Properties

Label 640.2.l.b.161.8
Level $640$
Weight $2$
Character 640.161
Analytic conductor $5.110$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,2,Mod(161,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.8
Root \(1.38652 + 0.278517i\) of defining polynomial
Character \(\chi\) \(=\) 640.161
Dual form 640.2.l.b.481.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.32624 + 2.32624i) q^{3} +(-0.707107 + 0.707107i) q^{5} +0.982011i q^{7} +7.82281i q^{9} +(1.62645 - 1.62645i) q^{11} +(0.690562 + 0.690562i) q^{13} -3.28980 q^{15} -2.19577 q^{17} +(-1.92659 - 1.92659i) q^{19} +(-2.28440 + 2.28440i) q^{21} -2.01442i q^{23} -1.00000i q^{25} +(-11.2190 + 11.2190i) q^{27} +(5.27182 + 5.27182i) q^{29} +0.435286 q^{31} +7.56703 q^{33} +(-0.694387 - 0.694387i) q^{35} +(5.79805 - 5.79805i) q^{37} +3.21283i q^{39} -3.93139i q^{41} +(0.507592 - 0.507592i) q^{43} +(-5.53157 - 5.53157i) q^{45} -9.21960 q^{47} +6.03565 q^{49} +(-5.10789 - 5.10789i) q^{51} +(-6.29357 + 6.29357i) q^{53} +2.30015i q^{55} -8.96345i q^{57} +(5.67778 - 5.67778i) q^{59} +(3.60301 + 3.60301i) q^{61} -7.68209 q^{63} -0.976603 q^{65} +(-4.53563 - 4.53563i) q^{67} +(4.68603 - 4.68603i) q^{69} -10.3984i q^{71} +9.24439i q^{73} +(2.32624 - 2.32624i) q^{75} +(1.59719 + 1.59719i) q^{77} +15.4493 q^{79} -28.7280 q^{81} +(0.683244 + 0.683244i) q^{83} +(1.55264 - 1.55264i) q^{85} +24.5271i q^{87} -5.44401i q^{89} +(-0.678140 + 0.678140i) q^{91} +(1.01258 + 1.01258i) q^{93} +2.72461 q^{95} +5.54540 q^{97} +(12.7234 + 12.7234i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} - 8 q^{15} + 8 q^{19} - 24 q^{27} + 16 q^{29} + 16 q^{37} - 8 q^{43} - 40 q^{47} - 16 q^{49} + 32 q^{51} - 16 q^{53} + 8 q^{59} - 16 q^{61} + 40 q^{63} - 40 q^{67} - 16 q^{69} - 16 q^{77}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.32624 + 2.32624i 1.34306 + 1.34306i 0.893000 + 0.450058i \(0.148597\pi\)
0.450058 + 0.893000i \(0.351403\pi\)
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 0.982011i 0.371165i 0.982629 + 0.185583i \(0.0594172\pi\)
−0.982629 + 0.185583i \(0.940583\pi\)
\(8\) 0 0
\(9\) 7.82281i 2.60760i
\(10\) 0 0
\(11\) 1.62645 1.62645i 0.490393 0.490393i −0.418037 0.908430i \(-0.637282\pi\)
0.908430 + 0.418037i \(0.137282\pi\)
\(12\) 0 0
\(13\) 0.690562 + 0.690562i 0.191528 + 0.191528i 0.796356 0.604828i \(-0.206758\pi\)
−0.604828 + 0.796356i \(0.706758\pi\)
\(14\) 0 0
\(15\) −3.28980 −0.849424
\(16\) 0 0
\(17\) −2.19577 −0.532552 −0.266276 0.963897i \(-0.585793\pi\)
−0.266276 + 0.963897i \(0.585793\pi\)
\(18\) 0 0
\(19\) −1.92659 1.92659i −0.441991 0.441991i 0.450690 0.892681i \(-0.351178\pi\)
−0.892681 + 0.450690i \(0.851178\pi\)
\(20\) 0 0
\(21\) −2.28440 + 2.28440i −0.498496 + 0.498496i
\(22\) 0 0
\(23\) 2.01442i 0.420035i −0.977698 0.210018i \(-0.932648\pi\)
0.977698 0.210018i \(-0.0673522\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) −11.2190 + 11.2190i −2.15911 + 2.15911i
\(28\) 0 0
\(29\) 5.27182 + 5.27182i 0.978952 + 0.978952i 0.999783 0.0208314i \(-0.00663132\pi\)
−0.0208314 + 0.999783i \(0.506631\pi\)
\(30\) 0 0
\(31\) 0.435286 0.0781797 0.0390898 0.999236i \(-0.487554\pi\)
0.0390898 + 0.999236i \(0.487554\pi\)
\(32\) 0 0
\(33\) 7.56703 1.31725
\(34\) 0 0
\(35\) −0.694387 0.694387i −0.117373 0.117373i
\(36\) 0 0
\(37\) 5.79805 5.79805i 0.953194 0.953194i −0.0457583 0.998953i \(-0.514570\pi\)
0.998953 + 0.0457583i \(0.0145704\pi\)
\(38\) 0 0
\(39\) 3.21283i 0.514465i
\(40\) 0 0
\(41\) 3.93139i 0.613980i −0.951713 0.306990i \(-0.900678\pi\)
0.951713 0.306990i \(-0.0993218\pi\)
\(42\) 0 0
\(43\) 0.507592 0.507592i 0.0774071 0.0774071i −0.667343 0.744750i \(-0.732569\pi\)
0.744750 + 0.667343i \(0.232569\pi\)
\(44\) 0 0
\(45\) −5.53157 5.53157i −0.824597 0.824597i
\(46\) 0 0
\(47\) −9.21960 −1.34482 −0.672409 0.740180i \(-0.734740\pi\)
−0.672409 + 0.740180i \(0.734740\pi\)
\(48\) 0 0
\(49\) 6.03565 0.862236
\(50\) 0 0
\(51\) −5.10789 5.10789i −0.715248 0.715248i
\(52\) 0 0
\(53\) −6.29357 + 6.29357i −0.864488 + 0.864488i −0.991856 0.127367i \(-0.959347\pi\)
0.127367 + 0.991856i \(0.459347\pi\)
\(54\) 0 0
\(55\) 2.30015i 0.310152i
\(56\) 0 0
\(57\) 8.96345i 1.18724i
\(58\) 0 0
\(59\) 5.67778 5.67778i 0.739183 0.739183i −0.233237 0.972420i \(-0.574932\pi\)
0.972420 + 0.233237i \(0.0749317\pi\)
\(60\) 0 0
\(61\) 3.60301 + 3.60301i 0.461318 + 0.461318i 0.899087 0.437770i \(-0.144231\pi\)
−0.437770 + 0.899087i \(0.644231\pi\)
\(62\) 0 0
\(63\) −7.68209 −0.967852
\(64\) 0 0
\(65\) −0.976603 −0.121133
\(66\) 0 0
\(67\) −4.53563 4.53563i −0.554116 0.554116i 0.373510 0.927626i \(-0.378154\pi\)
−0.927626 + 0.373510i \(0.878154\pi\)
\(68\) 0 0
\(69\) 4.68603 4.68603i 0.564132 0.564132i
\(70\) 0 0
\(71\) 10.3984i 1.23407i −0.786937 0.617033i \(-0.788335\pi\)
0.786937 0.617033i \(-0.211665\pi\)
\(72\) 0 0
\(73\) 9.24439i 1.08197i 0.841031 + 0.540987i \(0.181949\pi\)
−0.841031 + 0.540987i \(0.818051\pi\)
\(74\) 0 0
\(75\) 2.32624 2.32624i 0.268611 0.268611i
\(76\) 0 0
\(77\) 1.59719 + 1.59719i 0.182017 + 0.182017i
\(78\) 0 0
\(79\) 15.4493 1.73818 0.869091 0.494653i \(-0.164705\pi\)
0.869091 + 0.494653i \(0.164705\pi\)
\(80\) 0 0
\(81\) −28.7280 −3.19200
\(82\) 0 0
\(83\) 0.683244 + 0.683244i 0.0749957 + 0.0749957i 0.743610 0.668614i \(-0.233112\pi\)
−0.668614 + 0.743610i \(0.733112\pi\)
\(84\) 0 0
\(85\) 1.55264 1.55264i 0.168408 0.168408i
\(86\) 0 0
\(87\) 24.5271i 2.62958i
\(88\) 0 0
\(89\) 5.44401i 0.577064i −0.957470 0.288532i \(-0.906833\pi\)
0.957470 0.288532i \(-0.0931672\pi\)
\(90\) 0 0
\(91\) −0.678140 + 0.678140i −0.0710884 + 0.0710884i
\(92\) 0 0
\(93\) 1.01258 + 1.01258i 0.105000 + 0.105000i
\(94\) 0 0
\(95\) 2.72461 0.279540
\(96\) 0 0
\(97\) 5.54540 0.563050 0.281525 0.959554i \(-0.409160\pi\)
0.281525 + 0.959554i \(0.409160\pi\)
\(98\) 0 0
\(99\) 12.7234 + 12.7234i 1.27875 + 1.27875i
\(100\) 0 0
\(101\) 0.291294 0.291294i 0.0289848 0.0289848i −0.692466 0.721451i \(-0.743476\pi\)
0.721451 + 0.692466i \(0.243476\pi\)
\(102\) 0 0
\(103\) 4.50219i 0.443614i −0.975091 0.221807i \(-0.928805\pi\)
0.975091 0.221807i \(-0.0711955\pi\)
\(104\) 0 0
\(105\) 3.23062i 0.315277i
\(106\) 0 0
\(107\) 6.49890 6.49890i 0.628272 0.628272i −0.319361 0.947633i \(-0.603468\pi\)
0.947633 + 0.319361i \(0.103468\pi\)
\(108\) 0 0
\(109\) 2.51950 + 2.51950i 0.241324 + 0.241324i 0.817398 0.576074i \(-0.195416\pi\)
−0.576074 + 0.817398i \(0.695416\pi\)
\(110\) 0 0
\(111\) 26.9754 2.56039
\(112\) 0 0
\(113\) 5.38101 0.506203 0.253102 0.967440i \(-0.418549\pi\)
0.253102 + 0.967440i \(0.418549\pi\)
\(114\) 0 0
\(115\) 1.42441 + 1.42441i 0.132827 + 0.132827i
\(116\) 0 0
\(117\) −5.40214 + 5.40214i −0.499428 + 0.499428i
\(118\) 0 0
\(119\) 2.15627i 0.197665i
\(120\) 0 0
\(121\) 5.70933i 0.519030i
\(122\) 0 0
\(123\) 9.14536 9.14536i 0.824610 0.824610i
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 4.86578 0.431768 0.215884 0.976419i \(-0.430737\pi\)
0.215884 + 0.976419i \(0.430737\pi\)
\(128\) 0 0
\(129\) 2.36157 0.207924
\(130\) 0 0
\(131\) −8.00581 8.00581i −0.699471 0.699471i 0.264825 0.964296i \(-0.414686\pi\)
−0.964296 + 0.264825i \(0.914686\pi\)
\(132\) 0 0
\(133\) 1.89194 1.89194i 0.164052 0.164052i
\(134\) 0 0
\(135\) 15.8661i 1.36554i
\(136\) 0 0
\(137\) 13.5567i 1.15822i 0.815248 + 0.579112i \(0.196601\pi\)
−0.815248 + 0.579112i \(0.803399\pi\)
\(138\) 0 0
\(139\) −8.22645 + 8.22645i −0.697758 + 0.697758i −0.963927 0.266168i \(-0.914242\pi\)
0.266168 + 0.963927i \(0.414242\pi\)
\(140\) 0 0
\(141\) −21.4470 21.4470i −1.80617 1.80617i
\(142\) 0 0
\(143\) 2.24633 0.187847
\(144\) 0 0
\(145\) −7.45547 −0.619143
\(146\) 0 0
\(147\) 14.0404 + 14.0404i 1.15803 + 1.15803i
\(148\) 0 0
\(149\) −12.6363 + 12.6363i −1.03521 + 1.03521i −0.0358519 + 0.999357i \(0.511414\pi\)
−0.999357 + 0.0358519i \(0.988586\pi\)
\(150\) 0 0
\(151\) 15.1562i 1.23339i −0.787201 0.616696i \(-0.788471\pi\)
0.787201 0.616696i \(-0.211529\pi\)
\(152\) 0 0
\(153\) 17.1771i 1.38869i
\(154\) 0 0
\(155\) −0.307794 + 0.307794i −0.0247226 + 0.0247226i
\(156\) 0 0
\(157\) 1.75816 + 1.75816i 0.140316 + 0.140316i 0.773776 0.633460i \(-0.218366\pi\)
−0.633460 + 0.773776i \(0.718366\pi\)
\(158\) 0 0
\(159\) −29.2807 −2.32211
\(160\) 0 0
\(161\) 1.97818 0.155903
\(162\) 0 0
\(163\) 13.9102 + 13.9102i 1.08953 + 1.08953i 0.995576 + 0.0939562i \(0.0299514\pi\)
0.0939562 + 0.995576i \(0.470049\pi\)
\(164\) 0 0
\(165\) −5.35070 + 5.35070i −0.416551 + 0.416551i
\(166\) 0 0
\(167\) 18.8620i 1.45958i −0.683669 0.729792i \(-0.739617\pi\)
0.683669 0.729792i \(-0.260383\pi\)
\(168\) 0 0
\(169\) 12.0462i 0.926634i
\(170\) 0 0
\(171\) 15.0714 15.0714i 1.15254 1.15254i
\(172\) 0 0
\(173\) −16.0724 16.0724i −1.22196 1.22196i −0.966933 0.255031i \(-0.917914\pi\)
−0.255031 0.966933i \(-0.582086\pi\)
\(174\) 0 0
\(175\) 0.982011 0.0742331
\(176\) 0 0
\(177\) 26.4158 1.98553
\(178\) 0 0
\(179\) −16.4341 16.4341i −1.22834 1.22834i −0.964591 0.263749i \(-0.915041\pi\)
−0.263749 0.964591i \(-0.584959\pi\)
\(180\) 0 0
\(181\) 15.4539 15.4539i 1.14868 1.14868i 0.161870 0.986812i \(-0.448247\pi\)
0.986812 0.161870i \(-0.0517525\pi\)
\(182\) 0 0
\(183\) 16.7629i 1.23915i
\(184\) 0 0
\(185\) 8.19969i 0.602853i
\(186\) 0 0
\(187\) −3.57130 + 3.57130i −0.261160 + 0.261160i
\(188\) 0 0
\(189\) −11.0172 11.0172i −0.801385 0.801385i
\(190\) 0 0
\(191\) −14.7872 −1.06997 −0.534983 0.844863i \(-0.679682\pi\)
−0.534983 + 0.844863i \(0.679682\pi\)
\(192\) 0 0
\(193\) −11.2912 −0.812758 −0.406379 0.913705i \(-0.633209\pi\)
−0.406379 + 0.913705i \(0.633209\pi\)
\(194\) 0 0
\(195\) −2.27182 2.27182i −0.162688 0.162688i
\(196\) 0 0
\(197\) 10.6152 10.6152i 0.756302 0.756302i −0.219345 0.975647i \(-0.570392\pi\)
0.975647 + 0.219345i \(0.0703920\pi\)
\(198\) 0 0
\(199\) 4.68789i 0.332316i 0.986099 + 0.166158i \(0.0531361\pi\)
−0.986099 + 0.166158i \(0.946864\pi\)
\(200\) 0 0
\(201\) 21.1020i 1.48842i
\(202\) 0 0
\(203\) −5.17698 + 5.17698i −0.363353 + 0.363353i
\(204\) 0 0
\(205\) 2.77991 + 2.77991i 0.194157 + 0.194157i
\(206\) 0 0
\(207\) 15.7584 1.09529
\(208\) 0 0
\(209\) −6.26701 −0.433498
\(210\) 0 0
\(211\) 2.63215 + 2.63215i 0.181205 + 0.181205i 0.791881 0.610676i \(-0.209102\pi\)
−0.610676 + 0.791881i \(0.709102\pi\)
\(212\) 0 0
\(213\) 24.1893 24.1893i 1.65742 1.65742i
\(214\) 0 0
\(215\) 0.717844i 0.0489565i
\(216\) 0 0
\(217\) 0.427456i 0.0290176i
\(218\) 0 0
\(219\) −21.5047 + 21.5047i −1.45315 + 1.45315i
\(220\) 0 0
\(221\) −1.51632 1.51632i −0.101998 0.101998i
\(222\) 0 0
\(223\) 3.45644 0.231461 0.115730 0.993281i \(-0.463079\pi\)
0.115730 + 0.993281i \(0.463079\pi\)
\(224\) 0 0
\(225\) 7.82281 0.521521
\(226\) 0 0
\(227\) 4.74550 + 4.74550i 0.314970 + 0.314970i 0.846831 0.531862i \(-0.178507\pi\)
−0.531862 + 0.846831i \(0.678507\pi\)
\(228\) 0 0
\(229\) 13.3576 13.3576i 0.882697 0.882697i −0.111111 0.993808i \(-0.535441\pi\)
0.993808 + 0.111111i \(0.0354410\pi\)
\(230\) 0 0
\(231\) 7.43091i 0.488918i
\(232\) 0 0
\(233\) 4.82691i 0.316222i 0.987421 + 0.158111i \(0.0505403\pi\)
−0.987421 + 0.158111i \(0.949460\pi\)
\(234\) 0 0
\(235\) 6.51924 6.51924i 0.425269 0.425269i
\(236\) 0 0
\(237\) 35.9388 + 35.9388i 2.33448 + 2.33448i
\(238\) 0 0
\(239\) −8.82497 −0.570840 −0.285420 0.958403i \(-0.592133\pi\)
−0.285420 + 0.958403i \(0.592133\pi\)
\(240\) 0 0
\(241\) −3.74147 −0.241009 −0.120504 0.992713i \(-0.538451\pi\)
−0.120504 + 0.992713i \(0.538451\pi\)
\(242\) 0 0
\(243\) −33.1712 33.1712i −2.12793 2.12793i
\(244\) 0 0
\(245\) −4.26785 + 4.26785i −0.272663 + 0.272663i
\(246\) 0 0
\(247\) 2.66087i 0.169307i
\(248\) 0 0
\(249\) 3.17878i 0.201447i
\(250\) 0 0
\(251\) 5.99322 5.99322i 0.378289 0.378289i −0.492196 0.870484i \(-0.663806\pi\)
0.870484 + 0.492196i \(0.163806\pi\)
\(252\) 0 0
\(253\) −3.27635 3.27635i −0.205982 0.205982i
\(254\) 0 0
\(255\) 7.22365 0.452362
\(256\) 0 0
\(257\) −14.7662 −0.921091 −0.460545 0.887636i \(-0.652346\pi\)
−0.460545 + 0.887636i \(0.652346\pi\)
\(258\) 0 0
\(259\) 5.69375 + 5.69375i 0.353793 + 0.353793i
\(260\) 0 0
\(261\) −41.2404 + 41.2404i −2.55272 + 2.55272i
\(262\) 0 0
\(263\) 6.79486i 0.418989i 0.977810 + 0.209494i \(0.0671818\pi\)
−0.977810 + 0.209494i \(0.932818\pi\)
\(264\) 0 0
\(265\) 8.90045i 0.546750i
\(266\) 0 0
\(267\) 12.6641 12.6641i 0.775030 0.775030i
\(268\) 0 0
\(269\) 6.03990 + 6.03990i 0.368259 + 0.368259i 0.866842 0.498583i \(-0.166146\pi\)
−0.498583 + 0.866842i \(0.666146\pi\)
\(270\) 0 0
\(271\) −24.6221 −1.49568 −0.747842 0.663877i \(-0.768910\pi\)
−0.747842 + 0.663877i \(0.768910\pi\)
\(272\) 0 0
\(273\) −3.15504 −0.190952
\(274\) 0 0
\(275\) −1.62645 1.62645i −0.0980785 0.0980785i
\(276\) 0 0
\(277\) −9.98018 + 9.98018i −0.599651 + 0.599651i −0.940220 0.340569i \(-0.889380\pi\)
0.340569 + 0.940220i \(0.389380\pi\)
\(278\) 0 0
\(279\) 3.40516i 0.203862i
\(280\) 0 0
\(281\) 14.4611i 0.862675i 0.902191 + 0.431337i \(0.141958\pi\)
−0.902191 + 0.431337i \(0.858042\pi\)
\(282\) 0 0
\(283\) −20.0783 + 20.0783i −1.19353 + 1.19353i −0.217462 + 0.976069i \(0.569778\pi\)
−0.976069 + 0.217462i \(0.930222\pi\)
\(284\) 0 0
\(285\) 6.33812 + 6.33812i 0.375438 + 0.375438i
\(286\) 0 0
\(287\) 3.86067 0.227888
\(288\) 0 0
\(289\) −12.1786 −0.716388
\(290\) 0 0
\(291\) 12.8999 + 12.8999i 0.756208 + 0.756208i
\(292\) 0 0
\(293\) −15.4038 + 15.4038i −0.899899 + 0.899899i −0.995427 0.0955279i \(-0.969546\pi\)
0.0955279 + 0.995427i \(0.469546\pi\)
\(294\) 0 0
\(295\) 8.02959i 0.467501i
\(296\) 0 0
\(297\) 36.4944i 2.11762i
\(298\) 0 0
\(299\) 1.39108 1.39108i 0.0804484 0.0804484i
\(300\) 0 0
\(301\) 0.498461 + 0.498461i 0.0287308 + 0.0287308i
\(302\) 0 0
\(303\) 1.35524 0.0778566
\(304\) 0 0
\(305\) −5.09542 −0.291763
\(306\) 0 0
\(307\) −9.12398 9.12398i −0.520733 0.520733i 0.397060 0.917793i \(-0.370031\pi\)
−0.917793 + 0.397060i \(0.870031\pi\)
\(308\) 0 0
\(309\) 10.4732 10.4732i 0.595799 0.595799i
\(310\) 0 0
\(311\) 0.642911i 0.0364561i 0.999834 + 0.0182281i \(0.00580249\pi\)
−0.999834 + 0.0182281i \(0.994198\pi\)
\(312\) 0 0
\(313\) 21.3775i 1.20833i 0.796860 + 0.604164i \(0.206493\pi\)
−0.796860 + 0.604164i \(0.793507\pi\)
\(314\) 0 0
\(315\) 5.43206 5.43206i 0.306062 0.306062i
\(316\) 0 0
\(317\) −8.66200 8.66200i −0.486507 0.486507i 0.420695 0.907202i \(-0.361786\pi\)
−0.907202 + 0.420695i \(0.861786\pi\)
\(318\) 0 0
\(319\) 17.1487 0.960141
\(320\) 0 0
\(321\) 30.2360 1.68761
\(322\) 0 0
\(323\) 4.23035 + 4.23035i 0.235383 + 0.235383i
\(324\) 0 0
\(325\) 0.690562 0.690562i 0.0383055 0.0383055i
\(326\) 0 0
\(327\) 11.7219i 0.648224i
\(328\) 0 0
\(329\) 9.05375i 0.499150i
\(330\) 0 0
\(331\) 8.43941 8.43941i 0.463872 0.463872i −0.436050 0.899922i \(-0.643623\pi\)
0.899922 + 0.436050i \(0.143623\pi\)
\(332\) 0 0
\(333\) 45.3571 + 45.3571i 2.48555 + 2.48555i
\(334\) 0 0
\(335\) 6.41435 0.350454
\(336\) 0 0
\(337\) 30.7047 1.67259 0.836295 0.548280i \(-0.184717\pi\)
0.836295 + 0.548280i \(0.184717\pi\)
\(338\) 0 0
\(339\) 12.5175 + 12.5175i 0.679860 + 0.679860i
\(340\) 0 0
\(341\) 0.707970 0.707970i 0.0383387 0.0383387i
\(342\) 0 0
\(343\) 12.8012i 0.691197i
\(344\) 0 0
\(345\) 6.62705i 0.356788i
\(346\) 0 0
\(347\) −13.6418 + 13.6418i −0.732329 + 0.732329i −0.971081 0.238752i \(-0.923262\pi\)
0.238752 + 0.971081i \(0.423262\pi\)
\(348\) 0 0
\(349\) −9.97321 9.97321i −0.533854 0.533854i 0.387863 0.921717i \(-0.373213\pi\)
−0.921717 + 0.387863i \(0.873213\pi\)
\(350\) 0 0
\(351\) −15.4949 −0.827056
\(352\) 0 0
\(353\) −26.7843 −1.42559 −0.712793 0.701374i \(-0.752570\pi\)
−0.712793 + 0.701374i \(0.752570\pi\)
\(354\) 0 0
\(355\) 7.35280 + 7.35280i 0.390246 + 0.390246i
\(356\) 0 0
\(357\) 5.01601 5.01601i 0.265475 0.265475i
\(358\) 0 0
\(359\) 19.1190i 1.00906i 0.863393 + 0.504532i \(0.168335\pi\)
−0.863393 + 0.504532i \(0.831665\pi\)
\(360\) 0 0
\(361\) 11.5765i 0.609288i
\(362\) 0 0
\(363\) −13.2813 + 13.2813i −0.697087 + 0.697087i
\(364\) 0 0
\(365\) −6.53677 6.53677i −0.342150 0.342150i
\(366\) 0 0
\(367\) 4.24385 0.221527 0.110764 0.993847i \(-0.464670\pi\)
0.110764 + 0.993847i \(0.464670\pi\)
\(368\) 0 0
\(369\) 30.7545 1.60102
\(370\) 0 0
\(371\) −6.18035 6.18035i −0.320868 0.320868i
\(372\) 0 0
\(373\) −23.9514 + 23.9514i −1.24016 + 1.24016i −0.280221 + 0.959935i \(0.590408\pi\)
−0.959935 + 0.280221i \(0.909592\pi\)
\(374\) 0 0
\(375\) 3.28980i 0.169885i
\(376\) 0 0
\(377\) 7.28104i 0.374992i
\(378\) 0 0
\(379\) 7.45685 7.45685i 0.383033 0.383033i −0.489161 0.872194i \(-0.662697\pi\)
0.872194 + 0.489161i \(0.162697\pi\)
\(380\) 0 0
\(381\) 11.3190 + 11.3190i 0.579890 + 0.579890i
\(382\) 0 0
\(383\) 5.19667 0.265538 0.132769 0.991147i \(-0.457613\pi\)
0.132769 + 0.991147i \(0.457613\pi\)
\(384\) 0 0
\(385\) −2.25877 −0.115117
\(386\) 0 0
\(387\) 3.97080 + 3.97080i 0.201847 + 0.201847i
\(388\) 0 0
\(389\) −10.3846 + 10.3846i −0.526522 + 0.526522i −0.919534 0.393011i \(-0.871433\pi\)
0.393011 + 0.919534i \(0.371433\pi\)
\(390\) 0 0
\(391\) 4.42320i 0.223691i
\(392\) 0 0
\(393\) 37.2469i 1.87886i
\(394\) 0 0
\(395\) −10.9243 + 10.9243i −0.549661 + 0.549661i
\(396\) 0 0
\(397\) −9.93104 9.93104i −0.498425 0.498425i 0.412523 0.910947i \(-0.364648\pi\)
−0.910947 + 0.412523i \(0.864648\pi\)
\(398\) 0 0
\(399\) 8.80221 0.440662
\(400\) 0 0
\(401\) 9.51392 0.475102 0.237551 0.971375i \(-0.423655\pi\)
0.237551 + 0.971375i \(0.423655\pi\)
\(402\) 0 0
\(403\) 0.300592 + 0.300592i 0.0149736 + 0.0149736i
\(404\) 0 0
\(405\) 20.3138 20.3138i 1.00940 1.00940i
\(406\) 0 0
\(407\) 18.8605i 0.934879i
\(408\) 0 0
\(409\) 4.81799i 0.238234i −0.992880 0.119117i \(-0.961994\pi\)
0.992880 0.119117i \(-0.0380064\pi\)
\(410\) 0 0
\(411\) −31.5361 + 31.5361i −1.55556 + 1.55556i
\(412\) 0 0
\(413\) 5.57564 + 5.57564i 0.274359 + 0.274359i
\(414\) 0 0
\(415\) −0.966253 −0.0474315
\(416\) 0 0
\(417\) −38.2734 −1.87426
\(418\) 0 0
\(419\) −21.4380 21.4380i −1.04731 1.04731i −0.998824 0.0484914i \(-0.984559\pi\)
−0.0484914 0.998824i \(-0.515441\pi\)
\(420\) 0 0
\(421\) 4.80145 4.80145i 0.234008 0.234008i −0.580355 0.814363i \(-0.697086\pi\)
0.814363 + 0.580355i \(0.197086\pi\)
\(422\) 0 0
\(423\) 72.1232i 3.50675i
\(424\) 0 0
\(425\) 2.19577i 0.106510i
\(426\) 0 0
\(427\) −3.53819 + 3.53819i −0.171225 + 0.171225i
\(428\) 0 0
\(429\) 5.22551 + 5.22551i 0.252290 + 0.252290i
\(430\) 0 0
\(431\) 13.2369 0.637597 0.318799 0.947822i \(-0.396721\pi\)
0.318799 + 0.947822i \(0.396721\pi\)
\(432\) 0 0
\(433\) −1.50709 −0.0724259 −0.0362129 0.999344i \(-0.511529\pi\)
−0.0362129 + 0.999344i \(0.511529\pi\)
\(434\) 0 0
\(435\) −17.3432 17.3432i −0.831545 0.831545i
\(436\) 0 0
\(437\) −3.88097 + 3.88097i −0.185652 + 0.185652i
\(438\) 0 0
\(439\) 10.3092i 0.492033i 0.969266 + 0.246016i \(0.0791217\pi\)
−0.969266 + 0.246016i \(0.920878\pi\)
\(440\) 0 0
\(441\) 47.2158i 2.24837i
\(442\) 0 0
\(443\) 14.2651 14.2651i 0.677755 0.677755i −0.281736 0.959492i \(-0.590910\pi\)
0.959492 + 0.281736i \(0.0909104\pi\)
\(444\) 0 0
\(445\) 3.84950 + 3.84950i 0.182484 + 0.182484i
\(446\) 0 0
\(447\) −58.7904 −2.78069
\(448\) 0 0
\(449\) −19.5711 −0.923618 −0.461809 0.886979i \(-0.652799\pi\)
−0.461809 + 0.886979i \(0.652799\pi\)
\(450\) 0 0
\(451\) −6.39420 6.39420i −0.301091 0.301091i
\(452\) 0 0
\(453\) 35.2569 35.2569i 1.65652 1.65652i
\(454\) 0 0
\(455\) 0.959035i 0.0449602i
\(456\) 0 0
\(457\) 39.0185i 1.82521i −0.408845 0.912604i \(-0.634068\pi\)
0.408845 0.912604i \(-0.365932\pi\)
\(458\) 0 0
\(459\) 24.6344 24.6344i 1.14984 1.14984i
\(460\) 0 0
\(461\) −19.6941 19.6941i −0.917245 0.917245i 0.0795833 0.996828i \(-0.474641\pi\)
−0.996828 + 0.0795833i \(0.974641\pi\)
\(462\) 0 0
\(463\) −14.9979 −0.697009 −0.348505 0.937307i \(-0.613310\pi\)
−0.348505 + 0.937307i \(0.613310\pi\)
\(464\) 0 0
\(465\) −1.43201 −0.0664077
\(466\) 0 0
\(467\) −4.88870 4.88870i −0.226222 0.226222i 0.584890 0.811112i \(-0.301138\pi\)
−0.811112 + 0.584890i \(0.801138\pi\)
\(468\) 0 0
\(469\) 4.45404 4.45404i 0.205669 0.205669i
\(470\) 0 0
\(471\) 8.17980i 0.376905i
\(472\) 0 0
\(473\) 1.65114i 0.0759197i
\(474\) 0 0
\(475\) −1.92659 + 1.92659i −0.0883982 + 0.0883982i
\(476\) 0 0
\(477\) −49.2334 49.2334i −2.25424 2.25424i
\(478\) 0 0
\(479\) −27.3381 −1.24911 −0.624555 0.780981i \(-0.714720\pi\)
−0.624555 + 0.780981i \(0.714720\pi\)
\(480\) 0 0
\(481\) 8.00784 0.365126
\(482\) 0 0
\(483\) 4.60173 + 4.60173i 0.209386 + 0.209386i
\(484\) 0 0
\(485\) −3.92119 + 3.92119i −0.178052 + 0.178052i
\(486\) 0 0
\(487\) 35.4769i 1.60761i 0.594892 + 0.803806i \(0.297195\pi\)
−0.594892 + 0.803806i \(0.702805\pi\)
\(488\) 0 0
\(489\) 64.7171i 2.92661i
\(490\) 0 0
\(491\) −3.55614 + 3.55614i −0.160486 + 0.160486i −0.782782 0.622296i \(-0.786200\pi\)
0.622296 + 0.782782i \(0.286200\pi\)
\(492\) 0 0
\(493\) −11.5757 11.5757i −0.521343 0.521343i
\(494\) 0 0
\(495\) −17.9936 −0.808753
\(496\) 0 0
\(497\) 10.2114 0.458042
\(498\) 0 0
\(499\) 17.6521 + 17.6521i 0.790218 + 0.790218i 0.981529 0.191312i \(-0.0612742\pi\)
−0.191312 + 0.981529i \(0.561274\pi\)
\(500\) 0 0
\(501\) 43.8776 43.8776i 1.96031 1.96031i
\(502\) 0 0
\(503\) 31.8567i 1.42042i 0.703990 + 0.710210i \(0.251400\pi\)
−0.703990 + 0.710210i \(0.748600\pi\)
\(504\) 0 0
\(505\) 0.411952i 0.0183316i
\(506\) 0 0
\(507\) 28.0225 28.0225i 1.24452 1.24452i
\(508\) 0 0
\(509\) 5.61054 + 5.61054i 0.248683 + 0.248683i 0.820430 0.571747i \(-0.193734\pi\)
−0.571747 + 0.820430i \(0.693734\pi\)
\(510\) 0 0
\(511\) −9.07810 −0.401591
\(512\) 0 0
\(513\) 43.2291 1.90861
\(514\) 0 0
\(515\) 3.18353 + 3.18353i 0.140283 + 0.140283i
\(516\) 0 0
\(517\) −14.9952 + 14.9952i −0.659489 + 0.659489i
\(518\) 0 0
\(519\) 74.7767i 3.28233i
\(520\) 0 0
\(521\) 33.1977i 1.45442i −0.686417 0.727208i \(-0.740818\pi\)
0.686417 0.727208i \(-0.259182\pi\)
\(522\) 0 0
\(523\) 2.60707 2.60707i 0.113999 0.113999i −0.647806 0.761805i \(-0.724313\pi\)
0.761805 + 0.647806i \(0.224313\pi\)
\(524\) 0 0
\(525\) 2.28440 + 2.28440i 0.0996992 + 0.0996992i
\(526\) 0 0
\(527\) −0.955787 −0.0416347
\(528\) 0 0
\(529\) 18.9421 0.823570
\(530\) 0 0
\(531\) 44.4162 + 44.4162i 1.92750 + 1.92750i
\(532\) 0 0
\(533\) 2.71487 2.71487i 0.117594 0.117594i
\(534\) 0 0
\(535\) 9.19083i 0.397354i
\(536\) 0 0
\(537\) 76.4593i 3.29946i
\(538\) 0 0
\(539\) 9.81668 9.81668i 0.422834 0.422834i
\(540\) 0 0
\(541\) 22.6839 + 22.6839i 0.975257 + 0.975257i 0.999701 0.0244439i \(-0.00778152\pi\)
−0.0244439 + 0.999701i \(0.507782\pi\)
\(542\) 0 0
\(543\) 71.8992 3.08549
\(544\) 0 0
\(545\) −3.56311 −0.152627
\(546\) 0 0
\(547\) 3.02284 + 3.02284i 0.129248 + 0.129248i 0.768771 0.639524i \(-0.220868\pi\)
−0.639524 + 0.768771i \(0.720868\pi\)
\(548\) 0 0
\(549\) −28.1857 + 28.1857i −1.20293 + 1.20293i
\(550\) 0 0
\(551\) 20.3133i 0.865375i
\(552\) 0 0
\(553\) 15.1714i 0.645153i
\(554\) 0 0
\(555\) −19.0745 + 19.0745i −0.809666 + 0.809666i
\(556\) 0 0
\(557\) −9.27495 9.27495i −0.392992 0.392992i 0.482760 0.875753i \(-0.339634\pi\)
−0.875753 + 0.482760i \(0.839634\pi\)
\(558\) 0 0
\(559\) 0.701048 0.0296512
\(560\) 0 0
\(561\) −16.6154 −0.701504
\(562\) 0 0
\(563\) 20.3025 + 20.3025i 0.855649 + 0.855649i 0.990822 0.135173i \(-0.0431589\pi\)
−0.135173 + 0.990822i \(0.543159\pi\)
\(564\) 0 0
\(565\) −3.80495 + 3.80495i −0.160076 + 0.160076i
\(566\) 0 0
\(567\) 28.2112i 1.18476i
\(568\) 0 0
\(569\) 14.3362i 0.601005i 0.953781 + 0.300503i \(0.0971544\pi\)
−0.953781 + 0.300503i \(0.902846\pi\)
\(570\) 0 0
\(571\) −8.54368 + 8.54368i −0.357542 + 0.357542i −0.862906 0.505364i \(-0.831358\pi\)
0.505364 + 0.862906i \(0.331358\pi\)
\(572\) 0 0
\(573\) −34.3987 34.3987i −1.43703 1.43703i
\(574\) 0 0
\(575\) −2.01442 −0.0840071
\(576\) 0 0
\(577\) −8.68179 −0.361428 −0.180714 0.983536i \(-0.557841\pi\)
−0.180714 + 0.983536i \(0.557841\pi\)
\(578\) 0 0
\(579\) −26.2661 26.2661i −1.09158 1.09158i
\(580\) 0 0
\(581\) −0.670953 + 0.670953i −0.0278358 + 0.0278358i
\(582\) 0 0
\(583\) 20.4723i 0.847877i
\(584\) 0 0
\(585\) 7.63978i 0.315866i
\(586\) 0 0
\(587\) −21.9042 + 21.9042i −0.904082 + 0.904082i −0.995786 0.0917043i \(-0.970769\pi\)
0.0917043 + 0.995786i \(0.470769\pi\)
\(588\) 0 0
\(589\) −0.838619 0.838619i −0.0345547 0.0345547i
\(590\) 0 0
\(591\) 49.3871 2.03151
\(592\) 0 0
\(593\) −17.5142 −0.719222 −0.359611 0.933102i \(-0.617091\pi\)
−0.359611 + 0.933102i \(0.617091\pi\)
\(594\) 0 0
\(595\) 1.52471 + 1.52471i 0.0625071 + 0.0625071i
\(596\) 0 0
\(597\) −10.9052 + 10.9052i −0.446319 + 0.446319i
\(598\) 0 0
\(599\) 19.0276i 0.777447i 0.921354 + 0.388724i \(0.127084\pi\)
−0.921354 + 0.388724i \(0.872916\pi\)
\(600\) 0 0
\(601\) 5.52545i 0.225388i −0.993630 0.112694i \(-0.964052\pi\)
0.993630 0.112694i \(-0.0359479\pi\)
\(602\) 0 0
\(603\) 35.4814 35.4814i 1.44491 1.44491i
\(604\) 0 0
\(605\) −4.03711 4.03711i −0.164132 0.164132i
\(606\) 0 0
\(607\) −12.1064 −0.491384 −0.245692 0.969348i \(-0.579015\pi\)
−0.245692 + 0.969348i \(0.579015\pi\)
\(608\) 0 0
\(609\) −24.0858 −0.976007
\(610\) 0 0
\(611\) −6.36671 6.36671i −0.257570 0.257570i
\(612\) 0 0
\(613\) −17.8073 + 17.8073i −0.719230 + 0.719230i −0.968448 0.249218i \(-0.919827\pi\)
0.249218 + 0.968448i \(0.419827\pi\)
\(614\) 0 0
\(615\) 12.9335i 0.521529i
\(616\) 0 0
\(617\) 1.10944i 0.0446642i 0.999751 + 0.0223321i \(0.00710912\pi\)
−0.999751 + 0.0223321i \(0.992891\pi\)
\(618\) 0 0
\(619\) 31.8702 31.8702i 1.28097 1.28097i 0.340859 0.940115i \(-0.389282\pi\)
0.940115 0.340859i \(-0.110718\pi\)
\(620\) 0 0
\(621\) 22.5998 + 22.5998i 0.906901 + 0.906901i
\(622\) 0 0
\(623\) 5.34608 0.214186
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) −14.5786 14.5786i −0.582213 0.582213i
\(628\) 0 0
\(629\) −12.7312 + 12.7312i −0.507626 + 0.507626i
\(630\) 0 0
\(631\) 6.80064i 0.270729i −0.990796 0.135365i \(-0.956779\pi\)
0.990796 0.135365i \(-0.0432206\pi\)
\(632\) 0 0
\(633\) 12.2460i 0.486736i
\(634\) 0 0
\(635\) −3.44063 + 3.44063i −0.136537 + 0.136537i
\(636\) 0 0
\(637\) 4.16800 + 4.16800i 0.165142 + 0.165142i
\(638\) 0 0
\(639\) 81.3449 3.21796
\(640\) 0 0
\(641\) 14.2566 0.563100 0.281550 0.959547i \(-0.409151\pi\)
0.281550 + 0.959547i \(0.409151\pi\)
\(642\) 0 0
\(643\) −14.4137 14.4137i −0.568422 0.568422i 0.363264 0.931686i \(-0.381662\pi\)
−0.931686 + 0.363264i \(0.881662\pi\)
\(644\) 0 0
\(645\) −1.66988 + 1.66988i −0.0657514 + 0.0657514i
\(646\) 0 0
\(647\) 20.5723i 0.808782i −0.914586 0.404391i \(-0.867483\pi\)
0.914586 0.404391i \(-0.132517\pi\)
\(648\) 0 0
\(649\) 18.4692i 0.724980i
\(650\) 0 0
\(651\) −0.994365 + 0.994365i −0.0389723 + 0.0389723i
\(652\) 0 0
\(653\) 9.79946 + 9.79946i 0.383482 + 0.383482i 0.872355 0.488873i \(-0.162592\pi\)
−0.488873 + 0.872355i \(0.662592\pi\)
\(654\) 0 0
\(655\) 11.3219 0.442384
\(656\) 0 0
\(657\) −72.3172 −2.82136
\(658\) 0 0
\(659\) 8.70669 + 8.70669i 0.339165 + 0.339165i 0.856053 0.516888i \(-0.172910\pi\)
−0.516888 + 0.856053i \(0.672910\pi\)
\(660\) 0 0
\(661\) −19.7899 + 19.7899i −0.769737 + 0.769737i −0.978060 0.208323i \(-0.933199\pi\)
0.208323 + 0.978060i \(0.433199\pi\)
\(662\) 0 0
\(663\) 7.05464i 0.273979i
\(664\) 0 0
\(665\) 2.67560i 0.103755i
\(666\) 0 0
\(667\) 10.6196 10.6196i 0.411194 0.411194i
\(668\) 0 0
\(669\) 8.04053 + 8.04053i 0.310865 + 0.310865i
\(670\) 0 0
\(671\) 11.7202 0.452454
\(672\) 0 0
\(673\) −14.0829 −0.542857 −0.271429 0.962459i \(-0.587496\pi\)
−0.271429 + 0.962459i \(0.587496\pi\)
\(674\) 0 0
\(675\) 11.2190 + 11.2190i 0.431821 + 0.431821i
\(676\) 0 0
\(677\) 29.8166 29.8166i 1.14594 1.14594i 0.158601 0.987343i \(-0.449302\pi\)
0.987343 0.158601i \(-0.0506984\pi\)
\(678\) 0 0
\(679\) 5.44564i 0.208984i
\(680\) 0 0
\(681\) 22.0784i 0.846045i
\(682\) 0 0
\(683\) 12.0646 12.0646i 0.461641 0.461641i −0.437552 0.899193i \(-0.644155\pi\)
0.899193 + 0.437552i \(0.144155\pi\)
\(684\) 0 0
\(685\) −9.58601 9.58601i −0.366263 0.366263i
\(686\) 0 0
\(687\) 62.1462 2.37102
\(688\) 0 0
\(689\) −8.69221 −0.331147
\(690\) 0 0
\(691\) −2.58867 2.58867i −0.0984776 0.0984776i 0.656152 0.754629i \(-0.272183\pi\)
−0.754629 + 0.656152i \(0.772183\pi\)
\(692\) 0 0
\(693\) −12.4945 + 12.4945i −0.474628 + 0.474628i
\(694\) 0 0
\(695\) 11.6340i 0.441301i
\(696\) 0 0
\(697\) 8.63242i 0.326976i
\(698\) 0 0
\(699\) −11.2286 + 11.2286i −0.424704 + 0.424704i
\(700\) 0 0
\(701\) 26.9943 + 26.9943i 1.01956 + 1.01956i 0.999805 + 0.0197572i \(0.00628933\pi\)
0.0197572 + 0.999805i \(0.493711\pi\)
\(702\) 0 0
\(703\) −22.3410 −0.842606
\(704\) 0 0
\(705\) 30.3307 1.14232
\(706\) 0 0
\(707\) 0.286054 + 0.286054i 0.0107582 + 0.0107582i
\(708\) 0 0
\(709\) 35.0639 35.0639i 1.31685 1.31685i 0.400598 0.916254i \(-0.368802\pi\)
0.916254 0.400598i \(-0.131198\pi\)
\(710\) 0 0
\(711\) 120.857i 4.53249i
\(712\) 0 0
\(713\) 0.876848i 0.0328382i
\(714\) 0 0
\(715\) −1.58839 + 1.58839i −0.0594026 + 0.0594026i
\(716\) 0 0
\(717\) −20.5290 20.5290i −0.766671 0.766671i
\(718\) 0 0
\(719\) −0.436840 −0.0162914 −0.00814568 0.999967i \(-0.502593\pi\)
−0.00814568 + 0.999967i \(0.502593\pi\)
\(720\) 0 0
\(721\) 4.42120 0.164654
\(722\) 0 0
\(723\) −8.70356 8.70356i −0.323689 0.323689i
\(724\) 0 0
\(725\) 5.27182 5.27182i 0.195790 0.195790i
\(726\) 0 0
\(727\) 38.8072i 1.43928i −0.694348 0.719640i \(-0.744307\pi\)
0.694348 0.719640i \(-0.255693\pi\)
\(728\) 0 0
\(729\) 68.1444i 2.52387i
\(730\) 0 0
\(731\) −1.11455 + 1.11455i −0.0412233 + 0.0412233i
\(732\) 0 0
\(733\) 24.3059 + 24.3059i 0.897758 + 0.897758i 0.995238 0.0974793i \(-0.0310780\pi\)
−0.0974793 + 0.995238i \(0.531078\pi\)
\(734\) 0 0
\(735\) −19.8561 −0.732404
\(736\) 0 0
\(737\) −14.7539 −0.543469
\(738\) 0 0
\(739\) 27.0262 + 27.0262i 0.994174 + 0.994174i 0.999983 0.00580951i \(-0.00184923\pi\)
−0.00580951 + 0.999983i \(0.501849\pi\)
\(740\) 0 0
\(741\) 6.18982 6.18982i 0.227389 0.227389i
\(742\) 0 0
\(743\) 12.1663i 0.446337i −0.974780 0.223169i \(-0.928360\pi\)
0.974780 0.223169i \(-0.0716401\pi\)
\(744\) 0 0
\(745\) 17.8705i 0.654724i
\(746\) 0 0
\(747\) −5.34489 + 5.34489i −0.195559 + 0.195559i
\(748\) 0 0
\(749\) 6.38199 + 6.38199i 0.233193 + 0.233193i
\(750\) 0 0
\(751\) −40.8606 −1.49102 −0.745512 0.666492i \(-0.767795\pi\)
−0.745512 + 0.666492i \(0.767795\pi\)
\(752\) 0 0
\(753\) 27.8834 1.01613
\(754\) 0 0
\(755\) 10.7170 + 10.7170i 0.390033 + 0.390033i
\(756\) 0 0
\(757\) 0.00399171 0.00399171i 0.000145081 0.000145081i −0.707034 0.707179i \(-0.749967\pi\)
0.707179 + 0.707034i \(0.249967\pi\)
\(758\) 0 0
\(759\) 15.2432i 0.553292i
\(760\) 0 0
\(761\) 0.751325i 0.0272355i −0.999907 0.0136178i \(-0.995665\pi\)
0.999907 0.0136178i \(-0.00433480\pi\)
\(762\) 0 0
\(763\) −2.47418 + 2.47418i −0.0895712 + 0.0895712i
\(764\) 0 0
\(765\) 12.1460 + 12.1460i 0.439141 + 0.439141i
\(766\) 0 0
\(767\) 7.84172 0.283148
\(768\) 0 0
\(769\) 35.4522 1.27844 0.639219 0.769025i \(-0.279258\pi\)
0.639219 + 0.769025i \(0.279258\pi\)
\(770\) 0 0
\(771\) −34.3498 34.3498i −1.23708 1.23708i
\(772\) 0 0
\(773\) 5.50186 5.50186i 0.197888 0.197888i −0.601206 0.799094i \(-0.705313\pi\)
0.799094 + 0.601206i \(0.205313\pi\)
\(774\) 0 0
\(775\) 0.435286i 0.0156359i
\(776\) 0 0
\(777\) 26.4901i 0.950327i
\(778\) 0 0
\(779\) −7.57419 + 7.57419i −0.271373 + 0.271373i
\(780\) 0 0
\(781\) −16.9125 16.9125i −0.605177 0.605177i
\(782\) 0 0
\(783\) −118.289 −4.22732
\(784\) 0 0
\(785\) −2.48641 −0.0887438
\(786\) 0 0
\(787\) −28.6944 28.6944i −1.02284 1.02284i −0.999733 0.0231107i \(-0.992643\pi\)
−0.0231107 0.999733i \(-0.507357\pi\)
\(788\) 0 0
\(789\) −15.8065 + 15.8065i −0.562726 + 0.562726i
\(790\) 0 0
\(791\) 5.28422i 0.187885i
\(792\) 0 0
\(793\) 4.97620i 0.176710i
\(794\) 0 0
\(795\) 20.7046 20.7046i 0.734317 0.734317i
\(796\) 0 0
\(797\) 6.29277 + 6.29277i 0.222901 + 0.222901i 0.809719 0.586818i \(-0.199619\pi\)
−0.586818 + 0.809719i \(0.699619\pi\)
\(798\) 0 0
\(799\) 20.2441 0.716185
\(800\) 0 0
\(801\) 42.5875 1.50476
\(802\) 0 0
\(803\) 15.0355 + 15.0355i 0.530592 + 0.530592i
\(804\) 0 0
\(805\) −1.39879 + 1.39879i −0.0493007 + 0.0493007i
\(806\) 0 0
\(807\) 28.1005i 0.989186i
\(808\) 0 0
\(809\) 27.0850i 0.952257i −0.879376 0.476128i \(-0.842040\pi\)
0.879376 0.476128i \(-0.157960\pi\)
\(810\) 0 0
\(811\) 14.6690 14.6690i 0.515098 0.515098i −0.400986 0.916084i \(-0.631332\pi\)
0.916084 + 0.400986i \(0.131332\pi\)
\(812\) 0 0
\(813\) −57.2769 57.2769i −2.00879 2.00879i
\(814\) 0 0
\(815\) −19.6720 −0.689081
\(816\) 0 0
\(817\) −1.95585 −0.0684264
\(818\) 0 0
\(819\) −5.30496 5.30496i −0.185370 0.185370i
\(820\) 0 0
\(821\) 15.4717 15.4717i 0.539965 0.539965i −0.383553 0.923519i \(-0.625300\pi\)
0.923519 + 0.383553i \(0.125300\pi\)
\(822\) 0 0
\(823\) 7.64319i 0.266425i −0.991088 0.133212i \(-0.957471\pi\)
0.991088 0.133212i \(-0.0425292\pi\)
\(824\) 0 0
\(825\) 7.56703i 0.263450i
\(826\) 0 0
\(827\) 0.781185 0.781185i 0.0271645 0.0271645i −0.693394 0.720559i \(-0.743885\pi\)
0.720559 + 0.693394i \(0.243885\pi\)
\(828\) 0 0
\(829\) −28.9122 28.9122i −1.00416 1.00416i −0.999991 0.00417165i \(-0.998672\pi\)
−0.00417165 0.999991i \(-0.501328\pi\)
\(830\) 0 0
\(831\) −46.4326 −1.61073
\(832\) 0 0
\(833\) −13.2529 −0.459186
\(834\) 0 0
\(835\) 13.3374 + 13.3374i 0.461561 + 0.461561i
\(836\) 0 0
\(837\) −4.88349 + 4.88349i −0.168798 + 0.168798i
\(838\) 0 0
\(839\) 35.9665i 1.24170i −0.783928 0.620851i \(-0.786787\pi\)
0.783928 0.620851i \(-0.213213\pi\)
\(840\) 0 0
\(841\) 26.5841i 0.916692i
\(842\) 0 0
\(843\) −33.6400 + 33.6400i −1.15862 + 1.15862i
\(844\) 0 0
\(845\) 8.51798 + 8.51798i 0.293028 + 0.293028i
\(846\) 0 0
\(847\) −5.60663 −0.192646
\(848\) 0 0
\(849\) −93.4140 −3.20596
\(850\) 0 0
\(851\) −11.6797 11.6797i −0.400375 0.400375i
\(852\) 0 0
\(853\) −8.53167 + 8.53167i −0.292119 + 0.292119i −0.837917 0.545798i \(-0.816227\pi\)
0.545798 + 0.837917i \(0.316227\pi\)
\(854\) 0 0
\(855\) 21.3142i 0.728929i
\(856\) 0 0
\(857\) 20.6681i 0.706010i 0.935621 + 0.353005i \(0.114840\pi\)
−0.935621 + 0.353005i \(0.885160\pi\)
\(858\) 0 0
\(859\) −26.6003 + 26.6003i −0.907590 + 0.907590i −0.996077 0.0884877i \(-0.971797\pi\)
0.0884877 + 0.996077i \(0.471797\pi\)
\(860\) 0 0
\(861\) 8.98085 + 8.98085i 0.306066 + 0.306066i
\(862\) 0 0
\(863\) 24.2911 0.826880 0.413440 0.910531i \(-0.364327\pi\)
0.413440 + 0.910531i \(0.364327\pi\)
\(864\) 0 0
\(865\) 22.7298 0.772838
\(866\) 0 0
\(867\) −28.3304 28.3304i −0.962150 0.962150i
\(868\) 0 0
\(869\) 25.1275 25.1275i 0.852391 0.852391i
\(870\) 0 0
\(871\) 6.26428i 0.212257i
\(872\) 0 0
\(873\) 43.3806i 1.46821i
\(874\) 0 0
\(875\) −0.694387 + 0.694387i −0.0234746 + 0.0234746i
\(876\) 0 0
\(877\) 17.5305 + 17.5305i 0.591963 + 0.591963i 0.938161 0.346198i \(-0.112528\pi\)
−0.346198 + 0.938161i \(0.612528\pi\)
\(878\) 0 0
\(879\) −71.6659 −2.41723
\(880\) 0 0
\(881\) 35.1334 1.18367 0.591837 0.806058i \(-0.298403\pi\)
0.591837 + 0.806058i \(0.298403\pi\)
\(882\) 0 0
\(883\) −18.0965 18.0965i −0.608997 0.608997i 0.333687 0.942684i \(-0.391707\pi\)
−0.942684 + 0.333687i \(0.891707\pi\)
\(884\) 0 0
\(885\) −18.6788 + 18.6788i −0.627880 + 0.627880i
\(886\) 0 0
\(887\) 14.6666i 0.492455i −0.969212 0.246228i \(-0.920809\pi\)
0.969212 0.246228i \(-0.0791911\pi\)
\(888\) 0 0
\(889\) 4.77825i 0.160257i
\(890\) 0 0
\(891\) −46.7246 + 46.7246i −1.56533 + 1.56533i
\(892\) 0 0
\(893\) 17.7624 + 17.7624i 0.594397 + 0.594397i
\(894\) 0 0
\(895\) 23.2413 0.776871
\(896\) 0 0
\(897\) 6.47199 0.216094
\(898\) 0 0
\(899\) 2.29475 + 2.29475i 0.0765341 + 0.0765341i
\(900\) 0 0
\(901\) 13.8192 13.8192i 0.460385 0.460385i
\(902\) 0 0
\(903\) 2.31908i 0.0771743i
\(904\) 0 0
\(905\) 21.8552i 0.726490i
\(906\) 0 0
\(907\) 25.4429 25.4429i 0.844817 0.844817i −0.144664 0.989481i \(-0.546210\pi\)
0.989481 + 0.144664i \(0.0462100\pi\)
\(908\) 0 0
\(909\) 2.27874 + 2.27874i 0.0755810 + 0.0755810i
\(910\) 0 0
\(911\) 14.6852 0.486542 0.243271 0.969958i \(-0.421780\pi\)
0.243271 + 0.969958i \(0.421780\pi\)
\(912\) 0 0
\(913\) 2.22252 0.0735547
\(914\) 0 0
\(915\) −11.8532 11.8532i −0.391854 0.391854i
\(916\) 0 0
\(917\) 7.86179 7.86179i 0.259619 0.259619i
\(918\) 0 0
\(919\) 46.2157i 1.52451i −0.647274 0.762257i \(-0.724091\pi\)
0.647274 0.762257i \(-0.275909\pi\)
\(920\) 0 0
\(921\) 42.4492i 1.39875i
\(922\) 0 0
\(923\) 7.18076 7.18076i 0.236358 0.236358i
\(924\) 0 0
\(925\) −5.79805 5.79805i −0.190639 0.190639i
\(926\) 0 0
\(927\) 35.2198 1.15677
\(928\) 0 0
\(929\) 52.0543 1.70785 0.853923 0.520400i \(-0.174217\pi\)
0.853923 + 0.520400i \(0.174217\pi\)
\(930\) 0 0
\(931\) −11.6283 11.6283i −0.381101 0.381101i
\(932\) 0 0
\(933\) −1.49557 + 1.49557i −0.0489627 + 0.0489627i
\(934\) 0 0
\(935\) 5.05059i 0.165172i
\(936\) 0 0
\(937\) 33.7454i 1.10241i 0.834368 + 0.551207i \(0.185833\pi\)
−0.834368 + 0.551207i \(0.814167\pi\)
\(938\) 0 0
\(939\) −49.7293 + 49.7293i −1.62285 + 1.62285i
\(940\) 0 0
\(941\) 14.5814 + 14.5814i 0.475341 + 0.475341i 0.903638 0.428297i \(-0.140886\pi\)
−0.428297 + 0.903638i \(0.640886\pi\)
\(942\) 0 0
\(943\) −7.91946 −0.257893
\(944\) 0 0
\(945\) 15.5807 0.506840
\(946\) 0 0
\(947\) 37.7582 + 37.7582i 1.22698 + 1.22698i 0.965102 + 0.261876i \(0.0843410\pi\)
0.261876 + 0.965102i \(0.415659\pi\)
\(948\) 0 0
\(949\) −6.38383 + 6.38383i −0.207228 + 0.207228i
\(950\) 0 0
\(951\) 40.2998i 1.30681i
\(952\) 0 0
\(953\) 48.6441i 1.57574i −0.615844 0.787868i \(-0.711185\pi\)
0.615844 0.787868i \(-0.288815\pi\)
\(954\) 0 0
\(955\) 10.4562 10.4562i 0.338353 0.338353i
\(956\) 0 0
\(957\) 39.8920 + 39.8920i 1.28952 + 1.28952i
\(958\) 0 0
\(959\) −13.3128 −0.429893
\(960\) 0 0
\(961\) −30.8105 −0.993888
\(962\) 0 0
\(963\) 50.8397 + 50.8397i 1.63829 + 1.63829i
\(964\) 0 0
\(965\) 7.98408 7.98408i 0.257017 0.257017i
\(966\) 0 0
\(967\) 12.4521i 0.400433i 0.979752 + 0.200216i \(0.0641645\pi\)
−0.979752 + 0.200216i \(0.935835\pi\)
\(968\) 0 0
\(969\) 19.6817i 0.632266i
\(970\) 0 0
\(971\) −14.1931 + 14.1931i −0.455478 + 0.455478i −0.897168 0.441690i \(-0.854379\pi\)
0.441690 + 0.897168i \(0.354379\pi\)
\(972\) 0 0
\(973\) −8.07846 8.07846i −0.258984 0.258984i
\(974\) 0 0
\(975\) 3.21283 0.102893
\(976\) 0 0
\(977\) 18.3144 0.585929 0.292965 0.956123i \(-0.405358\pi\)
0.292965 + 0.956123i \(0.405358\pi\)
\(978\) 0 0
\(979\) −8.85441 8.85441i −0.282988 0.282988i
\(980\) 0 0
\(981\) −19.7096 + 19.7096i −0.629278 + 0.629278i
\(982\) 0 0
\(983\) 27.0583i 0.863027i 0.902107 + 0.431513i \(0.142020\pi\)
−0.902107 + 0.431513i \(0.857980\pi\)
\(984\) 0 0
\(985\) 15.0122i 0.478328i
\(986\) 0 0
\(987\) 21.0612 21.0612i 0.670386 0.670386i
\(988\) 0 0
\(989\) −1.02250 1.02250i −0.0325137 0.0325137i
\(990\) 0 0
\(991\) 25.7759 0.818799 0.409400 0.912355i \(-0.365738\pi\)
0.409400 + 0.912355i \(0.365738\pi\)
\(992\) 0 0
\(993\) 39.2642 1.24601
\(994\) 0 0
\(995\) −3.31484 3.31484i −0.105087 0.105087i
\(996\) 0 0
\(997\) −11.1158 + 11.1158i −0.352041 + 0.352041i −0.860868 0.508828i \(-0.830079\pi\)
0.508828 + 0.860868i \(0.330079\pi\)
\(998\) 0 0
\(999\) 130.097i 4.11609i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.l.b.161.8 16
4.3 odd 2 640.2.l.a.161.1 16
8.3 odd 2 320.2.l.a.81.8 16
8.5 even 2 80.2.l.a.61.8 yes 16
16.3 odd 4 320.2.l.a.241.8 16
16.5 even 4 inner 640.2.l.b.481.8 16
16.11 odd 4 640.2.l.a.481.1 16
16.13 even 4 80.2.l.a.21.8 16
24.5 odd 2 720.2.t.c.541.1 16
24.11 even 2 2880.2.t.c.721.2 16
32.5 even 8 5120.2.a.s.1.1 8
32.11 odd 8 5120.2.a.t.1.1 8
32.21 even 8 5120.2.a.v.1.8 8
32.27 odd 8 5120.2.a.u.1.8 8
40.3 even 4 1600.2.q.h.849.1 16
40.13 odd 4 400.2.q.g.349.6 16
40.19 odd 2 1600.2.l.i.401.1 16
40.27 even 4 1600.2.q.g.849.8 16
40.29 even 2 400.2.l.h.301.1 16
40.37 odd 4 400.2.q.h.349.3 16
48.29 odd 4 720.2.t.c.181.1 16
48.35 even 4 2880.2.t.c.2161.3 16
80.3 even 4 1600.2.q.g.49.8 16
80.13 odd 4 400.2.q.h.149.3 16
80.19 odd 4 1600.2.l.i.1201.1 16
80.29 even 4 400.2.l.h.101.1 16
80.67 even 4 1600.2.q.h.49.1 16
80.77 odd 4 400.2.q.g.149.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.8 16 16.13 even 4
80.2.l.a.61.8 yes 16 8.5 even 2
320.2.l.a.81.8 16 8.3 odd 2
320.2.l.a.241.8 16 16.3 odd 4
400.2.l.h.101.1 16 80.29 even 4
400.2.l.h.301.1 16 40.29 even 2
400.2.q.g.149.6 16 80.77 odd 4
400.2.q.g.349.6 16 40.13 odd 4
400.2.q.h.149.3 16 80.13 odd 4
400.2.q.h.349.3 16 40.37 odd 4
640.2.l.a.161.1 16 4.3 odd 2
640.2.l.a.481.1 16 16.11 odd 4
640.2.l.b.161.8 16 1.1 even 1 trivial
640.2.l.b.481.8 16 16.5 even 4 inner
720.2.t.c.181.1 16 48.29 odd 4
720.2.t.c.541.1 16 24.5 odd 2
1600.2.l.i.401.1 16 40.19 odd 2
1600.2.l.i.1201.1 16 80.19 odd 4
1600.2.q.g.49.8 16 80.3 even 4
1600.2.q.g.849.8 16 40.27 even 4
1600.2.q.h.49.1 16 80.67 even 4
1600.2.q.h.849.1 16 40.3 even 4
2880.2.t.c.721.2 16 24.11 even 2
2880.2.t.c.2161.3 16 48.35 even 4
5120.2.a.s.1.1 8 32.5 even 8
5120.2.a.t.1.1 8 32.11 odd 8
5120.2.a.u.1.8 8 32.27 odd 8
5120.2.a.v.1.8 8 32.21 even 8