Properties

Label 640.2.q.e.609.5
Level $640$
Weight $2$
Character 640.609
Analytic conductor $5.110$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,2,Mod(289,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.534694406811304329216.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} - 2x^{12} + 4x^{10} + 4x^{8} + 16x^{6} - 32x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 609.5
Root \(-1.32661 + 0.490008i\) of defining polynomial
Character \(\chi\) \(=\) 640.609
Dual form 640.2.q.e.289.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.183790 + 0.183790i) q^{3} +(0.569800 + 2.16225i) q^{5} +3.84853 q^{7} -2.93244i q^{9} +(-1.60020 - 1.60020i) q^{11} +(1.80775 + 1.80775i) q^{13} +(-0.292677 + 0.502125i) q^{15} +4.93886i q^{17} +(4.77162 - 4.77162i) q^{19} +(0.707323 + 0.707323i) q^{21} +0.134544 q^{23} +(-4.35066 + 2.46410i) q^{25} +(1.09033 - 1.09033i) q^{27} +(-2.17142 + 2.17142i) q^{29} +2.26371 q^{31} -0.588201i q^{33} +(2.19289 + 8.32149i) q^{35} +(-4.35066 + 4.35066i) q^{37} +0.664493i q^{39} +3.34709i q^{41} +(2.70896 - 2.70896i) q^{43} +(6.34067 - 1.67091i) q^{45} +7.03343i q^{47} +7.81119 q^{49} +(-0.907714 + 0.907714i) q^{51} +(3.40020 - 3.40020i) q^{53} +(2.54823 - 4.37182i) q^{55} +1.75396 q^{57} +(0.107127 + 0.107127i) q^{59} +(3.46410 - 3.46410i) q^{61} -11.2856i q^{63} +(-2.87875 + 4.93886i) q^{65} +(1.91078 + 1.91078i) q^{67} +(0.0247279 + 0.0247279i) q^{69} -9.32899i q^{71} +9.82769 q^{73} +(-1.25249 - 0.346730i) q^{75} +(-6.15840 - 6.15840i) q^{77} -11.0073 q^{79} -8.39654 q^{81} +(-8.80967 - 8.80967i) q^{83} +(-10.6790 + 2.81416i) q^{85} -0.798174 q^{87} +1.12125i q^{89} +(6.95717 + 6.95717i) q^{91} +(0.416048 + 0.416048i) q^{93} +(13.0363 + 7.59857i) q^{95} -6.10461i q^{97} +(-4.69248 + 4.69248i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 8 q^{11} + 8 q^{19} + 16 q^{21} + 16 q^{29} + 16 q^{31} + 24 q^{35} - 8 q^{45} + 16 q^{49} + 16 q^{51} + 24 q^{59} - 32 q^{69} - 48 q^{75} + 16 q^{79} - 16 q^{81} + 16 q^{91} + 32 q^{95}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.183790 + 0.183790i 0.106111 + 0.106111i 0.758169 0.652058i \(-0.226094\pi\)
−0.652058 + 0.758169i \(0.726094\pi\)
\(4\) 0 0
\(5\) 0.569800 + 2.16225i 0.254822 + 0.966988i
\(6\) 0 0
\(7\) 3.84853 1.45461 0.727304 0.686315i \(-0.240773\pi\)
0.727304 + 0.686315i \(0.240773\pi\)
\(8\) 0 0
\(9\) 2.93244i 0.977481i
\(10\) 0 0
\(11\) −1.60020 1.60020i −0.482477 0.482477i 0.423445 0.905922i \(-0.360821\pi\)
−0.905922 + 0.423445i \(0.860821\pi\)
\(12\) 0 0
\(13\) 1.80775 + 1.80775i 0.501379 + 0.501379i 0.911866 0.410487i \(-0.134641\pi\)
−0.410487 + 0.911866i \(0.634641\pi\)
\(14\) 0 0
\(15\) −0.292677 + 0.502125i −0.0755689 + 0.129648i
\(16\) 0 0
\(17\) 4.93886i 1.19785i 0.800806 + 0.598924i \(0.204405\pi\)
−0.800806 + 0.598924i \(0.795595\pi\)
\(18\) 0 0
\(19\) 4.77162 4.77162i 1.09468 1.09468i 0.0996636 0.995021i \(-0.468223\pi\)
0.995021 0.0996636i \(-0.0317767\pi\)
\(20\) 0 0
\(21\) 0.707323 + 0.707323i 0.154351 + 0.154351i
\(22\) 0 0
\(23\) 0.134544 0.0280543 0.0140272 0.999902i \(-0.495535\pi\)
0.0140272 + 0.999902i \(0.495535\pi\)
\(24\) 0 0
\(25\) −4.35066 + 2.46410i −0.870131 + 0.492820i
\(26\) 0 0
\(27\) 1.09033 1.09033i 0.209833 0.209833i
\(28\) 0 0
\(29\) −2.17142 + 2.17142i −0.403223 + 0.403223i −0.879367 0.476144i \(-0.842034\pi\)
0.476144 + 0.879367i \(0.342034\pi\)
\(30\) 0 0
\(31\) 2.26371 0.406574 0.203287 0.979119i \(-0.434837\pi\)
0.203287 + 0.979119i \(0.434837\pi\)
\(32\) 0 0
\(33\) 0.588201i 0.102393i
\(34\) 0 0
\(35\) 2.19289 + 8.32149i 0.370667 + 1.40659i
\(36\) 0 0
\(37\) −4.35066 + 4.35066i −0.715243 + 0.715243i −0.967627 0.252384i \(-0.918785\pi\)
0.252384 + 0.967627i \(0.418785\pi\)
\(38\) 0 0
\(39\) 0.664493i 0.106404i
\(40\) 0 0
\(41\) 3.34709i 0.522727i 0.965240 + 0.261364i \(0.0841722\pi\)
−0.965240 + 0.261364i \(0.915828\pi\)
\(42\) 0 0
\(43\) 2.70896 2.70896i 0.413112 0.413112i −0.469709 0.882821i \(-0.655641\pi\)
0.882821 + 0.469709i \(0.155641\pi\)
\(44\) 0 0
\(45\) 6.34067 1.67091i 0.945212 0.249084i
\(46\) 0 0
\(47\) 7.03343i 1.02593i 0.858409 + 0.512966i \(0.171453\pi\)
−0.858409 + 0.512966i \(0.828547\pi\)
\(48\) 0 0
\(49\) 7.81119 1.11588
\(50\) 0 0
\(51\) −0.907714 + 0.907714i −0.127105 + 0.127105i
\(52\) 0 0
\(53\) 3.40020 3.40020i 0.467053 0.467053i −0.433905 0.900958i \(-0.642865\pi\)
0.900958 + 0.433905i \(0.142865\pi\)
\(54\) 0 0
\(55\) 2.54823 4.37182i 0.343604 0.589496i
\(56\) 0 0
\(57\) 1.75396 0.232317
\(58\) 0 0
\(59\) 0.107127 + 0.107127i 0.0139468 + 0.0139468i 0.714046 0.700099i \(-0.246861\pi\)
−0.700099 + 0.714046i \(0.746861\pi\)
\(60\) 0 0
\(61\) 3.46410 3.46410i 0.443533 0.443533i −0.449665 0.893197i \(-0.648457\pi\)
0.893197 + 0.449665i \(0.148457\pi\)
\(62\) 0 0
\(63\) 11.2856i 1.42185i
\(64\) 0 0
\(65\) −2.87875 + 4.93886i −0.357065 + 0.612590i
\(66\) 0 0
\(67\) 1.91078 + 1.91078i 0.233440 + 0.233440i 0.814127 0.580687i \(-0.197216\pi\)
−0.580687 + 0.814127i \(0.697216\pi\)
\(68\) 0 0
\(69\) 0.0247279 + 0.0247279i 0.00297689 + 0.00297689i
\(70\) 0 0
\(71\) 9.32899i 1.10715i −0.832800 0.553573i \(-0.813264\pi\)
0.832800 0.553573i \(-0.186736\pi\)
\(72\) 0 0
\(73\) 9.82769 1.15024 0.575122 0.818068i \(-0.304955\pi\)
0.575122 + 0.818068i \(0.304955\pi\)
\(74\) 0 0
\(75\) −1.25249 0.346730i −0.144625 0.0400370i
\(76\) 0 0
\(77\) −6.15840 6.15840i −0.701815 0.701815i
\(78\) 0 0
\(79\) −11.0073 −1.23842 −0.619211 0.785224i \(-0.712548\pi\)
−0.619211 + 0.785224i \(0.712548\pi\)
\(80\) 0 0
\(81\) −8.39654 −0.932949
\(82\) 0 0
\(83\) −8.80967 8.80967i −0.966987 0.966987i 0.0324850 0.999472i \(-0.489658\pi\)
−0.999472 + 0.0324850i \(0.989658\pi\)
\(84\) 0 0
\(85\) −10.6790 + 2.81416i −1.15831 + 0.305239i
\(86\) 0 0
\(87\) −0.798174 −0.0855732
\(88\) 0 0
\(89\) 1.12125i 0.118853i 0.998233 + 0.0594263i \(0.0189271\pi\)
−0.998233 + 0.0594263i \(0.981073\pi\)
\(90\) 0 0
\(91\) 6.95717 + 6.95717i 0.729310 + 0.729310i
\(92\) 0 0
\(93\) 0.416048 + 0.416048i 0.0431422 + 0.0431422i
\(94\) 0 0
\(95\) 13.0363 + 7.59857i 1.33750 + 0.779597i
\(96\) 0 0
\(97\) 6.10461i 0.619829i −0.950764 0.309915i \(-0.899700\pi\)
0.950764 0.309915i \(-0.100300\pi\)
\(98\) 0 0
\(99\) −4.69248 + 4.69248i −0.471612 + 0.471612i
\(100\) 0 0
\(101\) −2.17142 2.17142i −0.216065 0.216065i 0.590773 0.806838i \(-0.298823\pi\)
−0.806838 + 0.590773i \(0.798823\pi\)
\(102\) 0 0
\(103\) −15.3778 −1.51522 −0.757610 0.652707i \(-0.773633\pi\)
−0.757610 + 0.652707i \(0.773633\pi\)
\(104\) 0 0
\(105\) −1.12638 + 1.93244i −0.109923 + 0.188587i
\(106\) 0 0
\(107\) −6.98419 + 6.98419i −0.675187 + 0.675187i −0.958907 0.283720i \(-0.908431\pi\)
0.283720 + 0.958907i \(0.408431\pi\)
\(108\) 0 0
\(109\) −8.59694 + 8.59694i −0.823437 + 0.823437i −0.986599 0.163162i \(-0.947831\pi\)
0.163162 + 0.986599i \(0.447831\pi\)
\(110\) 0 0
\(111\) −1.59922 −0.151791
\(112\) 0 0
\(113\) 14.5329i 1.36714i −0.729883 0.683572i \(-0.760426\pi\)
0.729883 0.683572i \(-0.239574\pi\)
\(114\) 0 0
\(115\) 0.0766631 + 0.290918i 0.00714887 + 0.0271282i
\(116\) 0 0
\(117\) 5.30111 5.30111i 0.490088 0.490088i
\(118\) 0 0
\(119\) 19.0073i 1.74240i
\(120\) 0 0
\(121\) 5.87875i 0.534432i
\(122\) 0 0
\(123\) −0.615163 + 0.615163i −0.0554673 + 0.0554673i
\(124\) 0 0
\(125\) −7.80701 8.00316i −0.698280 0.715825i
\(126\) 0 0
\(127\) 5.96617i 0.529412i −0.964329 0.264706i \(-0.914725\pi\)
0.964329 0.264706i \(-0.0852749\pi\)
\(128\) 0 0
\(129\) 0.995761 0.0876719
\(130\) 0 0
\(131\) −2.37084 + 2.37084i −0.207141 + 0.207141i −0.803051 0.595910i \(-0.796791\pi\)
0.595910 + 0.803051i \(0.296791\pi\)
\(132\) 0 0
\(133\) 18.3637 18.3637i 1.59234 1.59234i
\(134\) 0 0
\(135\) 2.97883 + 1.73629i 0.256376 + 0.149436i
\(136\) 0 0
\(137\) −18.2745 −1.56129 −0.780646 0.624973i \(-0.785110\pi\)
−0.780646 + 0.624973i \(0.785110\pi\)
\(138\) 0 0
\(139\) 0.136094 + 0.136094i 0.0115433 + 0.0115433i 0.712855 0.701312i \(-0.247402\pi\)
−0.701312 + 0.712855i \(0.747402\pi\)
\(140\) 0 0
\(141\) −1.29268 + 1.29268i −0.108863 + 0.108863i
\(142\) 0 0
\(143\) 5.78550i 0.483808i
\(144\) 0 0
\(145\) −5.93244 3.45789i −0.492663 0.287162i
\(146\) 0 0
\(147\) 1.43562 + 1.43562i 0.118408 + 0.118408i
\(148\) 0 0
\(149\) 2.40078 + 2.40078i 0.196680 + 0.196680i 0.798575 0.601895i \(-0.205588\pi\)
−0.601895 + 0.798575i \(0.705588\pi\)
\(150\) 0 0
\(151\) 17.9935i 1.46429i 0.681150 + 0.732144i \(0.261480\pi\)
−0.681150 + 0.732144i \(0.738520\pi\)
\(152\) 0 0
\(153\) 14.4829 1.17087
\(154\) 0 0
\(155\) 1.28986 + 4.89471i 0.103604 + 0.393152i
\(156\) 0 0
\(157\) 12.6359 + 12.6359i 1.00846 + 1.00846i 0.999964 + 0.00849213i \(0.00270316\pi\)
0.00849213 + 0.999964i \(0.497297\pi\)
\(158\) 0 0
\(159\) 1.24985 0.0991193
\(160\) 0 0
\(161\) 0.517796 0.0408081
\(162\) 0 0
\(163\) −15.8470 15.8470i −1.24123 1.24123i −0.959490 0.281743i \(-0.909087\pi\)
−0.281743 0.959490i \(-0.590913\pi\)
\(164\) 0 0
\(165\) 1.27184 0.335157i 0.0990125 0.0260919i
\(166\) 0 0
\(167\) −12.7559 −0.987083 −0.493541 0.869722i \(-0.664298\pi\)
−0.493541 + 0.869722i \(0.664298\pi\)
\(168\) 0 0
\(169\) 6.46410i 0.497239i
\(170\) 0 0
\(171\) −13.9925 13.9925i −1.07003 1.07003i
\(172\) 0 0
\(173\) −2.64673 2.64673i −0.201227 0.201227i 0.599299 0.800525i \(-0.295446\pi\)
−0.800525 + 0.599299i \(0.795446\pi\)
\(174\) 0 0
\(175\) −16.7436 + 9.48317i −1.26570 + 0.716860i
\(176\) 0 0
\(177\) 0.0393779i 0.00295983i
\(178\) 0 0
\(179\) 11.6497 11.6497i 0.870736 0.870736i −0.121817 0.992553i \(-0.538872\pi\)
0.992553 + 0.121817i \(0.0388720\pi\)
\(180\) 0 0
\(181\) −1.24322 1.24322i −0.0924079 0.0924079i 0.659392 0.751800i \(-0.270814\pi\)
−0.751800 + 0.659392i \(0.770814\pi\)
\(182\) 0 0
\(183\) 1.27334 0.0941278
\(184\) 0 0
\(185\) −11.8862 6.92820i −0.873892 0.509372i
\(186\) 0 0
\(187\) 7.90314 7.90314i 0.577935 0.577935i
\(188\) 0 0
\(189\) 4.19615 4.19615i 0.305225 0.305225i
\(190\) 0 0
\(191\) 5.07180 0.366982 0.183491 0.983021i \(-0.441260\pi\)
0.183491 + 0.983021i \(0.441260\pi\)
\(192\) 0 0
\(193\) 2.30278i 0.165758i −0.996560 0.0828788i \(-0.973589\pi\)
0.996560 0.0828788i \(-0.0264114\pi\)
\(194\) 0 0
\(195\) −1.43680 + 0.378628i −0.102891 + 0.0271141i
\(196\) 0 0
\(197\) −8.06997 + 8.06997i −0.574961 + 0.574961i −0.933511 0.358549i \(-0.883271\pi\)
0.358549 + 0.933511i \(0.383271\pi\)
\(198\) 0 0
\(199\) 21.8564i 1.54936i −0.632354 0.774680i \(-0.717911\pi\)
0.632354 0.774680i \(-0.282089\pi\)
\(200\) 0 0
\(201\) 0.702368i 0.0495412i
\(202\) 0 0
\(203\) −8.35679 + 8.35679i −0.586532 + 0.586532i
\(204\) 0 0
\(205\) −7.23724 + 1.90717i −0.505471 + 0.133203i
\(206\) 0 0
\(207\) 0.394542i 0.0274226i
\(208\) 0 0
\(209\) −15.2711 −1.05632
\(210\) 0 0
\(211\) −0.478227 + 0.478227i −0.0329225 + 0.0329225i −0.723376 0.690454i \(-0.757411\pi\)
0.690454 + 0.723376i \(0.257411\pi\)
\(212\) 0 0
\(213\) 1.71458 1.71458i 0.117481 0.117481i
\(214\) 0 0
\(215\) 7.40101 + 4.31388i 0.504745 + 0.294204i
\(216\) 0 0
\(217\) 8.71196 0.591406
\(218\) 0 0
\(219\) 1.80623 + 1.80623i 0.122054 + 0.122054i
\(220\) 0 0
\(221\) −8.92820 + 8.92820i −0.600576 + 0.600576i
\(222\) 0 0
\(223\) 7.50859i 0.502813i −0.967882 0.251406i \(-0.919107\pi\)
0.967882 0.251406i \(-0.0808930\pi\)
\(224\) 0 0
\(225\) 7.22584 + 12.7580i 0.481722 + 0.850536i
\(226\) 0 0
\(227\) 12.8788 + 12.8788i 0.854798 + 0.854798i 0.990720 0.135922i \(-0.0433997\pi\)
−0.135922 + 0.990720i \(0.543400\pi\)
\(228\) 0 0
\(229\) −8.62166 8.62166i −0.569736 0.569736i 0.362319 0.932054i \(-0.381985\pi\)
−0.932054 + 0.362319i \(0.881985\pi\)
\(230\) 0 0
\(231\) 2.26371i 0.148941i
\(232\) 0 0
\(233\) 4.63429 0.303602 0.151801 0.988411i \(-0.451493\pi\)
0.151801 + 0.988411i \(0.451493\pi\)
\(234\) 0 0
\(235\) −15.2080 + 4.00765i −0.992063 + 0.261430i
\(236\) 0 0
\(237\) −2.02304 2.02304i −0.131411 0.131411i
\(238\) 0 0
\(239\) 18.4220 1.19162 0.595810 0.803126i \(-0.296831\pi\)
0.595810 + 0.803126i \(0.296831\pi\)
\(240\) 0 0
\(241\) 18.3247 1.18040 0.590200 0.807257i \(-0.299049\pi\)
0.590200 + 0.807257i \(0.299049\pi\)
\(242\) 0 0
\(243\) −4.81418 4.81418i −0.308830 0.308830i
\(244\) 0 0
\(245\) 4.45082 + 16.8897i 0.284352 + 1.07905i
\(246\) 0 0
\(247\) 17.2518 1.09770
\(248\) 0 0
\(249\) 3.23827i 0.205217i
\(250\) 0 0
\(251\) 16.0222 + 16.0222i 1.01131 + 1.01131i 0.999935 + 0.0113760i \(0.00362116\pi\)
0.0113760 + 0.999935i \(0.496379\pi\)
\(252\) 0 0
\(253\) −0.215297 0.215297i −0.0135356 0.0135356i
\(254\) 0 0
\(255\) −2.47992 1.44549i −0.155299 0.0905201i
\(256\) 0 0
\(257\) 5.82098i 0.363103i −0.983381 0.181551i \(-0.941888\pi\)
0.983381 0.181551i \(-0.0581119\pi\)
\(258\) 0 0
\(259\) −16.7436 + 16.7436i −1.04040 + 1.04040i
\(260\) 0 0
\(261\) 6.36758 + 6.36758i 0.394143 + 0.394143i
\(262\) 0 0
\(263\) −0.806693 −0.0497428 −0.0248714 0.999691i \(-0.507918\pi\)
−0.0248714 + 0.999691i \(0.507918\pi\)
\(264\) 0 0
\(265\) 9.28951 + 5.41465i 0.570650 + 0.332619i
\(266\) 0 0
\(267\) −0.206075 + 0.206075i −0.0126116 + 0.0126116i
\(268\) 0 0
\(269\) 15.1939 15.1939i 0.926387 0.926387i −0.0710837 0.997470i \(-0.522646\pi\)
0.997470 + 0.0710837i \(0.0226458\pi\)
\(270\) 0 0
\(271\) −10.8491 −0.659034 −0.329517 0.944150i \(-0.606886\pi\)
−0.329517 + 0.944150i \(0.606886\pi\)
\(272\) 0 0
\(273\) 2.55732i 0.154776i
\(274\) 0 0
\(275\) 10.9049 + 3.01886i 0.657593 + 0.182044i
\(276\) 0 0
\(277\) −1.27334 + 1.27334i −0.0765074 + 0.0765074i −0.744325 0.667818i \(-0.767229\pi\)
0.667818 + 0.744325i \(0.267229\pi\)
\(278\) 0 0
\(279\) 6.63820i 0.397419i
\(280\) 0 0
\(281\) 20.2174i 1.20607i 0.797716 + 0.603033i \(0.206041\pi\)
−0.797716 + 0.603033i \(0.793959\pi\)
\(282\) 0 0
\(283\) 21.3741 21.3741i 1.27056 1.27056i 0.324759 0.945797i \(-0.394717\pi\)
0.945797 0.324759i \(-0.105283\pi\)
\(284\) 0 0
\(285\) 0.999404 + 3.79249i 0.0591996 + 0.224648i
\(286\) 0 0
\(287\) 12.8814i 0.760363i
\(288\) 0 0
\(289\) −7.39230 −0.434841
\(290\) 0 0
\(291\) 1.12197 1.12197i 0.0657710 0.0657710i
\(292\) 0 0
\(293\) −11.1656 + 11.1656i −0.652301 + 0.652301i −0.953547 0.301246i \(-0.902598\pi\)
0.301246 + 0.953547i \(0.402598\pi\)
\(294\) 0 0
\(295\) −0.170595 + 0.292677i −0.00993241 + 0.0170403i
\(296\) 0 0
\(297\) −3.48947 −0.202480
\(298\) 0 0
\(299\) 0.243221 + 0.243221i 0.0140659 + 0.0140659i
\(300\) 0 0
\(301\) 10.4255 10.4255i 0.600916 0.600916i
\(302\) 0 0
\(303\) 0.798174i 0.0458539i
\(304\) 0 0
\(305\) 9.46410 + 5.51641i 0.541913 + 0.315869i
\(306\) 0 0
\(307\) −2.18143 2.18143i −0.124501 0.124501i 0.642111 0.766612i \(-0.278059\pi\)
−0.766612 + 0.642111i \(0.778059\pi\)
\(308\) 0 0
\(309\) −2.82629 2.82629i −0.160782 0.160782i
\(310\) 0 0
\(311\) 11.5517i 0.655038i −0.944845 0.327519i \(-0.893787\pi\)
0.944845 0.327519i \(-0.106213\pi\)
\(312\) 0 0
\(313\) −10.4265 −0.589343 −0.294671 0.955599i \(-0.595210\pi\)
−0.294671 + 0.955599i \(0.595210\pi\)
\(314\) 0 0
\(315\) 24.4023 6.43053i 1.37491 0.362320i
\(316\) 0 0
\(317\) −10.0785 10.0785i −0.566063 0.566063i 0.364960 0.931023i \(-0.381083\pi\)
−0.931023 + 0.364960i \(0.881083\pi\)
\(318\) 0 0
\(319\) 6.94941 0.389092
\(320\) 0 0
\(321\) −2.56725 −0.143290
\(322\) 0 0
\(323\) 23.5663 + 23.5663i 1.31127 + 1.31127i
\(324\) 0 0
\(325\) −12.3194 3.41041i −0.683355 0.189176i
\(326\) 0 0
\(327\) −3.16007 −0.174752
\(328\) 0 0
\(329\) 27.0684i 1.49233i
\(330\) 0 0
\(331\) −8.77162 8.77162i −0.482132 0.482132i 0.423680 0.905812i \(-0.360738\pi\)
−0.905812 + 0.423680i \(0.860738\pi\)
\(332\) 0 0
\(333\) 12.7580 + 12.7580i 0.699137 + 0.699137i
\(334\) 0 0
\(335\) −3.04283 + 5.22036i −0.166248 + 0.285219i
\(336\) 0 0
\(337\) 33.0226i 1.79885i 0.437072 + 0.899427i \(0.356016\pi\)
−0.437072 + 0.899427i \(0.643984\pi\)
\(338\) 0 0
\(339\) 2.67101 2.67101i 0.145070 0.145070i
\(340\) 0 0
\(341\) −3.62238 3.62238i −0.196163 0.196163i
\(342\) 0 0
\(343\) 3.12189 0.168566
\(344\) 0 0
\(345\) −0.0393779 + 0.0675578i −0.00212004 + 0.00363719i
\(346\) 0 0
\(347\) −11.1412 + 11.1412i −0.598090 + 0.598090i −0.939804 0.341714i \(-0.888993\pi\)
0.341714 + 0.939804i \(0.388993\pi\)
\(348\) 0 0
\(349\) 10.8656 10.8656i 0.581622 0.581622i −0.353727 0.935349i \(-0.615086\pi\)
0.935349 + 0.353727i \(0.115086\pi\)
\(350\) 0 0
\(351\) 3.94207 0.210412
\(352\) 0 0
\(353\) 11.3480i 0.603995i 0.953309 + 0.301998i \(0.0976534\pi\)
−0.953309 + 0.301998i \(0.902347\pi\)
\(354\) 0 0
\(355\) 20.1716 5.31566i 1.07060 0.282126i
\(356\) 0 0
\(357\) −3.49337 + 3.49337i −0.184889 + 0.184889i
\(358\) 0 0
\(359\) 26.5788i 1.40278i −0.712779 0.701389i \(-0.752564\pi\)
0.712779 0.701389i \(-0.247436\pi\)
\(360\) 0 0
\(361\) 26.5367i 1.39667i
\(362\) 0 0
\(363\) 1.08046 1.08046i 0.0567093 0.0567093i
\(364\) 0 0
\(365\) 5.59982 + 21.2499i 0.293108 + 1.11227i
\(366\) 0 0
\(367\) 2.90729i 0.151760i −0.997117 0.0758798i \(-0.975823\pi\)
0.997117 0.0758798i \(-0.0241765\pi\)
\(368\) 0 0
\(369\) 9.81514 0.510956
\(370\) 0 0
\(371\) 13.0858 13.0858i 0.679379 0.679379i
\(372\) 0 0
\(373\) −4.65522 + 4.65522i −0.241038 + 0.241038i −0.817280 0.576241i \(-0.804519\pi\)
0.576241 + 0.817280i \(0.304519\pi\)
\(374\) 0 0
\(375\) 0.0360509 2.90576i 0.00186166 0.150053i
\(376\) 0 0
\(377\) −7.85077 −0.404335
\(378\) 0 0
\(379\) −9.52106 9.52106i −0.489064 0.489064i 0.418947 0.908011i \(-0.362399\pi\)
−0.908011 + 0.418947i \(0.862399\pi\)
\(380\) 0 0
\(381\) 1.09652 1.09652i 0.0561767 0.0561767i
\(382\) 0 0
\(383\) 6.92429i 0.353815i 0.984228 + 0.176907i \(0.0566093\pi\)
−0.984228 + 0.176907i \(0.943391\pi\)
\(384\) 0 0
\(385\) 9.80695 16.8251i 0.499808 0.857485i
\(386\) 0 0
\(387\) −7.94386 7.94386i −0.403809 0.403809i
\(388\) 0 0
\(389\) 20.0232 + 20.0232i 1.01521 + 1.01521i 0.999882 + 0.0153322i \(0.00488057\pi\)
0.0153322 + 0.999882i \(0.495119\pi\)
\(390\) 0 0
\(391\) 0.664493i 0.0336049i
\(392\) 0 0
\(393\) −0.871474 −0.0439601
\(394\) 0 0
\(395\) −6.27199 23.8006i −0.315578 1.19754i
\(396\) 0 0
\(397\) 3.81625 + 3.81625i 0.191532 + 0.191532i 0.796358 0.604826i \(-0.206757\pi\)
−0.604826 + 0.796358i \(0.706757\pi\)
\(398\) 0 0
\(399\) 6.75015 0.337930
\(400\) 0 0
\(401\) 1.68031 0.0839108 0.0419554 0.999119i \(-0.486641\pi\)
0.0419554 + 0.999119i \(0.486641\pi\)
\(402\) 0 0
\(403\) 4.09222 + 4.09222i 0.203848 + 0.203848i
\(404\) 0 0
\(405\) −4.78435 18.1554i −0.237736 0.902151i
\(406\) 0 0
\(407\) 13.9238 0.690177
\(408\) 0 0
\(409\) 20.1317i 0.995448i 0.867335 + 0.497724i \(0.165831\pi\)
−0.867335 + 0.497724i \(0.834169\pi\)
\(410\) 0 0
\(411\) −3.35867 3.35867i −0.165671 0.165671i
\(412\) 0 0
\(413\) 0.412282 + 0.412282i 0.0202871 + 0.0202871i
\(414\) 0 0
\(415\) 14.0290 24.0685i 0.688655 1.18147i
\(416\) 0 0
\(417\) 0.0500256i 0.00244976i
\(418\) 0 0
\(419\) −22.6570 + 22.6570i −1.10687 + 1.10687i −0.113306 + 0.993560i \(0.536144\pi\)
−0.993560 + 0.113306i \(0.963856\pi\)
\(420\) 0 0
\(421\) 10.1583 + 10.1583i 0.495084 + 0.495084i 0.909904 0.414820i \(-0.136155\pi\)
−0.414820 + 0.909904i \(0.636155\pi\)
\(422\) 0 0
\(423\) 20.6251 1.00283
\(424\) 0 0
\(425\) −12.1698 21.4873i −0.590324 1.04229i
\(426\) 0 0
\(427\) 13.3317 13.3317i 0.645166 0.645166i
\(428\) 0 0
\(429\) 1.06332 1.06332i 0.0513375 0.0513375i
\(430\) 0 0
\(431\) −26.1518 −1.25969 −0.629843 0.776723i \(-0.716881\pi\)
−0.629843 + 0.776723i \(0.716881\pi\)
\(432\) 0 0
\(433\) 9.30795i 0.447312i 0.974668 + 0.223656i \(0.0717992\pi\)
−0.974668 + 0.223656i \(0.928201\pi\)
\(434\) 0 0
\(435\) −0.454800 1.72585i −0.0218060 0.0827483i
\(436\) 0 0
\(437\) 0.641992 0.641992i 0.0307107 0.0307107i
\(438\) 0 0
\(439\) 30.4799i 1.45473i 0.686252 + 0.727364i \(0.259255\pi\)
−0.686252 + 0.727364i \(0.740745\pi\)
\(440\) 0 0
\(441\) 22.9059i 1.09076i
\(442\) 0 0
\(443\) −16.7437 + 16.7437i −0.795516 + 0.795516i −0.982385 0.186869i \(-0.940166\pi\)
0.186869 + 0.982385i \(0.440166\pi\)
\(444\) 0 0
\(445\) −2.42443 + 0.638890i −0.114929 + 0.0302863i
\(446\) 0 0
\(447\) 0.882482i 0.0417399i
\(448\) 0 0
\(449\) 5.40502 0.255079 0.127539 0.991834i \(-0.459292\pi\)
0.127539 + 0.991834i \(0.459292\pi\)
\(450\) 0 0
\(451\) 5.35600 5.35600i 0.252204 0.252204i
\(452\) 0 0
\(453\) −3.30703 + 3.30703i −0.155378 + 0.155378i
\(454\) 0 0
\(455\) −11.0789 + 19.0073i −0.519389 + 0.891078i
\(456\) 0 0
\(457\) 34.5929 1.61819 0.809095 0.587678i \(-0.199958\pi\)
0.809095 + 0.587678i \(0.199958\pi\)
\(458\) 0 0
\(459\) 5.38496 + 5.38496i 0.251349 + 0.251349i
\(460\) 0 0
\(461\) −14.3876 + 14.3876i −0.670099 + 0.670099i −0.957739 0.287640i \(-0.907129\pi\)
0.287640 + 0.957739i \(0.407129\pi\)
\(462\) 0 0
\(463\) 20.6591i 0.960108i 0.877239 + 0.480054i \(0.159383\pi\)
−0.877239 + 0.480054i \(0.840617\pi\)
\(464\) 0 0
\(465\) −0.662536 + 1.13666i −0.0307244 + 0.0527116i
\(466\) 0 0
\(467\) −16.3222 16.3222i −0.755300 0.755300i 0.220163 0.975463i \(-0.429341\pi\)
−0.975463 + 0.220163i \(0.929341\pi\)
\(468\) 0 0
\(469\) 7.35371 + 7.35371i 0.339563 + 0.339563i
\(470\) 0 0
\(471\) 4.64472i 0.214017i
\(472\) 0 0
\(473\) −8.66973 −0.398635
\(474\) 0 0
\(475\) −9.00192 + 32.5174i −0.413036 + 1.49200i
\(476\) 0 0
\(477\) −9.97088 9.97088i −0.456535 0.456535i
\(478\) 0 0
\(479\) −19.5136 −0.891597 −0.445799 0.895133i \(-0.647080\pi\)
−0.445799 + 0.895133i \(0.647080\pi\)
\(480\) 0 0
\(481\) −15.7298 −0.717216
\(482\) 0 0
\(483\) 0.0951660 + 0.0951660i 0.00433020 + 0.00433020i
\(484\) 0 0
\(485\) 13.1997 3.47841i 0.599367 0.157946i
\(486\) 0 0
\(487\) 15.6638 0.709794 0.354897 0.934905i \(-0.384516\pi\)
0.354897 + 0.934905i \(0.384516\pi\)
\(488\) 0 0
\(489\) 5.82505i 0.263418i
\(490\) 0 0
\(491\) 17.9076 + 17.9076i 0.808157 + 0.808157i 0.984355 0.176198i \(-0.0563799\pi\)
−0.176198 + 0.984355i \(0.556380\pi\)
\(492\) 0 0
\(493\) −10.7244 10.7244i −0.483001 0.483001i
\(494\) 0 0
\(495\) −12.8201 7.47254i −0.576221 0.335866i
\(496\) 0 0
\(497\) 35.9029i 1.61046i
\(498\) 0 0
\(499\) 2.32067 2.32067i 0.103887 0.103887i −0.653253 0.757140i \(-0.726596\pi\)
0.757140 + 0.653253i \(0.226596\pi\)
\(500\) 0 0
\(501\) −2.34441 2.34441i −0.104741 0.104741i
\(502\) 0 0
\(503\) −6.18913 −0.275960 −0.137980 0.990435i \(-0.544061\pi\)
−0.137980 + 0.990435i \(0.544061\pi\)
\(504\) 0 0
\(505\) 3.45789 5.93244i 0.153874 0.263990i
\(506\) 0 0
\(507\) 1.18804 1.18804i 0.0527627 0.0527627i
\(508\) 0 0
\(509\) −18.6217 + 18.6217i −0.825391 + 0.825391i −0.986875 0.161485i \(-0.948372\pi\)
0.161485 + 0.986875i \(0.448372\pi\)
\(510\) 0 0
\(511\) 37.8222 1.67315
\(512\) 0 0
\(513\) 10.4052i 0.459403i
\(514\) 0 0
\(515\) −8.76228 33.2507i −0.386112 1.46520i
\(516\) 0 0
\(517\) 11.2549 11.2549i 0.494988 0.494988i
\(518\) 0 0
\(519\) 0.972885i 0.0427049i
\(520\) 0 0
\(521\) 24.0232i 1.05247i 0.850338 + 0.526237i \(0.176397\pi\)
−0.850338 + 0.526237i \(0.823603\pi\)
\(522\) 0 0
\(523\) −16.1791 + 16.1791i −0.707463 + 0.707463i −0.966001 0.258538i \(-0.916759\pi\)
0.258538 + 0.966001i \(0.416759\pi\)
\(524\) 0 0
\(525\) −4.82023 1.33440i −0.210372 0.0582381i
\(526\) 0 0
\(527\) 11.1801i 0.487015i
\(528\) 0 0
\(529\) −22.9819 −0.999213
\(530\) 0 0
\(531\) 0.314144 0.314144i 0.0136327 0.0136327i
\(532\) 0 0
\(533\) −6.05069 + 6.05069i −0.262084 + 0.262084i
\(534\) 0 0
\(535\) −19.0811 11.1220i −0.824950 0.480845i
\(536\) 0 0
\(537\) 4.28219 0.184790
\(538\) 0 0
\(539\) −12.4994 12.4994i −0.538389 0.538389i
\(540\) 0 0
\(541\) −6.76526 + 6.76526i −0.290861 + 0.290861i −0.837420 0.546559i \(-0.815937\pi\)
0.546559 + 0.837420i \(0.315937\pi\)
\(542\) 0 0
\(543\) 0.456984i 0.0196111i
\(544\) 0 0
\(545\) −23.4873 13.6902i −1.00608 0.586423i
\(546\) 0 0
\(547\) −4.38359 4.38359i −0.187429 0.187429i 0.607155 0.794584i \(-0.292311\pi\)
−0.794584 + 0.607155i \(0.792311\pi\)
\(548\) 0 0
\(549\) −10.1583 10.1583i −0.433545 0.433545i
\(550\) 0 0
\(551\) 20.7224i 0.882805i
\(552\) 0 0
\(553\) −42.3621 −1.80142
\(554\) 0 0
\(555\) −0.911234 3.45791i −0.0386797 0.146780i
\(556\) 0 0
\(557\) 3.92396 + 3.92396i 0.166264 + 0.166264i 0.785335 0.619071i \(-0.212491\pi\)
−0.619071 + 0.785335i \(0.712491\pi\)
\(558\) 0 0
\(559\) 9.79422 0.414252
\(560\) 0 0
\(561\) 2.90504 0.122651
\(562\) 0 0
\(563\) 6.61660 + 6.61660i 0.278857 + 0.278857i 0.832652 0.553796i \(-0.186821\pi\)
−0.553796 + 0.832652i \(0.686821\pi\)
\(564\) 0 0
\(565\) 31.4239 8.28087i 1.32201 0.348379i
\(566\) 0 0
\(567\) −32.3144 −1.35708
\(568\) 0 0
\(569\) 40.2900i 1.68904i −0.535521 0.844522i \(-0.679885\pi\)
0.535521 0.844522i \(-0.320115\pi\)
\(570\) 0 0
\(571\) −22.6010 22.6010i −0.945823 0.945823i 0.0527829 0.998606i \(-0.483191\pi\)
−0.998606 + 0.0527829i \(0.983191\pi\)
\(572\) 0 0
\(573\) 0.932147 + 0.932147i 0.0389410 + 0.0389410i
\(574\) 0 0
\(575\) −0.585354 + 0.331530i −0.0244110 + 0.0138257i
\(576\) 0 0
\(577\) 18.8020i 0.782737i 0.920234 + 0.391368i \(0.127998\pi\)
−0.920234 + 0.391368i \(0.872002\pi\)
\(578\) 0 0
\(579\) 0.423229 0.423229i 0.0175888 0.0175888i
\(580\) 0 0
\(581\) −33.9043 33.9043i −1.40659 1.40659i
\(582\) 0 0
\(583\) −10.8820 −0.450685
\(584\) 0 0
\(585\) 14.4829 + 8.44176i 0.598795 + 0.349024i
\(586\) 0 0
\(587\) −2.71961 + 2.71961i −0.112250 + 0.112250i −0.761001 0.648751i \(-0.775292\pi\)
0.648751 + 0.761001i \(0.275292\pi\)
\(588\) 0 0
\(589\) 10.8016 10.8016i 0.445071 0.445071i
\(590\) 0 0
\(591\) −2.96636 −0.122020
\(592\) 0 0
\(593\) 4.04894i 0.166270i 0.996538 + 0.0831350i \(0.0264933\pi\)
−0.996538 + 0.0831350i \(0.973507\pi\)
\(594\) 0 0
\(595\) −41.0986 + 10.8304i −1.68488 + 0.444003i
\(596\) 0 0
\(597\) 4.01700 4.01700i 0.164405 0.164405i
\(598\) 0 0
\(599\) 19.0455i 0.778178i 0.921200 + 0.389089i \(0.127210\pi\)
−0.921200 + 0.389089i \(0.872790\pi\)
\(600\) 0 0
\(601\) 14.4406i 0.589045i 0.955645 + 0.294522i \(0.0951606\pi\)
−0.955645 + 0.294522i \(0.904839\pi\)
\(602\) 0 0
\(603\) 5.60327 5.60327i 0.228183 0.228183i
\(604\) 0 0
\(605\) 12.7113 3.34971i 0.516789 0.136185i
\(606\) 0 0
\(607\) 46.3473i 1.88118i −0.339546 0.940589i \(-0.610273\pi\)
0.339546 0.940589i \(-0.389727\pi\)
\(608\) 0 0
\(609\) −3.07180 −0.124475
\(610\) 0 0
\(611\) −12.7147 + 12.7147i −0.514380 + 0.514380i
\(612\) 0 0
\(613\) −0.961106 + 0.961106i −0.0388187 + 0.0388187i −0.726250 0.687431i \(-0.758738\pi\)
0.687431 + 0.726250i \(0.258738\pi\)
\(614\) 0 0
\(615\) −1.68066 0.979616i −0.0677706 0.0395019i
\(616\) 0 0
\(617\) 3.44724 0.138781 0.0693903 0.997590i \(-0.477895\pi\)
0.0693903 + 0.997590i \(0.477895\pi\)
\(618\) 0 0
\(619\) 24.5574 + 24.5574i 0.987044 + 0.987044i 0.999917 0.0128733i \(-0.00409780\pi\)
−0.0128733 + 0.999917i \(0.504098\pi\)
\(620\) 0 0
\(621\) 0.146697 0.146697i 0.00588673 0.00588673i
\(622\) 0 0
\(623\) 4.31517i 0.172884i
\(624\) 0 0
\(625\) 12.8564 21.4409i 0.514256 0.857637i
\(626\) 0 0
\(627\) −2.80667 2.80667i −0.112088 0.112088i
\(628\) 0 0
\(629\) −21.4873 21.4873i −0.856753 0.856753i
\(630\) 0 0
\(631\) 22.7950i 0.907456i −0.891140 0.453728i \(-0.850094\pi\)
0.891140 0.453728i \(-0.149906\pi\)
\(632\) 0 0
\(633\) −0.175787 −0.00698691
\(634\) 0 0
\(635\) 12.9004 3.39952i 0.511935 0.134906i
\(636\) 0 0
\(637\) 14.1207 + 14.1207i 0.559481 + 0.559481i
\(638\) 0 0
\(639\) −27.3567 −1.08221
\(640\) 0 0
\(641\) 30.4468 1.20258 0.601289 0.799032i \(-0.294654\pi\)
0.601289 + 0.799032i \(0.294654\pi\)
\(642\) 0 0
\(643\) 20.4452 + 20.4452i 0.806282 + 0.806282i 0.984069 0.177787i \(-0.0568939\pi\)
−0.177787 + 0.984069i \(0.556894\pi\)
\(644\) 0 0
\(645\) 0.567385 + 2.15308i 0.0223408 + 0.0847776i
\(646\) 0 0
\(647\) −29.5876 −1.16321 −0.581604 0.813472i \(-0.697575\pi\)
−0.581604 + 0.813472i \(0.697575\pi\)
\(648\) 0 0
\(649\) 0.342849i 0.0134580i
\(650\) 0 0
\(651\) 1.60117 + 1.60117i 0.0627550 + 0.0627550i
\(652\) 0 0
\(653\) −21.2334 21.2334i −0.830928 0.830928i 0.156716 0.987644i \(-0.449909\pi\)
−0.987644 + 0.156716i \(0.949909\pi\)
\(654\) 0 0
\(655\) −6.47725 3.77544i −0.253087 0.147519i
\(656\) 0 0
\(657\) 28.8191i 1.12434i
\(658\) 0 0
\(659\) 20.0222 20.0222i 0.779954 0.779954i −0.199869 0.979823i \(-0.564052\pi\)
0.979823 + 0.199869i \(0.0640517\pi\)
\(660\) 0 0
\(661\) 19.9536 + 19.9536i 0.776107 + 0.776107i 0.979166 0.203059i \(-0.0650885\pi\)
−0.203059 + 0.979166i \(0.565088\pi\)
\(662\) 0 0
\(663\) −3.28184 −0.127456
\(664\) 0 0
\(665\) 50.1706 + 29.2433i 1.94553 + 1.13401i
\(666\) 0 0
\(667\) −0.292152 + 0.292152i −0.0113122 + 0.0113122i
\(668\) 0 0
\(669\) 1.38001 1.38001i 0.0533542 0.0533542i
\(670\) 0 0
\(671\) −11.0865 −0.427989
\(672\) 0 0
\(673\) 2.91192i 0.112246i 0.998424 + 0.0561231i \(0.0178739\pi\)
−0.998424 + 0.0561231i \(0.982126\pi\)
\(674\) 0 0
\(675\) −2.05696 + 7.43031i −0.0791724 + 0.285993i
\(676\) 0 0
\(677\) 34.6045 34.6045i 1.32996 1.32996i 0.424558 0.905401i \(-0.360430\pi\)
0.905401 0.424558i \(-0.139570\pi\)
\(678\) 0 0
\(679\) 23.4938i 0.901609i
\(680\) 0 0
\(681\) 4.73401i 0.181408i
\(682\) 0 0
\(683\) 24.7435 24.7435i 0.946785 0.946785i −0.0518690 0.998654i \(-0.516518\pi\)
0.998654 + 0.0518690i \(0.0165178\pi\)
\(684\) 0 0
\(685\) −10.4128 39.5140i −0.397852 1.50975i
\(686\) 0 0
\(687\) 3.16916i 0.120911i
\(688\) 0 0
\(689\) 12.2934 0.468341
\(690\) 0 0
\(691\) −25.3782 + 25.3782i −0.965431 + 0.965431i −0.999422 0.0339907i \(-0.989178\pi\)
0.0339907 + 0.999422i \(0.489178\pi\)
\(692\) 0 0
\(693\) −18.0592 + 18.0592i −0.686011 + 0.686011i
\(694\) 0 0
\(695\) −0.216723 + 0.371816i −0.00822077 + 0.0141038i
\(696\) 0 0
\(697\) −16.5308 −0.626148
\(698\) 0 0
\(699\) 0.851738 + 0.851738i 0.0322157 + 0.0322157i
\(700\) 0 0
\(701\) 32.3544 32.3544i 1.22201 1.22201i 0.255094 0.966916i \(-0.417894\pi\)
0.966916 0.255094i \(-0.0821063\pi\)
\(702\) 0 0
\(703\) 41.5194i 1.56593i
\(704\) 0 0
\(705\) −3.53166 2.05852i −0.133010 0.0775285i
\(706\) 0 0
\(707\) −8.35679 8.35679i −0.314290 0.314290i
\(708\) 0 0
\(709\) −6.64939 6.64939i −0.249723 0.249723i 0.571134 0.820857i \(-0.306504\pi\)
−0.820857 + 0.571134i \(0.806504\pi\)
\(710\) 0 0
\(711\) 32.2784i 1.21053i
\(712\) 0 0
\(713\) 0.304568 0.0114062
\(714\) 0 0
\(715\) 12.5097 3.29658i 0.467836 0.123285i
\(716\) 0 0
\(717\) 3.38578 + 3.38578i 0.126444 + 0.126444i
\(718\) 0 0
\(719\) 45.0785 1.68115 0.840573 0.541699i \(-0.182219\pi\)
0.840573 + 0.541699i \(0.182219\pi\)
\(720\) 0 0
\(721\) −59.1820 −2.20405
\(722\) 0 0
\(723\) 3.36791 + 3.36791i 0.125254 + 0.125254i
\(724\) 0 0
\(725\) 4.09651 14.7977i 0.152141 0.549574i
\(726\) 0 0
\(727\) −18.6075 −0.690116 −0.345058 0.938581i \(-0.612141\pi\)
−0.345058 + 0.938581i \(0.612141\pi\)
\(728\) 0 0
\(729\) 23.4200i 0.867409i
\(730\) 0 0
\(731\) 13.3792 + 13.3792i 0.494846 + 0.494846i
\(732\) 0 0
\(733\) −7.95550 7.95550i −0.293843 0.293843i 0.544753 0.838596i \(-0.316623\pi\)
−0.838596 + 0.544753i \(0.816623\pi\)
\(734\) 0 0
\(735\) −2.28616 + 3.92219i −0.0843261 + 0.144672i
\(736\) 0 0
\(737\) 6.11526i 0.225258i
\(738\) 0 0
\(739\) 15.2636 15.2636i 0.561479 0.561479i −0.368249 0.929727i \(-0.620042\pi\)
0.929727 + 0.368249i \(0.120042\pi\)
\(740\) 0 0
\(741\) 3.17071 + 3.17071i 0.116479 + 0.116479i
\(742\) 0 0
\(743\) 33.3017 1.22172 0.610861 0.791738i \(-0.290823\pi\)
0.610861 + 0.791738i \(0.290823\pi\)
\(744\) 0 0
\(745\) −3.82313 + 6.55906i −0.140069 + 0.240305i
\(746\) 0 0
\(747\) −25.8339 + 25.8339i −0.945211 + 0.945211i
\(748\) 0 0
\(749\) −26.8789 + 26.8789i −0.982132 + 0.982132i
\(750\) 0 0
\(751\) 1.17214 0.0427720 0.0213860 0.999771i \(-0.493192\pi\)
0.0213860 + 0.999771i \(0.493192\pi\)
\(752\) 0 0
\(753\) 5.88945i 0.214623i
\(754\) 0 0
\(755\) −38.9064 + 10.2527i −1.41595 + 0.373134i
\(756\) 0 0
\(757\) −17.9408 + 17.9408i −0.652069 + 0.652069i −0.953491 0.301422i \(-0.902539\pi\)
0.301422 + 0.953491i \(0.402539\pi\)
\(758\) 0 0
\(759\) 0.0791389i 0.00287256i
\(760\) 0 0
\(761\) 15.4641i 0.560573i −0.959916 0.280287i \(-0.909570\pi\)
0.959916 0.280287i \(-0.0904295\pi\)
\(762\) 0 0
\(763\) −33.0856 + 33.0856i −1.19778 + 1.19778i
\(764\) 0 0
\(765\) 8.25237 + 31.3157i 0.298365 + 1.13222i
\(766\) 0 0
\(767\) 0.387318i 0.0139852i
\(768\) 0 0
\(769\) 14.9777 0.540108 0.270054 0.962845i \(-0.412958\pi\)
0.270054 + 0.962845i \(0.412958\pi\)
\(770\) 0 0
\(771\) 1.06984 1.06984i 0.0385293 0.0385293i
\(772\) 0 0
\(773\) −33.0120 + 33.0120i −1.18736 + 1.18736i −0.209566 + 0.977794i \(0.567205\pi\)
−0.977794 + 0.209566i \(0.932795\pi\)
\(774\) 0 0
\(775\) −9.84862 + 5.57801i −0.353773 + 0.200368i
\(776\) 0 0
\(777\) −6.15464 −0.220796
\(778\) 0 0
\(779\) 15.9710 + 15.9710i 0.572222 + 0.572222i
\(780\) 0 0
\(781\) −14.9282 + 14.9282i −0.534173 + 0.534173i
\(782\) 0 0
\(783\) 4.73512i 0.169219i
\(784\) 0 0
\(785\) −20.1221 + 34.5220i −0.718188 + 1.23214i
\(786\) 0 0
\(787\) 28.8326 + 28.8326i 1.02777 + 1.02777i 0.999603 + 0.0281690i \(0.00896767\pi\)
0.0281690 + 0.999603i \(0.491032\pi\)
\(788\) 0 0
\(789\) −0.148262 0.148262i −0.00527828 0.00527828i
\(790\) 0 0
\(791\) 55.9305i 1.98866i
\(792\) 0 0
\(793\) 12.5244 0.444756
\(794\) 0 0
\(795\) 0.712163 + 2.70248i 0.0252578 + 0.0958472i
\(796\) 0 0
\(797\) −23.1556 23.1556i −0.820214 0.820214i 0.165924 0.986139i \(-0.446939\pi\)
−0.986139 + 0.165924i \(0.946939\pi\)
\(798\) 0 0
\(799\) −34.7371 −1.22891
\(800\) 0 0
\(801\) 3.28801 0.116176
\(802\) 0 0
\(803\) −15.7262 15.7262i −0.554966 0.554966i
\(804\) 0 0
\(805\) 0.295040 + 1.11961i 0.0103988 + 0.0394609i
\(806\) 0 0
\(807\) 5.58497 0.196600
\(808\) 0 0
\(809\) 36.2210i 1.27346i −0.771086 0.636731i \(-0.780286\pi\)
0.771086 0.636731i \(-0.219714\pi\)
\(810\) 0 0
\(811\) −9.17312 9.17312i −0.322112 0.322112i 0.527465 0.849577i \(-0.323143\pi\)
−0.849577 + 0.527465i \(0.823143\pi\)
\(812\) 0 0
\(813\) −1.99395 1.99395i −0.0699310 0.0699310i
\(814\) 0 0
\(815\) 25.2356 43.2948i 0.883963 1.51655i
\(816\) 0 0
\(817\) 25.8522i 0.904456i
\(818\) 0 0
\(819\) 20.4015 20.4015i 0.712886 0.712886i
\(820\) 0 0
\(821\) −7.26795 7.26795i −0.253653 0.253653i 0.568813 0.822467i \(-0.307403\pi\)
−0.822467 + 0.568813i \(0.807403\pi\)
\(822\) 0 0
\(823\) 28.2974 0.986384 0.493192 0.869920i \(-0.335830\pi\)
0.493192 + 0.869920i \(0.335830\pi\)
\(824\) 0 0
\(825\) 1.44939 + 2.55906i 0.0504612 + 0.0890951i
\(826\) 0 0
\(827\) 18.1661 18.1661i 0.631697 0.631697i −0.316797 0.948494i \(-0.602607\pi\)
0.948494 + 0.316797i \(0.102607\pi\)
\(828\) 0 0
\(829\) −11.0865 + 11.0865i −0.385049 + 0.385049i −0.872917 0.487868i \(-0.837775\pi\)
0.487868 + 0.872917i \(0.337775\pi\)
\(830\) 0 0
\(831\) −0.468054 −0.0162366
\(832\) 0 0
\(833\) 38.5783i 1.33666i
\(834\) 0 0
\(835\) −7.26832 27.5815i −0.251531 0.954497i
\(836\) 0 0
\(837\) 2.46818 2.46818i 0.0853128 0.0853128i
\(838\) 0 0
\(839\) 11.9093i 0.411153i 0.978641 + 0.205577i \(0.0659069\pi\)
−0.978641 + 0.205577i \(0.934093\pi\)
\(840\) 0 0
\(841\) 19.5698i 0.674822i
\(842\) 0 0
\(843\) −3.71576 + 3.71576i −0.127977 + 0.127977i
\(844\) 0 0
\(845\) 13.9770 3.68325i 0.480824 0.126708i
\(846\) 0 0
\(847\) 22.6245i 0.777388i
\(848\) 0 0
\(849\) 7.85669 0.269641
\(850\) 0 0
\(851\) −0.585354 + 0.585354i −0.0200657 + 0.0200657i
\(852\) 0 0
\(853\) −2.44597 + 2.44597i −0.0837485 + 0.0837485i −0.747740 0.663992i \(-0.768861\pi\)
0.663992 + 0.747740i \(0.268861\pi\)
\(854\) 0 0
\(855\) 22.2824 38.2282i 0.762041 1.30738i
\(856\) 0 0
\(857\) 2.57862 0.0880839 0.0440419 0.999030i \(-0.485976\pi\)
0.0440419 + 0.999030i \(0.485976\pi\)
\(858\) 0 0
\(859\) −33.0076 33.0076i −1.12620 1.12620i −0.990789 0.135416i \(-0.956763\pi\)
−0.135416 0.990789i \(-0.543237\pi\)
\(860\) 0 0
\(861\) −2.36747 + 2.36747i −0.0806832 + 0.0806832i
\(862\) 0 0
\(863\) 23.5500i 0.801652i 0.916154 + 0.400826i \(0.131277\pi\)
−0.916154 + 0.400826i \(0.868723\pi\)
\(864\) 0 0
\(865\) 4.21478 7.23099i 0.143307 0.245861i
\(866\) 0 0
\(867\) −1.35863 1.35863i −0.0461416 0.0461416i
\(868\) 0 0
\(869\) 17.6139 + 17.6139i 0.597511 + 0.597511i
\(870\) 0 0
\(871\) 6.90843i 0.234083i
\(872\) 0 0
\(873\) −17.9014 −0.605871
\(874\) 0 0
\(875\) −30.0455 30.8004i −1.01572 1.04124i
\(876\) 0 0
\(877\) 34.2135 + 34.2135i 1.15531 + 1.15531i 0.985472 + 0.169836i \(0.0543237\pi\)
0.169836 + 0.985472i \(0.445676\pi\)
\(878\) 0 0
\(879\) −4.10426 −0.138433
\(880\) 0 0
\(881\) 40.6823 1.37062 0.685310 0.728251i \(-0.259667\pi\)
0.685310 + 0.728251i \(0.259667\pi\)
\(882\) 0 0
\(883\) 35.8531 + 35.8531i 1.20655 + 1.20655i 0.972137 + 0.234415i \(0.0753176\pi\)
0.234415 + 0.972137i \(0.424682\pi\)
\(884\) 0 0
\(885\) −0.0851449 + 0.0224375i −0.00286211 + 0.000754230i
\(886\) 0 0
\(887\) −9.33231 −0.313348 −0.156674 0.987650i \(-0.550077\pi\)
−0.156674 + 0.987650i \(0.550077\pi\)
\(888\) 0 0
\(889\) 22.9610i 0.770087i
\(890\) 0 0
\(891\) 13.4361 + 13.4361i 0.450127 + 0.450127i
\(892\) 0 0
\(893\) 33.5609 + 33.5609i 1.12307 + 1.12307i
\(894\) 0 0
\(895\) 31.8274 + 18.5515i 1.06387 + 0.620108i
\(896\) 0 0
\(897\) 0.0894035i 0.00298510i
\(898\) 0 0
\(899\) −4.91548 + 4.91548i −0.163940 + 0.163940i
\(900\) 0 0
\(901\) 16.7931 + 16.7931i 0.559459 + 0.559459i
\(902\) 0 0
\(903\) 3.83222 0.127528
\(904\) 0 0
\(905\) 1.97977 3.39654i 0.0658097 0.112905i
\(906\) 0 0
\(907\) 33.2170 33.2170i 1.10295 1.10295i 0.108899 0.994053i \(-0.465267\pi\)
0.994053 0.108899i \(-0.0347327\pi\)
\(908\) 0 0
\(909\) −6.36758 + 6.36758i −0.211199 + 0.211199i
\(910\) 0 0
\(911\) 5.77870 0.191457 0.0957284 0.995407i \(-0.469482\pi\)
0.0957284 + 0.995407i \(0.469482\pi\)
\(912\) 0 0
\(913\) 28.1944i 0.933098i
\(914\) 0 0
\(915\) 0.725548 + 2.75327i 0.0239859 + 0.0910204i
\(916\) 0 0
\(917\) −9.12424 + 9.12424i −0.301309 + 0.301309i
\(918\) 0 0
\(919\) 50.8572i 1.67763i 0.544420 + 0.838813i \(0.316750\pi\)
−0.544420 + 0.838813i \(0.683250\pi\)
\(920\) 0 0
\(921\) 0.801852i 0.0264219i
\(922\) 0 0
\(923\) 16.8644 16.8644i 0.555100 0.555100i
\(924\) 0 0
\(925\) 8.20775 29.6487i 0.269869 0.974842i
\(926\) 0 0
\(927\) 45.0945i 1.48110i
\(928\) 0 0
\(929\) 21.6815 0.711346 0.355673 0.934611i \(-0.384252\pi\)
0.355673 + 0.934611i \(0.384252\pi\)
\(930\) 0 0
\(931\) 37.2720 37.2720i 1.22154 1.22154i
\(932\) 0 0
\(933\) 2.12309 2.12309i 0.0695070 0.0695070i
\(934\) 0 0
\(935\) 21.5918 + 12.5854i 0.706126 + 0.411585i
\(936\) 0 0
\(937\) 19.7948 0.646668 0.323334 0.946285i \(-0.395196\pi\)
0.323334 + 0.946285i \(0.395196\pi\)
\(938\) 0 0
\(939\) −1.91630 1.91630i −0.0625360 0.0625360i
\(940\) 0 0
\(941\) 29.4510 29.4510i 0.960074 0.960074i −0.0391593 0.999233i \(-0.512468\pi\)
0.999233 + 0.0391593i \(0.0124680\pi\)
\(942\) 0 0
\(943\) 0.450330i 0.0146648i
\(944\) 0 0
\(945\) 11.4641 + 6.68216i 0.372927 + 0.217371i
\(946\) 0 0
\(947\) 4.11783 + 4.11783i 0.133811 + 0.133811i 0.770840 0.637029i \(-0.219837\pi\)
−0.637029 + 0.770840i \(0.719837\pi\)
\(948\) 0 0
\(949\) 17.7660 + 17.7660i 0.576708 + 0.576708i
\(950\) 0 0
\(951\) 3.70465i 0.120131i
\(952\) 0 0
\(953\) −40.3245 −1.30624 −0.653119 0.757255i \(-0.726540\pi\)
−0.653119 + 0.757255i \(0.726540\pi\)
\(954\) 0 0
\(955\) 2.88991 + 10.9665i 0.0935153 + 0.354867i
\(956\) 0 0
\(957\) 1.27723 + 1.27723i 0.0412871 + 0.0412871i
\(958\) 0 0
\(959\) −70.3298 −2.27107
\(960\) 0 0
\(961\) −25.8756 −0.834697
\(962\) 0 0
\(963\) 20.4807 + 20.4807i 0.659982 + 0.659982i
\(964\) 0 0
\(965\) 4.97919 1.31212i 0.160286 0.0422388i
\(966\) 0 0
\(967\) 58.1740 1.87075 0.935375 0.353656i \(-0.115062\pi\)
0.935375 + 0.353656i \(0.115062\pi\)
\(968\) 0 0
\(969\) 8.66254i 0.278281i
\(970\) 0 0
\(971\) 1.70830 + 1.70830i 0.0548220 + 0.0548220i 0.733986 0.679164i \(-0.237658\pi\)
−0.679164 + 0.733986i \(0.737658\pi\)
\(972\) 0 0
\(973\) 0.523762 + 0.523762i 0.0167910 + 0.0167910i
\(974\) 0 0
\(975\) −1.63738 2.89098i −0.0524381 0.0925855i
\(976\) 0 0
\(977\) 35.1811i 1.12554i 0.826612 + 0.562772i \(0.190265\pi\)
−0.826612 + 0.562772i \(0.809735\pi\)
\(978\) 0 0
\(979\) 1.79422 1.79422i 0.0573436 0.0573436i
\(980\) 0 0
\(981\) 25.2100 + 25.2100i 0.804894 + 0.804894i
\(982\) 0 0
\(983\) 27.7257 0.884312 0.442156 0.896938i \(-0.354214\pi\)
0.442156 + 0.896938i \(0.354214\pi\)
\(984\) 0 0
\(985\) −22.0476 12.8510i −0.702494 0.409468i
\(986\) 0 0
\(987\) −4.97491 + 4.97491i −0.158353 + 0.158353i
\(988\) 0 0
\(989\) 0.364474 0.364474i 0.0115896 0.0115896i
\(990\) 0 0
\(991\) −7.02711 −0.223224 −0.111612 0.993752i \(-0.535601\pi\)
−0.111612 + 0.993752i \(0.535601\pi\)
\(992\) 0 0
\(993\) 3.22428i 0.102319i
\(994\) 0 0
\(995\) 47.2590 12.4538i 1.49821 0.394812i
\(996\) 0 0
\(997\) −14.2467 + 14.2467i −0.451197 + 0.451197i −0.895752 0.444555i \(-0.853362\pi\)
0.444555 + 0.895752i \(0.353362\pi\)
\(998\) 0 0
\(999\) 9.48726i 0.300164i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.q.e.609.5 16
4.3 odd 2 640.2.q.f.609.4 16
5.4 even 2 inner 640.2.q.e.609.4 16
8.3 odd 2 320.2.q.c.49.5 16
8.5 even 2 80.2.q.c.69.1 yes 16
16.3 odd 4 640.2.q.f.289.5 16
16.5 even 4 80.2.q.c.29.8 yes 16
16.11 odd 4 320.2.q.c.209.4 16
16.13 even 4 inner 640.2.q.e.289.4 16
20.19 odd 2 640.2.q.f.609.5 16
24.5 odd 2 720.2.bm.f.469.8 16
40.3 even 4 1600.2.l.h.1201.4 16
40.13 odd 4 400.2.l.i.101.4 16
40.19 odd 2 320.2.q.c.49.4 16
40.27 even 4 1600.2.l.h.1201.5 16
40.29 even 2 80.2.q.c.69.8 yes 16
40.37 odd 4 400.2.l.i.101.5 16
48.5 odd 4 720.2.bm.f.109.1 16
80.19 odd 4 640.2.q.f.289.4 16
80.27 even 4 1600.2.l.h.401.5 16
80.29 even 4 inner 640.2.q.e.289.5 16
80.37 odd 4 400.2.l.i.301.5 16
80.43 even 4 1600.2.l.h.401.4 16
80.53 odd 4 400.2.l.i.301.4 16
80.59 odd 4 320.2.q.c.209.5 16
80.69 even 4 80.2.q.c.29.1 16
120.29 odd 2 720.2.bm.f.469.1 16
240.149 odd 4 720.2.bm.f.109.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.q.c.29.1 16 80.69 even 4
80.2.q.c.29.8 yes 16 16.5 even 4
80.2.q.c.69.1 yes 16 8.5 even 2
80.2.q.c.69.8 yes 16 40.29 even 2
320.2.q.c.49.4 16 40.19 odd 2
320.2.q.c.49.5 16 8.3 odd 2
320.2.q.c.209.4 16 16.11 odd 4
320.2.q.c.209.5 16 80.59 odd 4
400.2.l.i.101.4 16 40.13 odd 4
400.2.l.i.101.5 16 40.37 odd 4
400.2.l.i.301.4 16 80.53 odd 4
400.2.l.i.301.5 16 80.37 odd 4
640.2.q.e.289.4 16 16.13 even 4 inner
640.2.q.e.289.5 16 80.29 even 4 inner
640.2.q.e.609.4 16 5.4 even 2 inner
640.2.q.e.609.5 16 1.1 even 1 trivial
640.2.q.f.289.4 16 80.19 odd 4
640.2.q.f.289.5 16 16.3 odd 4
640.2.q.f.609.4 16 4.3 odd 2
640.2.q.f.609.5 16 20.19 odd 2
720.2.bm.f.109.1 16 48.5 odd 4
720.2.bm.f.109.8 16 240.149 odd 4
720.2.bm.f.469.1 16 120.29 odd 2
720.2.bm.f.469.8 16 24.5 odd 2
1600.2.l.h.401.4 16 80.43 even 4
1600.2.l.h.401.5 16 80.27 even 4
1600.2.l.h.1201.4 16 40.3 even 4
1600.2.l.h.1201.5 16 40.27 even 4