Properties

Label 640.2.o.g.63.1
Level $640$
Weight $2$
Character 640.63
Analytic conductor $5.110$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,2,Mod(63,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 640.63
Dual form 640.2.o.g.447.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 2.00000i) q^{3} +(-2.00000 - 1.00000i) q^{5} +(2.00000 + 2.00000i) q^{7} +5.00000i q^{9} +O(q^{10})\) \(q+(2.00000 + 2.00000i) q^{3} +(-2.00000 - 1.00000i) q^{5} +(2.00000 + 2.00000i) q^{7} +5.00000i q^{9} +4.00000 q^{11} +(3.00000 - 3.00000i) q^{13} +(-2.00000 - 6.00000i) q^{15} +(-3.00000 + 3.00000i) q^{17} +8.00000i q^{21} +(-6.00000 + 6.00000i) q^{23} +(3.00000 + 4.00000i) q^{25} +(-4.00000 + 4.00000i) q^{27} -2.00000 q^{29} -4.00000i q^{31} +(8.00000 + 8.00000i) q^{33} +(-2.00000 - 6.00000i) q^{35} +(3.00000 + 3.00000i) q^{37} +12.0000 q^{39} +(-6.00000 - 6.00000i) q^{43} +(5.00000 - 10.0000i) q^{45} +(6.00000 + 6.00000i) q^{47} +1.00000i q^{49} -12.0000 q^{51} +(-3.00000 + 3.00000i) q^{53} +(-8.00000 - 4.00000i) q^{55} -8.00000i q^{59} -6.00000i q^{61} +(-10.0000 + 10.0000i) q^{63} +(-9.00000 + 3.00000i) q^{65} +(6.00000 - 6.00000i) q^{67} -24.0000 q^{69} -12.0000i q^{71} +(-5.00000 - 5.00000i) q^{73} +(-2.00000 + 14.0000i) q^{75} +(8.00000 + 8.00000i) q^{77} +8.00000 q^{79} -1.00000 q^{81} +(6.00000 + 6.00000i) q^{83} +(9.00000 - 3.00000i) q^{85} +(-4.00000 - 4.00000i) q^{87} +12.0000 q^{91} +(8.00000 - 8.00000i) q^{93} +(11.0000 - 11.0000i) q^{97} +20.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} - 4 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{3} - 4 q^{5} + 4 q^{7} + 8 q^{11} + 6 q^{13} - 4 q^{15} - 6 q^{17} - 12 q^{23} + 6 q^{25} - 8 q^{27} - 4 q^{29} + 16 q^{33} - 4 q^{35} + 6 q^{37} + 24 q^{39} - 12 q^{43} + 10 q^{45} + 12 q^{47} - 24 q^{51} - 6 q^{53} - 16 q^{55} - 20 q^{63} - 18 q^{65} + 12 q^{67} - 48 q^{69} - 10 q^{73} - 4 q^{75} + 16 q^{77} + 16 q^{79} - 2 q^{81} + 12 q^{83} + 18 q^{85} - 8 q^{87} + 24 q^{91} + 16 q^{93} + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 + 2.00000i 1.15470 + 1.15470i 0.985599 + 0.169102i \(0.0540867\pi\)
0.169102 + 0.985599i \(0.445913\pi\)
\(4\) 0 0
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) 0 0
\(9\) 5.00000i 1.66667i
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 3.00000 3.00000i 0.832050 0.832050i −0.155747 0.987797i \(-0.549778\pi\)
0.987797 + 0.155747i \(0.0497784\pi\)
\(14\) 0 0
\(15\) −2.00000 6.00000i −0.516398 1.54919i
\(16\) 0 0
\(17\) −3.00000 + 3.00000i −0.727607 + 0.727607i −0.970143 0.242536i \(-0.922021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 8.00000i 1.74574i
\(22\) 0 0
\(23\) −6.00000 + 6.00000i −1.25109 + 1.25109i −0.295853 + 0.955233i \(0.595604\pi\)
−0.955233 + 0.295853i \(0.904396\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) −4.00000 + 4.00000i −0.769800 + 0.769800i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i −0.933257 0.359211i \(-0.883046\pi\)
0.933257 0.359211i \(-0.116954\pi\)
\(32\) 0 0
\(33\) 8.00000 + 8.00000i 1.39262 + 1.39262i
\(34\) 0 0
\(35\) −2.00000 6.00000i −0.338062 1.01419i
\(36\) 0 0
\(37\) 3.00000 + 3.00000i 0.493197 + 0.493197i 0.909312 0.416115i \(-0.136609\pi\)
−0.416115 + 0.909312i \(0.636609\pi\)
\(38\) 0 0
\(39\) 12.0000 1.92154
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −6.00000 6.00000i −0.914991 0.914991i 0.0816682 0.996660i \(-0.473975\pi\)
−0.996660 + 0.0816682i \(0.973975\pi\)
\(44\) 0 0
\(45\) 5.00000 10.0000i 0.745356 1.49071i
\(46\) 0 0
\(47\) 6.00000 + 6.00000i 0.875190 + 0.875190i 0.993032 0.117842i \(-0.0375978\pi\)
−0.117842 + 0.993032i \(0.537598\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) −12.0000 −1.68034
\(52\) 0 0
\(53\) −3.00000 + 3.00000i −0.412082 + 0.412082i −0.882463 0.470381i \(-0.844116\pi\)
0.470381 + 0.882463i \(0.344116\pi\)
\(54\) 0 0
\(55\) −8.00000 4.00000i −1.07872 0.539360i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.00000i 1.04151i −0.853706 0.520756i \(-0.825650\pi\)
0.853706 0.520756i \(-0.174350\pi\)
\(60\) 0 0
\(61\) 6.00000i 0.768221i −0.923287 0.384111i \(-0.874508\pi\)
0.923287 0.384111i \(-0.125492\pi\)
\(62\) 0 0
\(63\) −10.0000 + 10.0000i −1.25988 + 1.25988i
\(64\) 0 0
\(65\) −9.00000 + 3.00000i −1.11631 + 0.372104i
\(66\) 0 0
\(67\) 6.00000 6.00000i 0.733017 0.733017i −0.238200 0.971216i \(-0.576557\pi\)
0.971216 + 0.238200i \(0.0765572\pi\)
\(68\) 0 0
\(69\) −24.0000 −2.88926
\(70\) 0 0
\(71\) 12.0000i 1.42414i −0.702109 0.712069i \(-0.747758\pi\)
0.702109 0.712069i \(-0.252242\pi\)
\(72\) 0 0
\(73\) −5.00000 5.00000i −0.585206 0.585206i 0.351123 0.936329i \(-0.385800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) −2.00000 + 14.0000i −0.230940 + 1.61658i
\(76\) 0 0
\(77\) 8.00000 + 8.00000i 0.911685 + 0.911685i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 6.00000 + 6.00000i 0.658586 + 0.658586i 0.955045 0.296460i \(-0.0958061\pi\)
−0.296460 + 0.955045i \(0.595806\pi\)
\(84\) 0 0
\(85\) 9.00000 3.00000i 0.976187 0.325396i
\(86\) 0 0
\(87\) −4.00000 4.00000i −0.428845 0.428845i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 8.00000 8.00000i 0.829561 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.0000 11.0000i 1.11688 1.11688i 0.124684 0.992196i \(-0.460208\pi\)
0.992196 0.124684i \(-0.0397918\pi\)
\(98\) 0 0
\(99\) 20.0000i 2.01008i
\(100\) 0 0
\(101\) 4.00000i 0.398015i 0.979998 + 0.199007i \(0.0637718\pi\)
−0.979998 + 0.199007i \(0.936228\pi\)
\(102\) 0 0
\(103\) 2.00000 2.00000i 0.197066 0.197066i −0.601675 0.798741i \(-0.705500\pi\)
0.798741 + 0.601675i \(0.205500\pi\)
\(104\) 0 0
\(105\) 8.00000 16.0000i 0.780720 1.56144i
\(106\) 0 0
\(107\) 6.00000 6.00000i 0.580042 0.580042i −0.354873 0.934915i \(-0.615476\pi\)
0.934915 + 0.354873i \(0.115476\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 12.0000i 1.13899i
\(112\) 0 0
\(113\) −9.00000 9.00000i −0.846649 0.846649i 0.143065 0.989713i \(-0.454304\pi\)
−0.989713 + 0.143065i \(0.954304\pi\)
\(114\) 0 0
\(115\) 18.0000 6.00000i 1.67851 0.559503i
\(116\) 0 0
\(117\) 15.0000 + 15.0000i 1.38675 + 1.38675i
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 2.00000 + 2.00000i 0.177471 + 0.177471i 0.790253 0.612781i \(-0.209949\pi\)
−0.612781 + 0.790253i \(0.709949\pi\)
\(128\) 0 0
\(129\) 24.0000i 2.11308i
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 12.0000 4.00000i 1.03280 0.344265i
\(136\) 0 0
\(137\) −15.0000 + 15.0000i −1.28154 + 1.28154i −0.341743 + 0.939793i \(0.611017\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 24.0000i 2.02116i
\(142\) 0 0
\(143\) 12.0000 12.0000i 1.00349 1.00349i
\(144\) 0 0
\(145\) 4.00000 + 2.00000i 0.332182 + 0.166091i
\(146\) 0 0
\(147\) −2.00000 + 2.00000i −0.164957 + 0.164957i
\(148\) 0 0
\(149\) 4.00000 0.327693 0.163846 0.986486i \(-0.447610\pi\)
0.163846 + 0.986486i \(0.447610\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i 0.872691 + 0.488273i \(0.162373\pi\)
−0.872691 + 0.488273i \(0.837627\pi\)
\(152\) 0 0
\(153\) −15.0000 15.0000i −1.21268 1.21268i
\(154\) 0 0
\(155\) −4.00000 + 8.00000i −0.321288 + 0.642575i
\(156\) 0 0
\(157\) −3.00000 3.00000i −0.239426 0.239426i 0.577186 0.816612i \(-0.304151\pi\)
−0.816612 + 0.577186i \(0.804151\pi\)
\(158\) 0 0
\(159\) −12.0000 −0.951662
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) −6.00000 6.00000i −0.469956 0.469956i 0.431944 0.901900i \(-0.357828\pi\)
−0.901900 + 0.431944i \(0.857828\pi\)
\(164\) 0 0
\(165\) −8.00000 24.0000i −0.622799 1.86840i
\(166\) 0 0
\(167\) 6.00000 + 6.00000i 0.464294 + 0.464294i 0.900060 0.435766i \(-0.143522\pi\)
−0.435766 + 0.900060i \(0.643522\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.00000 7.00000i 0.532200 0.532200i −0.389026 0.921227i \(-0.627189\pi\)
0.921227 + 0.389026i \(0.127189\pi\)
\(174\) 0 0
\(175\) −2.00000 + 14.0000i −0.151186 + 1.05830i
\(176\) 0 0
\(177\) 16.0000 16.0000i 1.20263 1.20263i
\(178\) 0 0
\(179\) 16.0000i 1.19590i −0.801535 0.597948i \(-0.795983\pi\)
0.801535 0.597948i \(-0.204017\pi\)
\(180\) 0 0
\(181\) 12.0000i 0.891953i 0.895045 + 0.445976i \(0.147144\pi\)
−0.895045 + 0.445976i \(0.852856\pi\)
\(182\) 0 0
\(183\) 12.0000 12.0000i 0.887066 0.887066i
\(184\) 0 0
\(185\) −3.00000 9.00000i −0.220564 0.661693i
\(186\) 0 0
\(187\) −12.0000 + 12.0000i −0.877527 + 0.877527i
\(188\) 0 0
\(189\) −16.0000 −1.16383
\(190\) 0 0
\(191\) 12.0000i 0.868290i −0.900843 0.434145i \(-0.857051\pi\)
0.900843 0.434145i \(-0.142949\pi\)
\(192\) 0 0
\(193\) 13.0000 + 13.0000i 0.935760 + 0.935760i 0.998058 0.0622972i \(-0.0198427\pi\)
−0.0622972 + 0.998058i \(0.519843\pi\)
\(194\) 0 0
\(195\) −24.0000 12.0000i −1.71868 0.859338i
\(196\) 0 0
\(197\) −15.0000 15.0000i −1.06871 1.06871i −0.997459 0.0712470i \(-0.977302\pi\)
−0.0712470 0.997459i \(-0.522698\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 24.0000 1.69283
\(202\) 0 0
\(203\) −4.00000 4.00000i −0.280745 0.280745i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −30.0000 30.0000i −2.08514 2.08514i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 24.0000 24.0000i 1.64445 1.64445i
\(214\) 0 0
\(215\) 6.00000 + 18.0000i 0.409197 + 1.22759i
\(216\) 0 0
\(217\) 8.00000 8.00000i 0.543075 0.543075i
\(218\) 0 0
\(219\) 20.0000i 1.35147i
\(220\) 0 0
\(221\) 18.0000i 1.21081i
\(222\) 0 0
\(223\) 14.0000 14.0000i 0.937509 0.937509i −0.0606498 0.998159i \(-0.519317\pi\)
0.998159 + 0.0606498i \(0.0193173\pi\)
\(224\) 0 0
\(225\) −20.0000 + 15.0000i −1.33333 + 1.00000i
\(226\) 0 0
\(227\) 2.00000 2.00000i 0.132745 0.132745i −0.637613 0.770357i \(-0.720078\pi\)
0.770357 + 0.637613i \(0.220078\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 32.0000i 2.10545i
\(232\) 0 0
\(233\) −3.00000 3.00000i −0.196537 0.196537i 0.601977 0.798513i \(-0.294380\pi\)
−0.798513 + 0.601977i \(0.794380\pi\)
\(234\) 0 0
\(235\) −6.00000 18.0000i −0.391397 1.17419i
\(236\) 0 0
\(237\) 16.0000 + 16.0000i 1.03931 + 1.03931i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 10.0000 + 10.0000i 0.641500 + 0.641500i
\(244\) 0 0
\(245\) 1.00000 2.00000i 0.0638877 0.127775i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 24.0000i 1.52094i
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) −24.0000 + 24.0000i −1.50887 + 1.50887i
\(254\) 0 0
\(255\) 24.0000 + 12.0000i 1.50294 + 0.751469i
\(256\) 0 0
\(257\) −9.00000 + 9.00000i −0.561405 + 0.561405i −0.929706 0.368302i \(-0.879939\pi\)
0.368302 + 0.929706i \(0.379939\pi\)
\(258\) 0 0
\(259\) 12.0000i 0.745644i
\(260\) 0 0
\(261\) 10.0000i 0.618984i
\(262\) 0 0
\(263\) 6.00000 6.00000i 0.369976 0.369976i −0.497492 0.867468i \(-0.665746\pi\)
0.867468 + 0.497492i \(0.165746\pi\)
\(264\) 0 0
\(265\) 9.00000 3.00000i 0.552866 0.184289i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.00000 −0.243884 −0.121942 0.992537i \(-0.538912\pi\)
−0.121942 + 0.992537i \(0.538912\pi\)
\(270\) 0 0
\(271\) 12.0000i 0.728948i −0.931214 0.364474i \(-0.881249\pi\)
0.931214 0.364474i \(-0.118751\pi\)
\(272\) 0 0
\(273\) 24.0000 + 24.0000i 1.45255 + 1.45255i
\(274\) 0 0
\(275\) 12.0000 + 16.0000i 0.723627 + 0.964836i
\(276\) 0 0
\(277\) 21.0000 + 21.0000i 1.26177 + 1.26177i 0.950236 + 0.311532i \(0.100842\pi\)
0.311532 + 0.950236i \(0.399158\pi\)
\(278\) 0 0
\(279\) 20.0000 1.19737
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 0 0
\(283\) 6.00000 + 6.00000i 0.356663 + 0.356663i 0.862581 0.505918i \(-0.168846\pi\)
−0.505918 + 0.862581i \(0.668846\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 44.0000 2.57933
\(292\) 0 0
\(293\) 9.00000 9.00000i 0.525786 0.525786i −0.393527 0.919313i \(-0.628745\pi\)
0.919313 + 0.393527i \(0.128745\pi\)
\(294\) 0 0
\(295\) −8.00000 + 16.0000i −0.465778 + 0.931556i
\(296\) 0 0
\(297\) −16.0000 + 16.0000i −0.928414 + 0.928414i
\(298\) 0 0
\(299\) 36.0000i 2.08193i
\(300\) 0 0
\(301\) 24.0000i 1.38334i
\(302\) 0 0
\(303\) −8.00000 + 8.00000i −0.459588 + 0.459588i
\(304\) 0 0
\(305\) −6.00000 + 12.0000i −0.343559 + 0.687118i
\(306\) 0 0
\(307\) −18.0000 + 18.0000i −1.02731 + 1.02731i −0.0276979 + 0.999616i \(0.508818\pi\)
−0.999616 + 0.0276979i \(0.991182\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 12.0000i 0.680458i −0.940343 0.340229i \(-0.889495\pi\)
0.940343 0.340229i \(-0.110505\pi\)
\(312\) 0 0
\(313\) −1.00000 1.00000i −0.0565233 0.0565233i 0.678280 0.734803i \(-0.262726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) 0 0
\(315\) 30.0000 10.0000i 1.69031 0.563436i
\(316\) 0 0
\(317\) 7.00000 + 7.00000i 0.393159 + 0.393159i 0.875812 0.482653i \(-0.160327\pi\)
−0.482653 + 0.875812i \(0.660327\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 24.0000 1.33955
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 21.0000 + 3.00000i 1.16487 + 0.166410i
\(326\) 0 0
\(327\) −24.0000 24.0000i −1.32720 1.32720i
\(328\) 0 0
\(329\) 24.0000i 1.32316i
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) −15.0000 + 15.0000i −0.821995 + 0.821995i
\(334\) 0 0
\(335\) −18.0000 + 6.00000i −0.983445 + 0.327815i
\(336\) 0 0
\(337\) −7.00000 + 7.00000i −0.381314 + 0.381314i −0.871576 0.490261i \(-0.836901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0 0
\(339\) 36.0000i 1.95525i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 48.0000 + 24.0000i 2.58423 + 1.29212i
\(346\) 0 0
\(347\) 10.0000 10.0000i 0.536828 0.536828i −0.385768 0.922596i \(-0.626063\pi\)
0.922596 + 0.385768i \(0.126063\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 24.0000i 1.28103i
\(352\) 0 0
\(353\) 9.00000 + 9.00000i 0.479022 + 0.479022i 0.904819 0.425797i \(-0.140006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) 0 0
\(355\) −12.0000 + 24.0000i −0.636894 + 1.27379i
\(356\) 0 0
\(357\) −24.0000 24.0000i −1.27021 1.27021i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 10.0000 + 10.0000i 0.524864 + 0.524864i
\(364\) 0 0
\(365\) 5.00000 + 15.0000i 0.261712 + 0.785136i
\(366\) 0 0
\(367\) 26.0000 + 26.0000i 1.35719 + 1.35719i 0.877365 + 0.479824i \(0.159300\pi\)
0.479824 + 0.877365i \(0.340700\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) −9.00000 + 9.00000i −0.466002 + 0.466002i −0.900617 0.434614i \(-0.856885\pi\)
0.434614 + 0.900617i \(0.356885\pi\)
\(374\) 0 0
\(375\) 18.0000 26.0000i 0.929516 1.34263i
\(376\) 0 0
\(377\) −6.00000 + 6.00000i −0.309016 + 0.309016i
\(378\) 0 0
\(379\) 24.0000i 1.23280i 0.787434 + 0.616399i \(0.211409\pi\)
−0.787434 + 0.616399i \(0.788591\pi\)
\(380\) 0 0
\(381\) 8.00000i 0.409852i
\(382\) 0 0
\(383\) 6.00000 6.00000i 0.306586 0.306586i −0.536998 0.843584i \(-0.680442\pi\)
0.843584 + 0.536998i \(0.180442\pi\)
\(384\) 0 0
\(385\) −8.00000 24.0000i −0.407718 1.22315i
\(386\) 0 0
\(387\) 30.0000 30.0000i 1.52499 1.52499i
\(388\) 0 0
\(389\) −4.00000 −0.202808 −0.101404 0.994845i \(-0.532333\pi\)
−0.101404 + 0.994845i \(0.532333\pi\)
\(390\) 0 0
\(391\) 36.0000i 1.82060i
\(392\) 0 0
\(393\) −8.00000 8.00000i −0.403547 0.403547i
\(394\) 0 0
\(395\) −16.0000 8.00000i −0.805047 0.402524i
\(396\) 0 0
\(397\) −15.0000 15.0000i −0.752828 0.752828i 0.222178 0.975006i \(-0.428683\pi\)
−0.975006 + 0.222178i \(0.928683\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −12.0000 12.0000i −0.597763 0.597763i
\(404\) 0 0
\(405\) 2.00000 + 1.00000i 0.0993808 + 0.0496904i
\(406\) 0 0
\(407\) 12.0000 + 12.0000i 0.594818 + 0.594818i
\(408\) 0 0
\(409\) 30.0000i 1.48340i 0.670729 + 0.741702i \(0.265981\pi\)
−0.670729 + 0.741702i \(0.734019\pi\)
\(410\) 0 0
\(411\) −60.0000 −2.95958
\(412\) 0 0
\(413\) 16.0000 16.0000i 0.787309 0.787309i
\(414\) 0 0
\(415\) −6.00000 18.0000i −0.294528 0.883585i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.00000i 0.390826i 0.980721 + 0.195413i \(0.0626047\pi\)
−0.980721 + 0.195413i \(0.937395\pi\)
\(420\) 0 0
\(421\) 30.0000i 1.46211i −0.682318 0.731055i \(-0.739028\pi\)
0.682318 0.731055i \(-0.260972\pi\)
\(422\) 0 0
\(423\) −30.0000 + 30.0000i −1.45865 + 1.45865i
\(424\) 0 0
\(425\) −21.0000 3.00000i −1.01865 0.145521i
\(426\) 0 0
\(427\) 12.0000 12.0000i 0.580721 0.580721i
\(428\) 0 0
\(429\) 48.0000 2.31746
\(430\) 0 0
\(431\) 36.0000i 1.73406i 0.498257 + 0.867029i \(0.333974\pi\)
−0.498257 + 0.867029i \(0.666026\pi\)
\(432\) 0 0
\(433\) 11.0000 + 11.0000i 0.528626 + 0.528626i 0.920163 0.391536i \(-0.128056\pi\)
−0.391536 + 0.920163i \(0.628056\pi\)
\(434\) 0 0
\(435\) 4.00000 + 12.0000i 0.191785 + 0.575356i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) −5.00000 −0.238095
\(442\) 0 0
\(443\) −2.00000 2.00000i −0.0950229 0.0950229i 0.657997 0.753020i \(-0.271404\pi\)
−0.753020 + 0.657997i \(0.771404\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 8.00000 + 8.00000i 0.378387 + 0.378387i
\(448\) 0 0
\(449\) 6.00000i 0.283158i 0.989927 + 0.141579i \(0.0452178\pi\)
−0.989927 + 0.141579i \(0.954782\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −24.0000 + 24.0000i −1.12762 + 1.12762i
\(454\) 0 0
\(455\) −24.0000 12.0000i −1.12514 0.562569i
\(456\) 0 0
\(457\) −1.00000 + 1.00000i −0.0467780 + 0.0467780i −0.730109 0.683331i \(-0.760531\pi\)
0.683331 + 0.730109i \(0.260531\pi\)
\(458\) 0 0
\(459\) 24.0000i 1.12022i
\(460\) 0 0
\(461\) 28.0000i 1.30409i 0.758180 + 0.652045i \(0.226089\pi\)
−0.758180 + 0.652045i \(0.773911\pi\)
\(462\) 0 0
\(463\) −14.0000 + 14.0000i −0.650635 + 0.650635i −0.953146 0.302511i \(-0.902175\pi\)
0.302511 + 0.953146i \(0.402175\pi\)
\(464\) 0 0
\(465\) −24.0000 + 8.00000i −1.11297 + 0.370991i
\(466\) 0 0
\(467\) −30.0000 + 30.0000i −1.38823 + 1.38823i −0.559205 + 0.829029i \(0.688894\pi\)
−0.829029 + 0.559205i \(0.811106\pi\)
\(468\) 0 0
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) 12.0000i 0.552931i
\(472\) 0 0
\(473\) −24.0000 24.0000i −1.10352 1.10352i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15.0000 15.0000i −0.686803 0.686803i
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) −48.0000 48.0000i −2.18408 2.18408i
\(484\) 0 0
\(485\) −33.0000 + 11.0000i −1.49845 + 0.499484i
\(486\) 0 0
\(487\) 10.0000 + 10.0000i 0.453143 + 0.453143i 0.896396 0.443253i \(-0.146176\pi\)
−0.443253 + 0.896396i \(0.646176\pi\)
\(488\) 0 0
\(489\) 24.0000i 1.08532i
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 6.00000 6.00000i 0.270226 0.270226i
\(494\) 0 0
\(495\) 20.0000 40.0000i 0.898933 1.79787i
\(496\) 0 0
\(497\) 24.0000 24.0000i 1.07655 1.07655i
\(498\) 0 0
\(499\) 24.0000i 1.07439i −0.843459 0.537194i \(-0.819484\pi\)
0.843459 0.537194i \(-0.180516\pi\)
\(500\) 0 0
\(501\) 24.0000i 1.07224i
\(502\) 0 0
\(503\) −6.00000 + 6.00000i −0.267527 + 0.267527i −0.828103 0.560576i \(-0.810580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(504\) 0 0
\(505\) 4.00000 8.00000i 0.177998 0.355995i
\(506\) 0 0
\(507\) 10.0000 10.0000i 0.444116 0.444116i
\(508\) 0 0
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 0 0
\(511\) 20.0000i 0.884748i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.00000 + 2.00000i −0.264392 + 0.0881305i
\(516\) 0 0
\(517\) 24.0000 + 24.0000i 1.05552 + 1.05552i
\(518\) 0 0
\(519\) 28.0000 1.22906
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) 6.00000 + 6.00000i 0.262362 + 0.262362i 0.826013 0.563651i \(-0.190604\pi\)
−0.563651 + 0.826013i \(0.690604\pi\)
\(524\) 0 0
\(525\) −32.0000 + 24.0000i −1.39659 + 1.04745i
\(526\) 0 0
\(527\) 12.0000 + 12.0000i 0.522728 + 0.522728i
\(528\) 0 0
\(529\) 49.0000i 2.13043i
\(530\) 0 0
\(531\) 40.0000 1.73585
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −18.0000 + 6.00000i −0.778208 + 0.259403i
\(536\) 0 0
\(537\) 32.0000 32.0000i 1.38090 1.38090i
\(538\) 0 0
\(539\) 4.00000i 0.172292i
\(540\) 0 0
\(541\) 36.0000i 1.54776i −0.633332 0.773880i \(-0.718313\pi\)
0.633332 0.773880i \(-0.281687\pi\)
\(542\) 0 0
\(543\) −24.0000 + 24.0000i −1.02994 + 1.02994i
\(544\) 0 0
\(545\) 24.0000 + 12.0000i 1.02805 + 0.514024i
\(546\) 0 0
\(547\) −6.00000 + 6.00000i −0.256541 + 0.256541i −0.823646 0.567104i \(-0.808064\pi\)
0.567104 + 0.823646i \(0.308064\pi\)
\(548\) 0 0
\(549\) 30.0000 1.28037
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000 + 16.0000i 0.680389 + 0.680389i
\(554\) 0 0
\(555\) 12.0000 24.0000i 0.509372 1.01874i
\(556\) 0 0
\(557\) −21.0000 21.0000i −0.889799 0.889799i 0.104705 0.994503i \(-0.466610\pi\)
−0.994503 + 0.104705i \(0.966610\pi\)
\(558\) 0 0
\(559\) −36.0000 −1.52264
\(560\) 0 0
\(561\) −48.0000 −2.02656
\(562\) 0 0
\(563\) 10.0000 + 10.0000i 0.421450 + 0.421450i 0.885703 0.464253i \(-0.153677\pi\)
−0.464253 + 0.885703i \(0.653677\pi\)
\(564\) 0 0
\(565\) 9.00000 + 27.0000i 0.378633 + 1.13590i
\(566\) 0 0
\(567\) −2.00000 2.00000i −0.0839921 0.0839921i
\(568\) 0 0
\(569\) 30.0000i 1.25767i −0.777541 0.628833i \(-0.783533\pi\)
0.777541 0.628833i \(-0.216467\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 24.0000 24.0000i 1.00261 1.00261i
\(574\) 0 0
\(575\) −42.0000 6.00000i −1.75152 0.250217i
\(576\) 0 0
\(577\) −17.0000 + 17.0000i −0.707719 + 0.707719i −0.966055 0.258336i \(-0.916826\pi\)
0.258336 + 0.966055i \(0.416826\pi\)
\(578\) 0 0
\(579\) 52.0000i 2.16105i
\(580\) 0 0
\(581\) 24.0000i 0.995688i
\(582\) 0 0
\(583\) −12.0000 + 12.0000i −0.496989 + 0.496989i
\(584\) 0 0
\(585\) −15.0000 45.0000i −0.620174 1.86052i
\(586\) 0 0
\(587\) −6.00000 + 6.00000i −0.247647 + 0.247647i −0.820004 0.572358i \(-0.806029\pi\)
0.572358 + 0.820004i \(0.306029\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 60.0000i 2.46807i
\(592\) 0 0
\(593\) −15.0000 15.0000i −0.615976 0.615976i 0.328521 0.944497i \(-0.393450\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) 24.0000 + 12.0000i 0.983904 + 0.491952i
\(596\) 0 0
\(597\) −48.0000 48.0000i −1.96451 1.96451i
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 0 0
\(603\) 30.0000 + 30.0000i 1.22169 + 1.22169i
\(604\) 0 0
\(605\) −10.0000 5.00000i −0.406558 0.203279i
\(606\) 0 0
\(607\) −2.00000 2.00000i −0.0811775 0.0811775i 0.665352 0.746530i \(-0.268281\pi\)
−0.746530 + 0.665352i \(0.768281\pi\)
\(608\) 0 0
\(609\) 16.0000i 0.648353i
\(610\) 0 0
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) 3.00000 3.00000i 0.121169 0.121169i −0.643922 0.765091i \(-0.722694\pi\)
0.765091 + 0.643922i \(0.222694\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.0000 + 27.0000i −1.08698 + 1.08698i −0.0911411 + 0.995838i \(0.529051\pi\)
−0.995838 + 0.0911411i \(0.970949\pi\)
\(618\) 0 0
\(619\) 24.0000i 0.964641i 0.875995 + 0.482321i \(0.160206\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(620\) 0 0
\(621\) 48.0000i 1.92617i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18.0000 −0.717707
\(630\) 0 0
\(631\) 20.0000i 0.796187i 0.917345 + 0.398094i \(0.130328\pi\)
−0.917345 + 0.398094i \(0.869672\pi\)
\(632\) 0 0
\(633\) −24.0000 24.0000i −0.953914 0.953914i
\(634\) 0 0
\(635\) −2.00000 6.00000i −0.0793676 0.238103i
\(636\) 0 0
\(637\) 3.00000 + 3.00000i 0.118864 + 0.118864i
\(638\) 0 0
\(639\) 60.0000 2.37356
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 30.0000 + 30.0000i 1.18308 + 1.18308i 0.978941 + 0.204144i \(0.0654409\pi\)
0.204144 + 0.978941i \(0.434559\pi\)
\(644\) 0 0
\(645\) −24.0000 + 48.0000i −0.944999 + 1.89000i
\(646\) 0 0
\(647\) 18.0000 + 18.0000i 0.707653 + 0.707653i 0.966041 0.258388i \(-0.0831913\pi\)
−0.258388 + 0.966041i \(0.583191\pi\)
\(648\) 0 0
\(649\) 32.0000i 1.25611i
\(650\) 0 0
\(651\) 32.0000 1.25418
\(652\) 0 0
\(653\) −19.0000 + 19.0000i −0.743527 + 0.743527i −0.973255 0.229728i \(-0.926216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(654\) 0 0
\(655\) 8.00000 + 4.00000i 0.312586 + 0.156293i
\(656\) 0 0
\(657\) 25.0000 25.0000i 0.975343 0.975343i
\(658\) 0 0
\(659\) 40.0000i 1.55818i −0.626913 0.779089i \(-0.715682\pi\)
0.626913 0.779089i \(-0.284318\pi\)
\(660\) 0 0
\(661\) 18.0000i 0.700119i −0.936727 0.350059i \(-0.886161\pi\)
0.936727 0.350059i \(-0.113839\pi\)
\(662\) 0 0
\(663\) −36.0000 + 36.0000i −1.39812 + 1.39812i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000 12.0000i 0.464642 0.464642i
\(668\) 0 0
\(669\) 56.0000 2.16509
\(670\) 0 0
\(671\) 24.0000i 0.926510i
\(672\) 0 0
\(673\) −29.0000 29.0000i −1.11787 1.11787i −0.992054 0.125814i \(-0.959846\pi\)
−0.125814 0.992054i \(-0.540154\pi\)
\(674\) 0 0
\(675\) −28.0000 4.00000i −1.07772 0.153960i
\(676\) 0 0
\(677\) −7.00000 7.00000i −0.269032 0.269032i 0.559678 0.828710i \(-0.310925\pi\)
−0.828710 + 0.559678i \(0.810925\pi\)
\(678\) 0 0
\(679\) 44.0000 1.68857
\(680\) 0 0
\(681\) 8.00000 0.306561
\(682\) 0 0
\(683\) 18.0000 + 18.0000i 0.688751 + 0.688751i 0.961956 0.273205i \(-0.0880837\pi\)
−0.273205 + 0.961956i \(0.588084\pi\)
\(684\) 0 0
\(685\) 45.0000 15.0000i 1.71936 0.573121i
\(686\) 0 0
\(687\) −12.0000 12.0000i −0.457829 0.457829i
\(688\) 0 0
\(689\) 18.0000i 0.685745i
\(690\) 0 0
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) 0 0
\(693\) −40.0000 + 40.0000i −1.51947 + 1.51947i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 12.0000i 0.453882i
\(700\) 0 0
\(701\) 26.0000i 0.982006i −0.871158 0.491003i \(-0.836630\pi\)
0.871158 0.491003i \(-0.163370\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 24.0000 48.0000i 0.903892 1.80778i
\(706\) 0 0
\(707\) −8.00000 + 8.00000i −0.300871 + 0.300871i
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 40.0000i 1.50012i
\(712\) 0 0
\(713\) 24.0000 + 24.0000i 0.898807 + 0.898807i
\(714\) 0 0
\(715\) −36.0000 + 12.0000i −1.34632 + 0.448775i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.00000 8.00000i −0.222834 0.297113i
\(726\) 0 0
\(727\) 10.0000 + 10.0000i 0.370879 + 0.370879i 0.867797 0.496918i \(-0.165535\pi\)
−0.496918 + 0.867797i \(0.665535\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) 0 0
\(731\) 36.0000 1.33151
\(732\) 0 0
\(733\) −33.0000 + 33.0000i −1.21888 + 1.21888i −0.250859 + 0.968024i \(0.580713\pi\)
−0.968024 + 0.250859i \(0.919287\pi\)
\(734\) 0 0
\(735\) 6.00000 2.00000i 0.221313 0.0737711i
\(736\) 0 0
\(737\) 24.0000 24.0000i 0.884051 0.884051i
\(738\) 0 0
\(739\) 48.0000i 1.76571i −0.469647 0.882854i \(-0.655619\pi\)
0.469647 0.882854i \(-0.344381\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.0000 30.0000i 1.10059 1.10059i 0.106254 0.994339i \(-0.466114\pi\)
0.994339 0.106254i \(-0.0338857\pi\)
\(744\) 0 0
\(745\) −8.00000 4.00000i −0.293097 0.146549i
\(746\) 0 0
\(747\) −30.0000 + 30.0000i −1.09764 + 1.09764i
\(748\) 0 0
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) 4.00000i 0.145962i 0.997333 + 0.0729810i \(0.0232513\pi\)
−0.997333 + 0.0729810i \(0.976749\pi\)
\(752\) 0 0
\(753\) −8.00000 8.00000i −0.291536 0.291536i
\(754\) 0 0
\(755\) 12.0000 24.0000i 0.436725 0.873449i
\(756\) 0 0
\(757\) −3.00000 3.00000i −0.109037 0.109037i 0.650484 0.759520i \(-0.274566\pi\)
−0.759520 + 0.650484i \(0.774566\pi\)
\(758\) 0 0
\(759\) −96.0000 −3.48458
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) −24.0000 24.0000i −0.868858 0.868858i
\(764\) 0 0
\(765\) 15.0000 + 45.0000i 0.542326 + 1.62698i
\(766\) 0 0
\(767\) −24.0000 24.0000i −0.866590 0.866590i
\(768\) 0 0
\(769\) 40.0000i 1.44244i 0.692708 + 0.721218i \(0.256418\pi\)
−0.692708 + 0.721218i \(0.743582\pi\)
\(770\) 0 0
\(771\) −36.0000 −1.29651
\(772\) 0 0
\(773\) −5.00000 + 5.00000i −0.179838 + 0.179838i −0.791285 0.611448i \(-0.790588\pi\)
0.611448 + 0.791285i \(0.290588\pi\)
\(774\) 0 0
\(775\) 16.0000 12.0000i 0.574737 0.431053i
\(776\) 0 0
\(777\) −24.0000 + 24.0000i −0.860995 + 0.860995i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 48.0000i 1.71758i
\(782\) 0 0
\(783\) 8.00000 8.00000i 0.285897 0.285897i
\(784\) 0 0
\(785\) 3.00000 + 9.00000i 0.107075 + 0.321224i
\(786\) 0 0
\(787\) 6.00000 6.00000i 0.213877 0.213877i −0.592035 0.805912i \(-0.701675\pi\)
0.805912 + 0.592035i \(0.201675\pi\)
\(788\) 0 0
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 36.0000i 1.28001i
\(792\) 0