9.82769 q^{73} +(0.346730 + 1.25249i) q^{75} +(6.15840 + 6.15840i) q^{77} +11.0073 q^{79} -8.39654 q^{81} +(-8.80967 - 8.80967i) q^{83} +(2.81416 - 10.6790i) q^{85} -0.798174 q^{87} +1.12125i q^{89} +(-6.95717 - 6.95717i) q^{91} +(-0.416048 - 0.416048i) q^{93} +(-13.0363 + 7.59857i) q^{95} +6.10461i q^{97} +(4.69248 - 4.69248i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} + 8 q^{11} - 8 q^{19} + 16 q^{21} + 16 q^{29} - 16 q^{31} - 24 q^{35} - 8 q^{45} + 16 q^{49} - 16 q^{51} - 24 q^{59} - 32 q^{69} + 48 q^{75} - 16 q^{79} - 16 q^{81} - 16 q^{91} - 32 q^{95}+ \cdots + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.183790 + 0.183790i 0.106111 + 0.106111i 0.758169 0.652058i \(-0.226094\pi\)
−0.652058 + 0.758169i \(0.726094\pi\)
\(4\) 0 0
\(5\) 2.16225 + 0.569800i 0.966988 + 0.254822i
\(6\) 0 0
\(7\) 3.84853 1.45461 0.727304 0.686315i \(-0.240773\pi\)
0.727304 + 0.686315i \(0.240773\pi\)
\(8\) 0 0
\(9\) 2.93244i 0.977481i
\(10\) 0 0
\(11\) 1.60020 + 1.60020i 0.482477 + 0.482477i 0.905922 0.423445i \(-0.139179\pi\)
−0.423445 + 0.905922i \(0.639179\pi\)
\(12\) 0 0
\(13\) −1.80775 1.80775i −0.501379 0.501379i 0.410487 0.911866i \(-0.365359\pi\)
−0.911866 + 0.410487i \(0.865359\pi\)
\(14\) 0 0
\(15\) 0.292677 + 0.502125i 0.0755689 + 0.129648i
\(16\) 0 0
\(17\) 4.93886i 1.19785i −0.800806 0.598924i \(-0.795595\pi\)
0.800806 0.598924i \(-0.204405\pi\)
\(18\) 0 0
\(19\) −4.77162 + 4.77162i −1.09468 + 1.09468i −0.0996636 + 0.995021i \(0.531777\pi\)
−0.995021 + 0.0996636i \(0.968223\pi\)
\(20\) 0 0
\(21\) 0.707323 + 0.707323i 0.154351 + 0.154351i
\(22\) 0 0
\(23\) 0.134544 0.0280543 0.0140272 0.999902i \(-0.495535\pi\)
0.0140272 + 0.999902i \(0.495535\pi\)
\(24\) 0 0
\(25\) 4.35066 + 2.46410i 0.870131 + 0.492820i
\(26\) 0 0
\(27\) 1.09033 1.09033i 0.209833 0.209833i
\(28\) 0 0
\(29\) −2.17142 + 2.17142i −0.403223 + 0.403223i −0.879367 0.476144i \(-0.842034\pi\)
0.476144 + 0.879367i \(0.342034\pi\)
\(30\) 0 0
\(31\) −2.26371 −0.406574 −0.203287 0.979119i \(-0.565163\pi\)
−0.203287 + 0.979119i \(0.565163\pi\)
\(32\) 0 0
\(33\) 0.588201i 0.102393i
\(34\) 0 0
\(35\) 8.32149 + 2.19289i 1.40659 + 0.370667i
\(36\) 0 0
\(37\) 4.35066 4.35066i 0.715243 0.715243i −0.252384 0.967627i \(-0.581215\pi\)
0.967627 + 0.252384i \(0.0812146\pi\)
\(38\) 0 0
\(39\) 0.664493i 0.106404i
\(40\) 0 0
\(41\) 3.34709i 0.522727i 0.965240 + 0.261364i \(0.0841722\pi\)
−0.965240 + 0.261364i \(0.915828\pi\)
\(42\) 0 0
\(43\) 2.70896 2.70896i 0.413112 0.413112i −0.469709 0.882821i \(-0.655641\pi\)
0.882821 + 0.469709i \(0.155641\pi\)
\(44\) 0 0
\(45\) 1.67091 6.34067i 0.249084 0.945212i
\(46\) 0 0
\(47\) 7.03343i 1.02593i 0.858409 + 0.512966i \(0.171453\pi\)
−0.858409 + 0.512966i \(0.828547\pi\)
\(48\) 0 0
\(49\) 7.81119 1.11588
\(50\) 0 0
\(51\) 0.907714 0.907714i 0.127105 0.127105i
\(52\) 0 0
\(53\) −3.40020 + 3.40020i −0.467053 + 0.467053i −0.900958 0.433905i \(-0.857135\pi\)
0.433905 + 0.900958i \(0.357135\pi\)
\(54\) 0 0
\(55\) 2.54823 + 4.37182i 0.343604 + 0.589496i
\(56\) 0 0
\(57\) −1.75396 −0.232317
\(58\) 0 0
\(59\) −0.107127 0.107127i −0.0139468 0.0139468i 0.700099 0.714046i \(-0.253139\pi\)
−0.714046 + 0.700099i \(0.753139\pi\)
\(60\) 0 0
\(61\) 3.46410 3.46410i 0.443533 0.443533i −0.449665 0.893197i \(-0.648457\pi\)
0.893197 + 0.449665i \(0.148457\pi\)
\(62\) 0 0
\(63\) 11.2856i 1.42185i
\(64\) 0 0
\(65\) −2.87875 4.93886i −0.357065 0.612590i
\(66\) 0 0
\(67\) 1.91078 + 1.91078i 0.233440 + 0.233440i 0.814127 0.580687i \(-0.197216\pi\)
−0.580687 + 0.814127i \(0.697216\pi\)
\(68\) 0 0
\(69\) 0.0247279 + 0.0247279i 0.00297689 + 0.00297689i
\(70\) 0 0
\(71\) 9.32899i 1.10715i 0.832800 + 0.553573i \(0.186736\pi\)
−0.832800 + 0.553573i \(0.813264\pi\)
\(72\) 0 0
\(73\) −9.82769 −1.15024 −0.575122 0.818068i \(-0.695045\pi\)
−0.575122 + 0.818068i \(0.695045\pi\)
\(74\) 0 0
\(75\) 0.346730 + 1.25249i 0.0400370 + 0.144625i
\(76\) 0 0
\(77\) 6.15840 + 6.15840i 0.701815 + 0.701815i
\(78\) 0 0
\(79\) 11.0073 1.23842 0.619211 0.785224i \(-0.287452\pi\)
0.619211 + 0.785224i \(0.287452\pi\)
\(80\) 0 0
\(81\) −8.39654 −0.932949
\(82\) 0 0
\(83\) −8.80967 8.80967i −0.966987 0.966987i 0.0324850 0.999472i \(-0.489658\pi\)
−0.999472 + 0.0324850i \(0.989658\pi\)
\(84\) 0 0
\(85\) 2.81416 10.6790i 0.305239 1.15831i
\(86\) 0 0
\(87\) −0.798174 −0.0855732
\(88\) 0 0
\(89\) 1.12125i 0.118853i 0.998233 + 0.0594263i \(0.0189271\pi\)
−0.998233 + 0.0594263i \(0.981073\pi\)
\(90\) 0 0
\(91\) −6.95717 6.95717i −0.729310 0.729310i
\(92\) 0 0
\(93\) −0.416048 0.416048i −0.0431422 0.0431422i
\(94\) 0 0
\(95\) −13.0363 + 7.59857i −1.33750 + 0.779597i
\(96\) 0 0
\(97\) 6.10461i 0.619829i 0.950764 + 0.309915i \(0.100300\pi\)
−0.950764 + 0.309915i \(0.899700\pi\)
\(98\) 0 0
\(99\) 4.69248 4.69248i 0.471612 0.471612i
\(100\) 0 0
\(101\) −2.17142 2.17142i −0.216065 0.216065i 0.590773 0.806838i \(-0.298823\pi\)
−0.806838 + 0.590773i \(0.798823\pi\)
\(102\) 0 0
\(103\) −15.3778 −1.51522 −0.757610 0.652707i \(-0.773633\pi\)
−0.757610 + 0.652707i \(0.773633\pi\)
\(104\) 0 0
\(105\) 1.12638 + 1.93244i 0.109923 + 0.188587i
\(106\) 0 0
\(107\) −6.98419 + 6.98419i −0.675187 + 0.675187i −0.958907 0.283720i \(-0.908431\pi\)
0.283720 + 0.958907i \(0.408431\pi\)
\(108\) 0 0
\(109\) −8.59694 + 8.59694i −0.823437 + 0.823437i −0.986599 0.163162i \(-0.947831\pi\)
0.163162 + 0.986599i \(0.447831\pi\)
\(110\) 0 0
\(111\) 1.59922 0.151791
\(112\) 0 0
\(113\) 14.5329i 1.36714i 0.729883 + 0.683572i \(0.239574\pi\)
−0.729883 + 0.683572i \(0.760426\pi\)
\(114\) 0 0
\(115\) 0.290918 + 0.0766631i 0.0271282 + 0.00714887i
\(116\) 0 0
\(117\) −5.30111 + 5.30111i −0.490088 + 0.490088i
\(118\) 0 0
\(119\) 19.0073i 1.74240i
\(120\) 0 0
\(121\) 5.87875i 0.534432i
\(122\) 0 0
\(123\) −0.615163 + 0.615163i −0.0554673 + 0.0554673i
\(124\) 0 0
\(125\) 8.00316 + 7.80701i 0.715825 + 0.698280i
\(126\) 0 0
\(127\) 5.96617i 0.529412i −0.964329 0.264706i \(-0.914725\pi\)
0.964329 0.264706i \(-0.0852749\pi\)
\(128\) 0 0
\(129\) 0.995761 0.0876719
\(130\) 0 0
\(131\) 2.37084 2.37084i 0.207141 0.207141i −0.595910 0.803051i \(-0.703209\pi\)
0.803051 + 0.595910i \(0.203209\pi\)
\(132\) 0 0
\(133\) −18.3637 + 18.3637i −1.59234 + 1.59234i
\(134\) 0 0
\(135\) 2.97883 1.73629i 0.256376 0.149436i
\(136\) 0 0
\(137\) 18.2745 1.56129 0.780646 0.624973i \(-0.214890\pi\)
0.780646 + 0.624973i \(0.214890\pi\)
\(138\) 0 0
\(139\) −0.136094 0.136094i −0.0115433 0.0115433i 0.701312 0.712855i \(-0.252598\pi\)
−0.712855 + 0.701312i \(0.752598\pi\)
\(140\) 0 0
\(141\) −1.29268 + 1.29268i −0.108863 + 0.108863i
\(142\) 0 0
\(143\) 5.78550i 0.483808i
\(144\) 0 0
\(145\) −5.93244 + 3.45789i −0.492663 + 0.287162i
\(146\) 0 0
\(147\) 1.43562 + 1.43562i 0.118408 + 0.118408i
\(148\) 0 0
\(149\) 2.40078 + 2.40078i 0.196680 + 0.196680i 0.798575 0.601895i \(-0.205588\pi\)
−0.601895 + 0.798575i \(0.705588\pi\)
\(150\) 0 0
\(151\) 17.9935i 1.46429i −0.681150 0.732144i \(-0.738520\pi\)
0.681150 0.732144i \(-0.261480\pi\)
\(152\) 0 0
\(153\) −14.4829 −1.17087
\(154\) 0 0
\(155\) −4.89471 1.28986i −0.393152 0.103604i
\(156\) 0 0
\(157\) −12.6359 12.6359i −1.00846 1.00846i −0.999964 0.00849213i \(-0.997297\pi\)
−0.00849213 0.999964i \(-0.502703\pi\)
\(158\) 0 0
\(159\) −1.24985 −0.0991193
\(160\) 0 0
\(161\) 0.517796 0.0408081
\(162\) 0 0
\(163\) −15.8470 15.8470i −1.24123 1.24123i −0.959490 0.281743i \(-0.909087\pi\)
−0.281743 0.959490i \(-0.590913\pi\)
\(164\) 0 0
\(165\) −0.335157 + 1.27184i −0.0260919 + 0.0990125i
\(166\) 0 0
\(167\) −12.7559 −0.987083 −0.493541 0.869722i \(-0.664298\pi\)
−0.493541 + 0.869722i \(0.664298\pi\)
\(168\) 0 0
\(169\) 6.46410i 0.497239i
\(170\) 0 0
\(171\) 13.9925 + 13.9925i 1.07003 + 1.07003i
\(172\) 0 0
\(173\) 2.64673 + 2.64673i 0.201227 + 0.201227i 0.800525 0.599299i \(-0.204554\pi\)
−0.599299 + 0.800525i \(0.704554\pi\)
\(174\) 0 0
\(175\) 16.7436 + 9.48317i 1.26570 + 0.716860i
\(176\) 0 0
\(177\) 0.0393779i 0.00295983i
\(178\) 0 0
\(179\) −11.6497 + 11.6497i −0.870736 + 0.870736i −0.992553 0.121817i \(-0.961128\pi\)
0.121817 + 0.992553i \(0.461128\pi\)
\(180\) 0 0
\(181\) −1.24322 1.24322i −0.0924079 0.0924079i 0.659392 0.751800i \(-0.270814\pi\)
−0.751800 + 0.659392i \(0.770814\pi\)
\(182\) 0 0
\(183\) 1.27334 0.0941278
\(184\) 0 0
\(185\) 11.8862 6.92820i 0.873892 0.509372i
\(186\) 0 0
\(187\) 7.90314 7.90314i 0.577935 0.577935i
\(188\) 0 0
\(189\) 4.19615 4.19615i 0.305225 0.305225i
\(190\) 0 0
\(191\) −5.07180 −0.366982 −0.183491 0.983021i \(-0.558740\pi\)
−0.183491 + 0.983021i \(0.558740\pi\)
\(192\) 0 0
\(193\) 2.30278i 0.165758i 0.996560 + 0.0828788i \(0.0264114\pi\)
−0.996560 + 0.0828788i \(0.973589\pi\)
\(194\) 0 0
\(195\) 0.378628 1.43680i 0.0271141 0.102891i
\(196\) 0 0
\(197\) 8.06997 8.06997i 0.574961 0.574961i −0.358549 0.933511i \(-0.616729\pi\)
0.933511 + 0.358549i \(0.116729\pi\)
\(198\) 0 0
\(199\) 21.8564i 1.54936i 0.632354 + 0.774680i \(0.282089\pi\)
−0.632354 + 0.774680i \(0.717911\pi\)
\(200\) 0 0
\(201\) 0.702368i 0.0495412i
\(202\) 0 0
\(203\) −8.35679 + 8.35679i −0.586532 + 0.586532i
\(204\) 0 0
\(205\) −1.90717 + 7.23724i −0.133203 + 0.505471i
\(206\) 0 0
\(207\) 0.394542i 0.0274226i
\(208\) 0 0
\(209\) −15.2711 −1.05632
\(210\) 0 0
\(211\) 0.478227 0.478227i 0.0329225 0.0329225i −0.690454 0.723376i \(-0.742589\pi\)
0.723376 + 0.690454i \(0.242589\pi\)
\(212\) 0 0
\(213\) −1.71458 + 1.71458i −0.117481 + 0.117481i
\(214\) 0 0
\(215\) 7.40101 4.31388i 0.504745 0.294204i
\(216\) 0 0
\(217\) −8.71196 −0.591406
\(218\) 0 0
\(219\) −1.80623 1.80623i −0.122054 0.122054i
\(220\) 0 0
\(221\) −8.92820 + 8.92820i −0.600576 + 0.600576i
\(222\) 0 0
\(223\) 7.50859i 0.502813i −0.967882 0.251406i \(-0.919107\pi\)
0.967882 0.251406i \(-0.0808930\pi\)
\(224\) 0 0
\(225\) 7.22584 12.7580i 0.481722 0.850536i
\(226\) 0 0
\(227\) 12.8788 + 12.8788i 0.854798 + 0.854798i 0.990720 0.135922i \(-0.0433997\pi\)
−0.135922 + 0.990720i \(0.543400\pi\)
\(228\) 0 0
\(229\) −8.62166 8.62166i −0.569736 0.569736i 0.362319 0.932054i \(-0.381985\pi\)
−0.932054 + 0.362319i \(0.881985\pi\)
\(230\) 0 0
\(231\) 2.26371i 0.148941i
\(232\) 0 0
\(233\) −4.63429 −0.303602 −0.151801 0.988411i \(-0.548507\pi\)
−0.151801 + 0.988411i \(0.548507\pi\)
\(234\) 0 0
\(235\) −4.00765 + 15.2080i −0.261430 + 0.992063i
\(236\) 0 0
\(237\) 2.02304 + 2.02304i 0.131411 + 0.131411i
\(238\) 0 0
\(239\) −18.4220 −1.19162 −0.595810 0.803126i \(-0.703169\pi\)
−0.595810 + 0.803126i \(0.703169\pi\)
\(240\) 0 0
\(241\) 18.3247 1.18040 0.590200 0.807257i \(-0.299049\pi\)
0.590200 + 0.807257i \(0.299049\pi\)
\(242\) 0 0
\(243\) −4.81418 4.81418i −0.308830 0.308830i
\(244\) 0 0
\(245\) 16.8897 + 4.45082i 1.07905 + 0.284352i
\(246\) 0 0
\(247\) 17.2518 1.09770
\(248\) 0 0
\(249\) 3.23827i 0.205217i
\(250\) 0 0
\(251\) −16.0222 16.0222i −1.01131 1.01131i −0.999935 0.0113760i \(-0.996379\pi\)
−0.0113760 0.999935i \(-0.503621\pi\)
\(252\) 0 0
\(253\) 0.215297 + 0.215297i 0.0135356 + 0.0135356i
\(254\) 0 0
\(255\) 2.47992 1.44549i 0.155299 0.0905201i
\(256\) 0 0
\(257\) 5.82098i 0.363103i 0.983381 + 0.181551i \(0.0581119\pi\)
−0.983381 + 0.181551i \(0.941888\pi\)
\(258\) 0 0
\(259\) 16.7436 16.7436i 1.04040 1.04040i
\(260\) 0 0
\(261\) 6.36758 + 6.36758i 0.394143 + 0.394143i
\(262\) 0 0
\(263\) −0.806693 −0.0497428 −0.0248714 0.999691i \(-0.507918\pi\)
−0.0248714 + 0.999691i \(0.507918\pi\)
\(264\) 0 0
\(265\) −9.28951 + 5.41465i −0.570650 + 0.332619i
\(266\) 0 0
\(267\) −0.206075 + 0.206075i −0.0126116 + 0.0126116i
\(268\) 0 0
\(269\) 15.1939 15.1939i 0.926387 0.926387i −0.0710837 0.997470i \(-0.522646\pi\)
0.997470 + 0.0710837i \(0.0226458\pi\)
\(270\) 0 0
\(271\) 10.8491 0.659034 0.329517 0.944150i \(-0.393114\pi\)
0.329517 + 0.944150i \(0.393114\pi\)
\(272\) 0 0
\(273\) 2.55732i 0.154776i
\(274\) 0 0
\(275\) 3.01886 + 10.9049i 0.182044 + 0.657593i
\(276\) 0 0
\(277\) 1.27334 1.27334i 0.0765074 0.0765074i −0.667818 0.744325i \(-0.732771\pi\)
0.744325 + 0.667818i \(0.232771\pi\)
\(278\) 0 0
\(279\) 6.63820i 0.397419i
\(280\) 0 0
\(281\) 20.2174i 1.20607i 0.797716 + 0.603033i \(0.206041\pi\)
−0.797716 + 0.603033i \(0.793959\pi\)
\(282\) 0 0
\(283\) 21.3741 21.3741i 1.27056 1.27056i 0.324759 0.945797i \(-0.394717\pi\)
0.945797 0.324759i \(-0.105283\pi\)
\(284\) 0 0
\(285\) −3.79249 0.999404i −0.224648 0.0591996i
\(286\) 0 0
\(287\) 12.8814i 0.760363i
\(288\) 0 0
\(289\) −7.39230 −0.434841
\(290\) 0 0
\(291\) −1.12197 + 1.12197i −0.0657710 + 0.0657710i
\(292\) 0 0
\(293\) 11.1656 11.1656i 0.652301 0.652301i −0.301246 0.953547i \(-0.597402\pi\)
0.953547 + 0.301246i \(0.0974024\pi\)
\(294\) 0 0
\(295\) −0.170595 0.292677i −0.00993241 0.0170403i
\(296\) 0 0
\(297\) 3.48947 0.202480
\(298\) 0 0
\(299\) −0.243221 0.243221i −0.0140659 0.0140659i
\(300\) 0 0
\(301\) 10.4255 10.4255i 0.600916 0.600916i
\(302\) 0 0
\(303\) 0.798174i 0.0458539i
\(304\) 0 0
\(305\) 9.46410 5.51641i 0.541913 0.315869i
\(306\) 0 0
\(307\) −2.18143 2.18143i −0.124501 0.124501i 0.642111 0.766612i \(-0.278059\pi\)
−0.766612 + 0.642111i \(0.778059\pi\)
\(308\) 0 0
\(309\) −2.82629 2.82629i −0.160782 0.160782i
\(310\) 0 0
\(311\) 11.5517i 0.655038i 0.944845 + 0.327519i \(0.106213\pi\)
−0.944845 + 0.327519i \(0.893787\pi\)
\(312\) 0 0
\(313\) 10.4265 0.589343 0.294671 0.955599i \(-0.404790\pi\)
0.294671 + 0.955599i \(0.404790\pi\)
\(314\) 0 0
\(315\) 6.43053 24.4023i 0.362320 1.37491i
\(316\) 0 0
\(317\) 10.0785 + 10.0785i 0.566063 + 0.566063i 0.931023 0.364960i \(-0.118917\pi\)
−0.364960 + 0.931023i \(0.618917\pi\)
\(318\) 0 0
\(319\) −6.94941 −0.389092
\(320\) 0 0
\(321\) −2.56725 −0.143290
\(322\) 0 0
\(323\) 23.5663 + 23.5663i 1.31127 + 1.31127i
\(324\) 0 0
\(325\) −3.41041 12.3194i −0.189176 0.683355i
\(326\) 0 0
\(327\) −3.16007 −0.174752
\(328\) 0 0
\(329\) 27.0684i 1.49233i
\(330\) 0 0
\(331\) 8.77162 + 8.77162i 0.482132 + 0.482132i 0.905812 0.423680i \(-0.139262\pi\)
−0.423680 + 0.905812i \(0.639262\pi\)
\(332\) 0 0
\(333\) −12.7580 12.7580i −0.699137 0.699137i
\(334\) 0 0
\(335\) 3.04283 + 5.22036i 0.166248 + 0.285219i
\(336\) 0 0
\(337\) 33.0226i 1.79885i −0.437072 0.899427i \(-0.643984\pi\)
0.437072 0.899427i \(-0.356016\pi\)
\(338\) 0 0
\(339\) −2.67101 + 2.67101i −0.145070 + 0.145070i
\(340\) 0 0
\(341\) −3.62238 3.62238i −0.196163 0.196163i
\(342\) 0 0
\(343\) 3.12189 0.168566
\(344\) 0 0
\(345\) 0.0393779 + 0.0675578i 0.00212004 + 0.00363719i
\(346\) 0 0
\(347\) −11.1412 + 11.1412i −0.598090 + 0.598090i −0.939804 0.341714i \(-0.888993\pi\)
0.341714 + 0.939804i \(0.388993\pi\)
\(348\) 0 0
\(349\) 10.8656 10.8656i 0.581622 0.581622i −0.353727 0.935349i \(-0.615086\pi\)
0.935349 + 0.353727i \(0.115086\pi\)
\(350\) 0 0
\(351\) −3.94207 −0.210412
\(352\) 0 0
\(353\) 11.3480i 0.603995i −0.953309 0.301998i \(-0.902347\pi\)
0.953309 0.301998i \(-0.0976534\pi\)
\(354\) 0 0
\(355\) −5.31566 + 20.1716i −0.282126 + 1.07060i
\(356\) 0 0
\(357\) 3.49337 3.49337i 0.184889 0.184889i
\(358\) 0 0
\(359\) 26.5788i 1.40278i 0.712779 + 0.701389i \(0.247436\pi\)
−0.712779 + 0.701389i \(0.752564\pi\)
\(360\) 0 0
\(361\) 26.5367i 1.39667i
\(362\) 0 0
\(363\) 1.08046 1.08046i 0.0567093 0.0567093i
\(364\) 0 0
\(365\) −21.2499 5.59982i −1.11227 0.293108i
\(366\) 0 0
\(367\) 2.90729i 0.151760i −0.997117 0.0758798i \(-0.975823\pi\)
0.997117 0.0758798i \(-0.0241765\pi\)
\(368\) 0 0
\(369\) 9.81514 0.510956
\(370\) 0 0
\(371\) −13.0858 + 13.0858i −0.679379 + 0.679379i
\(372\) 0 0
\(373\) 4.65522 4.65522i 0.241038 0.241038i −0.576241 0.817280i \(-0.695481\pi\)
0.817280 + 0.576241i \(0.195481\pi\)
\(374\) 0 0
\(375\) 0.0360509 + 2.90576i 0.00186166 + 0.150053i
\(376\) 0 0
\(377\) 7.85077 0.404335
\(378\) 0 0
\(379\) 9.52106 + 9.52106i 0.489064 + 0.489064i 0.908011 0.418947i \(-0.137601\pi\)
−0.418947 + 0.908011i \(0.637601\pi\)
\(380\) 0 0
\(381\) 1.09652 1.09652i 0.0561767 0.0561767i
\(382\) 0 0
\(383\) 6.92429i 0.353815i 0.984228 + 0.176907i \(0.0566093\pi\)
−0.984228 + 0.176907i \(0.943391\pi\)
\(384\) 0 0
\(385\) 9.80695 + 16.8251i 0.499808 + 0.857485i
\(386\) 0 0
\(387\) −7.94386 7.94386i −0.403809 0.403809i
\(388\) 0 0
\(389\) 20.0232 + 20.0232i 1.01521 + 1.01521i 0.999882 + 0.0153322i \(0.00488057\pi\)
0.0153322 + 0.999882i \(0.495119\pi\)
\(390\) 0 0
\(391\) 0.664493i 0.0336049i
\(392\) 0 0
\(393\) 0.871474 0.0439601
\(394\) 0 0
\(395\) 23.8006 + 6.27199i 1.19754 + 0.315578i
\(396\) 0 0
\(397\) −3.81625 3.81625i −0.191532 0.191532i 0.604826 0.796358i \(-0.293243\pi\)
−0.796358 + 0.604826i \(0.793243\pi\)
\(398\) 0 0
\(399\) −6.75015 −0.337930
\(400\) 0 0
\(401\) 1.68031 0.0839108 0.0419554 0.999119i \(-0.486641\pi\)
0.0419554 + 0.999119i \(0.486641\pi\)
\(402\) 0 0
\(403\) 4.09222 + 4.09222i 0.203848 + 0.203848i
\(404\) 0 0
\(405\) −18.1554 4.78435i −0.902151 0.237736i
\(406\) 0 0
\(407\) 13.9238 0.690177
\(408\) 0 0
\(409\) 20.1317i 0.995448i 0.867335 + 0.497724i \(0.165831\pi\)
−0.867335 + 0.497724i \(0.834169\pi\)
\(410\) 0 0
\(411\) 3.35867 + 3.35867i 0.165671 + 0.165671i
\(412\) 0 0
\(413\) −0.412282 0.412282i −0.0202871 0.0202871i
\(414\) 0 0
\(415\) −14.0290 24.0685i −0.688655 1.18147i
\(416\) 0 0
\(417\) 0.0500256i 0.00244976i
\(418\) 0 0
\(419\) 22.6570 22.6570i 1.10687 1.10687i 0.113306 0.993560i \(-0.463856\pi\)
0.993560 0.113306i \(-0.0361442\pi\)
\(420\) 0 0
\(421\) 10.1583 + 10.1583i 0.495084 + 0.495084i 0.909904 0.414820i \(-0.136155\pi\)
−0.414820 + 0.909904i \(0.636155\pi\)
\(422\) 0 0
\(423\) 20.6251 1.00283
\(424\) 0 0
\(425\) 12.1698 21.4873i 0.590324 1.04229i
\(426\) 0 0
\(427\) 13.3317 13.3317i 0.645166 0.645166i
\(428\) 0 0
\(429\) 1.06332 1.06332i 0.0513375 0.0513375i
\(430\) 0 0
\(431\) 26.1518 1.25969 0.629843 0.776723i \(-0.283119\pi\)
0.629843 + 0.776723i \(0.283119\pi\)
\(432\) 0 0
\(433\) 9.30795i 0.447312i −0.974668 0.223656i \(-0.928201\pi\)
0.974668 0.223656i \(-0.0717992\pi\)
\(434\) 0 0
\(435\) −1.72585 0.454800i −0.0827483 0.0218060i
\(436\) 0 0
\(437\) −0.641992 + 0.641992i −0.0307107 + 0.0307107i
\(438\) 0 0
\(439\) 30.4799i 1.45473i −0.686252 0.727364i \(-0.740745\pi\)
0.686252 0.727364i \(-0.259255\pi\)
\(440\) 0 0
\(441\) 22.9059i 1.09076i
\(442\) 0 0
\(443\) −16.7437 + 16.7437i −0.795516 + 0.795516i −0.982385 0.186869i \(-0.940166\pi\)
0.186869 + 0.982385i \(0.440166\pi\)
\(444\) 0 0
\(445\) −0.638890 + 2.42443i −0.0302863 + 0.114929i
\(446\) 0 0
\(447\) 0.882482i 0.0417399i
\(448\) 0 0
\(449\) 5.40502 0.255079 0.127539 0.991834i \(-0.459292\pi\)
0.127539 + 0.991834i \(0.459292\pi\)
\(450\) 0 0
\(451\) −5.35600 + 5.35600i −0.252204 + 0.252204i
\(452\) 0 0
\(453\) 3.30703 3.30703i 0.155378 0.155378i
\(454\) 0 0
\(455\) −11.0789 19.0073i −0.519389 0.891078i
\(456\) 0 0
\(457\) −34.5929 −1.61819 −0.809095 0.587678i \(-0.800042\pi\)
−0.809095 + 0.587678i \(0.800042\pi\)
\(458\) 0 0
\(459\) −5.38496 5.38496i −0.251349 0.251349i
\(460\) 0 0
\(461\) −14.3876 + 14.3876i −0.670099 + 0.670099i −0.957739 0.287640i \(-0.907129\pi\)
0.287640 + 0.957739i \(0.407129\pi\)
\(462\) 0 0
\(463\) 20.6591i 0.960108i 0.877239 + 0.480054i \(0.159383\pi\)
−0.877239 + 0.480054i \(0.840617\pi\)
\(464\) 0 0
\(465\) −0.662536 1.13666i −0.0307244 0.0527116i
\(466\) 0 0
\(467\) −16.3222 16.3222i −0.755300 0.755300i 0.220163 0.975463i \(-0.429341\pi\)
−0.975463 + 0.220163i \(0.929341\pi\)
\(468\) 0 0
\(469\) 7.35371 + 7.35371i 0.339563 + 0.339563i
\(470\) 0 0
\(471\) 4.64472i 0.214017i
\(472\) 0 0
\(473\) 8.66973 0.398635
\(474\) 0 0
\(475\) −32.5174 + 9.00192i −1.49200 + 0.413036i
\(476\) 0 0
\(477\) 9.97088 + 9.97088i 0.456535 + 0.456535i
\(478\) 0 0
\(479\) 19.5136 0.891597 0.445799 0.895133i \(-0.352920\pi\)
0.445799 + 0.895133i \(0.352920\pi\)
\(480\) 0 0
\(481\) −15.7298 −0.717216
\(482\) 0 0
\(483\) 0.0951660 + 0.0951660i 0.00433020 + 0.00433020i
\(484\) 0 0
\(485\) −3.47841 + 13.1997i −0.157946 + 0.599367i
\(486\) 0 0
\(487\) 15.6638 0.709794 0.354897 0.934905i \(-0.384516\pi\)
0.354897 + 0.934905i \(0.384516\pi\)
\(488\) 0 0
\(489\) 5.82505i 0.263418i
\(490\) 0 0
\(491\) −17.9076 17.9076i −0.808157 0.808157i 0.176198 0.984355i \(-0.443620\pi\)
−0.984355 + 0.176198i \(0.943620\pi\)
\(492\) 0 0
\(493\) 10.7244 + 10.7244i 0.483001 + 0.483001i
\(494\) 0 0
\(495\) 12.8201 7.47254i 0.576221 0.335866i
\(496\) 0 0
\(497\) 35.9029i 1.61046i
\(498\) 0 0
\(499\) −2.32067 + 2.32067i −0.103887 + 0.103887i −0.757140 0.653253i \(-0.773404\pi\)
0.653253 + 0.757140i \(0.273404\pi\)
\(500\) 0 0
\(501\) −2.34441 2.34441i −0.104741 0.104741i
\(502\) 0 0
\(503\) −6.18913 −0.275960 −0.137980 0.990435i \(-0.544061\pi\)
−0.137980 + 0.990435i \(0.544061\pi\)
\(504\) 0 0
\(505\) −3.45789 5.93244i −0.153874 0.263990i
\(506\) 0 0
\(507\) 1.18804 1.18804i 0.0527627 0.0527627i
\(508\) 0 0
\(509\) −18.6217 + 18.6217i −0.825391 + 0.825391i −0.986875 0.161485i \(-0.948372\pi\)
0.161485 + 0.986875i \(0.448372\pi\)
\(510\) 0 0
\(511\) −37.8222 −1.67315
\(512\) 0 0
\(513\) 10.4052i 0.459403i
\(514\) 0 0
\(515\) −33.2507 8.76228i −1.46520 0.386112i
\(516\) 0 0
\(517\) −11.2549 + 11.2549i −0.494988 + 0.494988i
\(518\) 0 0
\(519\) 0.972885i 0.0427049i
\(520\) 0 0
\(521\) 24.0232i 1.05247i 0.850338 + 0.526237i \(0.176397\pi\)
−0.850338 + 0.526237i \(0.823603\pi\)
\(522\) 0 0
\(523\) −16.1791 + 16.1791i −0.707463 + 0.707463i −0.966001 0.258538i \(-0.916759\pi\)
0.258538 + 0.966001i \(0.416759\pi\)
\(524\) 0 0
\(525\) 1.33440 + 4.82023i 0.0582381 + 0.210372i
\(526\) 0 0
\(527\) 11.1801i 0.487015i
\(528\) 0 0
\(529\) −22.9819 −0.999213
\(530\) 0 0
\(531\) −0.314144 + 0.314144i −0.0136327 + 0.0136327i
\(532\) 0 0
\(533\) 6.05069 6.05069i 0.262084 0.262084i
\(534\) 0 0
\(535\) −19.0811 + 11.1220i −0.824950 + 0.480845i
\(536\) 0 0
\(537\) −4.28219 −0.184790
\(538\) 0 0
\(539\) 12.4994 + 12.4994i 0.538389 + 0.538389i
\(540\) 0 0
\(541\) −6.76526 + 6.76526i −0.290861 + 0.290861i −0.837420 0.546559i \(-0.815937\pi\)
0.546559 + 0.837420i \(0.315937\pi\)
\(542\) 0 0
\(543\) 0.456984i 0.0196111i
\(544\) 0 0
\(545\) −23.4873 + 13.6902i −1.00608 + 0.586423i
\(546\) 0 0
\(547\) −4.38359 4.38359i −0.187429 0.187429i 0.607155 0.794584i \(-0.292311\pi\)
−0.794584 + 0.607155i \(0.792311\pi\)
\(548\) 0 0
\(549\) −10.1583 10.1583i −0.433545 0.433545i
\(550\) 0 0
\(551\) 20.7224i 0.882805i
\(552\) 0 0
\(553\) 42.3621 1.80142
\(554\) 0 0
\(555\) 3.45791 + 0.911234i 0.146780 + 0.0386797i
\(556\) 0 0
\(557\) −3.92396 3.92396i −0.166264 0.166264i 0.619071 0.785335i \(-0.287509\pi\)
−0.785335 + 0.619071i \(0.787509\pi\)
\(558\) 0 0
\(559\) −9.79422 −0.414252
\(560\) 0 0
\(561\) 2.90504 0.122651
\(562\) 0 0
\(563\) 6.61660 + 6.61660i 0.278857 + 0.278857i 0.832652 0.553796i \(-0.186821\pi\)
−0.553796 + 0.832652i \(0.686821\pi\)
\(564\) 0 0
\(565\) −8.28087 + 31.4239i −0.348379 + 1.32201i
\(566\) 0 0
\(567\) −32.3144 −1.35708
\(568\) 0 0
\(569\) 40.2900i 1.68904i −0.535521 0.844522i \(-0.679885\pi\)
0.535521 0.844522i \(-0.320115\pi\)
\(570\) 0 0
\(571\) 22.6010 + 22.6010i 0.945823 + 0.945823i 0.998606 0.0527829i \(-0.0168091\pi\)
−0.0527829 + 0.998606i \(0.516809\pi\)
\(572\) 0 0
\(573\) −0.932147 0.932147i −0.0389410 0.0389410i
\(574\) 0 0
\(575\) 0.585354 + 0.331530i 0.0244110 + 0.0138257i
\(576\) 0 0
\(577\) 18.8020i 0.782737i −0.920234 0.391368i \(-0.872002\pi\)
0.920234 0.391368i \(-0.127998\pi\)
\(578\) 0 0
\(579\) −0.423229 + 0.423229i −0.0175888 + 0.0175888i
\(580\) 0 0
\(581\) −33.9043 33.9043i −1.40659 1.40659i
\(582\) 0 0
\(583\) −10.8820 −0.450685
\(584\) 0 0
\(585\) −14.4829 + 8.44176i −0.598795 + 0.349024i
\(586\) 0 0
\(587\) −2.71961 + 2.71961i −0.112250 + 0.112250i −0.761001 0.648751i \(-0.775292\pi\)
0.648751 + 0.761001i \(0.275292\pi\)
\(588\) 0 0
\(589\) 10.8016 10.8016i 0.445071 0.445071i
\(590\) 0 0
\(591\) 2.96636 0.122020
\(592\) 0 0
\(593\) 4.04894i 0.166270i −0.996538 0.0831350i \(-0.973507\pi\)
0.996538 0.0831350i \(-0.0264933\pi\)
\(594\) 0 0
\(595\) 10.8304 41.0986i 0.444003 1.68488i
\(596\) 0 0
\(597\) −4.01700 + 4.01700i −0.164405 + 0.164405i
\(598\) 0 0
\(599\) 19.0455i 0.778178i −0.921200 0.389089i \(-0.872790\pi\)
0.921200 0.389089i \(-0.127210\pi\)
\(600\) 0 0
\(601\) 14.4406i 0.589045i 0.955645 + 0.294522i \(0.0951606\pi\)
−0.955645 + 0.294522i \(0.904839\pi\)
\(602\) 0 0
\(603\) 5.60327 5.60327i 0.228183 0.228183i
\(604\) 0 0
\(605\) 3.34971 12.7113i 0.136185 0.516789i
\(606\) 0 0
\(607\) 46.3473i 1.88118i −0.339546 0.940589i \(-0.610273\pi\)
0.339546 0.940589i \(-0.389727\pi\)
\(608\) 0 0
\(609\) −3.07180 −0.124475
\(610\) 0 0
\(611\) 12.7147 12.7147i 0.514380 0.514380i
\(612\) 0 0
\(613\) 0.961106 0.961106i 0.0388187 0.0388187i −0.687431 0.726250i \(-0.741262\pi\)
0.726250 + 0.687431i \(0.241262\pi\)
\(614\) 0 0
\(615\) −1.68066 + 0.979616i −0.0677706 + 0.0395019i
\(616\) 0 0
\(617\) −3.44724 −0.138781 −0.0693903 0.997590i \(-0.522105\pi\)
−0.0693903 + 0.997590i \(0.522105\pi\)
\(618\) 0 0
\(619\) −24.5574 24.5574i −0.987044 0.987044i 0.0128733 0.999917i \(-0.495902\pi\)
−0.999917 + 0.0128733i \(0.995902\pi\)
\(620\) 0 0
\(621\) 0.146697 0.146697i 0.00588673 0.00588673i
\(622\) 0 0
\(623\) 4.31517i 0.172884i
\(624\) 0 0
\(625\) 12.8564 + 21.4409i 0.514256 + 0.857637i
\(626\) 0 0
\(627\) −2.80667 2.80667i −0.112088 0.112088i
\(628\) 0 0
\(629\) −21.4873 21.4873i −0.856753 0.856753i
\(630\) 0 0
\(631\) 22.7950i 0.907456i 0.891140 + 0.453728i \(0.149906\pi\)
−0.891140 + 0.453728i \(0.850094\pi\)
\(632\) 0 0
\(633\) 0.175787 0.00698691
\(634\) 0 0
\(635\) 3.39952 12.9004i 0.134906 0.511935i
\(636\) 0 0
\(637\) −14.1207 14.1207i −0.559481 0.559481i
\(638\) 0 0
\(639\) 27.3567 1.08221
\(640\) 0 0
\(641\) 30.4468 1.20258 0.601289 0.799032i \(-0.294654\pi\)
0.601289 + 0.799032i \(0.294654\pi\)
\(642\) 0 0
\(643\) 20.4452 + 20.4452i 0.806282 + 0.806282i 0.984069 0.177787i \(-0.0568939\pi\)
−0.177787 + 0.984069i \(0.556894\pi\)
\(644\) 0 0
\(645\) 2.15308 + 0.567385i 0.0847776 + 0.0223408i
\(646\) 0 0
\(647\) −29.5876 −1.16321 −0.581604 0.813472i \(-0.697575\pi\)
−0.581604 + 0.813472i \(0.697575\pi\)
\(648\) 0 0
\(649\) 0.342849i 0.0134580i
\(650\) 0 0
\(651\) −1.60117 1.60117i −0.0627550 0.0627550i
\(652\) 0 0
\(653\) 21.2334 + 21.2334i 0.830928 + 0.830928i 0.987644 0.156716i \(-0.0500908\pi\)
−0.156716 + 0.987644i \(0.550091\pi\)
\(654\) 0 0
\(655\) 6.47725 3.77544i 0.253087 0.147519i
\(656\) 0 0
\(657\) 28.8191i 1.12434i
\(658\) 0 0
\(659\) −20.0222 + 20.0222i −0.779954 + 0.779954i −0.979823 0.199869i \(-0.935948\pi\)
0.199869 + 0.979823i \(0.435948\pi\)
\(660\) 0 0
\(661\) 19.9536 + 19.9536i 0.776107 + 0.776107i 0.979166 0.203059i \(-0.0650885\pi\)
−0.203059 + 0.979166i \(0.565088\pi\)
\(662\) 0 0
\(663\) −3.28184 −0.127456
\(664\) 0 0
\(665\) −50.1706 + 29.2433i −1.94553 + 1.13401i
\(666\) 0 0
\(667\) −0.292152 + 0.292152i −0.0113122 + 0.0113122i
\(668\) 0 0
\(669\) 1.38001 1.38001i 0.0533542 0.0533542i
\(670\) 0 0
\(671\) 11.0865 0.427989
\(672\) 0 0
\(673\) 2.91192i 0.112246i −0.998424 0.0561231i \(-0.982126\pi\)
0.998424 0.0561231i \(-0.0178739\pi\)
\(674\) 0 0
\(675\) 7.43031 2.05696i 0.285993 0.0791724i
\(676\) 0 0
\(677\) −34.6045 + 34.6045i −1.32996 + 1.32996i −0.424558 + 0.905401i \(0.639570\pi\)
−0.905401 + 0.424558i \(0.860430\pi\)
\(678\) 0 0
\(679\) 23.4938i 0.901609i
\(680\) 0 0
\(681\) 4.73401i 0.181408i
\(682\) 0 0
\(683\) 24.7435 24.7435i 0.946785 0.946785i −0.0518690 0.998654i \(-0.516518\pi\)
0.998654 + 0.0518690i \(0.0165178\pi\)
\(684\) 0 0
\(685\) 39.5140 + 10.4128i 1.50975 + 0.397852i
\(686\) 0 0
\(687\) 3.16916i 0.120911i
\(688\) 0 0
\(689\) 12.2934 0.468341
\(690\) 0 0
\(691\) 25.3782 25.3782i 0.965431 0.965431i −0.0339907 0.999422i \(-0.510822\pi\)
0.999422 + 0.0339907i \(0.0108217\pi\)
\(692\) 0 0
\(693\) 18.0592 18.0592i 0.686011 0.686011i
\(694\) 0 0
\(695\) −0.216723 0.371816i −0.00822077 0.0141038i
\(696\) 0 0
\(697\) 16.5308 0.626148
\(698\) 0 0
\(699\) −0.851738 0.851738i −0.0322157 0.0322157i
\(700\) 0 0
\(701\) 32.3544 32.3544i 1.22201 1.22201i 0.255094 0.966916i \(-0.417894\pi\)
0.966916 0.255094i \(-0.0821063\pi\)
\(702\) 0 0
\(703\) 41.5194i 1.56593i
\(704\) 0 0
\(705\) −3.53166 + 2.05852i −0.133010 + 0.0775285i
\(706\) 0 0
\(707\) −8.35679 8.35679i −0.314290 0.314290i
\(708\) 0 0
\(709\) −6.64939 6.64939i −0.249723 0.249723i 0.571134 0.820857i \(-0.306504\pi\)
−0.820857 + 0.571134i \(0.806504\pi\)
\(710\) 0 0
\(711\) 32.2784i 1.21053i
\(712\) 0 0
\(713\) −0.304568 −0.0114062
\(714\) 0 0
\(715\) 3.29658 12.5097i 0.123285 0.467836i
\(716\) 0 0
\(717\) −3.38578 3.38578i −0.126444 0.126444i
\(718\) 0 0
\(719\) −45.0785 −1.68115 −0.840573 0.541699i \(-0.817781\pi\)
−0.840573 + 0.541699i \(0.817781\pi\)
\(720\) 0 0
\(721\) −59.1820 −2.20405
\(722\) 0 0
\(723\) 3.36791 + 3.36791i 0.125254 + 0.125254i
\(724\) 0 0
\(725\) −14.7977 + 4.09651i −0.549574 + 0.152141i
\(726\) 0 0
\(727\) −18.6075 −0.690116 −0.345058 0.938581i \(-0.612141\pi\)
−0.345058 + 0.938581i \(0.612141\pi\)
\(728\) 0 0
\(729\) 23.4200i 0.867409i
\(730\) 0 0
\(731\) −13.3792 13.3792i −0.494846 0.494846i
\(732\) 0 0
\(733\) 7.95550 + 7.95550i 0.293843 + 0.293843i 0.838596 0.544753i \(-0.183377\pi\)
−0.544753 + 0.838596i \(0.683377\pi\)
\(734\) 0 0
\(735\) 2.28616 + 3.92219i 0.0843261 + 0.144672i
\(736\) 0 0
\(737\) 6.11526i 0.225258i
\(738\) 0 0
\(739\) −15.2636 + 15.2636i −0.561479 + 0.561479i −0.929727 0.368249i \(-0.879958\pi\)
0.368249 + 0.929727i \(0.379958\pi\)
\(740\) 0 0
\(741\) 3.17071 + 3.17071i 0.116479 + 0.116479i
\(742\) 0 0
\(743\) 33.3017 1.22172 0.610861 0.791738i \(-0.290823\pi\)
0.610861 + 0.791738i \(0.290823\pi\)
\(744\) 0 0
\(745\) 3.82313 + 6.55906i 0.140069 + 0.240305i
\(746\) 0 0
\(747\) −25.8339 + 25.8339i −0.945211 + 0.945211i
\(748\) 0 0
\(749\) −26.8789 + 26.8789i −0.982132 + 0.982132i
\(750\) 0 0
\(751\) −1.17214 −0.0427720 −0.0213860 0.999771i \(-0.506808\pi\)
−0.0213860 + 0.999771i \(0.506808\pi\)
\(752\) 0 0
\(753\) 5.88945i 0.214623i
\(754\) 0 0
\(755\) 10.2527 38.9064i 0.373134 1.41595i
\(756\) 0 0
\(757\) 17.9408 17.9408i 0.652069 0.652069i −0.301422 0.953491i \(-0.597461\pi\)
0.953491 + 0.301422i \(0.0974612\pi\)
\(758\) 0 0
\(759\) 0.0791389i 0.00287256i
\(760\) 0 0
\(761\) 15.4641i 0.560573i −0.959916 0.280287i \(-0.909570\pi\)
0.959916 0.280287i \(-0.0904295\pi\)
\(762\) 0 0
\(763\) −33.0856 + 33.0856i −1.19778 + 1.19778i
\(764\) 0 0
\(765\) −31.3157 8.25237i −1.13222 0.298365i
\(766\) 0 0
\(767\) 0.387318i 0.0139852i
\(768\) 0 0
\(769\) 14.9777 0.540108 0.270054 0.962845i \(-0.412958\pi\)
0.270054 + 0.962845i \(0.412958\pi\)
\(770\) 0 0
\(771\) −1.06984 + 1.06984i −0.0385293 + 0.0385293i
\(772\) 0 0
\(773\) 33.0120 33.0120i 1.18736 1.18736i 0.209566 0.977794i \(-0.432795\pi\)
0.977794 0.209566i \(-0.0672052\pi\)
\(774\) 0 0
\(775\) −9.84862 5.57801i −0.353773 0.200368i
\(776\) 0 0
\(777\) 6.15464 0.220796
\(778\) 0 0
\(779\) −15.9710 15.9710i −0.572222 0.572222i
\(780\) 0 0
\(781\) −14.9282 + 14.9282i −0.534173 + 0.534173i
\(782\) 0 0
\(783\) 4.73512i 0.169219i
\(784\) 0 0
\(785\) −20.1221 34.5220i −0.718188 1.23214i
\(786\) 0 0
\(787\) 28.8326 + 28.8326i 1.02777 + 1.02777i 0.999603 + 0.0281690i \(0.00896767\pi\)
0.0281690 + 0.999603i \(0.491032\pi\)
\(788\) 0 0
\(789\) −0.148262 0.148262i −0.00527828 0.00527828i
\(790\) 0 0
\(791\) 55.9305i 1.98866i
\(792\) 0 0
\(793\) −12.5244 −0.444756
\(794\) 0 0
\(795\) −2.70248 0.712163i −0.0958472 0.0252578i
\(796\) 0 0
\(797\) 23.1556 + 23.1556i 0.820214 + 0.820214i 0.986139 0.165924i \(-0.0530607\pi\)
−0.165924 + 0.986139i \(0.553061\pi\)
\(798\) 0 0
\(799\) 34.7371 1.22891
\(800\) 0 0
\(801\) 3.28801 0.116176
\(802\) 0 0
\(803\) −15.7262 15.7262i −0.554966 0.554966i
\(804\) 0 0
\(805\) 1.11961 + 0.295040i 0.0394609 + 0.0103988i
\(806\) 0 0
\(807\) 5.58497 0.196600
\(808\) 0 0
\(809\) 36.2210i 1.27346i −0.771086 0.636731i \(-0.780286\pi\)
0.771086 0.636731i \(-0.219714\pi\)
\(810\) 0 0
\(811\) 9.17312 + 9.17312i 0.322112 + 0.322112i 0.849577 0.527465i \(-0.176857\pi\)
−0.527465 + 0.849577i \(0.676857\pi\)
\(812\) 0 0
\(813\) 1.99395 + 1.99395i 0.0699310 + 0.0699310i
\(814\) 0 0
\(815\) −25.2356 43.2948i −0.883963 1.51655i
\(816\) 0 0
\(817\) 25.8522i 0.904456i
\(818\) 0 0
\(819\) −20.4015 + 20.4015i −0.712886 + 0.712886i
\(820\) 0 0
\(821\) −7.26795 7.26795i −0.253653 0.253653i 0.568813 0.822467i \(-0.307403\pi\)
−0.822467 + 0.568813i \(0.807403\pi\)
\(822\) 0 0
\(823\) 28.2974 0.986384 0.493192 0.869920i \(-0.335830\pi\)
0.493192 + 0.869920i \(0.335830\pi\)
\(824\) 0 0
\(825\) −1.44939 + 2.55906i −0.0504612 + 0.0890951i
\(826\) 0 0
\(827\) 18.1661 18.1661i 0.631697 0.631697i −0.316797 0.948494i \(-0.602607\pi\)
0.948494 + 0.316797i \(0.102607\pi\)
\(828\) 0 0
\(829\) −11.0865 + 11.0865i −0.385049 + 0.385049i −0.872917 0.487868i \(-0.837775\pi\)
0.487868 + 0.872917i \(0.337775\pi\)
\(830\) 0 0
\(831\) 0.468054 0.0162366
\(832\) 0 0
\(833\) 38.5783i 1.33666i
\(834\) 0 0
\(835\) −27.5815 7.26832i −0.954497 0.251531i
\(836\) 0 0
\(837\) −2.46818 + 2.46818i −0.0853128 + 0.0853128i
\(838\) 0 0
\(839\) 11.9093i 0.411153i −0.978641 0.205577i \(-0.934093\pi\)
0.978641 0.205577i \(-0.0659069\pi\)
\(840\) 0 0
\(841\) 19.5698i 0.674822i
\(842\) 0 0
\(843\) −3.71576 + 3.71576i −0.127977 + 0.127977i
\(844\) 0 0
\(845\) 3.68325 13.9770i 0.126708 0.480824i
\(846\) 0 0
\(847\) 22.6245i 0.777388i
\(848\) 0 0
\(849\) 7.85669 0.269641
\(850\) 0 0
\(851\) 0.585354 0.585354i 0.0200657 0.0200657i
\(852\) 0 0
\(853\) 2.44597 2.44597i 0.0837485 0.0837485i −0.663992 0.747740i \(-0.731139\pi\)
0.747740 + 0.663992i \(0.231139\pi\)
\(854\) 0 0
\(855\) 22.2824 + 38.2282i 0.762041 + 1.30738i
\(856\) 0 0
\(857\) −2.57862 −0.0880839 −0.0440419 0.999030i \(-0.514024\pi\)
−0.0440419 + 0.999030i \(0.514024\pi\)
\(858\) 0 0
\(859\) 33.0076 + 33.0076i 1.12620 + 1.12620i 0.990789 + 0.135416i \(0.0432371\pi\)
0.135416 + 0.990789i \(0.456763\pi\)
\(860\) 0 0
\(861\) −2.36747 + 2.36747i −0.0806832 + 0.0806832i
\(862\) 0 0
\(863\) 23.5500i 0.801652i 0.916154 + 0.400826i \(0.131277\pi\)
−0.916154 + 0.400826i \(0.868723\pi\)
\(864\) 0 0
\(865\) 4.21478 + 7.23099i 0.143307 + 0.245861i
\(866\) 0 0
\(867\) −1.35863 1.35863i −0.0461416 0.0461416i
\(868\) 0 0
\(869\) 17.6139 + 17.6139i 0.597511 + 0.597511i
\(870\) 0 0
\(871\) 6.90843i 0.234083i
\(872\) 0 0
\(873\) 17.9014 0.605871
\(874\) 0 0
\(875\) 30.8004 + 30.0455i 1.04124 + 1.01572i
\(876\) 0 0
\(877\) −34.2135 34.2135i −1.15531 1.15531i −0.985472 0.169836i \(-0.945676\pi\)
−0.169836 0.985472i \(-0.554324\pi\)
\(878\) 0 0
\(879\) 4.10426 0.138433
\(880\) 0 0
\(881\) 40.6823 1.37062 0.685310 0.728251i \(-0.259667\pi\)
0.685310 + 0.728251i \(0.259667\pi\)
\(882\) 0 0
\(883\) 35.8531 + 35.8531i 1.20655 + 1.20655i 0.972137 + 0.234415i \(0.0753176\pi\)
0.234415 + 0.972137i \(0.424682\pi\)
\(884\) 0 0
\(885\) 0.0224375 0.0851449i 0.000754230 0.00286211i
\(886\) 0 0
\(887\) −9.33231 −0.313348 −0.156674 0.987650i \(-0.550077\pi\)
−0.156674 + 0.987650i \(0.550077\pi\)
\(888\) 0 0
\(889\) 22.9610i 0.770087i
\(890\) 0 0
\(891\) −13.4361 13.4361i −0.450127 0.450127i
\(892\) 0 0
\(893\) −33.5609 33.5609i −1.12307 1.12307i
\(894\) 0 0
\(895\) −31.8274 + 18.5515i −1.06387 + 0.620108i
\(896\) 0 0
\(897\) 0.0894035i 0.00298510i
\(898\) 0 0
\(899\) 4.91548 4.91548i 0.163940 0.163940i
\(900\) 0 0
\(901\) 16.7931 + 16.7931i 0.559459 + 0.559459i
\(902\) 0 0
\(903\) 3.83222 0.127528
\(904\) 0 0
\(905\) −1.97977 3.39654i −0.0658097 0.112905i
\(906\) 0 0
\(907\) 33.2170 33.2170i 1.10295 1.10295i 0.108899 0.994053i \(-0.465267\pi\)
0.994053 0.108899i \(-0.0347327\pi\)
\(908\) 0 0
\(909\) −6.36758 + 6.36758i −0.211199 + 0.211199i
\(910\) 0 0
\(911\) −5.77870 −0.191457 −0.0957284 0.995407i \(-0.530518\pi\)
−0.0957284 + 0.995407i \(0.530518\pi\)
\(912\) 0 0
\(913\) 28.1944i 0.933098i
\(914\) 0 0
\(915\) 2.75327 + 0.725548i 0.0910204 + 0.0239859i
\(916\) 0 0
\(917\) 9.12424 9.12424i 0.301309 0.301309i
\(918\) 0 0
\(919\) 50.8572i 1.67763i −0.544420 0.838813i \(-0.683250\pi\)
0.544420 0.838813i \(-0.316750\pi\)
\(920\) 0 0
\(921\) 0.801852i 0.0264219i
\(922\) 0 0
\(923\) 16.8644 16.8644i 0.555100 0.555100i
\(924\) 0 0
\(925\) 29.6487 8.20775i 0.974842 0.269869i
\(926\) 0 0
\(927\) 45.0945i 1.48110i
\(928\) 0 0
\(929\) 21.6815 0.711346 0.355673 0.934611i \(-0.384252\pi\)
0.355673 + 0.934611i \(0.384252\pi\)
\(930\) 0 0
\(931\) −37.2720 + 37.2720i −1.22154 + 1.22154i
\(932\) 0 0
\(933\) −2.12309 + 2.12309i −0.0695070 + 0.0695070i
\(934\) 0 0
\(935\) 21.5918 12.5854i 0.706126 0.411585i
\(936\) 0 0
\(937\) −19.7948 −0.646668 −0.323334 0.946285i \(-0.604804\pi\)
−0.323334 + 0.946285i \(0.604804\pi\)
\(938\) 0 0
\(939\) 1.91630 + 1.91630i 0.0625360 + 0.0625360i
\(940\) 0 0
\(941\) 29.4510 29.4510i 0.960074 0.960074i −0.0391593 0.999233i \(-0.512468\pi\)
0.999233 + 0.0391593i \(0.0124680\pi\)
\(942\) 0 0
\(943\) 0.450330i 0.0146648i
\(944\) 0 0
\(945\) 11.4641 6.68216i 0.372927 0.217371i
\(946\) 0 0
\(947\) 4.11783 + 4.11783i 0.133811 + 0.133811i 0.770840 0.637029i \(-0.219837\pi\)
−0.637029 + 0.770840i \(0.719837\pi\)
\(948\) 0 0
\(949\) 17.7660 + 17.7660i 0.576708 + 0.576708i
\(950\) 0 0
\(951\) 3.70465i 0.120131i
\(952\) 0 0
\(953\) 40.3245 1.30624 0.653119 0.757255i \(-0.273460\pi\)
0.653119 + 0.757255i \(0.273460\pi\)
\(954\) 0 0
\(955\) −10.9665 2.88991i −0.354867 0.0935153i
\(956\) 0 0
\(957\) −1.27723 1.27723i −0.0412871 0.0412871i
\(958\) 0 0
\(959\) 70.3298 2.27107
\(960\) 0 0
\(961\) −25.8756 −0.834697
\(962\) 0 0
\(963\) 20.4807 + 20.4807i 0.659982 + 0.659982i
\(964\) 0 0
\(965\) −1.31212 + 4.97919i −0.0422388 + 0.160286i
\(966\) 0 0
\(967\) 58.1740 1.87075 0.935375 0.353656i \(-0.115062\pi\)
0.935375 + 0.353656i \(0.115062\pi\)
\(968\) 0 0
\(969\) 8.66254i 0.278281i
\(970\) 0 0
\(971\) −1.70830 1.70830i −0.0548220 0.0548220i 0.679164 0.733986i \(-0.262342\pi\)
−0.733986 + 0.679164i \(0.762342\pi\)
\(972\) 0 0
\(973\) −0.523762 0.523762i −0.0167910 0.0167910i
\(974\) 0 0
\(975\) 1.63738 2.89098i 0.0524381 0.0925855i
\(976\) 0 0
\(977\) 35.1811i 1.12554i −0.826612 0.562772i \(-0.809735\pi\)
0.826612 0.562772i \(-0.190265\pi\)
\(978\) 0 0
\(979\) −1.79422 + 1.79422i −0.0573436 + 0.0573436i
\(980\) 0 0
\(981\) 25.2100 + 25.2100i 0.804894 + 0.804894i
\(982\) 0 0
\(983\) 27.7257 0.884312 0.442156 0.896938i \(-0.354214\pi\)
0.442156 + 0.896938i \(0.354214\pi\)
\(984\) 0 0
\(985\) 22.0476 12.8510i 0.702494 0.409468i
\(986\) 0 0
\(987\) −4.97491 + 4.97491i −0.158353 + 0.158353i
\(988\) 0 0
\(989\) 0.364474 0.364474i 0.0115896 0.0115896i
\(990\) 0 0
\(991\) 7.02711 0.223224 0.111612 0.993752i \(-0.464399\pi\)
0.111612 + 0.993752i \(0.464399\pi\)
\(992\) 0 0
\(993\) 3.22428i 0.102319i
\(994\) 0 0
\(995\) −12.4538 + 47.2590i −0.394812 + 1.49821i
\(996\) 0 0
\(997\) 14.2467 14.2467i 0.451197 0.451197i −0.444555 0.895752i \(-0.646638\pi\)
0.895752 + 0.444555i \(0.146638\pi\)
\(998\) 0 0
\(999\) 9.48726i 0.300164i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.q.f.609.5 16
4.3 odd 2 640.2.q.e.609.4 16
5.4 even 2 inner 640.2.q.f.609.4 16
8.3 odd 2 80.2.q.c.69.8 yes 16
8.5 even 2 320.2.q.c.49.4 16
16.3 odd 4 640.2.q.e.289.5 16
16.5 even 4 320.2.q.c.209.5 16
16.11 odd 4 80.2.q.c.29.1 16
16.13 even 4 inner 640.2.q.f.289.4 16
20.19 odd 2 640.2.q.e.609.5 16
24.11 even 2 720.2.bm.f.469.1 16
40.3 even 4 400.2.l.i.101.5 16
40.13 odd 4 1600.2.l.h.1201.5 16
40.19 odd 2 80.2.q.c.69.1 yes 16
40.27 even 4 400.2.l.i.101.4 16
40.29 even 2 320.2.q.c.49.5 16
40.37 odd 4 1600.2.l.h.1201.4 16
48.11 even 4 720.2.bm.f.109.8 16
80.19 odd 4 640.2.q.e.289.4 16
80.27 even 4 400.2.l.i.301.4 16
80.29 even 4 inner 640.2.q.f.289.5 16
80.37 odd 4 1600.2.l.h.401.4 16
80.43 even 4 400.2.l.i.301.5 16
80.53 odd 4 1600.2.l.h.401.5 16
80.59 odd 4 80.2.q.c.29.8 yes 16
80.69 even 4 320.2.q.c.209.4 16
120.59 even 2 720.2.bm.f.469.8 16
240.59 even 4 720.2.bm.f.109.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.q.c.29.1 16 16.11 odd 4
80.2.q.c.29.8 yes 16 80.59 odd 4
80.2.q.c.69.1 yes 16 40.19 odd 2
80.2.q.c.69.8 yes 16 8.3 odd 2
320.2.q.c.49.4 16 8.5 even 2
320.2.q.c.49.5 16 40.29 even 2
320.2.q.c.209.4 16 80.69 even 4
320.2.q.c.209.5 16 16.5 even 4
400.2.l.i.101.4 16 40.27 even 4
400.2.l.i.101.5 16 40.3 even 4
400.2.l.i.301.4 16 80.27 even 4
400.2.l.i.301.5 16 80.43 even 4
640.2.q.e.289.4 16 80.19 odd 4
640.2.q.e.289.5 16 16.3 odd 4
640.2.q.e.609.4 16 4.3 odd 2
640.2.q.e.609.5 16 20.19 odd 2
640.2.q.f.289.4 16 16.13 even 4 inner
640.2.q.f.289.5 16 80.29 even 4 inner
640.2.q.f.609.4 16 5.4 even 2 inner
640.2.q.f.609.5 16 1.1 even 1 trivial
720.2.bm.f.109.1 16 240.59 even 4
720.2.bm.f.109.8 16 48.11 even 4
720.2.bm.f.469.1 16 24.11 even 2
720.2.bm.f.469.8 16 120.59 even 2
1600.2.l.h.401.4 16 80.37 odd 4
1600.2.l.h.401.5 16 80.53 odd 4
1600.2.l.h.1201.4 16 40.37 odd 4
1600.2.l.h.1201.5 16 40.13 odd 4