Properties

Label 640.2.o.g.447.1
Level $640$
Weight $2$
Character 640.447
Analytic conductor $5.110$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,2,Mod(63,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 447.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 640.447
Dual form 640.2.o.g.63.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 2.00000i) q^{3} +(-2.00000 + 1.00000i) q^{5} +(2.00000 - 2.00000i) q^{7} -5.00000i q^{9} +O(q^{10})\) \(q+(2.00000 - 2.00000i) q^{3} +(-2.00000 + 1.00000i) q^{5} +(2.00000 - 2.00000i) q^{7} -5.00000i q^{9} +4.00000 q^{11} +(3.00000 + 3.00000i) q^{13} +(-2.00000 + 6.00000i) q^{15} +(-3.00000 - 3.00000i) q^{17} -8.00000i q^{21} +(-6.00000 - 6.00000i) q^{23} +(3.00000 - 4.00000i) q^{25} +(-4.00000 - 4.00000i) q^{27} -2.00000 q^{29} +4.00000i q^{31} +(8.00000 - 8.00000i) q^{33} +(-2.00000 + 6.00000i) q^{35} +(3.00000 - 3.00000i) q^{37} +12.0000 q^{39} +(-6.00000 + 6.00000i) q^{43} +(5.00000 + 10.0000i) q^{45} +(6.00000 - 6.00000i) q^{47} -1.00000i q^{49} -12.0000 q^{51} +(-3.00000 - 3.00000i) q^{53} +(-8.00000 + 4.00000i) q^{55} +8.00000i q^{59} +6.00000i q^{61} +(-10.0000 - 10.0000i) q^{63} +(-9.00000 - 3.00000i) q^{65} +(6.00000 + 6.00000i) q^{67} -24.0000 q^{69} +12.0000i q^{71} +(-5.00000 + 5.00000i) q^{73} +(-2.00000 - 14.0000i) q^{75} +(8.00000 - 8.00000i) q^{77} +8.00000 q^{79} -1.00000 q^{81} +(6.00000 - 6.00000i) q^{83} +(9.00000 + 3.00000i) q^{85} +(-4.00000 + 4.00000i) q^{87} +12.0000 q^{91} +(8.00000 + 8.00000i) q^{93} +(11.0000 + 11.0000i) q^{97} -20.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} - 4 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{3} - 4 q^{5} + 4 q^{7} + 8 q^{11} + 6 q^{13} - 4 q^{15} - 6 q^{17} - 12 q^{23} + 6 q^{25} - 8 q^{27} - 4 q^{29} + 16 q^{33} - 4 q^{35} + 6 q^{37} + 24 q^{39} - 12 q^{43} + 10 q^{45} + 12 q^{47} - 24 q^{51} - 6 q^{53} - 16 q^{55} - 20 q^{63} - 18 q^{65} + 12 q^{67} - 48 q^{69} - 10 q^{73} - 4 q^{75} + 16 q^{77} + 16 q^{79} - 2 q^{81} + 12 q^{83} + 18 q^{85} - 8 q^{87} + 24 q^{91} + 16 q^{93} + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 2.00000i 1.15470 1.15470i 0.169102 0.985599i \(-0.445913\pi\)
0.985599 0.169102i \(-0.0540867\pi\)
\(4\) 0 0
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) 0 0
\(7\) 2.00000 2.00000i 0.755929 0.755929i −0.219650 0.975579i \(-0.570491\pi\)
0.975579 + 0.219650i \(0.0704915\pi\)
\(8\) 0 0
\(9\) 5.00000i 1.66667i
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 3.00000 + 3.00000i 0.832050 + 0.832050i 0.987797 0.155747i \(-0.0497784\pi\)
−0.155747 + 0.987797i \(0.549778\pi\)
\(14\) 0 0
\(15\) −2.00000 + 6.00000i −0.516398 + 1.54919i
\(16\) 0 0
\(17\) −3.00000 3.00000i −0.727607 0.727607i 0.242536 0.970143i \(-0.422021\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 8.00000i 1.74574i
\(22\) 0 0
\(23\) −6.00000 6.00000i −1.25109 1.25109i −0.955233 0.295853i \(-0.904396\pi\)
−0.295853 0.955233i \(-0.595604\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) 8.00000 8.00000i 1.39262 1.39262i
\(34\) 0 0
\(35\) −2.00000 + 6.00000i −0.338062 + 1.01419i
\(36\) 0 0
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 0 0
\(39\) 12.0000 1.92154
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −6.00000 + 6.00000i −0.914991 + 0.914991i −0.996660 0.0816682i \(-0.973975\pi\)
0.0816682 + 0.996660i \(0.473975\pi\)
\(44\) 0 0
\(45\) 5.00000 + 10.0000i 0.745356 + 1.49071i
\(46\) 0 0
\(47\) 6.00000 6.00000i 0.875190 0.875190i −0.117842 0.993032i \(-0.537598\pi\)
0.993032 + 0.117842i \(0.0375978\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) −12.0000 −1.68034
\(52\) 0 0
\(53\) −3.00000 3.00000i −0.412082 0.412082i 0.470381 0.882463i \(-0.344116\pi\)
−0.882463 + 0.470381i \(0.844116\pi\)
\(54\) 0 0
\(55\) −8.00000 + 4.00000i −1.07872 + 0.539360i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.00000i 1.04151i 0.853706 + 0.520756i \(0.174350\pi\)
−0.853706 + 0.520756i \(0.825650\pi\)
\(60\) 0 0
\(61\) 6.00000i 0.768221i 0.923287 + 0.384111i \(0.125492\pi\)
−0.923287 + 0.384111i \(0.874508\pi\)
\(62\) 0 0
\(63\) −10.0000 10.0000i −1.25988 1.25988i
\(64\) 0 0
\(65\) −9.00000 3.00000i −1.11631 0.372104i
\(66\) 0 0
\(67\) 6.00000 + 6.00000i 0.733017 + 0.733017i 0.971216 0.238200i \(-0.0765572\pi\)
−0.238200 + 0.971216i \(0.576557\pi\)
\(68\) 0 0
\(69\) −24.0000 −2.88926
\(70\) 0 0
\(71\) 12.0000i 1.42414i 0.702109 + 0.712069i \(0.252242\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(72\) 0 0
\(73\) −5.00000 + 5.00000i −0.585206 + 0.585206i −0.936329 0.351123i \(-0.885800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) −2.00000 14.0000i −0.230940 1.61658i
\(76\) 0 0
\(77\) 8.00000 8.00000i 0.911685 0.911685i
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 6.00000 6.00000i 0.658586 0.658586i −0.296460 0.955045i \(-0.595806\pi\)
0.955045 + 0.296460i \(0.0958061\pi\)
\(84\) 0 0
\(85\) 9.00000 + 3.00000i 0.976187 + 0.325396i
\(86\) 0 0
\(87\) −4.00000 + 4.00000i −0.428845 + 0.428845i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 8.00000 + 8.00000i 0.829561 + 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.0000 + 11.0000i 1.11688 + 1.11688i 0.992196 + 0.124684i \(0.0397918\pi\)
0.124684 + 0.992196i \(0.460208\pi\)
\(98\) 0 0
\(99\) 20.0000i 2.01008i
\(100\) 0 0
\(101\) 4.00000i 0.398015i −0.979998 0.199007i \(-0.936228\pi\)
0.979998 0.199007i \(-0.0637718\pi\)
\(102\) 0 0
\(103\) 2.00000 + 2.00000i 0.197066 + 0.197066i 0.798741 0.601675i \(-0.205500\pi\)
−0.601675 + 0.798741i \(0.705500\pi\)
\(104\) 0 0
\(105\) 8.00000 + 16.0000i 0.780720 + 1.56144i
\(106\) 0 0
\(107\) 6.00000 + 6.00000i 0.580042 + 0.580042i 0.934915 0.354873i \(-0.115476\pi\)
−0.354873 + 0.934915i \(0.615476\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 12.0000i 1.13899i
\(112\) 0 0
\(113\) −9.00000 + 9.00000i −0.846649 + 0.846649i −0.989713 0.143065i \(-0.954304\pi\)
0.143065 + 0.989713i \(0.454304\pi\)
\(114\) 0 0
\(115\) 18.0000 + 6.00000i 1.67851 + 0.559503i
\(116\) 0 0
\(117\) 15.0000 15.0000i 1.38675 1.38675i
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) 0 0
\(127\) 2.00000 2.00000i 0.177471 0.177471i −0.612781 0.790253i \(-0.709949\pi\)
0.790253 + 0.612781i \(0.209949\pi\)
\(128\) 0 0
\(129\) 24.0000i 2.11308i
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 12.0000 + 4.00000i 1.03280 + 0.344265i
\(136\) 0 0
\(137\) −15.0000 15.0000i −1.28154 1.28154i −0.939793 0.341743i \(-0.888983\pi\)
−0.341743 0.939793i \(-0.611017\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 24.0000i 2.02116i
\(142\) 0 0
\(143\) 12.0000 + 12.0000i 1.00349 + 1.00349i
\(144\) 0 0
\(145\) 4.00000 2.00000i 0.332182 0.166091i
\(146\) 0 0
\(147\) −2.00000 2.00000i −0.164957 0.164957i
\(148\) 0 0
\(149\) 4.00000 0.327693 0.163846 0.986486i \(-0.447610\pi\)
0.163846 + 0.986486i \(0.447610\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i −0.872691 0.488273i \(-0.837627\pi\)
0.872691 0.488273i \(-0.162373\pi\)
\(152\) 0 0
\(153\) −15.0000 + 15.0000i −1.21268 + 1.21268i
\(154\) 0 0
\(155\) −4.00000 8.00000i −0.321288 0.642575i
\(156\) 0 0
\(157\) −3.00000 + 3.00000i −0.239426 + 0.239426i −0.816612 0.577186i \(-0.804151\pi\)
0.577186 + 0.816612i \(0.304151\pi\)
\(158\) 0 0
\(159\) −12.0000 −0.951662
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) −6.00000 + 6.00000i −0.469956 + 0.469956i −0.901900 0.431944i \(-0.857828\pi\)
0.431944 + 0.901900i \(0.357828\pi\)
\(164\) 0 0
\(165\) −8.00000 + 24.0000i −0.622799 + 1.86840i
\(166\) 0 0
\(167\) 6.00000 6.00000i 0.464294 0.464294i −0.435766 0.900060i \(-0.643522\pi\)
0.900060 + 0.435766i \(0.143522\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.00000 + 7.00000i 0.532200 + 0.532200i 0.921227 0.389026i \(-0.127189\pi\)
−0.389026 + 0.921227i \(0.627189\pi\)
\(174\) 0 0
\(175\) −2.00000 14.0000i −0.151186 1.05830i
\(176\) 0 0
\(177\) 16.0000 + 16.0000i 1.20263 + 1.20263i
\(178\) 0 0
\(179\) 16.0000i 1.19590i 0.801535 + 0.597948i \(0.204017\pi\)
−0.801535 + 0.597948i \(0.795983\pi\)
\(180\) 0 0
\(181\) 12.0000i 0.891953i −0.895045 0.445976i \(-0.852856\pi\)
0.895045 0.445976i \(-0.147144\pi\)
\(182\) 0 0
\(183\) 12.0000 + 12.0000i 0.887066 + 0.887066i
\(184\) 0 0
\(185\) −3.00000 + 9.00000i −0.220564 + 0.661693i
\(186\) 0 0
\(187\) −12.0000 12.0000i −0.877527 0.877527i
\(188\) 0 0
\(189\) −16.0000 −1.16383
\(190\) 0 0
\(191\) 12.0000i 0.868290i 0.900843 + 0.434145i \(0.142949\pi\)
−0.900843 + 0.434145i \(0.857051\pi\)
\(192\) 0 0
\(193\) 13.0000 13.0000i 0.935760 0.935760i −0.0622972 0.998058i \(-0.519843\pi\)
0.998058 + 0.0622972i \(0.0198427\pi\)
\(194\) 0 0
\(195\) −24.0000 + 12.0000i −1.71868 + 0.859338i
\(196\) 0 0
\(197\) −15.0000 + 15.0000i −1.06871 + 1.06871i −0.0712470 + 0.997459i \(0.522698\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 24.0000 1.69283
\(202\) 0 0
\(203\) −4.00000 + 4.00000i −0.280745 + 0.280745i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −30.0000 + 30.0000i −2.08514 + 2.08514i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 24.0000 + 24.0000i 1.64445 + 1.64445i
\(214\) 0 0
\(215\) 6.00000 18.0000i 0.409197 1.22759i
\(216\) 0 0
\(217\) 8.00000 + 8.00000i 0.543075 + 0.543075i
\(218\) 0 0
\(219\) 20.0000i 1.35147i
\(220\) 0 0
\(221\) 18.0000i 1.21081i
\(222\) 0 0
\(223\) 14.0000 + 14.0000i 0.937509 + 0.937509i 0.998159 0.0606498i \(-0.0193173\pi\)
−0.0606498 + 0.998159i \(0.519317\pi\)
\(224\) 0 0
\(225\) −20.0000 15.0000i −1.33333 1.00000i
\(226\) 0 0
\(227\) 2.00000 + 2.00000i 0.132745 + 0.132745i 0.770357 0.637613i \(-0.220078\pi\)
−0.637613 + 0.770357i \(0.720078\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 32.0000i 2.10545i
\(232\) 0 0
\(233\) −3.00000 + 3.00000i −0.196537 + 0.196537i −0.798513 0.601977i \(-0.794380\pi\)
0.601977 + 0.798513i \(0.294380\pi\)
\(234\) 0 0
\(235\) −6.00000 + 18.0000i −0.391397 + 1.17419i
\(236\) 0 0
\(237\) 16.0000 16.0000i 1.03931 1.03931i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 10.0000 10.0000i 0.641500 0.641500i
\(244\) 0 0
\(245\) 1.00000 + 2.00000i 0.0638877 + 0.127775i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 24.0000i 1.52094i
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) −24.0000 24.0000i −1.50887 1.50887i
\(254\) 0 0
\(255\) 24.0000 12.0000i 1.50294 0.751469i
\(256\) 0 0
\(257\) −9.00000 9.00000i −0.561405 0.561405i 0.368302 0.929706i \(-0.379939\pi\)
−0.929706 + 0.368302i \(0.879939\pi\)
\(258\) 0 0
\(259\) 12.0000i 0.745644i
\(260\) 0 0
\(261\) 10.0000i 0.618984i
\(262\) 0 0
\(263\) 6.00000 + 6.00000i 0.369976 + 0.369976i 0.867468 0.497492i \(-0.165746\pi\)
−0.497492 + 0.867468i \(0.665746\pi\)
\(264\) 0 0
\(265\) 9.00000 + 3.00000i 0.552866 + 0.184289i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.00000 −0.243884 −0.121942 0.992537i \(-0.538912\pi\)
−0.121942 + 0.992537i \(0.538912\pi\)
\(270\) 0 0
\(271\) 12.0000i 0.728948i 0.931214 + 0.364474i \(0.118751\pi\)
−0.931214 + 0.364474i \(0.881249\pi\)
\(272\) 0 0
\(273\) 24.0000 24.0000i 1.45255 1.45255i
\(274\) 0 0
\(275\) 12.0000 16.0000i 0.723627 0.964836i
\(276\) 0 0
\(277\) 21.0000 21.0000i 1.26177 1.26177i 0.311532 0.950236i \(-0.399158\pi\)
0.950236 0.311532i \(-0.100842\pi\)
\(278\) 0 0
\(279\) 20.0000 1.19737
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 0 0
\(283\) 6.00000 6.00000i 0.356663 0.356663i −0.505918 0.862581i \(-0.668846\pi\)
0.862581 + 0.505918i \(0.168846\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 44.0000 2.57933
\(292\) 0 0
\(293\) 9.00000 + 9.00000i 0.525786 + 0.525786i 0.919313 0.393527i \(-0.128745\pi\)
−0.393527 + 0.919313i \(0.628745\pi\)
\(294\) 0 0
\(295\) −8.00000 16.0000i −0.465778 0.931556i
\(296\) 0 0
\(297\) −16.0000 16.0000i −0.928414 0.928414i
\(298\) 0 0
\(299\) 36.0000i 2.08193i
\(300\) 0 0
\(301\) 24.0000i 1.38334i
\(302\) 0 0
\(303\) −8.00000 8.00000i −0.459588 0.459588i
\(304\) 0 0
\(305\) −6.00000 12.0000i −0.343559 0.687118i
\(306\) 0 0
\(307\) −18.0000 18.0000i −1.02731 1.02731i −0.999616 0.0276979i \(-0.991182\pi\)
−0.0276979 0.999616i \(-0.508818\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 12.0000i 0.680458i 0.940343 + 0.340229i \(0.110505\pi\)
−0.940343 + 0.340229i \(0.889495\pi\)
\(312\) 0 0
\(313\) −1.00000 + 1.00000i −0.0565233 + 0.0565233i −0.734803 0.678280i \(-0.762726\pi\)
0.678280 + 0.734803i \(0.262726\pi\)
\(314\) 0 0
\(315\) 30.0000 + 10.0000i 1.69031 + 0.563436i
\(316\) 0 0
\(317\) 7.00000 7.00000i 0.393159 0.393159i −0.482653 0.875812i \(-0.660327\pi\)
0.875812 + 0.482653i \(0.160327\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 24.0000 1.33955
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 21.0000 3.00000i 1.16487 0.166410i
\(326\) 0 0
\(327\) −24.0000 + 24.0000i −1.32720 + 1.32720i
\(328\) 0 0
\(329\) 24.0000i 1.32316i
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) −15.0000 15.0000i −0.821995 0.821995i
\(334\) 0 0
\(335\) −18.0000 6.00000i −0.983445 0.327815i
\(336\) 0 0
\(337\) −7.00000 7.00000i −0.381314 0.381314i 0.490261 0.871576i \(-0.336901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 0 0
\(339\) 36.0000i 1.95525i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 0 0
\(345\) 48.0000 24.0000i 2.58423 1.29212i
\(346\) 0 0
\(347\) 10.0000 + 10.0000i 0.536828 + 0.536828i 0.922596 0.385768i \(-0.126063\pi\)
−0.385768 + 0.922596i \(0.626063\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 24.0000i 1.28103i
\(352\) 0 0
\(353\) 9.00000 9.00000i 0.479022 0.479022i −0.425797 0.904819i \(-0.640006\pi\)
0.904819 + 0.425797i \(0.140006\pi\)
\(354\) 0 0
\(355\) −12.0000 24.0000i −0.636894 1.27379i
\(356\) 0 0
\(357\) −24.0000 + 24.0000i −1.27021 + 1.27021i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 10.0000 10.0000i 0.524864 0.524864i
\(364\) 0 0
\(365\) 5.00000 15.0000i 0.261712 0.785136i
\(366\) 0 0
\(367\) 26.0000 26.0000i 1.35719 1.35719i 0.479824 0.877365i \(-0.340700\pi\)
0.877365 0.479824i \(-0.159300\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) −9.00000 9.00000i −0.466002 0.466002i 0.434614 0.900617i \(-0.356885\pi\)
−0.900617 + 0.434614i \(0.856885\pi\)
\(374\) 0 0
\(375\) 18.0000 + 26.0000i 0.929516 + 1.34263i
\(376\) 0 0
\(377\) −6.00000 6.00000i −0.309016 0.309016i
\(378\) 0 0
\(379\) 24.0000i 1.23280i −0.787434 0.616399i \(-0.788591\pi\)
0.787434 0.616399i \(-0.211409\pi\)
\(380\) 0 0
\(381\) 8.00000i 0.409852i
\(382\) 0 0
\(383\) 6.00000 + 6.00000i 0.306586 + 0.306586i 0.843584 0.536998i \(-0.180442\pi\)
−0.536998 + 0.843584i \(0.680442\pi\)
\(384\) 0 0
\(385\) −8.00000 + 24.0000i −0.407718 + 1.22315i
\(386\) 0 0
\(387\) 30.0000 + 30.0000i 1.52499 + 1.52499i
\(388\) 0 0
\(389\) −4.00000 −0.202808 −0.101404 0.994845i \(-0.532333\pi\)
−0.101404 + 0.994845i \(0.532333\pi\)
\(390\) 0 0
\(391\) 36.0000i 1.82060i
\(392\) 0 0
\(393\) −8.00000 + 8.00000i −0.403547 + 0.403547i
\(394\) 0 0
\(395\) −16.0000 + 8.00000i −0.805047 + 0.402524i
\(396\) 0 0
\(397\) −15.0000 + 15.0000i −0.752828 + 0.752828i −0.975006 0.222178i \(-0.928683\pi\)
0.222178 + 0.975006i \(0.428683\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −12.0000 + 12.0000i −0.597763 + 0.597763i
\(404\) 0 0
\(405\) 2.00000 1.00000i 0.0993808 0.0496904i
\(406\) 0 0
\(407\) 12.0000 12.0000i 0.594818 0.594818i
\(408\) 0 0
\(409\) 30.0000i 1.48340i −0.670729 0.741702i \(-0.734019\pi\)
0.670729 0.741702i \(-0.265981\pi\)
\(410\) 0 0
\(411\) −60.0000 −2.95958
\(412\) 0 0
\(413\) 16.0000 + 16.0000i 0.787309 + 0.787309i
\(414\) 0 0
\(415\) −6.00000 + 18.0000i −0.294528 + 0.883585i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.00000i 0.390826i −0.980721 0.195413i \(-0.937395\pi\)
0.980721 0.195413i \(-0.0626047\pi\)
\(420\) 0 0
\(421\) 30.0000i 1.46211i 0.682318 + 0.731055i \(0.260972\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 0 0
\(423\) −30.0000 30.0000i −1.45865 1.45865i
\(424\) 0 0
\(425\) −21.0000 + 3.00000i −1.01865 + 0.145521i
\(426\) 0 0
\(427\) 12.0000 + 12.0000i 0.580721 + 0.580721i
\(428\) 0 0
\(429\) 48.0000 2.31746
\(430\) 0 0
\(431\) 36.0000i 1.73406i −0.498257 0.867029i \(-0.666026\pi\)
0.498257 0.867029i \(-0.333974\pi\)
\(432\) 0 0
\(433\) 11.0000 11.0000i 0.528626 0.528626i −0.391536 0.920163i \(-0.628056\pi\)
0.920163 + 0.391536i \(0.128056\pi\)
\(434\) 0 0
\(435\) 4.00000 12.0000i 0.191785 0.575356i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) −5.00000 −0.238095
\(442\) 0 0
\(443\) −2.00000 + 2.00000i −0.0950229 + 0.0950229i −0.753020 0.657997i \(-0.771404\pi\)
0.657997 + 0.753020i \(0.271404\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 8.00000 8.00000i 0.378387 0.378387i
\(448\) 0 0
\(449\) 6.00000i 0.283158i −0.989927 0.141579i \(-0.954782\pi\)
0.989927 0.141579i \(-0.0452178\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −24.0000 24.0000i −1.12762 1.12762i
\(454\) 0 0
\(455\) −24.0000 + 12.0000i −1.12514 + 0.562569i
\(456\) 0 0
\(457\) −1.00000 1.00000i −0.0467780 0.0467780i 0.683331 0.730109i \(-0.260531\pi\)
−0.730109 + 0.683331i \(0.760531\pi\)
\(458\) 0 0
\(459\) 24.0000i 1.12022i
\(460\) 0 0
\(461\) 28.0000i 1.30409i −0.758180 0.652045i \(-0.773911\pi\)
0.758180 0.652045i \(-0.226089\pi\)
\(462\) 0 0
\(463\) −14.0000 14.0000i −0.650635 0.650635i 0.302511 0.953146i \(-0.402175\pi\)
−0.953146 + 0.302511i \(0.902175\pi\)
\(464\) 0 0
\(465\) −24.0000 8.00000i −1.11297 0.370991i
\(466\) 0 0
\(467\) −30.0000 30.0000i −1.38823 1.38823i −0.829029 0.559205i \(-0.811106\pi\)
−0.559205 0.829029i \(-0.688894\pi\)
\(468\) 0 0
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) 12.0000i 0.552931i
\(472\) 0 0
\(473\) −24.0000 + 24.0000i −1.10352 + 1.10352i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15.0000 + 15.0000i −0.686803 + 0.686803i
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) −48.0000 + 48.0000i −2.18408 + 2.18408i
\(484\) 0 0
\(485\) −33.0000 11.0000i −1.49845 0.499484i
\(486\) 0 0
\(487\) 10.0000 10.0000i 0.453143 0.453143i −0.443253 0.896396i \(-0.646176\pi\)
0.896396 + 0.443253i \(0.146176\pi\)
\(488\) 0 0
\(489\) 24.0000i 1.08532i
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 6.00000 + 6.00000i 0.270226 + 0.270226i
\(494\) 0 0
\(495\) 20.0000 + 40.0000i 0.898933 + 1.79787i
\(496\) 0 0
\(497\) 24.0000 + 24.0000i 1.07655 + 1.07655i
\(498\) 0 0
\(499\) 24.0000i 1.07439i 0.843459 + 0.537194i \(0.180516\pi\)
−0.843459 + 0.537194i \(0.819484\pi\)
\(500\) 0 0
\(501\) 24.0000i 1.07224i
\(502\) 0 0
\(503\) −6.00000 6.00000i −0.267527 0.267527i 0.560576 0.828103i \(-0.310580\pi\)
−0.828103 + 0.560576i \(0.810580\pi\)
\(504\) 0 0
\(505\) 4.00000 + 8.00000i 0.177998 + 0.355995i
\(506\) 0 0
\(507\) 10.0000 + 10.0000i 0.444116 + 0.444116i
\(508\) 0 0
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 0 0
\(511\) 20.0000i 0.884748i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.00000 2.00000i −0.264392 0.0881305i
\(516\) 0 0
\(517\) 24.0000 24.0000i 1.05552 1.05552i
\(518\) 0 0
\(519\) 28.0000 1.22906
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) 6.00000 6.00000i 0.262362 0.262362i −0.563651 0.826013i \(-0.690604\pi\)
0.826013 + 0.563651i \(0.190604\pi\)
\(524\) 0 0
\(525\) −32.0000 24.0000i −1.39659 1.04745i
\(526\) 0 0
\(527\) 12.0000 12.0000i 0.522728 0.522728i
\(528\) 0 0
\(529\) 49.0000i 2.13043i
\(530\) 0 0
\(531\) 40.0000 1.73585
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −18.0000 6.00000i −0.778208 0.259403i
\(536\) 0 0
\(537\) 32.0000 + 32.0000i 1.38090 + 1.38090i
\(538\) 0 0
\(539\) 4.00000i 0.172292i
\(540\) 0 0
\(541\) 36.0000i 1.54776i 0.633332 + 0.773880i \(0.281687\pi\)
−0.633332 + 0.773880i \(0.718313\pi\)
\(542\) 0 0
\(543\) −24.0000 24.0000i −1.02994 1.02994i
\(544\) 0 0
\(545\) 24.0000 12.0000i 1.02805 0.514024i
\(546\) 0 0
\(547\) −6.00000 6.00000i −0.256541 0.256541i 0.567104 0.823646i \(-0.308064\pi\)
−0.823646 + 0.567104i \(0.808064\pi\)
\(548\) 0 0
\(549\) 30.0000 1.28037
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000 16.0000i 0.680389 0.680389i
\(554\) 0 0
\(555\) 12.0000 + 24.0000i 0.509372 + 1.01874i
\(556\) 0 0
\(557\) −21.0000 + 21.0000i −0.889799 + 0.889799i −0.994503 0.104705i \(-0.966610\pi\)
0.104705 + 0.994503i \(0.466610\pi\)
\(558\) 0 0
\(559\) −36.0000 −1.52264
\(560\) 0 0
\(561\) −48.0000 −2.02656
\(562\) 0 0
\(563\) 10.0000 10.0000i 0.421450 0.421450i −0.464253 0.885703i \(-0.653677\pi\)
0.885703 + 0.464253i \(0.153677\pi\)
\(564\) 0 0
\(565\) 9.00000 27.0000i 0.378633 1.13590i
\(566\) 0 0
\(567\) −2.00000 + 2.00000i −0.0839921 + 0.0839921i
\(568\) 0 0
\(569\) 30.0000i 1.25767i 0.777541 + 0.628833i \(0.216467\pi\)
−0.777541 + 0.628833i \(0.783533\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 24.0000 + 24.0000i 1.00261 + 1.00261i
\(574\) 0 0
\(575\) −42.0000 + 6.00000i −1.75152 + 0.250217i
\(576\) 0 0
\(577\) −17.0000 17.0000i −0.707719 0.707719i 0.258336 0.966055i \(-0.416826\pi\)
−0.966055 + 0.258336i \(0.916826\pi\)
\(578\) 0 0
\(579\) 52.0000i 2.16105i
\(580\) 0 0
\(581\) 24.0000i 0.995688i
\(582\) 0 0
\(583\) −12.0000 12.0000i −0.496989 0.496989i
\(584\) 0 0
\(585\) −15.0000 + 45.0000i −0.620174 + 1.86052i
\(586\) 0 0
\(587\) −6.00000 6.00000i −0.247647 0.247647i 0.572358 0.820004i \(-0.306029\pi\)
−0.820004 + 0.572358i \(0.806029\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 60.0000i 2.46807i
\(592\) 0 0
\(593\) −15.0000 + 15.0000i −0.615976 + 0.615976i −0.944497 0.328521i \(-0.893450\pi\)
0.328521 + 0.944497i \(0.393450\pi\)
\(594\) 0 0
\(595\) 24.0000 12.0000i 0.983904 0.491952i
\(596\) 0 0
\(597\) −48.0000 + 48.0000i −1.96451 + 1.96451i
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 0 0
\(603\) 30.0000 30.0000i 1.22169 1.22169i
\(604\) 0 0
\(605\) −10.0000 + 5.00000i −0.406558 + 0.203279i
\(606\) 0 0
\(607\) −2.00000 + 2.00000i −0.0811775 + 0.0811775i −0.746530 0.665352i \(-0.768281\pi\)
0.665352 + 0.746530i \(0.268281\pi\)
\(608\) 0 0
\(609\) 16.0000i 0.648353i
\(610\) 0 0
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) 3.00000 + 3.00000i 0.121169 + 0.121169i 0.765091 0.643922i \(-0.222694\pi\)
−0.643922 + 0.765091i \(0.722694\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.0000 27.0000i −1.08698 1.08698i −0.995838 0.0911411i \(-0.970949\pi\)
−0.0911411 0.995838i \(-0.529051\pi\)
\(618\) 0 0
\(619\) 24.0000i 0.964641i −0.875995 0.482321i \(-0.839794\pi\)
0.875995 0.482321i \(-0.160206\pi\)
\(620\) 0 0
\(621\) 48.0000i 1.92617i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18.0000 −0.717707
\(630\) 0 0
\(631\) 20.0000i 0.796187i −0.917345 0.398094i \(-0.869672\pi\)
0.917345 0.398094i \(-0.130328\pi\)
\(632\) 0 0
\(633\) −24.0000 + 24.0000i −0.953914 + 0.953914i
\(634\) 0 0
\(635\) −2.00000 + 6.00000i −0.0793676 + 0.238103i
\(636\) 0 0
\(637\) 3.00000 3.00000i 0.118864 0.118864i
\(638\) 0 0
\(639\) 60.0000 2.37356
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 30.0000 30.0000i 1.18308 1.18308i 0.204144 0.978941i \(-0.434559\pi\)
0.978941 0.204144i \(-0.0654409\pi\)
\(644\) 0 0
\(645\) −24.0000 48.0000i −0.944999 1.89000i
\(646\) 0 0
\(647\) 18.0000 18.0000i 0.707653 0.707653i −0.258388 0.966041i \(-0.583191\pi\)
0.966041 + 0.258388i \(0.0831913\pi\)
\(648\) 0 0
\(649\) 32.0000i 1.25611i
\(650\) 0 0
\(651\) 32.0000 1.25418
\(652\) 0 0
\(653\) −19.0000 19.0000i −0.743527 0.743527i 0.229728 0.973255i \(-0.426216\pi\)
−0.973255 + 0.229728i \(0.926216\pi\)
\(654\) 0 0
\(655\) 8.00000 4.00000i 0.312586 0.156293i
\(656\) 0 0
\(657\) 25.0000 + 25.0000i 0.975343 + 0.975343i
\(658\) 0 0
\(659\) 40.0000i 1.55818i 0.626913 + 0.779089i \(0.284318\pi\)
−0.626913 + 0.779089i \(0.715682\pi\)
\(660\) 0 0
\(661\) 18.0000i 0.700119i 0.936727 + 0.350059i \(0.113839\pi\)
−0.936727 + 0.350059i \(0.886161\pi\)
\(662\) 0 0
\(663\) −36.0000 36.0000i −1.39812 1.39812i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000 + 12.0000i 0.464642 + 0.464642i
\(668\) 0 0
\(669\) 56.0000 2.16509
\(670\) 0 0
\(671\) 24.0000i 0.926510i
\(672\) 0 0
\(673\) −29.0000 + 29.0000i −1.11787 + 1.11787i −0.125814 + 0.992054i \(0.540154\pi\)
−0.992054 + 0.125814i \(0.959846\pi\)
\(674\) 0 0
\(675\) −28.0000 + 4.00000i −1.07772 + 0.153960i
\(676\) 0 0
\(677\) −7.00000 + 7.00000i −0.269032 + 0.269032i −0.828710 0.559678i \(-0.810925\pi\)
0.559678 + 0.828710i \(0.310925\pi\)
\(678\) 0 0
\(679\) 44.0000 1.68857
\(680\) 0 0
\(681\) 8.00000 0.306561
\(682\) 0 0
\(683\) 18.0000 18.0000i 0.688751 0.688751i −0.273205 0.961956i \(-0.588084\pi\)
0.961956 + 0.273205i \(0.0880837\pi\)
\(684\) 0 0
\(685\) 45.0000 + 15.0000i 1.71936 + 0.573121i
\(686\) 0 0
\(687\) −12.0000 + 12.0000i −0.457829 + 0.457829i
\(688\) 0 0
\(689\) 18.0000i 0.685745i
\(690\) 0 0
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) 0 0
\(693\) −40.0000 40.0000i −1.51947 1.51947i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 12.0000i 0.453882i
\(700\) 0 0
\(701\) 26.0000i 0.982006i 0.871158 + 0.491003i \(0.163370\pi\)
−0.871158 + 0.491003i \(0.836630\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 24.0000 + 48.0000i 0.903892 + 1.80778i
\(706\) 0 0
\(707\) −8.00000 8.00000i −0.300871 0.300871i
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 40.0000i 1.50012i
\(712\) 0 0
\(713\) 24.0000 24.0000i 0.898807 0.898807i
\(714\) 0 0
\(715\) −36.0000 12.0000i −1.34632 0.448775i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.00000 + 8.00000i −0.222834 + 0.297113i
\(726\) 0 0
\(727\) 10.0000 10.0000i 0.370879 0.370879i −0.496918 0.867797i \(-0.665535\pi\)
0.867797 + 0.496918i \(0.165535\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) 0 0
\(731\) 36.0000 1.33151
\(732\) 0 0
\(733\) −33.0000 33.0000i −1.21888 1.21888i −0.968024 0.250859i \(-0.919287\pi\)
−0.250859 0.968024i \(-0.580713\pi\)
\(734\) 0 0
\(735\) 6.00000 + 2.00000i 0.221313 + 0.0737711i
\(736\) 0 0
\(737\) 24.0000 + 24.0000i 0.884051 + 0.884051i
\(738\) 0 0
\(739\) 48.0000i 1.76571i 0.469647 + 0.882854i \(0.344381\pi\)
−0.469647 + 0.882854i \(0.655619\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.0000 + 30.0000i 1.10059 + 1.10059i 0.994339 + 0.106254i \(0.0338857\pi\)
0.106254 + 0.994339i \(0.466114\pi\)
\(744\) 0 0
\(745\) −8.00000 + 4.00000i −0.293097 + 0.146549i
\(746\) 0 0
\(747\) −30.0000 30.0000i −1.09764 1.09764i
\(748\) 0 0
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) 4.00000i 0.145962i −0.997333 0.0729810i \(-0.976749\pi\)
0.997333 0.0729810i \(-0.0232513\pi\)
\(752\) 0 0
\(753\) −8.00000 + 8.00000i −0.291536 + 0.291536i
\(754\) 0 0
\(755\) 12.0000 + 24.0000i 0.436725 + 0.873449i
\(756\) 0 0
\(757\) −3.00000 + 3.00000i −0.109037 + 0.109037i −0.759520 0.650484i \(-0.774566\pi\)
0.650484 + 0.759520i \(0.274566\pi\)
\(758\) 0 0
\(759\) −96.0000 −3.48458
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) −24.0000 + 24.0000i −0.868858 + 0.868858i
\(764\) 0 0
\(765\) 15.0000 45.0000i 0.542326 1.62698i
\(766\) 0 0
\(767\) −24.0000 + 24.0000i −0.866590 + 0.866590i
\(768\) 0 0
\(769\) 40.0000i 1.44244i −0.692708 0.721218i \(-0.743582\pi\)
0.692708 0.721218i \(-0.256418\pi\)
\(770\) 0 0
\(771\) −36.0000 −1.29651
\(772\) 0 0
\(773\) −5.00000 5.00000i −0.179838 0.179838i 0.611448 0.791285i \(-0.290588\pi\)
−0.791285 + 0.611448i \(0.790588\pi\)
\(774\) 0 0
\(775\) 16.0000 + 12.0000i 0.574737 + 0.431053i
\(776\) 0 0
\(777\) −24.0000 24.0000i −0.860995 0.860995i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 48.0000i 1.71758i
\(782\) 0 0
\(783\) 8.00000 + 8.00000i 0.285897 + 0.285897i
\(784\) 0 0
\(785\) 3.00000 9.00000i 0.107075 0.321224i
\(786\) 0 0
\(787\) 6.00000 + 6.00000i 0.213877 + 0.213877i 0.805912 0.592035i \(-0.201675\pi\)
−0.592035 + 0.805912i \(0.701675\pi\)
\(788\) 0 0
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 36.0000i 1.28001i
\(792\) 0