Properties

Label 640.2.q.e.609.3
Level $640$
Weight $2$
Character 640.609
Analytic conductor $5.110$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,2,Mod(289,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.534694406811304329216.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} - 2x^{12} + 4x^{10} + 4x^{8} + 16x^{6} - 32x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 609.3
Root \(0.841995 - 1.13624i\) of defining polynomial
Character \(\chi\) \(=\) 640.609
Dual form 640.2.q.e.289.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.734294 - 0.734294i) q^{3} +(1.17216 - 1.90421i) q^{5} +1.71452 q^{7} -1.92163i q^{9} +(-2.82684 - 2.82684i) q^{11} +(2.59462 + 2.59462i) q^{13} +(-2.25896 + 0.537540i) q^{15} -1.89939i q^{17} +(-2.89623 + 2.89623i) q^{19} +(-1.25896 - 1.25896i) q^{21} +2.00613 q^{23} +(-2.25207 - 4.46410i) q^{25} +(-3.61392 + 3.61392i) q^{27} +(6.72307 - 6.72307i) q^{29} -7.11778 q^{31} +4.15146i q^{33} +(2.00970 - 3.26482i) q^{35} +(-2.25207 + 2.25207i) q^{37} -3.81042i q^{39} -1.59630i q^{41} +(8.06886 - 8.06886i) q^{43} +(-3.65919 - 2.25246i) q^{45} -4.43823i q^{47} -4.06040 q^{49} +(-1.39471 + 1.39471i) q^{51} +(-0.481758 + 0.481758i) q^{53} +(-8.69642 + 2.06939i) q^{55} +4.25336 q^{57} +(-3.08580 - 3.08580i) q^{59} +(-3.46410 + 3.46410i) q^{61} -3.29468i q^{63} +(7.98203 - 1.89939i) q^{65} +(-1.80454 - 1.80454i) q^{67} +(-1.47309 - 1.47309i) q^{69} -0.379150i q^{71} +8.37718 q^{73} +(-1.62428 + 4.93164i) q^{75} +(-4.84668 - 4.84668i) q^{77} +11.2566 q^{79} -0.457524 q^{81} +(8.24890 + 8.24890i) q^{83} +(-3.61685 - 2.22640i) q^{85} -9.87341 q^{87} +11.9820i q^{89} +(4.44854 + 4.44854i) q^{91} +(5.22654 + 5.22654i) q^{93} +(2.12019 + 8.90989i) q^{95} -6.50543i q^{97} +(-5.43213 + 5.43213i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 8 q^{11} + 8 q^{19} + 16 q^{21} + 16 q^{29} + 16 q^{31} + 24 q^{35} - 8 q^{45} + 16 q^{49} + 16 q^{51} + 24 q^{59} - 32 q^{69} - 48 q^{75} + 16 q^{79} - 16 q^{81} + 16 q^{91} + 32 q^{95}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.734294 0.734294i −0.423945 0.423945i 0.462615 0.886559i \(-0.346911\pi\)
−0.886559 + 0.462615i \(0.846911\pi\)
\(4\) 0 0
\(5\) 1.17216 1.90421i 0.524207 0.851591i
\(6\) 0 0
\(7\) 1.71452 0.648029 0.324015 0.946052i \(-0.394967\pi\)
0.324015 + 0.946052i \(0.394967\pi\)
\(8\) 0 0
\(9\) 1.92163i 0.640542i
\(10\) 0 0
\(11\) −2.82684 2.82684i −0.852324 0.852324i 0.138095 0.990419i \(-0.455902\pi\)
−0.990419 + 0.138095i \(0.955902\pi\)
\(12\) 0 0
\(13\) 2.59462 + 2.59462i 0.719618 + 0.719618i 0.968527 0.248909i \(-0.0800720\pi\)
−0.248909 + 0.968527i \(0.580072\pi\)
\(14\) 0 0
\(15\) −2.25896 + 0.537540i −0.583262 + 0.138792i
\(16\) 0 0
\(17\) 1.89939i 0.460671i −0.973111 0.230335i \(-0.926018\pi\)
0.973111 0.230335i \(-0.0739823\pi\)
\(18\) 0 0
\(19\) −2.89623 + 2.89623i −0.664440 + 0.664440i −0.956423 0.291983i \(-0.905685\pi\)
0.291983 + 0.956423i \(0.405685\pi\)
\(20\) 0 0
\(21\) −1.25896 1.25896i −0.274729 0.274729i
\(22\) 0 0
\(23\) 2.00613 0.418306 0.209153 0.977883i \(-0.432929\pi\)
0.209153 + 0.977883i \(0.432929\pi\)
\(24\) 0 0
\(25\) −2.25207 4.46410i −0.450413 0.892820i
\(26\) 0 0
\(27\) −3.61392 + 3.61392i −0.695499 + 0.695499i
\(28\) 0 0
\(29\) 6.72307 6.72307i 1.24844 1.24844i 0.292034 0.956408i \(-0.405668\pi\)
0.956408 0.292034i \(-0.0943321\pi\)
\(30\) 0 0
\(31\) −7.11778 −1.27839 −0.639195 0.769044i \(-0.720732\pi\)
−0.639195 + 0.769044i \(0.720732\pi\)
\(32\) 0 0
\(33\) 4.15146i 0.722676i
\(34\) 0 0
\(35\) 2.00970 3.26482i 0.339702 0.551856i
\(36\) 0 0
\(37\) −2.25207 + 2.25207i −0.370237 + 0.370237i −0.867564 0.497326i \(-0.834315\pi\)
0.497326 + 0.867564i \(0.334315\pi\)
\(38\) 0 0
\(39\) 3.81042i 0.610156i
\(40\) 0 0
\(41\) 1.59630i 0.249301i −0.992201 0.124650i \(-0.960219\pi\)
0.992201 0.124650i \(-0.0397809\pi\)
\(42\) 0 0
\(43\) 8.06886 8.06886i 1.23049 1.23049i 0.266715 0.963776i \(-0.414062\pi\)
0.963776 0.266715i \(-0.0859381\pi\)
\(44\) 0 0
\(45\) −3.65919 2.25246i −0.545480 0.335777i
\(46\) 0 0
\(47\) 4.43823i 0.647383i −0.946163 0.323691i \(-0.895076\pi\)
0.946163 0.323691i \(-0.104924\pi\)
\(48\) 0 0
\(49\) −4.06040 −0.580058
\(50\) 0 0
\(51\) −1.39471 + 1.39471i −0.195299 + 0.195299i
\(52\) 0 0
\(53\) −0.481758 + 0.481758i −0.0661746 + 0.0661746i −0.739420 0.673245i \(-0.764900\pi\)
0.673245 + 0.739420i \(0.264900\pi\)
\(54\) 0 0
\(55\) −8.69642 + 2.06939i −1.17263 + 0.279036i
\(56\) 0 0
\(57\) 4.25336 0.563372
\(58\) 0 0
\(59\) −3.08580 3.08580i −0.401737 0.401737i 0.477108 0.878845i \(-0.341685\pi\)
−0.878845 + 0.477108i \(0.841685\pi\)
\(60\) 0 0
\(61\) −3.46410 + 3.46410i −0.443533 + 0.443533i −0.893197 0.449665i \(-0.851543\pi\)
0.449665 + 0.893197i \(0.351543\pi\)
\(62\) 0 0
\(63\) 3.29468i 0.415090i
\(64\) 0 0
\(65\) 7.98203 1.89939i 0.990049 0.235591i
\(66\) 0 0
\(67\) −1.80454 1.80454i −0.220460 0.220460i 0.588232 0.808692i \(-0.299824\pi\)
−0.808692 + 0.588232i \(0.799824\pi\)
\(68\) 0 0
\(69\) −1.47309 1.47309i −0.177339 0.177339i
\(70\) 0 0
\(71\) 0.379150i 0.0449969i −0.999747 0.0224984i \(-0.992838\pi\)
0.999747 0.0224984i \(-0.00716208\pi\)
\(72\) 0 0
\(73\) 8.37718 0.980475 0.490237 0.871589i \(-0.336910\pi\)
0.490237 + 0.871589i \(0.336910\pi\)
\(74\) 0 0
\(75\) −1.62428 + 4.93164i −0.187556 + 0.569456i
\(76\) 0 0
\(77\) −4.84668 4.84668i −0.552331 0.552331i
\(78\) 0 0
\(79\) 11.2566 1.26646 0.633231 0.773963i \(-0.281728\pi\)
0.633231 + 0.773963i \(0.281728\pi\)
\(80\) 0 0
\(81\) −0.457524 −0.0508360
\(82\) 0 0
\(83\) 8.24890 + 8.24890i 0.905435 + 0.905435i 0.995900 0.0904649i \(-0.0288353\pi\)
−0.0904649 + 0.995900i \(0.528835\pi\)
\(84\) 0 0
\(85\) −3.61685 2.22640i −0.392303 0.241487i
\(86\) 0 0
\(87\) −9.87341 −1.05854
\(88\) 0 0
\(89\) 11.9820i 1.27009i 0.772474 + 0.635046i \(0.219019\pi\)
−0.772474 + 0.635046i \(0.780981\pi\)
\(90\) 0 0
\(91\) 4.44854 + 4.44854i 0.466334 + 0.466334i
\(92\) 0 0
\(93\) 5.22654 + 5.22654i 0.541967 + 0.541967i
\(94\) 0 0
\(95\) 2.12019 + 8.90989i 0.217526 + 0.914136i
\(96\) 0 0
\(97\) 6.50543i 0.660526i −0.943889 0.330263i \(-0.892863\pi\)
0.943889 0.330263i \(-0.107137\pi\)
\(98\) 0 0
\(99\) −5.43213 + 5.43213i −0.545949 + 0.545949i
\(100\) 0 0
\(101\) 6.72307 + 6.72307i 0.668970 + 0.668970i 0.957478 0.288508i \(-0.0931590\pi\)
−0.288508 + 0.957478i \(0.593159\pi\)
\(102\) 0 0
\(103\) 15.1733 1.49506 0.747532 0.664225i \(-0.231238\pi\)
0.747532 + 0.664225i \(0.231238\pi\)
\(104\) 0 0
\(105\) −3.87305 + 0.921626i −0.377971 + 0.0899415i
\(106\) 0 0
\(107\) 1.69781 1.69781i 0.164134 0.164134i −0.620262 0.784395i \(-0.712974\pi\)
0.784395 + 0.620262i \(0.212974\pi\)
\(108\) 0 0
\(109\) −3.11120 + 3.11120i −0.297999 + 0.297999i −0.840230 0.542231i \(-0.817580\pi\)
0.542231 + 0.840230i \(0.317580\pi\)
\(110\) 0 0
\(111\) 3.30735 0.313920
\(112\) 0 0
\(113\) 15.8259i 1.48877i 0.667748 + 0.744387i \(0.267258\pi\)
−0.667748 + 0.744387i \(0.732742\pi\)
\(114\) 0 0
\(115\) 2.35151 3.82010i 0.219279 0.356226i
\(116\) 0 0
\(117\) 4.98589 4.98589i 0.460946 0.460946i
\(118\) 0 0
\(119\) 3.25656i 0.298528i
\(120\) 0 0
\(121\) 4.98203i 0.452912i
\(122\) 0 0
\(123\) −1.17216 + 1.17216i −0.105690 + 0.105690i
\(124\) 0 0
\(125\) −11.1404 0.944243i −0.996427 0.0844556i
\(126\) 0 0
\(127\) 18.3239i 1.62598i 0.582276 + 0.812991i \(0.302162\pi\)
−0.582276 + 0.812991i \(0.697838\pi\)
\(128\) 0 0
\(129\) −11.8498 −1.04332
\(130\) 0 0
\(131\) 10.2036 10.2036i 0.891491 0.891491i −0.103172 0.994663i \(-0.532899\pi\)
0.994663 + 0.103172i \(0.0328994\pi\)
\(132\) 0 0
\(133\) −4.96565 + 4.96565i −0.430577 + 0.430577i
\(134\) 0 0
\(135\) 2.64557 + 11.1178i 0.227695 + 0.956866i
\(136\) 0 0
\(137\) −14.9845 −1.28021 −0.640107 0.768286i \(-0.721110\pi\)
−0.640107 + 0.768286i \(0.721110\pi\)
\(138\) 0 0
\(139\) 8.29094 + 8.29094i 0.703228 + 0.703228i 0.965102 0.261874i \(-0.0843404\pi\)
−0.261874 + 0.965102i \(0.584340\pi\)
\(140\) 0 0
\(141\) −3.25896 + 3.25896i −0.274454 + 0.274454i
\(142\) 0 0
\(143\) 14.6691i 1.22670i
\(144\) 0 0
\(145\) −4.92163 20.6827i −0.408719 1.71760i
\(146\) 0 0
\(147\) 2.98153 + 2.98153i 0.245912 + 0.245912i
\(148\) 0 0
\(149\) 7.30735 + 7.30735i 0.598642 + 0.598642i 0.939951 0.341309i \(-0.110870\pi\)
−0.341309 + 0.939951i \(0.610870\pi\)
\(150\) 0 0
\(151\) 4.56873i 0.371798i 0.982569 + 0.185899i \(0.0595197\pi\)
−0.982569 + 0.185899i \(0.940480\pi\)
\(152\) 0 0
\(153\) −3.64992 −0.295079
\(154\) 0 0
\(155\) −8.34320 + 13.5538i −0.670142 + 1.08867i
\(156\) 0 0
\(157\) 1.52966 + 1.52966i 0.122080 + 0.122080i 0.765507 0.643427i \(-0.222488\pi\)
−0.643427 + 0.765507i \(0.722488\pi\)
\(158\) 0 0
\(159\) 0.707504 0.0561087
\(160\) 0 0
\(161\) 3.43955 0.271075
\(162\) 0 0
\(163\) −10.1361 10.1361i −0.793918 0.793918i 0.188211 0.982129i \(-0.439731\pi\)
−0.982129 + 0.188211i \(0.939731\pi\)
\(164\) 0 0
\(165\) 7.90527 + 4.86619i 0.615424 + 0.378832i
\(166\) 0 0
\(167\) 2.57967 0.199621 0.0998105 0.995006i \(-0.468176\pi\)
0.0998105 + 0.995006i \(0.468176\pi\)
\(168\) 0 0
\(169\) 0.464102i 0.0357001i
\(170\) 0 0
\(171\) 5.56547 + 5.56547i 0.425602 + 0.425602i
\(172\) 0 0
\(173\) 14.1773 + 14.1773i 1.07788 + 1.07788i 0.996700 + 0.0811779i \(0.0258682\pi\)
0.0811779 + 0.996700i \(0.474132\pi\)
\(174\) 0 0
\(175\) −3.86122 7.65381i −0.291881 0.578574i
\(176\) 0 0
\(177\) 4.53177i 0.340629i
\(178\) 0 0
\(179\) 9.88067 9.88067i 0.738516 0.738516i −0.233775 0.972291i \(-0.575108\pi\)
0.972291 + 0.233775i \(0.0751079\pi\)
\(180\) 0 0
\(181\) −6.20514 6.20514i −0.461224 0.461224i 0.437832 0.899057i \(-0.355746\pi\)
−0.899057 + 0.437832i \(0.855746\pi\)
\(182\) 0 0
\(183\) 5.08733 0.376067
\(184\) 0 0
\(185\) 1.64863 + 6.92820i 0.121209 + 0.509372i
\(186\) 0 0
\(187\) −5.36928 + 5.36928i −0.392641 + 0.392641i
\(188\) 0 0
\(189\) −6.19615 + 6.19615i −0.450704 + 0.450704i
\(190\) 0 0
\(191\) 18.9282 1.36960 0.684798 0.728733i \(-0.259890\pi\)
0.684798 + 0.728733i \(0.259890\pi\)
\(192\) 0 0
\(193\) 4.42987i 0.318869i 0.987209 + 0.159434i \(0.0509670\pi\)
−0.987209 + 0.159434i \(0.949033\pi\)
\(194\) 0 0
\(195\) −7.25587 4.46644i −0.519603 0.319849i
\(196\) 0 0
\(197\) 6.39341 6.39341i 0.455511 0.455511i −0.441667 0.897179i \(-0.645613\pi\)
0.897179 + 0.441667i \(0.145613\pi\)
\(198\) 0 0
\(199\) 5.85641i 0.415150i 0.978219 + 0.207575i \(0.0665570\pi\)
−0.978219 + 0.207575i \(0.933443\pi\)
\(200\) 0 0
\(201\) 2.65013i 0.186926i
\(202\) 0 0
\(203\) 11.5269 11.5269i 0.809027 0.809027i
\(204\) 0 0
\(205\) −3.03970 1.87113i −0.212302 0.130685i
\(206\) 0 0
\(207\) 3.85503i 0.267943i
\(208\) 0 0
\(209\) 16.3743 1.13264
\(210\) 0 0
\(211\) −7.60373 + 7.60373i −0.523462 + 0.523462i −0.918615 0.395153i \(-0.870692\pi\)
0.395153 + 0.918615i \(0.370692\pi\)
\(212\) 0 0
\(213\) −0.278408 + 0.278408i −0.0190762 + 0.0190762i
\(214\) 0 0
\(215\) −5.90682 24.8229i −0.402842 1.69291i
\(216\) 0 0
\(217\) −12.2036 −0.828435
\(218\) 0 0
\(219\) −6.15131 6.15131i −0.415667 0.415667i
\(220\) 0 0
\(221\) 4.92820 4.92820i 0.331507 0.331507i
\(222\) 0 0
\(223\) 9.22430i 0.617705i 0.951110 + 0.308853i \(0.0999450\pi\)
−0.951110 + 0.308853i \(0.900055\pi\)
\(224\) 0 0
\(225\) −8.57833 + 4.32763i −0.571889 + 0.288508i
\(226\) 0 0
\(227\) −9.21725 9.21725i −0.611770 0.611770i 0.331637 0.943407i \(-0.392399\pi\)
−0.943407 + 0.331637i \(0.892399\pi\)
\(228\) 0 0
\(229\) −1.63811 1.63811i −0.108250 0.108250i 0.650907 0.759157i \(-0.274389\pi\)
−0.759157 + 0.650907i \(0.774389\pi\)
\(230\) 0 0
\(231\) 7.11778i 0.468315i
\(232\) 0 0
\(233\) 12.3798 0.811026 0.405513 0.914089i \(-0.367093\pi\)
0.405513 + 0.914089i \(0.367093\pi\)
\(234\) 0 0
\(235\) −8.45134 5.20233i −0.551305 0.339363i
\(236\) 0 0
\(237\) −8.26562 8.26562i −0.536910 0.536910i
\(238\) 0 0
\(239\) −7.77449 −0.502890 −0.251445 0.967872i \(-0.580906\pi\)
−0.251445 + 0.967872i \(0.580906\pi\)
\(240\) 0 0
\(241\) −3.47068 −0.223566 −0.111783 0.993733i \(-0.535656\pi\)
−0.111783 + 0.993733i \(0.535656\pi\)
\(242\) 0 0
\(243\) 11.1777 + 11.1777i 0.717051 + 0.717051i
\(244\) 0 0
\(245\) −4.75946 + 7.73188i −0.304071 + 0.493972i
\(246\) 0 0
\(247\) −15.0292 −0.956286
\(248\) 0 0
\(249\) 12.1142i 0.767708i
\(250\) 0 0
\(251\) −8.94765 8.94765i −0.564771 0.564771i 0.365888 0.930659i \(-0.380765\pi\)
−0.930659 + 0.365888i \(0.880765\pi\)
\(252\) 0 0
\(253\) −5.67100 5.67100i −0.356533 0.356533i
\(254\) 0 0
\(255\) 1.02100 + 4.29066i 0.0639375 + 0.268692i
\(256\) 0 0
\(257\) 3.62228i 0.225952i 0.993598 + 0.112976i \(0.0360383\pi\)
−0.993598 + 0.112976i \(0.963962\pi\)
\(258\) 0 0
\(259\) −3.86122 + 3.86122i −0.239925 + 0.239925i
\(260\) 0 0
\(261\) −12.9192 12.9192i −0.799680 0.799680i
\(262\) 0 0
\(263\) 13.7416 0.847345 0.423673 0.905815i \(-0.360741\pi\)
0.423673 + 0.905815i \(0.360741\pi\)
\(264\) 0 0
\(265\) 0.352672 + 1.48207i 0.0216644 + 0.0910429i
\(266\) 0 0
\(267\) 8.79833 8.79833i 0.538449 0.538449i
\(268\) 0 0
\(269\) 4.22240 4.22240i 0.257444 0.257444i −0.566570 0.824014i \(-0.691730\pi\)
0.824014 + 0.566570i \(0.191730\pi\)
\(270\) 0 0
\(271\) −5.40015 −0.328036 −0.164018 0.986457i \(-0.552445\pi\)
−0.164018 + 0.986457i \(0.552445\pi\)
\(272\) 0 0
\(273\) 6.53307i 0.395399i
\(274\) 0 0
\(275\) −6.25307 + 18.9855i −0.377074 + 1.14487i
\(276\) 0 0
\(277\) −5.08733 + 5.08733i −0.305668 + 0.305668i −0.843227 0.537558i \(-0.819347\pi\)
0.537558 + 0.843227i \(0.319347\pi\)
\(278\) 0 0
\(279\) 13.6777i 0.818863i
\(280\) 0 0
\(281\) 21.2780i 1.26934i −0.772784 0.634669i \(-0.781136\pi\)
0.772784 0.634669i \(-0.218864\pi\)
\(282\) 0 0
\(283\) 4.08521 4.08521i 0.242840 0.242840i −0.575184 0.818024i \(-0.695069\pi\)
0.818024 + 0.575184i \(0.195069\pi\)
\(284\) 0 0
\(285\) 4.98564 8.09931i 0.295324 0.479762i
\(286\) 0 0
\(287\) 2.73690i 0.161554i
\(288\) 0 0
\(289\) 13.3923 0.787783
\(290\) 0 0
\(291\) −4.77689 + 4.77689i −0.280026 + 0.280026i
\(292\) 0 0
\(293\) −7.40400 + 7.40400i −0.432547 + 0.432547i −0.889494 0.456947i \(-0.848943\pi\)
0.456947 + 0.889494i \(0.348943\pi\)
\(294\) 0 0
\(295\) −9.49310 + 2.25896i −0.552709 + 0.131522i
\(296\) 0 0
\(297\) 20.4319 1.18558
\(298\) 0 0
\(299\) 5.20514 + 5.20514i 0.301021 + 0.301021i
\(300\) 0 0
\(301\) 13.8343 13.8343i 0.797394 0.797394i
\(302\) 0 0
\(303\) 9.87341i 0.567212i
\(304\) 0 0
\(305\) 2.53590 + 10.6569i 0.145205 + 0.610212i
\(306\) 0 0
\(307\) 16.6634 + 16.6634i 0.951030 + 0.951030i 0.998856 0.0478262i \(-0.0152294\pi\)
−0.0478262 + 0.998856i \(0.515229\pi\)
\(308\) 0 0
\(309\) −11.1416 11.1416i −0.633825 0.633825i
\(310\) 0 0
\(311\) 21.9072i 1.24224i −0.783714 0.621122i \(-0.786677\pi\)
0.783714 0.621122i \(-0.213323\pi\)
\(312\) 0 0
\(313\) 12.4820 0.705525 0.352763 0.935713i \(-0.385242\pi\)
0.352763 + 0.935713i \(0.385242\pi\)
\(314\) 0 0
\(315\) −6.27377 3.86190i −0.353487 0.217593i
\(316\) 0 0
\(317\) 4.24325 + 4.24325i 0.238324 + 0.238324i 0.816156 0.577832i \(-0.196101\pi\)
−0.577832 + 0.816156i \(0.696101\pi\)
\(318\) 0 0
\(319\) −38.0100 −2.12815
\(320\) 0 0
\(321\) −2.49338 −0.139167
\(322\) 0 0
\(323\) 5.50108 + 5.50108i 0.306088 + 0.306088i
\(324\) 0 0
\(325\) 5.73939 17.4259i 0.318364 0.966615i
\(326\) 0 0
\(327\) 4.56907 0.252670
\(328\) 0 0
\(329\) 7.60946i 0.419523i
\(330\) 0 0
\(331\) −1.10377 1.10377i −0.0606688 0.0606688i 0.676121 0.736790i \(-0.263659\pi\)
−0.736790 + 0.676121i \(0.763659\pi\)
\(332\) 0 0
\(333\) 4.32763 + 4.32763i 0.237152 + 0.237152i
\(334\) 0 0
\(335\) −5.55146 + 1.32102i −0.303309 + 0.0721749i
\(336\) 0 0
\(337\) 7.47635i 0.407263i −0.979048 0.203631i \(-0.934726\pi\)
0.979048 0.203631i \(-0.0652744\pi\)
\(338\) 0 0
\(339\) 11.6208 11.6208i 0.631158 0.631158i
\(340\) 0 0
\(341\) 20.1208 + 20.1208i 1.08960 + 1.08960i
\(342\) 0 0
\(343\) −18.9633 −1.02392
\(344\) 0 0
\(345\) −4.53177 + 1.07837i −0.243982 + 0.0580577i
\(346\) 0 0
\(347\) −8.56074 + 8.56074i −0.459565 + 0.459565i −0.898512 0.438948i \(-0.855351\pi\)
0.438948 + 0.898512i \(0.355351\pi\)
\(348\) 0 0
\(349\) −7.91567 + 7.91567i −0.423716 + 0.423716i −0.886481 0.462765i \(-0.846857\pi\)
0.462765 + 0.886481i \(0.346857\pi\)
\(350\) 0 0
\(351\) −18.7535 −1.00099
\(352\) 0 0
\(353\) 9.67314i 0.514849i −0.966298 0.257425i \(-0.917126\pi\)
0.966298 0.257425i \(-0.0828739\pi\)
\(354\) 0 0
\(355\) −0.721984 0.444426i −0.0383189 0.0235877i
\(356\) 0 0
\(357\) −2.39127 + 2.39127i −0.126559 + 0.126559i
\(358\) 0 0
\(359\) 17.0867i 0.901799i −0.892575 0.450900i \(-0.851103\pi\)
0.892575 0.450900i \(-0.148897\pi\)
\(360\) 0 0
\(361\) 2.22373i 0.117038i
\(362\) 0 0
\(363\) 3.65827 3.65827i 0.192010 0.192010i
\(364\) 0 0
\(365\) 9.81943 15.9519i 0.513972 0.834963i
\(366\) 0 0
\(367\) 13.4500i 0.702086i −0.936359 0.351043i \(-0.885827\pi\)
0.936359 0.351043i \(-0.114173\pi\)
\(368\) 0 0
\(369\) −3.06750 −0.159688
\(370\) 0 0
\(371\) −0.825987 + 0.825987i −0.0428831 + 0.0428831i
\(372\) 0 0
\(373\) 12.0271 12.0271i 0.622740 0.622740i −0.323491 0.946231i \(-0.604857\pi\)
0.946231 + 0.323491i \(0.104857\pi\)
\(374\) 0 0
\(375\) 7.48697 + 8.87367i 0.386625 + 0.458234i
\(376\) 0 0
\(377\) 34.8876 1.79680
\(378\) 0 0
\(379\) −19.1552 19.1552i −0.983936 0.983936i 0.0159369 0.999873i \(-0.494927\pi\)
−0.999873 + 0.0159369i \(0.994927\pi\)
\(380\) 0 0
\(381\) 13.4551 13.4551i 0.689327 0.689327i
\(382\) 0 0
\(383\) 17.7503i 0.907000i 0.891256 + 0.453500i \(0.149825\pi\)
−0.891256 + 0.453500i \(0.850175\pi\)
\(384\) 0 0
\(385\) −14.9102 + 3.54802i −0.759896 + 0.180824i
\(386\) 0 0
\(387\) −15.5053 15.5053i −0.788181 0.788181i
\(388\) 0 0
\(389\) 1.18654 + 1.18654i 0.0601602 + 0.0601602i 0.736547 0.676387i \(-0.236455\pi\)
−0.676387 + 0.736547i \(0.736455\pi\)
\(390\) 0 0
\(391\) 3.81042i 0.192701i
\(392\) 0 0
\(393\) −14.9848 −0.755886
\(394\) 0 0
\(395\) 13.1945 21.4349i 0.663889 1.07851i
\(396\) 0 0
\(397\) 4.74478 + 4.74478i 0.238134 + 0.238134i 0.816077 0.577943i \(-0.196145\pi\)
−0.577943 + 0.816077i \(0.696145\pi\)
\(398\) 0 0
\(399\) 7.29250 0.365081
\(400\) 0 0
\(401\) 0.632677 0.0315944 0.0157972 0.999875i \(-0.494971\pi\)
0.0157972 + 0.999875i \(0.494971\pi\)
\(402\) 0 0
\(403\) −18.4679 18.4679i −0.919953 0.919953i
\(404\) 0 0
\(405\) −0.536293 + 0.871224i −0.0266486 + 0.0432915i
\(406\) 0 0
\(407\) 12.7324 0.631124
\(408\) 0 0
\(409\) 26.3809i 1.30445i −0.758024 0.652226i \(-0.773835\pi\)
0.758024 0.652226i \(-0.226165\pi\)
\(410\) 0 0
\(411\) 11.0030 + 11.0030i 0.542739 + 0.542739i
\(412\) 0 0
\(413\) −5.29069 5.29069i −0.260338 0.260338i
\(414\) 0 0
\(415\) 25.3767 6.03862i 1.24570 0.296424i
\(416\) 0 0
\(417\) 12.1760i 0.596260i
\(418\) 0 0
\(419\) 1.37589 1.37589i 0.0672167 0.0672167i −0.672699 0.739916i \(-0.734865\pi\)
0.739916 + 0.672699i \(0.234865\pi\)
\(420\) 0 0
\(421\) −6.65671 6.65671i −0.324428 0.324428i 0.526035 0.850463i \(-0.323678\pi\)
−0.850463 + 0.526035i \(0.823678\pi\)
\(422\) 0 0
\(423\) −8.52862 −0.414676
\(424\) 0 0
\(425\) −8.47908 + 4.27756i −0.411296 + 0.207492i
\(426\) 0 0
\(427\) −5.93929 + 5.93929i −0.287422 + 0.287422i
\(428\) 0 0
\(429\) −10.7715 + 10.7715i −0.520051 + 0.520051i
\(430\) 0 0
\(431\) 4.08798 0.196911 0.0984556 0.995141i \(-0.468610\pi\)
0.0984556 + 0.995141i \(0.468610\pi\)
\(432\) 0 0
\(433\) 29.2913i 1.40765i 0.710373 + 0.703826i \(0.248526\pi\)
−0.710373 + 0.703826i \(0.751474\pi\)
\(434\) 0 0
\(435\) −11.5732 + 18.8011i −0.554895 + 0.901443i
\(436\) 0 0
\(437\) −5.81020 + 5.81020i −0.277940 + 0.277940i
\(438\) 0 0
\(439\) 26.9790i 1.28764i 0.765178 + 0.643819i \(0.222651\pi\)
−0.765178 + 0.643819i \(0.777349\pi\)
\(440\) 0 0
\(441\) 7.80258i 0.371551i
\(442\) 0 0
\(443\) −14.5286 + 14.5286i −0.690276 + 0.690276i −0.962293 0.272017i \(-0.912309\pi\)
0.272017 + 0.962293i \(0.412309\pi\)
\(444\) 0 0
\(445\) 22.8164 + 14.0449i 1.08160 + 0.665792i
\(446\) 0 0
\(447\) 10.7315i 0.507582i
\(448\) 0 0
\(449\) 23.1572 1.09286 0.546428 0.837506i \(-0.315987\pi\)
0.546428 + 0.837506i \(0.315987\pi\)
\(450\) 0 0
\(451\) −4.51249 + 4.51249i −0.212485 + 0.212485i
\(452\) 0 0
\(453\) 3.35479 3.35479i 0.157622 0.157622i
\(454\) 0 0
\(455\) 13.6854 3.25656i 0.641581 0.152670i
\(456\) 0 0
\(457\) −37.7026 −1.76365 −0.881827 0.471572i \(-0.843687\pi\)
−0.881827 + 0.471572i \(0.843687\pi\)
\(458\) 0 0
\(459\) 6.86425 + 6.86425i 0.320396 + 0.320396i
\(460\) 0 0
\(461\) −11.3737 + 11.3737i −0.529727 + 0.529727i −0.920491 0.390764i \(-0.872211\pi\)
0.390764 + 0.920491i \(0.372211\pi\)
\(462\) 0 0
\(463\) 7.94895i 0.369419i −0.982793 0.184710i \(-0.940866\pi\)
0.982793 0.184710i \(-0.0591344\pi\)
\(464\) 0 0
\(465\) 16.0788 3.82609i 0.745637 0.177431i
\(466\) 0 0
\(467\) −5.34999 5.34999i −0.247568 0.247568i 0.572404 0.819972i \(-0.306011\pi\)
−0.819972 + 0.572404i \(0.806011\pi\)
\(468\) 0 0
\(469\) −3.09394 3.09394i −0.142865 0.142865i
\(470\) 0 0
\(471\) 2.24643i 0.103510i
\(472\) 0 0
\(473\) −45.6187 −2.09755
\(474\) 0 0
\(475\) 19.4515 + 6.40656i 0.892498 + 0.293953i
\(476\) 0 0
\(477\) 0.925759 + 0.925759i 0.0423876 + 0.0423876i
\(478\) 0 0
\(479\) −9.58973 −0.438166 −0.219083 0.975706i \(-0.570307\pi\)
−0.219083 + 0.975706i \(0.570307\pi\)
\(480\) 0 0
\(481\) −11.6865 −0.532859
\(482\) 0 0
\(483\) −2.52564 2.52564i −0.114921 0.114921i
\(484\) 0 0
\(485\) −12.3877 7.62543i −0.562498 0.346253i
\(486\) 0 0
\(487\) 36.6487 1.66071 0.830357 0.557232i \(-0.188137\pi\)
0.830357 + 0.557232i \(0.188137\pi\)
\(488\) 0 0
\(489\) 14.8857i 0.673154i
\(490\) 0 0
\(491\) −23.4273 23.4273i −1.05726 1.05726i −0.998258 0.0590019i \(-0.981208\pi\)
−0.0590019 0.998258i \(-0.518792\pi\)
\(492\) 0 0
\(493\) −12.7697 12.7697i −0.575120 0.575120i
\(494\) 0 0
\(495\) 3.97659 + 16.7113i 0.178735 + 0.751116i
\(496\) 0 0
\(497\) 0.650063i 0.0291593i
\(498\) 0 0
\(499\) 9.50152 9.50152i 0.425346 0.425346i −0.461693 0.887040i \(-0.652758\pi\)
0.887040 + 0.461693i \(0.152758\pi\)
\(500\) 0 0
\(501\) −1.89424 1.89424i −0.0846283 0.0846283i
\(502\) 0 0
\(503\) −20.6875 −0.922411 −0.461206 0.887293i \(-0.652583\pi\)
−0.461206 + 0.887293i \(0.652583\pi\)
\(504\) 0 0
\(505\) 20.6827 4.92163i 0.920368 0.219009i
\(506\) 0 0
\(507\) 0.340787 0.340787i 0.0151349 0.0151349i
\(508\) 0 0
\(509\) −11.6381 + 11.6381i −0.515850 + 0.515850i −0.916313 0.400463i \(-0.868849\pi\)
0.400463 + 0.916313i \(0.368849\pi\)
\(510\) 0 0
\(511\) 14.3629 0.635377
\(512\) 0 0
\(513\) 20.9335i 0.924235i
\(514\) 0 0
\(515\) 17.7855 28.8931i 0.783724 1.27318i
\(516\) 0 0
\(517\) −12.5462 + 12.5462i −0.551780 + 0.551780i
\(518\) 0 0
\(519\) 20.8205i 0.913921i
\(520\) 0 0
\(521\) 5.18654i 0.227227i 0.993525 + 0.113613i \(0.0362425\pi\)
−0.993525 + 0.113613i \(0.963758\pi\)
\(522\) 0 0
\(523\) −26.9589 + 26.9589i −1.17883 + 1.17883i −0.198788 + 0.980043i \(0.563700\pi\)
−0.980043 + 0.198788i \(0.936300\pi\)
\(524\) 0 0
\(525\) −2.78488 + 8.45542i −0.121542 + 0.369025i
\(526\) 0 0
\(527\) 13.5195i 0.588917i
\(528\) 0 0
\(529\) −18.9755 −0.825020
\(530\) 0 0
\(531\) −5.92976 + 5.92976i −0.257330 + 0.257330i
\(532\) 0 0
\(533\) 4.14180 4.14180i 0.179401 0.179401i
\(534\) 0 0
\(535\) −1.24288 5.22311i −0.0537345 0.225815i
\(536\) 0 0
\(537\) −14.5106 −0.626179
\(538\) 0 0
\(539\) 11.4781 + 11.4781i 0.494397 + 0.494397i
\(540\) 0 0
\(541\) −27.4945 + 27.4945i −1.18208 + 1.18208i −0.202878 + 0.979204i \(0.565029\pi\)
−0.979204 + 0.202878i \(0.934971\pi\)
\(542\) 0 0
\(543\) 9.11278i 0.391067i
\(544\) 0 0
\(545\) 2.27756 + 9.57123i 0.0975598 + 0.409986i
\(546\) 0 0
\(547\) 22.5197 + 22.5197i 0.962873 + 0.962873i 0.999335 0.0364619i \(-0.0116088\pi\)
−0.0364619 + 0.999335i \(0.511609\pi\)
\(548\) 0 0
\(549\) 6.65671 + 6.65671i 0.284101 + 0.284101i
\(550\) 0 0
\(551\) 38.9431i 1.65903i
\(552\) 0 0
\(553\) 19.2996 0.820704
\(554\) 0 0
\(555\) 3.87676 6.29791i 0.164559 0.267331i
\(556\) 0 0
\(557\) 13.7333 + 13.7333i 0.581897 + 0.581897i 0.935424 0.353527i \(-0.115018\pi\)
−0.353527 + 0.935424i \(0.615018\pi\)
\(558\) 0 0
\(559\) 41.8713 1.77097
\(560\) 0 0
\(561\) 7.88525 0.332916
\(562\) 0 0
\(563\) −0.229223 0.229223i −0.00966061 0.00966061i 0.702260 0.711921i \(-0.252174\pi\)
−0.711921 + 0.702260i \(0.752174\pi\)
\(564\) 0 0
\(565\) 30.1359 + 18.5505i 1.26783 + 0.780427i
\(566\) 0 0
\(567\) −0.784437 −0.0329433
\(568\) 0 0
\(569\) 23.0376i 0.965787i 0.875679 + 0.482894i \(0.160414\pi\)
−0.875679 + 0.482894i \(0.839586\pi\)
\(570\) 0 0
\(571\) 11.8610 + 11.8610i 0.496367 + 0.496367i 0.910305 0.413938i \(-0.135847\pi\)
−0.413938 + 0.910305i \(0.635847\pi\)
\(572\) 0 0
\(573\) −13.8989 13.8989i −0.580633 0.580633i
\(574\) 0 0
\(575\) −4.51793 8.95556i −0.188411 0.373473i
\(576\) 0 0
\(577\) 39.7168i 1.65343i 0.562621 + 0.826715i \(0.309793\pi\)
−0.562621 + 0.826715i \(0.690207\pi\)
\(578\) 0 0
\(579\) 3.25282 3.25282i 0.135183 0.135183i
\(580\) 0 0
\(581\) 14.1429 + 14.1429i 0.586748 + 0.586748i
\(582\) 0 0
\(583\) 2.72371 0.112804
\(584\) 0 0
\(585\) −3.64992 15.3385i −0.150906 0.634168i
\(586\) 0 0
\(587\) 8.63887 8.63887i 0.356564 0.356564i −0.505980 0.862545i \(-0.668869\pi\)
0.862545 + 0.505980i \(0.168869\pi\)
\(588\) 0 0
\(589\) 20.6147 20.6147i 0.849414 0.849414i
\(590\) 0 0
\(591\) −9.38927 −0.386223
\(592\) 0 0
\(593\) 45.8229i 1.88172i −0.338795 0.940860i \(-0.610019\pi\)
0.338795 0.940860i \(-0.389981\pi\)
\(594\) 0 0
\(595\) −6.20118 3.81722i −0.254224 0.156491i
\(596\) 0 0
\(597\) 4.30032 4.30032i 0.176000 0.176000i
\(598\) 0 0
\(599\) 17.0609i 0.697090i 0.937292 + 0.348545i \(0.113324\pi\)
−0.937292 + 0.348545i \(0.886676\pi\)
\(600\) 0 0
\(601\) 38.0363i 1.55153i 0.631020 + 0.775766i \(0.282636\pi\)
−0.631020 + 0.775766i \(0.717364\pi\)
\(602\) 0 0
\(603\) −3.46766 + 3.46766i −0.141214 + 0.141214i
\(604\) 0 0
\(605\) 9.48685 + 5.83975i 0.385695 + 0.237420i
\(606\) 0 0
\(607\) 8.67169i 0.351973i 0.984393 + 0.175987i \(0.0563115\pi\)
−0.984393 + 0.175987i \(0.943688\pi\)
\(608\) 0 0
\(609\) −16.9282 −0.685965
\(610\) 0 0
\(611\) 11.5155 11.5155i 0.465868 0.465868i
\(612\) 0 0
\(613\) 13.9739 13.9739i 0.564401 0.564401i −0.366153 0.930554i \(-0.619325\pi\)
0.930554 + 0.366153i \(0.119325\pi\)
\(614\) 0 0
\(615\) 0.858077 + 3.60599i 0.0346010 + 0.145408i
\(616\) 0 0
\(617\) 37.3904 1.50528 0.752641 0.658431i \(-0.228780\pi\)
0.752641 + 0.658431i \(0.228780\pi\)
\(618\) 0 0
\(619\) 23.2754 + 23.2754i 0.935516 + 0.935516i 0.998043 0.0625269i \(-0.0199159\pi\)
−0.0625269 + 0.998043i \(0.519916\pi\)
\(620\) 0 0
\(621\) −7.24998 + 7.24998i −0.290932 + 0.290932i
\(622\) 0 0
\(623\) 20.5435i 0.823058i
\(624\) 0 0
\(625\) −14.8564 + 20.1069i −0.594256 + 0.804276i
\(626\) 0 0
\(627\) −12.0236 12.0236i −0.480175 0.480175i
\(628\) 0 0
\(629\) 4.27756 + 4.27756i 0.170557 + 0.170557i
\(630\) 0 0
\(631\) 19.1834i 0.763680i −0.924228 0.381840i \(-0.875290\pi\)
0.924228 0.381840i \(-0.124710\pi\)
\(632\) 0 0
\(633\) 11.1667 0.443838
\(634\) 0 0
\(635\) 34.8926 + 21.4786i 1.38467 + 0.852352i
\(636\) 0 0
\(637\) −10.5352 10.5352i −0.417420 0.417420i
\(638\) 0 0
\(639\) −0.728585 −0.0288224
\(640\) 0 0
\(641\) −16.1765 −0.638933 −0.319466 0.947598i \(-0.603504\pi\)
−0.319466 + 0.947598i \(0.603504\pi\)
\(642\) 0 0
\(643\) 15.0289 + 15.0289i 0.592681 + 0.592681i 0.938355 0.345674i \(-0.112350\pi\)
−0.345674 + 0.938355i \(0.612350\pi\)
\(644\) 0 0
\(645\) −13.8899 + 22.5646i −0.546916 + 0.888481i
\(646\) 0 0
\(647\) −49.3812 −1.94138 −0.970688 0.240345i \(-0.922739\pi\)
−0.970688 + 0.240345i \(0.922739\pi\)
\(648\) 0 0
\(649\) 17.4461i 0.684821i
\(650\) 0 0
\(651\) 8.96103 + 8.96103i 0.351210 + 0.351210i
\(652\) 0 0
\(653\) −19.8685 19.8685i −0.777514 0.777514i 0.201893 0.979408i \(-0.435291\pi\)
−0.979408 + 0.201893i \(0.935291\pi\)
\(654\) 0 0
\(655\) −7.46954 31.3901i −0.291859 1.22651i
\(656\) 0 0
\(657\) 16.0978i 0.628035i
\(658\) 0 0
\(659\) −4.94765 + 4.94765i −0.192733 + 0.192733i −0.796876 0.604143i \(-0.793516\pi\)
0.604143 + 0.796876i \(0.293516\pi\)
\(660\) 0 0
\(661\) −12.1602 12.1602i −0.472977 0.472977i 0.429899 0.902877i \(-0.358549\pi\)
−0.902877 + 0.429899i \(0.858549\pi\)
\(662\) 0 0
\(663\) −7.23750 −0.281081
\(664\) 0 0
\(665\) 3.63511 + 15.2762i 0.140964 + 0.592387i
\(666\) 0 0
\(667\) 13.4873 13.4873i 0.522231 0.522231i
\(668\) 0 0
\(669\) 6.77335 6.77335i 0.261873 0.261873i
\(670\) 0 0
\(671\) 19.5849 0.756067
\(672\) 0 0
\(673\) 32.9882i 1.27160i −0.771853 0.635801i \(-0.780670\pi\)
0.771853 0.635801i \(-0.219330\pi\)
\(674\) 0 0
\(675\) 24.2717 + 7.99412i 0.934217 + 0.307694i
\(676\) 0 0
\(677\) 18.4610 18.4610i 0.709513 0.709513i −0.256920 0.966433i \(-0.582708\pi\)
0.966433 + 0.256920i \(0.0827076\pi\)
\(678\) 0 0
\(679\) 11.1537i 0.428040i
\(680\) 0 0
\(681\) 13.5363i 0.518713i
\(682\) 0 0
\(683\) −12.2374 + 12.2374i −0.468251 + 0.468251i −0.901347 0.433097i \(-0.857421\pi\)
0.433097 + 0.901347i \(0.357421\pi\)
\(684\) 0 0
\(685\) −17.5643 + 28.5337i −0.671097 + 1.09022i
\(686\) 0 0
\(687\) 2.40571i 0.0917837i
\(688\) 0 0
\(689\) −2.49996 −0.0952409
\(690\) 0 0
\(691\) 9.46014 9.46014i 0.359881 0.359881i −0.503888 0.863769i \(-0.668098\pi\)
0.863769 + 0.503888i \(0.168098\pi\)
\(692\) 0 0
\(693\) −9.31352 + 9.31352i −0.353791 + 0.353791i
\(694\) 0 0
\(695\) 25.5061 6.06939i 0.967500 0.230225i
\(696\) 0 0
\(697\) −3.03201 −0.114845
\(698\) 0 0
\(699\) −9.09039 9.09039i −0.343830 0.343830i
\(700\) 0 0
\(701\) 5.14714 5.14714i 0.194405 0.194405i −0.603192 0.797596i \(-0.706105\pi\)
0.797596 + 0.603192i \(0.206105\pi\)
\(702\) 0 0
\(703\) 13.0450i 0.492001i
\(704\) 0 0
\(705\) 2.38573 + 10.0258i 0.0898517 + 0.377594i
\(706\) 0 0
\(707\) 11.5269 + 11.5269i 0.433512 + 0.433512i
\(708\) 0 0
\(709\) 18.0125 + 18.0125i 0.676472 + 0.676472i 0.959200 0.282728i \(-0.0912395\pi\)
−0.282728 + 0.959200i \(0.591239\pi\)
\(710\) 0 0
\(711\) 21.6309i 0.811222i
\(712\) 0 0
\(713\) −14.2792 −0.534759
\(714\) 0 0
\(715\) −27.9332 17.1946i −1.04464 0.643043i
\(716\) 0 0
\(717\) 5.70875 + 5.70875i 0.213197 + 0.213197i
\(718\) 0 0
\(719\) 34.5017 1.28669 0.643347 0.765574i \(-0.277545\pi\)
0.643347 + 0.765574i \(0.277545\pi\)
\(720\) 0 0
\(721\) 26.0149 0.968846
\(722\) 0 0
\(723\) 2.54850 + 2.54850i 0.0947796 + 0.0947796i
\(724\) 0 0
\(725\) −45.1532 14.8717i −1.67695 0.552320i
\(726\) 0 0
\(727\) 12.8421 0.476288 0.238144 0.971230i \(-0.423461\pi\)
0.238144 + 0.971230i \(0.423461\pi\)
\(728\) 0 0
\(729\) 15.0429i 0.557143i
\(730\) 0 0
\(731\) −15.3259 15.3259i −0.566851 0.566851i
\(732\) 0 0
\(733\) −24.1490 24.1490i −0.891965 0.891965i 0.102743 0.994708i \(-0.467238\pi\)
−0.994708 + 0.102743i \(0.967238\pi\)
\(734\) 0 0
\(735\) 9.17231 2.18263i 0.338326 0.0805075i
\(736\) 0 0
\(737\) 10.2023i 0.375807i
\(738\) 0 0
\(739\) −35.9398 + 35.9398i −1.32207 + 1.32207i −0.409966 + 0.912101i \(0.634460\pi\)
−0.912101 + 0.409966i \(0.865540\pi\)
\(740\) 0 0
\(741\) 11.0359 + 11.0359i 0.405412 + 0.405412i
\(742\) 0 0
\(743\) −45.9502 −1.68575 −0.842875 0.538109i \(-0.819139\pi\)
−0.842875 + 0.538109i \(0.819139\pi\)
\(744\) 0 0
\(745\) 22.4802 5.34935i 0.823610 0.195985i
\(746\) 0 0
\(747\) 15.8513 15.8513i 0.579969 0.579969i
\(748\) 0 0
\(749\) 2.91094 2.91094i 0.106363 0.106363i
\(750\) 0 0
\(751\) −24.4820 −0.893361 −0.446680 0.894694i \(-0.647394\pi\)
−0.446680 + 0.894694i \(0.647394\pi\)
\(752\) 0 0
\(753\) 13.1404i 0.478863i
\(754\) 0 0
\(755\) 8.69983 + 5.35529i 0.316619 + 0.194899i
\(756\) 0 0
\(757\) −17.0328 + 17.0328i −0.619067 + 0.619067i −0.945292 0.326225i \(-0.894223\pi\)
0.326225 + 0.945292i \(0.394223\pi\)
\(758\) 0 0
\(759\) 8.32835i 0.302300i
\(760\) 0 0
\(761\) 8.53590i 0.309426i −0.987959 0.154713i \(-0.950555\pi\)
0.987959 0.154713i \(-0.0494453\pi\)
\(762\) 0 0
\(763\) −5.33423 + 5.33423i −0.193112 + 0.193112i
\(764\) 0 0
\(765\) −4.27831 + 6.95024i −0.154683 + 0.251286i
\(766\) 0 0
\(767\) 16.0130i 0.578195i
\(768\) 0 0
\(769\) −1.87438 −0.0675917 −0.0337959 0.999429i \(-0.510760\pi\)
−0.0337959 + 0.999429i \(0.510760\pi\)
\(770\) 0 0
\(771\) 2.65982 2.65982i 0.0957911 0.0957911i
\(772\) 0 0
\(773\) −21.5374 + 21.5374i −0.774645 + 0.774645i −0.978915 0.204270i \(-0.934518\pi\)
0.204270 + 0.978915i \(0.434518\pi\)
\(774\) 0 0
\(775\) 16.0297 + 31.7745i 0.575804 + 1.14137i
\(776\) 0 0
\(777\) 5.67054 0.203429
\(778\) 0 0
\(779\) 4.62326 + 4.62326i 0.165645 + 0.165645i
\(780\) 0 0
\(781\) −1.07180 + 1.07180i −0.0383519 + 0.0383519i
\(782\) 0 0
\(783\) 48.5932i 1.73658i
\(784\) 0 0
\(785\) 4.70580 1.11979i 0.167957 0.0399669i
\(786\) 0 0
\(787\) 7.03687 + 7.03687i 0.250837 + 0.250837i 0.821314 0.570477i \(-0.193241\pi\)
−0.570477 + 0.821314i \(0.693241\pi\)
\(788\) 0 0
\(789\) −10.0904 10.0904i −0.359227 0.359227i
\(790\) 0 0
\(791\) 27.1339i 0.964770i
\(792\) 0 0
\(793\) −17.9761 −0.638348
\(794\) 0 0
\(795\) 0.829311 1.34724i 0.0294126 0.0477817i
\(796\) 0 0
\(797\) 8.07933 + 8.07933i 0.286185 + 0.286185i 0.835569 0.549385i \(-0.185138\pi\)
−0.549385 + 0.835569i \(0.685138\pi\)
\(798\) 0 0
\(799\) −8.42995 −0.298230
\(800\) 0 0
\(801\) 23.0250 0.813548
\(802\) 0 0
\(803\) −23.6809 23.6809i −0.835682 0.835682i
\(804\) 0 0
\(805\) 4.03172 6.54965i 0.142099 0.230845i
\(806\) 0 0
\(807\) −6.20097 −0.218284
\(808\) 0 0
\(809\) 5.40185i 0.189919i −0.995481 0.0949595i \(-0.969728\pi\)
0.995481 0.0949595i \(-0.0302722\pi\)
\(810\) 0 0
\(811\) 10.3478 + 10.3478i 0.363360 + 0.363360i 0.865049 0.501688i \(-0.167288\pi\)
−0.501688 + 0.865049i \(0.667288\pi\)
\(812\) 0 0
\(813\) 3.96530 + 3.96530i 0.139069 + 0.139069i
\(814\) 0 0
\(815\) −31.1824 + 7.42011i −1.09227 + 0.259915i
\(816\) 0 0
\(817\) 46.7385i 1.63517i
\(818\) 0 0
\(819\) 8.54843 8.54843i 0.298706 0.298706i
\(820\) 0 0
\(821\) −10.7321 10.7321i −0.374551 0.374551i 0.494581 0.869132i \(-0.335322\pi\)
−0.869132 + 0.494581i \(0.835322\pi\)
\(822\) 0 0
\(823\) −3.51588 −0.122556 −0.0612780 0.998121i \(-0.519518\pi\)
−0.0612780 + 0.998121i \(0.519518\pi\)
\(824\) 0 0
\(825\) 18.5325 9.34935i 0.645220 0.325503i
\(826\) 0 0
\(827\) 27.7375 27.7375i 0.964529 0.964529i −0.0348631 0.999392i \(-0.511100\pi\)
0.999392 + 0.0348631i \(0.0110995\pi\)
\(828\) 0 0
\(829\) 19.5849 19.5849i 0.680212 0.680212i −0.279836 0.960048i \(-0.590280\pi\)
0.960048 + 0.279836i \(0.0902800\pi\)
\(830\) 0 0
\(831\) 7.47119 0.259173
\(832\) 0 0
\(833\) 7.71231i 0.267216i
\(834\) 0 0
\(835\) 3.02380 4.91225i 0.104643 0.169995i
\(836\) 0 0
\(837\) 25.7231 25.7231i 0.889119 0.889119i
\(838\) 0 0
\(839\) 40.0520i 1.38275i −0.722496 0.691375i \(-0.757005\pi\)
0.722496 0.691375i \(-0.242995\pi\)
\(840\) 0 0
\(841\) 61.3992i 2.11722i
\(842\) 0 0
\(843\) −15.6243 + 15.6243i −0.538129 + 0.538129i
\(844\) 0 0
\(845\) 0.883749 + 0.544003i 0.0304019 + 0.0187143i
\(846\) 0 0
\(847\) 8.54182i 0.293500i
\(848\) 0 0
\(849\) −5.99948 −0.205902
\(850\) 0 0
\(851\) −4.51793 + 4.51793i −0.154873 + 0.154873i
\(852\) 0 0
\(853\) 13.7328 13.7328i 0.470202 0.470202i −0.431778 0.901980i \(-0.642114\pi\)
0.901980 + 0.431778i \(0.142114\pi\)
\(854\) 0 0
\(855\) 17.1215 4.07420i 0.585542 0.139335i
\(856\) 0 0
\(857\) −39.9485 −1.36462 −0.682308 0.731065i \(-0.739024\pi\)
−0.682308 + 0.731065i \(0.739024\pi\)
\(858\) 0 0
\(859\) −33.6366 33.6366i −1.14766 1.14766i −0.987011 0.160654i \(-0.948640\pi\)
−0.160654 0.987011i \(-0.551360\pi\)
\(860\) 0 0
\(861\) −2.00969 + 2.00969i −0.0684900 + 0.0684900i
\(862\) 0 0
\(863\) 16.5303i 0.562697i −0.959606 0.281349i \(-0.909218\pi\)
0.959606 0.281349i \(-0.0907817\pi\)
\(864\) 0 0
\(865\) 43.6146 10.3785i 1.48294 0.352879i
\(866\) 0 0
\(867\) −9.83388 9.83388i −0.333976 0.333976i
\(868\) 0 0
\(869\) −31.8205 31.8205i −1.07944 1.07944i
\(870\) 0 0
\(871\) 9.36421i 0.317294i
\(872\) 0 0
\(873\) −12.5010 −0.423095
\(874\) 0 0
\(875\) −19.1005 1.61893i −0.645714 0.0547297i
\(876\) 0 0
\(877\) −9.66381 9.66381i −0.326324 0.326324i 0.524863 0.851187i \(-0.324117\pi\)
−0.851187 + 0.524863i \(0.824117\pi\)
\(878\) 0 0
\(879\) 10.8734 0.366752
\(880\) 0 0
\(881\) −43.4299 −1.46319 −0.731596 0.681739i \(-0.761224\pi\)
−0.731596 + 0.681739i \(0.761224\pi\)
\(882\) 0 0
\(883\) −22.3879 22.3879i −0.753413 0.753413i 0.221701 0.975115i \(-0.428839\pi\)
−0.975115 + 0.221701i \(0.928839\pi\)
\(884\) 0 0
\(885\) 8.62946 + 5.31198i 0.290076 + 0.178560i
\(886\) 0 0
\(887\) 31.6913 1.06409 0.532045 0.846716i \(-0.321424\pi\)
0.532045 + 0.846716i \(0.321424\pi\)
\(888\) 0 0
\(889\) 31.4168i 1.05368i
\(890\) 0 0
\(891\) 1.29335 + 1.29335i 0.0433288 + 0.0433288i
\(892\) 0 0
\(893\) 12.8541 + 12.8541i 0.430147 + 0.430147i
\(894\) 0 0
\(895\) −7.23315 30.3967i −0.241778 1.01605i
\(896\) 0 0
\(897\) 7.64420i 0.255232i
\(898\) 0 0
\(899\) −47.8533 + 47.8533i −1.59600 + 1.59600i
\(900\) 0 0
\(901\) 0.915049 + 0.915049i 0.0304847 + 0.0304847i
\(902\) 0 0
\(903\) −20.3168 −0.676102
\(904\) 0 0
\(905\) −19.0893 + 4.54248i −0.634551 + 0.150997i
\(906\) 0 0
\(907\) −24.9184 + 24.9184i −0.827401 + 0.827401i −0.987157 0.159755i \(-0.948929\pi\)
0.159755 + 0.987157i \(0.448929\pi\)
\(908\) 0 0
\(909\) 12.9192 12.9192i 0.428503 0.428503i
\(910\) 0 0
\(911\) −47.0459 −1.55870 −0.779350 0.626589i \(-0.784451\pi\)
−0.779350 + 0.626589i \(0.784451\pi\)
\(912\) 0 0
\(913\) 46.6366i 1.54345i
\(914\) 0 0
\(915\) 5.96319 9.68738i 0.197137 0.320255i
\(916\) 0 0
\(917\) 17.4943 17.4943i 0.577712 0.577712i
\(918\) 0 0
\(919\) 12.5442i 0.413796i −0.978362 0.206898i \(-0.933663\pi\)
0.978362 0.206898i \(-0.0663369\pi\)
\(920\) 0 0
\(921\) 24.4716i 0.806368i
\(922\) 0 0
\(923\) 0.983751 0.983751i 0.0323806 0.0323806i
\(924\) 0 0
\(925\) 15.1252 + 4.98165i 0.497315 + 0.163796i
\(926\) 0 0
\(927\) 29.1573i 0.957652i
\(928\) 0 0
\(929\) −26.7421 −0.877380 −0.438690 0.898639i \(-0.644557\pi\)
−0.438690 + 0.898639i \(0.644557\pi\)
\(930\) 0 0
\(931\) 11.7599 11.7599i 0.385414 0.385414i
\(932\) 0 0
\(933\) −16.0863 + 16.0863i −0.526642 + 0.526642i
\(934\) 0 0
\(935\) 3.93058 + 16.5179i 0.128544 + 0.540194i
\(936\) 0 0
\(937\) −3.06580 −0.100155 −0.0500777 0.998745i \(-0.515947\pi\)
−0.0500777 + 0.998745i \(0.515947\pi\)
\(938\) 0 0
\(939\) −9.16546 9.16546i −0.299104 0.299104i
\(940\) 0 0
\(941\) 14.6023 14.6023i 0.476020 0.476020i −0.427836 0.903856i \(-0.640724\pi\)
0.903856 + 0.427836i \(0.140724\pi\)
\(942\) 0 0
\(943\) 3.20239i 0.104284i
\(944\) 0 0
\(945\) 4.53590 + 19.0617i 0.147553 + 0.620077i
\(946\) 0 0
\(947\) −29.4872 29.4872i −0.958204 0.958204i 0.0409570 0.999161i \(-0.486959\pi\)
−0.999161 + 0.0409570i \(0.986959\pi\)
\(948\) 0 0
\(949\) 21.7356 + 21.7356i 0.705567 + 0.705567i
\(950\) 0 0
\(951\) 6.23158i 0.202073i
\(952\) 0 0
\(953\) 33.6807 1.09103 0.545513 0.838103i \(-0.316335\pi\)
0.545513 + 0.838103i \(0.316335\pi\)
\(954\) 0 0
\(955\) 22.1870 36.0434i 0.717953 1.16634i
\(956\) 0 0
\(957\) 27.9105 + 27.9105i 0.902219 + 0.902219i
\(958\) 0 0
\(959\) −25.6913 −0.829616
\(960\) 0 0
\(961\) 19.6628 0.634283
\(962\) 0 0
\(963\) −3.26256 3.26256i −0.105134 0.105134i
\(964\) 0 0
\(965\) 8.43541 + 5.19253i 0.271546 + 0.167153i
\(966\) 0 0
\(967\) 8.70089 0.279802 0.139901 0.990166i \(-0.455322\pi\)
0.139901 + 0.990166i \(0.455322\pi\)
\(968\) 0 0
\(969\) 8.07881i 0.259529i
\(970\) 0 0
\(971\) 5.87523 + 5.87523i 0.188545 + 0.188545i 0.795067 0.606522i \(-0.207436\pi\)
−0.606522 + 0.795067i \(0.707436\pi\)
\(972\) 0 0
\(973\) 14.2150 + 14.2150i 0.455713 + 0.455713i
\(974\) 0 0
\(975\) −17.0101 + 8.58132i −0.544760 + 0.274822i
\(976\) 0 0
\(977\) 41.8541i 1.33903i −0.742798 0.669516i \(-0.766502\pi\)
0.742798 0.669516i \(-0.233498\pi\)
\(978\) 0 0
\(979\) 33.8713 33.8713i 1.08253 1.08253i
\(980\) 0 0
\(981\) 5.97856 + 5.97856i 0.190881 + 0.190881i
\(982\) 0 0
\(983\) 57.4539 1.83250 0.916248 0.400612i \(-0.131203\pi\)
0.916248 + 0.400612i \(0.131203\pi\)
\(984\) 0 0
\(985\) −4.68030 19.6685i −0.149127 0.626692i
\(986\) 0 0
\(987\) −5.58758 + 5.58758i −0.177854 + 0.177854i
\(988\) 0 0
\(989\) 16.1872 16.1872i 0.514722 0.514722i
\(990\) 0 0
\(991\) 12.8205 0.407258 0.203629 0.979048i \(-0.434726\pi\)
0.203629 + 0.979048i \(0.434726\pi\)
\(992\) 0 0
\(993\) 1.62099i 0.0514404i
\(994\) 0 0
\(995\) 11.1519 + 6.86467i 0.353538 + 0.217625i
\(996\) 0 0
\(997\) −15.0860 + 15.0860i −0.477777 + 0.477777i −0.904420 0.426643i \(-0.859696\pi\)
0.426643 + 0.904420i \(0.359696\pi\)
\(998\) 0 0
\(999\) 16.2776i 0.514999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.q.e.609.3 16
4.3 odd 2 640.2.q.f.609.6 16
5.4 even 2 inner 640.2.q.e.609.6 16
8.3 odd 2 320.2.q.c.49.3 16
8.5 even 2 80.2.q.c.69.4 yes 16
16.3 odd 4 640.2.q.f.289.3 16
16.5 even 4 80.2.q.c.29.5 yes 16
16.11 odd 4 320.2.q.c.209.6 16
16.13 even 4 inner 640.2.q.e.289.6 16
20.19 odd 2 640.2.q.f.609.3 16
24.5 odd 2 720.2.bm.f.469.5 16
40.3 even 4 1600.2.l.h.1201.6 16
40.13 odd 4 400.2.l.i.101.8 16
40.19 odd 2 320.2.q.c.49.6 16
40.27 even 4 1600.2.l.h.1201.3 16
40.29 even 2 80.2.q.c.69.5 yes 16
40.37 odd 4 400.2.l.i.101.1 16
48.5 odd 4 720.2.bm.f.109.4 16
80.19 odd 4 640.2.q.f.289.6 16
80.27 even 4 1600.2.l.h.401.3 16
80.29 even 4 inner 640.2.q.e.289.3 16
80.37 odd 4 400.2.l.i.301.1 16
80.43 even 4 1600.2.l.h.401.6 16
80.53 odd 4 400.2.l.i.301.8 16
80.59 odd 4 320.2.q.c.209.3 16
80.69 even 4 80.2.q.c.29.4 16
120.29 odd 2 720.2.bm.f.469.4 16
240.149 odd 4 720.2.bm.f.109.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.q.c.29.4 16 80.69 even 4
80.2.q.c.29.5 yes 16 16.5 even 4
80.2.q.c.69.4 yes 16 8.5 even 2
80.2.q.c.69.5 yes 16 40.29 even 2
320.2.q.c.49.3 16 8.3 odd 2
320.2.q.c.49.6 16 40.19 odd 2
320.2.q.c.209.3 16 80.59 odd 4
320.2.q.c.209.6 16 16.11 odd 4
400.2.l.i.101.1 16 40.37 odd 4
400.2.l.i.101.8 16 40.13 odd 4
400.2.l.i.301.1 16 80.37 odd 4
400.2.l.i.301.8 16 80.53 odd 4
640.2.q.e.289.3 16 80.29 even 4 inner
640.2.q.e.289.6 16 16.13 even 4 inner
640.2.q.e.609.3 16 1.1 even 1 trivial
640.2.q.e.609.6 16 5.4 even 2 inner
640.2.q.f.289.3 16 16.3 odd 4
640.2.q.f.289.6 16 80.19 odd 4
640.2.q.f.609.3 16 20.19 odd 2
640.2.q.f.609.6 16 4.3 odd 2
720.2.bm.f.109.4 16 48.5 odd 4
720.2.bm.f.109.5 16 240.149 odd 4
720.2.bm.f.469.4 16 120.29 odd 2
720.2.bm.f.469.5 16 24.5 odd 2
1600.2.l.h.401.3 16 80.27 even 4
1600.2.l.h.401.6 16 80.43 even 4
1600.2.l.h.1201.3 16 40.27 even 4
1600.2.l.h.1201.6 16 40.3 even 4