Properties

Label 640.2.o.a
Level $640$
Weight $2$
Character orbit 640.o
Analytic conductor $5.110$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,2,Mod(63,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 i - 2) q^{3} + (i - 2) q^{5} + (2 i - 2) q^{7} - 5 i q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (2 i - 2) q^{3} + (i - 2) q^{5} + (2 i - 2) q^{7} - 5 i q^{9} - 4 q^{11} + (3 i + 3) q^{13} + ( - 6 i + 2) q^{15} + ( - 3 i - 3) q^{17} - 8 i q^{21} + (6 i + 6) q^{23} + ( - 4 i + 3) q^{25} + (4 i + 4) q^{27} - 2 q^{29} - 4 i q^{31} + ( - 8 i + 8) q^{33} + ( - 6 i + 2) q^{35} + ( - 3 i + 3) q^{37} - 12 q^{39} + ( - 6 i + 6) q^{43} + (10 i + 5) q^{45} + (6 i - 6) q^{47} - i q^{49} + 12 q^{51} + ( - 3 i - 3) q^{53} + ( - 4 i + 8) q^{55} - 8 i q^{59} + 6 i q^{61} + (10 i + 10) q^{63} + ( - 3 i - 9) q^{65} + ( - 6 i - 6) q^{67} - 24 q^{69} - 12 i q^{71} + (5 i - 5) q^{73} + (14 i + 2) q^{75} + ( - 8 i + 8) q^{77} - 8 q^{79} - q^{81} + (6 i - 6) q^{83} + (3 i + 9) q^{85} + ( - 4 i + 4) q^{87} - 12 q^{91} + (8 i + 8) q^{93} + (11 i + 11) q^{97} + 20 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} - 4 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{3} - 4 q^{5} - 4 q^{7} - 8 q^{11} + 6 q^{13} + 4 q^{15} - 6 q^{17} + 12 q^{23} + 6 q^{25} + 8 q^{27} - 4 q^{29} + 16 q^{33} + 4 q^{35} + 6 q^{37} - 24 q^{39} + 12 q^{43} + 10 q^{45} - 12 q^{47} + 24 q^{51} - 6 q^{53} + 16 q^{55} + 20 q^{63} - 18 q^{65} - 12 q^{67} - 48 q^{69} - 10 q^{73} + 4 q^{75} + 16 q^{77} - 16 q^{79} - 2 q^{81} - 12 q^{83} + 18 q^{85} + 8 q^{87} - 24 q^{91} + 16 q^{93} + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(i\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
63.1
1.00000i
1.00000i
0 −2.00000 2.00000i 0 −2.00000 1.00000i 0 −2.00000 2.00000i 0 5.00000i 0
447.1 0 −2.00000 + 2.00000i 0 −2.00000 + 1.00000i 0 −2.00000 + 2.00000i 0 5.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 640.2.o.a 2
4.b odd 2 1 640.2.o.g yes 2
5.c odd 4 1 640.2.o.b yes 2
8.b even 2 1 640.2.o.h yes 2
8.d odd 2 1 640.2.o.b yes 2
16.e even 4 1 1280.2.n.b 2
16.e even 4 1 1280.2.n.k 2
16.f odd 4 1 1280.2.n.a 2
16.f odd 4 1 1280.2.n.l 2
20.e even 4 1 640.2.o.h yes 2
40.i odd 4 1 640.2.o.g yes 2
40.k even 4 1 inner 640.2.o.a 2
80.i odd 4 1 1280.2.n.l 2
80.j even 4 1 1280.2.n.k 2
80.s even 4 1 1280.2.n.b 2
80.t odd 4 1 1280.2.n.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.2.o.a 2 1.a even 1 1 trivial
640.2.o.a 2 40.k even 4 1 inner
640.2.o.b yes 2 5.c odd 4 1
640.2.o.b yes 2 8.d odd 2 1
640.2.o.g yes 2 4.b odd 2 1
640.2.o.g yes 2 40.i odd 4 1
640.2.o.h yes 2 8.b even 2 1
640.2.o.h yes 2 20.e even 4 1
1280.2.n.a 2 16.f odd 4 1
1280.2.n.a 2 80.t odd 4 1
1280.2.n.b 2 16.e even 4 1
1280.2.n.b 2 80.s even 4 1
1280.2.n.k 2 16.e even 4 1
1280.2.n.k 2 80.j even 4 1
1280.2.n.l 2 16.f odd 4 1
1280.2.n.l 2 80.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(640, [\chi])\):

\( T_{3}^{2} + 4T_{3} + 8 \) Copy content Toggle raw display
\( T_{7}^{2} + 4T_{7} + 8 \) Copy content Toggle raw display
\( T_{13}^{2} - 6T_{13} + 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4T + 8 \) Copy content Toggle raw display
$5$ \( T^{2} + 4T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 8 \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 12T + 72 \) Copy content Toggle raw display
$29$ \( (T + 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 16 \) Copy content Toggle raw display
$37$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 12T + 72 \) Copy content Toggle raw display
$47$ \( T^{2} + 12T + 72 \) Copy content Toggle raw display
$53$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$59$ \( T^{2} + 64 \) Copy content Toggle raw display
$61$ \( T^{2} + 36 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 72 \) Copy content Toggle raw display
$71$ \( T^{2} + 144 \) Copy content Toggle raw display
$73$ \( T^{2} + 10T + 50 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 12T + 72 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 22T + 242 \) Copy content Toggle raw display
show more
show less